WO2006117982A1 - Fluorescence conversion composition, and fluorescence conversion method and device using said composition - Google Patents

Fluorescence conversion composition, and fluorescence conversion method and device using said composition Download PDF

Info

Publication number
WO2006117982A1
WO2006117982A1 PCT/JP2006/307649 JP2006307649W WO2006117982A1 WO 2006117982 A1 WO2006117982 A1 WO 2006117982A1 JP 2006307649 W JP2006307649 W JP 2006307649W WO 2006117982 A1 WO2006117982 A1 WO 2006117982A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge transfer
ferroelectric
fluorine
composition
containing polymer
Prior art date
Application number
PCT/JP2006/307649
Other languages
French (fr)
Japanese (ja)
Inventor
Giseop Kwak
Michiya Fujiki
Chisato Okada
Original Assignee
National University Corporation NARA Institute of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National University Corporation NARA Institute of Science and Technology filed Critical National University Corporation NARA Institute of Science and Technology
Priority to JP2007514549A priority Critical patent/JPWO2006117982A1/en
Publication of WO2006117982A1 publication Critical patent/WO2006117982A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0041Optical brightening agents, organic pigments

Definitions

  • Fluorescent color converting composition Fluorescent color converting composition, fluorescent color converting method and device using the composition
  • the present invention relates to a composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer, and to a fluorescent color conversion method and device utilizing a novel function of the composition.
  • Intramolecular charge transfer (ICT) dyes are used as light-emitting / photoelectric conversion materials for ELZPL devices, dye lasers, dye-sensitized solar cells, etc., and their photospecificity varies greatly depending on the polarity of the solvent. It has been known for a long time. For example, a dye laser is most often used as a wavelength tunable laser because a laser having an arbitrary wavelength can be obtained simply by changing the dye solution. However, when changing the oscillation wavelength, it was necessary to take out the dye solution, carefully wash it, and then circulate a new dye solution. In addition, since it is a solution, it has a drawback that it cannot be processed into an arbitrary shape.
  • ICT Intramolecular charge transfer
  • Patent Document 1 There has been proposed a solid-state dye device that does not have such a defect (for example, Patent Document 1). There is no concept of changing the fluorescent color or emission intensity depending on the temperature difference.
  • Patent Document 2 An image record is disclosed (for example, Patent Document 2).
  • the dye used in Patent Document 2 is different from the dye used in the present invention, and utilizes a function of light absorption and heat generation.
  • Patent Document 2 there is no concept of changing the fluorescent color or emission intensity depending on the temperature.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-346233
  • Patent Document 2 JP-A-3-296769
  • the present invention uses a polymer matrix that exhibits a paraelectric-ferroelectric phase transition, and thereby the fluorescence intensity or wavelength of the ICT type dyes. Discovered a new function that reversibly changes.
  • An object of the present invention is to provide an intramolecular charge transfer type fluorescent dye-dispersed polymer, a fluorescent color conversion method using a novel function of the dispersed polymer, and various devices using them.
  • the above object is achieved by a composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer.
  • the charge transfer dye is at least one selected from the group force consisting of DCM, DCM2, Nile Red, and Coumarin6, and has a high molecular force of ferroelectric fluorine-containing vinylidene fluoride and trifluoro. It is a copolymer with ethylene.
  • the fluorescent color of the composition of the present invention can be changed by a temperature change.
  • FIG. 1 is a graph showing the relationship between the temperature and dielectric constant of a vinylidene fluoride trifluoroethylene copolymer.
  • FIG. 2A UV-vis absorption spectrum of DCM dispersion film.
  • FIG. 2C Fluorescence spectrum of DCM dispersion film.
  • FIG. 3A UV-vis absorption spectrum of DCM2 dispersion film.
  • FIG. 3C Fluorescence spectrum of DCM2 dispersion film.
  • FIG. 4B UV-vis absorption spectrum of Nile Red dispersion film.
  • FIG. 4C Fluorescence spectrum of Nile Red dispersion film.
  • FIG. 4D Fluorescent spectrum of Nile Red dispersion film.
  • FIG. 5A UV-vis absorption spectrum of Coumarin6 dispersion film.
  • FIG. 5B UV-vis absorption spectrum of Coumarin6 dispersion film.
  • FIG. 5C Fluorescence spectrum of Coumarin6 dispersion film.
  • FIG. 5D Fluorescence spectrum of Coumarin6 dispersion film.
  • Charge transfer dyes have a pi-conjugated structure with an electron donor and an acceptor, and their optical properties and nonlinear optical characteristics related to their charge transfer characteristics have been studied.
  • the charge transfer dyes that can be used in the present invention conventionally known dyes can be used, and various commercially available dyes are commercially available from, for example, EXCITON, Aldrich, and Tokyo Chemical Industry.
  • the charge transfer type dye used in this example is a dye having the structure and dye name described below.
  • the dyes described below are intramolecular transfer charge type dyes, and have a dipole moment that is very large. Both the ground state and the excited state have 1 debye or more, and the viewpoint power that the difference is 0.1 debye or more is also selected.
  • a dye that can be used in the present invention from various known dyes, it is preferable to select a dye that can dissolve at least 0.1% in tetrahydrofuran (THF) from the viewpoint described on the left. This is because using a dye that does not dissolve in such a solvent makes it difficult to produce a film in which the dye is uniformly dispersed.
  • THF tetrahydrofuran
  • ferroelectric fluorine-containing polymer used in the present invention a polymer represented by the following general formula [I], which is a copolymer of vinylidene fluoride and trifluoroethylene, is used.
  • X and y are copolymerization ratios.
  • Figure 1 shows the temperature dependence of the dielectric constant of a vinylidene fluoride trifluoroethylene copolymer in which x: y is 52:48.
  • the dielectric constant ( ⁇ ) rapidly changes at a temperature of 50 to 70 ° C., and a paraelectric strong dielectric phase transition occurs.
  • Paraelectric Ferroelectric phase transition is defined as a transition caused by a change in crystal structure between a paraelectric that does not have spontaneous polarization and a ferroelectric that has spontaneous polarization.
  • Dielectric phase transition temperature is defined as the temperature at which spontaneous polarization disappears (Curie temperature).
  • the ratio of x: y is not particularly limited as long as it is a copolymer that causes such a paraelectric ferroelectric phase transition. It is preferable to use a vinylidene fluoride-trifluoroethylene copolymer in which the paraelectric ferroelectric phase transition occurs more rapidly.
  • the dielectric constant was measured by dissolving 2 lOmg of vinylidene fluoride-trifluoroethylene copolymer having x: y of 52:48 in 2ml of organic solvent tetrahydrofuran (THF). Casting and drying were performed using a transparent film prepared.
  • the capacitance C [F] is proportional to the area A [m 2 ] of the electrode plate and inversely proportional to the film thickness L (m) of the film.
  • the ferroelectric fluorine-containing polymer used in the present invention is one that is soluble in tetrahydrofuran (THF) by 0.1% or more and can be used for film formation.
  • a polymer having a dissolution amount lower than 0.1% by weight makes it difficult to produce a uniform film that is difficult to form.
  • a vinylidene fluoride homopolymer having y of 0 cannot be dissolved and a uniform film thickness that is difficult to form cannot be produced.
  • the above-described paraelectric ferroelectric phase transition as the polymer matrix is largely related to changing the fluorescent color emitted by the charge transfer dye by changing the temperature. It is believed that From such a viewpoint, the polymer matrix of the phosphor is not limited to the vinylidene fluoride-trifluoroethylene copolymer represented by the above general formula [I], and other matrices can be used. is expected.
  • the charge transfer dye may be used in an amount ranging from 1 PPM to 10% by weight with respect to the ferroelectric fluorine-containing polymer. Preferably, it is used in the range of 0.01 to less than 1% by weight.
  • the charge transfer dye and the ferroelectric fluorine-containing polymer need to be dissolved in a solvent when a thin film to be described later is formed, and the present invention can be carried out as long as it dissolves.
  • the amount of the charge transfer dye may be appropriately selected within the above range depending on the target fluorescent color, emission intensity, emission degradation rate, and the like.
  • the thin film is prepared by using a predetermined amount of the charge transfer dye and the ferroelectric fluorine-containing polymer in an appropriate solvent such as tetrahydrofuran, methyl ethyl ketone, acetone, black mouth form, ⁇ , ⁇ -dimethylformamide, dimethyl sulfoxide. This can be done by applying and drying a solution dissolved in a solution such as spin coating or solvent casting.
  • the film thickness of the thin film is not particularly limited, but considering the film formability and mechanical strength, the film thickness after drying may be 1 to: LOO / zm.
  • the thin film obtained as described above can change the fluorescent color depending on the temperature.
  • the temperature should be changed between the temperature range and the temperature range that is lower than the transition temperature and higher than the temperature range, taking into account the paraelectric and ferroelectric phase transition temperature of the ferroelectric fluorine-containing polymer used. To do.
  • the change in fluorescent color is caused by a change in fluorescence wavelength and a change in emission intensity.
  • the fluorescent color can be changed in various colors depending on the combination of the phosphor and the fluorinated polymer.
  • the present invention will be described using examples.
  • PVdF—co-TrFE is vinylidene fluoride-3 fluorinated styrene copolymer (copolymer ratio 52:48) (hereinafter referred to as “1 ⁇ (1? -Co- TrFE ”)).
  • the PVdF 2 -co-TrFE dissolves in 100% by weight or more in THF.
  • PVdF-co- Good for both TrFE and DCM! A solution was prepared from THF, which shows solubility.
  • a transparent film film thickness 3 ⁇ m was prepared in a triangular cell by the solvent casting method with a weight ratio of polymer to DCM of 500: 1.
  • the obtained DCM dispersion film was heated from 0 ° C to 90 ° C in 10 ° C increments, and UV-vis absorption 'fluorescence spectrum measurement was performed while gradually cooling down to 90 ° C force 0 ° C in increments of 10 ° C. .
  • FIGS. 2A to 2D show UV-vis absorption and fluorescence spectra of the DCM dispersion film.
  • the UV-vis absorption spectrum was blue-shifted from maxO ° C: 460 nm to 90 ° C: 455.5 nm by heating (Fig. 2A), and returned to its original wavelength by slow cooling (Fig. 2B).
  • Fluorescence spectrum ranges from 0 ° C: 581 nm to 90 ° C: 583.5 nm, heating process (Fig. 2C) ⁇ Power that hardly shifts even in the slow cooling process (Fig. 2D). As a result, the strength decreased.
  • a DCM2 dispersion film was prepared in the same manner as in Example 1 except that DCM2 was used instead of DCM.
  • Figures 3A to 3D show the results of UV-vis absorption and fluorescence spectra.
  • the UV-vis absorption spectrum was blue-shifted from 0 ° C: 500 nm force to 90 ° C: 492.5 nm by calo-heating ( Figure 3A). Furthermore, by slow cooling, the original wavelength was restored from 90 ° C: 492.5 nm force to 0 ° C: 50.5 nm (Fig. 3B).
  • Nile Red dispersion film was prepared in the same manner as in Example 1 except that Nile Red was used instead of DCM.
  • FIGS. 4A to 4D show the results of UV-vis absorption and fluorescence spectra.
  • the UV-vis absorption spectrum was blue-shifted from 0 ° C: 545.5 nm force to 90 ° C: 531.5 nm by heating (Fig. 4A). Furthermore, by slow cooling, the original wavelength returned from 90 ° C: 531.5 nm to 0 ° C: 546 nm (Fig. 4B).
  • the fluorescent color changes reversibly between dark purple and orange by heating and slow cooling. That was observed with the naked eye.
  • a Coumarin6 dispersion film was prepared in the same manner as in Example 1 except that Coumarin6 was used instead of DCM.
  • FIG. 5A to FIG. 5D show the results of UV-vis absorption / fluorescence spectrum of Coumarin 6 dispersion film.
  • the absorption around 390 nm increased and the absorption between 450 and 550 nm decreased during the heating process (Fig. 5A). Furthermore, the absorption was restored by slow cooling (Fig. 5B).
  • a temperature change display element By using the intramolecular charge transfer type fluorescent dye dispersion polymer of the present invention and the fluorescence expression method using the novel function, a temperature change display element, a new type of temperature surface emitting sensor (thermography), temperature ⁇ Polarized wavelength tunable plastic laser 1. It can be applied to stress sensors and bimorph type flat speakers that emit surface light.
  • a composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin6
  • the dielectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
  • the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
  • ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
  • a temperature change display element having a thin film containing the composition according to any one of 1 to 4 above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Lasers (AREA)

Abstract

This invention provides a composition comprising a charge transfer coloring matter and a ferroelectric fluorine-containing polymer, wherein the charge transfer coloring matter is at least one coloring matter selected from the group consisting of DCM, DCM 2, Nile Red and Coumarin 6, and the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride with trifluoroethylene. A fluorescence conversion method using the composition and various device using them are also provided.

Description

明 細 書  Specification
蛍光色変換性組成物、該組成物を使用した蛍光色変換方法およびデバ イス  Fluorescent color converting composition, fluorescent color converting method and device using the composition
技術分野  Technical field
[0001] 本発明は電荷移動型色素および強誘電フッ素含有高分子を含有する組成物およ び該組成物の新規機能を利用した蛍光色変換方法およびデバイスに関する。 背景技術  [0001] The present invention relates to a composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer, and to a fluorescent color conversion method and device utilizing a novel function of the composition. Background art
[0002] 分子内電荷移動 (ICT)型色素は、 ELZPLデバイス、色素レーザー、色素増感型 太陽電池などの発光 ·光電変換材料として用いられ、溶媒の極性によって発光波長 が大きく変化する光特異性を示すことが古くから知られている。例えば、色素レーザ 一は、色素溶液を変えるだけで任意の波長のレーザーを得ることができるので、波長 可変レーザーとして最もよく利用されている。し力しながら、発振波長を変えるに時に は、色素溶液を抜き出し、入念に洗浄後、新たな色素溶液を循環させるという非常に 煩雑な作業が必要であった。また、溶液であるため、任意の形状等に加工が不可能 であるという欠点もあった。  [0002] Intramolecular charge transfer (ICT) dyes are used as light-emitting / photoelectric conversion materials for ELZPL devices, dye lasers, dye-sensitized solar cells, etc., and their photospecificity varies greatly depending on the polarity of the solvent. It has been known for a long time. For example, a dye laser is most often used as a wavelength tunable laser because a laser having an arbitrary wavelength can be obtained simply by changing the dye solution. However, when changing the oscillation wavelength, it was necessary to take out the dye solution, carefully wash it, and then circulate a new dye solution. In addition, since it is a solution, it has a drawback that it cannot be processed into an arbitrary shape.
[0003] そのような欠点のない色素固体デバイスが提案されている (例えば特許文献 1)力 そこには、温度の違いにより蛍光色または発光強度を変化させる概念はない。  [0003] There has been proposed a solid-state dye device that does not have such a defect (for example, Patent Document 1). There is no concept of changing the fluorescent color or emission intensity depending on the temperature difference.
[0004] なお、本願発明が使用しているフッ化ビ-リデンとトリフルォロエチレン共重合体を 使用し、導電性支持体上に該共重合体と色素を含有する層を積層してなる画像記 録体が開示されている (例えば、特許文献 2)。しかしながら、特許文献 2で使用され ている色素は、本願発明で使用されている色素と異なり、また、光吸収-発熱という機 能を利用するものである。特許文献 2には、温度の違いにより蛍光色または発光強度 を変化させる概念はない。  [0004] It is to be noted that, using the vinylidene fluoride and trifluoroethylene copolymer used in the present invention, a layer containing the copolymer and a dye is laminated on a conductive support. An image record is disclosed (for example, Patent Document 2). However, the dye used in Patent Document 2 is different from the dye used in the present invention, and utilizes a function of light absorption and heat generation. In Patent Document 2, there is no concept of changing the fluorescent color or emission intensity depending on the temperature.
特許文献 1:特開 2004— 346233号公報  Patent Document 1: Japanese Patent Laid-Open No. 2004-346233
特許文献 2:特開平 3 - 296769号公報  Patent Document 2: JP-A-3-296769
発明の開示  Disclosure of the invention
発明が解決しょうとする課題 [0005] 本発明は、種々のポリマーマトリックス中における ICT型色素の光物性を検討した 結果、常誘電—強誘電相転移を示すポリマーマトリックスを使用することにより、 ICT 型色素の蛍光強度あるいは蛍光波長が可逆的に変化する新規機能を見出した。 Problems to be solved by the invention [0005] As a result of examining the optical properties of ICT type dyes in various polymer matrices, the present invention uses a polymer matrix that exhibits a paraelectric-ferroelectric phase transition, and thereby the fluorescence intensity or wavelength of the ICT type dyes. Discovered a new function that reversibly changes.
[0006] 本発明は、分子内電荷移動型蛍光色素分散ポリマー、該分散ポリマーの新規機能 を利用した蛍光色変換方法およびそれらを利用した種々のデバイスを提供すること を目的とする。  [0006] An object of the present invention is to provide an intramolecular charge transfer type fluorescent dye-dispersed polymer, a fluorescent color conversion method using a novel function of the dispersed polymer, and various devices using them.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的は、電荷移動型色素および強誘電フッ素含有高分子を含有する組成物 により達成される。より詳しくは、電荷移動型色素が、 DCM、 DCM2、 Nile Redおよ び Coumarin6からなる群力も選択される少なくとも 1種であり、強誘電フッ素含有高分 子力 フッ化ビ-リデンとトリフルォロエチレンとの共重合体である。 [0007] The above object is achieved by a composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer. More specifically, the charge transfer dye is at least one selected from the group force consisting of DCM, DCM2, Nile Red, and Coumarin6, and has a high molecular force of ferroelectric fluorine-containing vinylidene fluoride and trifluoro. It is a copolymer with ethylene.
発明の効果  The invention's effect
[0008] 本発明の組成物は、温度変化により蛍光色を変化させることができる。  [0008] The fluorescent color of the composition of the present invention can be changed by a temperature change.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]フッ化ビ-リデンートリフルォロエチレン共重合体の温度と誘電率の関係を示す グラフ。  [0009] FIG. 1 is a graph showing the relationship between the temperature and dielectric constant of a vinylidene fluoride trifluoroethylene copolymer.
[図 2A]DCM分散膜の UV— vis吸収スペクトル。  [Fig. 2A] UV-vis absorption spectrum of DCM dispersion film.
[図 2B]DCM分散膜の UV— vis吸収スペクトル。  [Figure 2B] UV-vis absorption spectrum of DCM dispersion film.
[図 2C]DCM分散膜の蛍光スペクトル。  [FIG. 2C] Fluorescence spectrum of DCM dispersion film.
[図 2D]DCM分散膜の蛍光スペクトル。  [Fig. 2D] Fluorescence spectrum of DCM dispersion film.
[図 3A]DCM2分散膜の UV— vis吸収スペクトル。  [Fig. 3A] UV-vis absorption spectrum of DCM2 dispersion film.
[図 3B]DCM2分散膜の UV— vis吸収スペクトル。  [Figure 3B] UV-vis absorption spectrum of DCM2 dispersion film.
[図 3C]DCM2分散膜の蛍光スペクトル。  [FIG. 3C] Fluorescence spectrum of DCM2 dispersion film.
[図 3D]DCM2分散膜の蛍光スペクトル。  [Fig. 3D] Fluorescence spectrum of DCM2 dispersion film.
[図 4A]Nile Red分散膜の UV— vis吸収スペクトル。  [Figure 4A] UV-vis absorption spectrum of Nile Red dispersion film.
[図 4B]Nile Red分散膜の UV— vis吸収スペクトル。  [Fig. 4B] UV-vis absorption spectrum of Nile Red dispersion film.
[図 4C]Nile Red分散膜の蛍光スペクトル。  [Fig. 4C] Fluorescence spectrum of Nile Red dispersion film.
[図 4D]Nile Red分散膜の蛍光スぺクトノレ。 [図 5A]Coumarin6分散膜の UV— vis吸収スペクトル。 [Fig. 4D] Fluorescent spectrum of Nile Red dispersion film. [Fig. 5A] UV-vis absorption spectrum of Coumarin6 dispersion film.
[図 5B]Coumarin6分散膜の UV— vis吸収スペクトル。  [Fig. 5B] UV-vis absorption spectrum of Coumarin6 dispersion film.
[図 5C]Coumarin6分散膜の蛍光スペクトル。  [Fig. 5C] Fluorescence spectrum of Coumarin6 dispersion film.
[図 5D]Coumarin6分散膜の蛍光スペクトル。  [FIG. 5D] Fluorescence spectrum of Coumarin6 dispersion film.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 電荷移動型色素は、電子ドナーとァクセプターでパイ共役構造をしており、その電 荷移動特性に関連した光物性 ·非線形光学特性が研究されている。本発明に使用 できる電荷移動型色素は、従来力 知られている色素が使用可であり、商業的には、 例えば EXCITON社、 Aldrich社、東京化成工業社から種々入手可能である。本実施 例で使用して 、る電荷移動型色素は、下記記載の構造および色素名の色素である。 下記記載の色素は、分子内移動電荷型色素であり、双極子モーメントが非常に大き ぐ基底状態および励起状態共に 1デバイ以上有し、その差が 0. 1デバイ以上有す る観点力も選ばれて 、る。種々公知の色素から本発明に使用できる色素を選ぶ際に は左記観点にカ卩え、テトラヒドロフラン (THF)に対して、 0. 1%以上溶解可能なもの 力も選択するようにすればなおよい。これは、そのような溶媒に溶解しない色素を使 用すると、色素が均一に分散したフィルムを作製しにくいからである。下記色素はそ のような溶解性をも有する。  [0010] Charge transfer dyes have a pi-conjugated structure with an electron donor and an acceptor, and their optical properties and nonlinear optical characteristics related to their charge transfer characteristics have been studied. As the charge transfer dyes that can be used in the present invention, conventionally known dyes can be used, and various commercially available dyes are commercially available from, for example, EXCITON, Aldrich, and Tokyo Chemical Industry. The charge transfer type dye used in this example is a dye having the structure and dye name described below. The dyes described below are intramolecular transfer charge type dyes, and have a dipole moment that is very large. Both the ground state and the excited state have 1 debye or more, and the viewpoint power that the difference is 0.1 debye or more is also selected. And When selecting a dye that can be used in the present invention from various known dyes, it is preferable to select a dye that can dissolve at least 0.1% in tetrahydrofuran (THF) from the viewpoint described on the left. This is because using a dye that does not dissolve in such a solvent makes it difficult to produce a film in which the dye is uniformly dispersed. The following dyes have such solubility.
[0011] [化 1] [0011] [Chemical 1]
Figure imgf000006_0001
Figure imgf000006_0001
Figure imgf000006_0002
Figure imgf000006_0002
Coumarin6  Coumarin6
[0012] 本発明に使用する強誘電フッ素含有高分子は、フッ化ビ-リデンとトリフルォロェチ レンとの共重合体である下記一般式 [I]で表されるものを使用するようにする。  As the ferroelectric fluorine-containing polymer used in the present invention, a polymer represented by the following general formula [I], which is a copolymer of vinylidene fluoride and trifluoroethylene, is used.
[0013] [化 2]
Figure imgf000006_0003
[0013] [Chemical 2]
Figure imgf000006_0003
[0014] 上記式中、 Xと yは共重合比である。図 1に、 x : yが 52 : 48であるフッ化ビ-リデンー トリフルォロエチレン共重合体の誘電率の温度依存性を示した。図 1に示されて 、る ように該共重合体は、温度 50〜70°Cで誘電率( ε )が急激に変化し、常誘電 強誘 電相転移が起こる。常誘電 強誘電相転移とは、自発分極を持たない常誘電体と自 発分極を持つ強誘電体が結晶構造の変化により生じる転移と定義され、常誘電 強 誘電相転移温度は、自発分極が消滅する温度 (キュリー温度)と定義される。本発明 においては、このような常誘電 強誘電相転移が生じる共重合体である限り、 x:yの 比は特に限定されない。好ましくは常誘電 強誘電相転移がより急激に生じるような フッ化ビ-リデン—トリフルォロエチレン共重合体を使用するようにする。 [0014] In the above formula, X and y are copolymerization ratios. Figure 1 shows the temperature dependence of the dielectric constant of a vinylidene fluoride trifluoroethylene copolymer in which x: y is 52:48. As shown in FIG. 1, in the copolymer, the dielectric constant (ε) rapidly changes at a temperature of 50 to 70 ° C., and a paraelectric strong dielectric phase transition occurs. Paraelectric Ferroelectric phase transition is defined as a transition caused by a change in crystal structure between a paraelectric that does not have spontaneous polarization and a ferroelectric that has spontaneous polarization. Dielectric phase transition temperature is defined as the temperature at which spontaneous polarization disappears (Curie temperature). In the present invention, the ratio of x: y is not particularly limited as long as it is a copolymer that causes such a paraelectric ferroelectric phase transition. It is preferable to use a vinylidene fluoride-trifluoroethylene copolymer in which the paraelectric ferroelectric phase transition occurs more rapidly.
[0015] なお、誘電率の測定は、 x:yが 52 :48であるフッ化ビ-リデン—トリフルォロェチレ ン共重合体 lOOmgを有機溶媒テトラヒドロフラン (THF)に 2mlに溶力しシャーレに 流し込み、乾燥させ、作成した透明なフィルムを使用して行った。  [0015] It should be noted that the dielectric constant was measured by dissolving 2 lOmg of vinylidene fluoride-trifluoroethylene copolymer having x: y of 52:48 in 2ml of organic solvent tetrahydrofuran (THF). Casting and drying were performed using a transparent film prepared.
[0016] 静電容量 C[F]は電極版の面積 A[m2]に比例し、フィルムの膜厚 L (m)に反比例 する。 [0016] The capacitance C [F] is proportional to the area A [m 2 ] of the electrode plate and inversely proportional to the film thickness L (m) of the film.
C= ( s -A) /L  C = (s -A) / L
上記式中、比例定数 εを絶縁体の誘電率といい、単位は [FZm]である。 εは物 質によって異なり、真空の誘電率を ε。とすると ε = 8. 85 X 10_12[FZm]となり、 ε = ε X ε In the above formula, the proportional constant ε is called the dielectric constant of the insulator, and its unit is [FZm]. ε depends on the material, and the dielectric constant of the vacuum is ε. Then ε = 8. 85 X 10 _12 [FZm], and ε = ε X ε
r 0の関係より、その物質の比誘電率(ε  From the relation of r 0, the relative dielectric constant of the substance (ε
r )を求めることができる。静電容量は r) can be obtained. Capacitance is
、 100KHz、 20。Cで測定した。 , 100KHz, 20. Measured with C.
[0017] 本発明に使用する強誘電フッ素含有高分子は、テトラヒドロフラン (THF)に対して 、 0. 1%以上溶解可能なものであり、成膜が可能なものを使用するようにする。溶解 量が 0. 1重量%より低いポリマーでは、成膜が難しぐ均一な膜厚フィルムを作製し にくい。例えば上記式 [I]中、 yが 0であるフッ化ビ-リデンホモポリマーは、溶解させ ることができず、成膜が難しぐ均一な膜厚フィルムを作製できない。  [0017] The ferroelectric fluorine-containing polymer used in the present invention is one that is soluble in tetrahydrofuran (THF) by 0.1% or more and can be used for film formation. A polymer having a dissolution amount lower than 0.1% by weight makes it difficult to produce a uniform film that is difficult to form. For example, in the above formula [I], a vinylidene fluoride homopolymer having y of 0 cannot be dissolved and a uniform film thickness that is difficult to form cannot be produced.
[0018] 本発明においては、ポリマーマトリックスとして上記したような常誘電 強誘電相転 移を示すことが、温度を変化させることにより電荷移動型色素が発する蛍光色を変化 させることに大きく関係していると考えられている。係る観点からすると、蛍光体のポリ マーマトリックスは上記一般式 [I]で表されるフッ化ビ-リデン—トリフルォロエチレン 共重合体に限定されることなぐ他のマトリックスも使用可能であると予想される。  In the present invention, the above-described paraelectric ferroelectric phase transition as the polymer matrix is largely related to changing the fluorescent color emitted by the charge transfer dye by changing the temperature. It is believed that From such a viewpoint, the polymer matrix of the phosphor is not limited to the vinylidene fluoride-trifluoroethylene copolymer represented by the above general formula [I], and other matrices can be used. is expected.
[0019] 電荷移動型色素は、強誘電フッ素含有高分子に対して 1PPM〜10重量%の範囲 の量で使用するようにすればよい。好ましくは、 0. 01から 1重量%未満の範囲で使 用する。電荷移動型色素および強誘電フッ素含有高分子は後述する薄膜を成膜す る際に溶媒に溶解させる必要があり、溶解する限り本発明を実施することができる。 電荷移動型色素の量は、上記範囲内において目的とする蛍光色、発光強度、発光 退化速度等により適宜選定すればょ ヽ。 [0019] The charge transfer dye may be used in an amount ranging from 1 PPM to 10% by weight with respect to the ferroelectric fluorine-containing polymer. Preferably, it is used in the range of 0.01 to less than 1% by weight. The charge transfer dye and the ferroelectric fluorine-containing polymer need to be dissolved in a solvent when a thin film to be described later is formed, and the present invention can be carried out as long as it dissolves. The amount of the charge transfer dye may be appropriately selected within the above range depending on the target fluorescent color, emission intensity, emission degradation rate, and the like.
[0020] 薄膜は、上記電荷移動型色素および強誘電フッ素含有高分子の所定量を適当な 溶媒、例えばテトラヒドロフラン、メチルェチルケトン、アセトン、クロ口ホルム、 Ν,Ν-ジメ チルホルムアミド、ジメチルスルホキシド等に溶解した溶液を、スピンコーティング、ソ ルベントキャスト法等で塗布乾燥することにより行える。薄膜の膜厚は、特に限定され ないが、成膜性や機械的強度を考えると、乾燥後の膜厚が 1〜: LOO /z mとなるように すればよい。  [0020] The thin film is prepared by using a predetermined amount of the charge transfer dye and the ferroelectric fluorine-containing polymer in an appropriate solvent such as tetrahydrofuran, methyl ethyl ketone, acetone, black mouth form, Ν, Ν-dimethylformamide, dimethyl sulfoxide. This can be done by applying and drying a solution dissolved in a solution such as spin coating or solvent casting. The film thickness of the thin film is not particularly limited, but considering the film formability and mechanical strength, the film thickness after drying may be 1 to: LOO / zm.
[0021] 以上のようにして得られる薄膜は、温度により、蛍光色を変化させることが可能であ る。温度は、使用する強誘電フッ素含有高分子の常誘電 強誘電相転移温度を堺 にして、該転移温度より低!、温度範囲および該転移温度よりも高 、温度範囲の間で 変化させるようにする。  The thin film obtained as described above can change the fluorescent color depending on the temperature. The temperature should be changed between the temperature range and the temperature range that is lower than the transition temperature and higher than the temperature range, taking into account the paraelectric and ferroelectric phase transition temperature of the ferroelectric fluorine-containing polymer used. To do.
[0022] 蛍光色の変化は、蛍光波長の変化、発光強度の変化により生じる。また、蛍光色の 変化は、蛍光体とフッ化ポリマーの組み合わせ等により種々異なる色の変化が可能 である。以下、実施例を用いて本発明を説明する。  [0022] The change in fluorescent color is caused by a change in fluorescence wavelength and a change in emission intensity. The fluorescent color can be changed in various colors depending on the combination of the phosphor and the fluorinated polymer. Hereinafter, the present invention will be described using examples.
実施例  Example
[0023] 実施例中、「PVdF— co— TrFE」は、フッ化ビ-リデン— 3 フッ化工チレン共重合 体(共重合体比52 :48) (以下、「1^(1? -co-TrFE 」と記載する)を表している。  In the examples, “PVdF—co-TrFE” is vinylidene fluoride-3 fluorinated styrene copolymer (copolymer ratio 52:48) (hereinafter referred to as “1 ^ (1? -Co- TrFE ")).
52 48  52 48
該 PVdF -co-TrFE は、 THFに対して 100重量%以上溶解する。  The PVdF 2 -co-TrFE dissolves in 100% by weight or more in THF.
52 48  52 48
[0024] 実施例 l (DCM)  [0024] Example l (DCM)
PVdF— co— TrFEと DCMの両方に対して良!、溶解性を示す THFから溶液を調 製した。ポリマーと DCMの重量比を 500 : 1とし、ソルベントキャスト法により透明なフ イルム (膜厚 3 μ m)を三角セル中に作製した。得られた DCM分散膜を 0°Cから 90°C へと 10°Cずつ加熱し、再び 90°C力 0°Cまで 10°Cずつ徐冷しながら UV—vis吸収' 蛍光スペクトル測定をした。  PVdF-co- Good for both TrFE and DCM! A solution was prepared from THF, which shows solubility. A transparent film (film thickness 3 μm) was prepared in a triangular cell by the solvent casting method with a weight ratio of polymer to DCM of 500: 1. The obtained DCM dispersion film was heated from 0 ° C to 90 ° C in 10 ° C increments, and UV-vis absorption 'fluorescence spectrum measurement was performed while gradually cooling down to 90 ° C force 0 ° C in increments of 10 ° C. .
[0025] 図 2A〜図 2Dに DCM分散膜の UV— vis吸収 ·蛍光スペクトルを示す。 UV— vis 吸収スペクトルは加熱することにより maxO°C :460nmから 90°C :455. 5nmへとブ ルーシフトし(図 2A)、徐冷により元の波長へと戻った(図 2B)。 [0026] 蛍光スペクトルは 0°C : 581nmから 90°C : 583. 5nmと加熱過程(図 2C) ·徐冷過程 (図 2D)においてもほとんどシフトしな力つた力 発光強度においては加熱することに より強度が減少した。 [0025] FIGS. 2A to 2D show UV-vis absorption and fluorescence spectra of the DCM dispersion film. The UV-vis absorption spectrum was blue-shifted from maxO ° C: 460 nm to 90 ° C: 455.5 nm by heating (Fig. 2A), and returned to its original wavelength by slow cooling (Fig. 2B). [0026] Fluorescence spectrum ranges from 0 ° C: 581 nm to 90 ° C: 583.5 nm, heating process (Fig. 2C) · Power that hardly shifts even in the slow cooling process (Fig. 2D). As a result, the strength decreased.
[0027] 蛍光色は加熱と徐冷により、黄色 暗色との間で可逆的に、蛍光色が変化すること が肉眼で観察された。  [0027] It was observed with the naked eye that the fluorescent color changed reversibly between yellow and dark colors by heating and slow cooling.
[0028] 実施例 2 (DCM2) [0028] Example 2 (DCM2)
DCMに変えて、 DCM2を用いた以外、実施例 1と同様に DCM2分散膜を作製し た。  A DCM2 dispersion film was prepared in the same manner as in Example 1 except that DCM2 was used instead of DCM.
[0029] 図 3A〜図 3Dに UV— vis吸収.蛍光スペクトルの結果を示す。 UV— vis吸収スぺ クトノレはカロ熱することにより 0°C : 500nm力ら 90°C :492. 5nmへとブルーシフトした( 図 3A)。さらに、徐冷することにより 90°C :492. 5nm力ら 0°C : 500. 5nmへと元の波 長へと戻った(図 3B)。  [0029] Figures 3A to 3D show the results of UV-vis absorption and fluorescence spectra. The UV-vis absorption spectrum was blue-shifted from 0 ° C: 500 nm force to 90 ° C: 492.5 nm by calo-heating (Figure 3A). Furthermore, by slow cooling, the original wavelength was restored from 90 ° C: 492.5 nm force to 0 ° C: 50.5 nm (Fig. 3B).
[0030] 蛍光スペクトルは、加熱することにより 0°C : 584nmから 90°C : 610nmへ(図 3C)、 徐冷することにより 90°C: 610nm力ら 0°C: 579. 5nmへと大きくシフトした(図 3D)。 励起状態での分極がとても大き 、と言える。  [0030] The fluorescence spectrum increases from 0 ° C: 584 nm to 90 ° C: 610 nm by heating (Fig. 3C), and from 90 ° C: 610 nm force by slow cooling to 0 ° C: 579.5 nm. Shifted (Figure 3D). It can be said that the polarization in the excited state is very large.
[0031] 蛍光色は加熱と徐冷により、橙色 暗色との間で可逆的に、蛍光色が変化すること が肉眼で観察された。 [0031] It was observed with the naked eye that the fluorescent color changed reversibly between orange and dark colors by heating and slow cooling.
[0032] 実施例 3 (Nile Red) [0032] Example 3 (Nile Red)
DCMに変えて、 Nile Redを用いた以外、実施例 1と同様に Nile Red分散膜を作製し た。  A Nile Red dispersion film was prepared in the same manner as in Example 1 except that Nile Red was used instead of DCM.
[0033] 図 4A〜図 4Dに UV— vis吸収.蛍光スペクトルの結果を示す。 UV— vis吸収スぺ タトルは加熱することにより 0°C : 545. 5nm力ら 90°C : 531. 5nmへとブルーシフトし た(図 4A)。さらに、徐冷することにより 90°C : 531. 5nmから 0°C : 546nmへと元の波 長へと戻った(図 4B)。  [0033] FIGS. 4A to 4D show the results of UV-vis absorption and fluorescence spectra. The UV-vis absorption spectrum was blue-shifted from 0 ° C: 545.5 nm force to 90 ° C: 531.5 nm by heating (Fig. 4A). Furthermore, by slow cooling, the original wavelength returned from 90 ° C: 531.5 nm to 0 ° C: 546 nm (Fig. 4B).
[0034] 蛍光スペクトルは、加熱過程(図 4C) *徐冷過程(図 4D)においてほとんどシフトし なかった。発光強度においては、加熱することにより強度が増加した。また、加熱と徐 冷で異なる強度変化が見られるのは熱ヒステリシスによるものと考えられる。  [0034] The fluorescence spectrum hardly shifted during the heating process (FIG. 4C) * the slow cooling process (FIG. 4D). In the emission intensity, the intensity increased by heating. The difference in strength between heating and gradual cooling can be attributed to thermal hysteresis.
[0035] 蛍光色は加熱と徐冷により、暗紫色 橙色との間で可逆的に、蛍光色が変化する ことが肉眼で観察された。 [0035] The fluorescent color changes reversibly between dark purple and orange by heating and slow cooling. That was observed with the naked eye.
[0036] 実施例 4 (Coumarin6)  [0036] Example 4 (Coumarin6)
DCMに変えて、 Coumarin6を用いた以外、実施例 1と同様に Coumarin6分散膜を 作製した。  A Coumarin6 dispersion film was prepared in the same manner as in Example 1 except that Coumarin6 was used instead of DCM.
[0037] 図 5 A〜図 5Dに Coumarin6分散膜の UV— vis吸収 ·蛍光スぺクトルの結果を示す 。 UV— vis吸収スペクトルは、加熱過程で 390nm付近の吸収が増加し、 450〜550 nmにかけての吸収が減少した(図 5A)。さらに徐冷により吸収は元に戻った(図 5B)  FIG. 5A to FIG. 5D show the results of UV-vis absorption / fluorescence spectrum of Coumarin 6 dispersion film. In the UV-vis absorption spectrum, the absorption around 390 nm increased and the absorption between 450 and 550 nm decreased during the heating process (Fig. 5A). Furthermore, the absorption was restored by slow cooling (Fig. 5B).
[0038] 発光スペクトルは、加熱することにより 550nm付近のピークが低下した(図 5C)。さ らに徐冷することにより 490nmのピークが低下し、 550nm付近のピークが少し増加 した(図 5D)。またこれらのスペクトル変化と同時に、肉眼においても加熱による青緑 色発光を確認した。しかし、発光強度は完全には戻らな力つた。測定後の Co醒 arin6 分散膜は励起光が当たっていた場所が無色になり、励起光により色素が分解された と考えられる。 [0038] In the emission spectrum, the peak near 550 nm was lowered by heating (Fig. 5C). By further cooling, the peak at 490 nm decreased and the peak near 550 nm slightly increased (Fig. 5D). Simultaneously with these changes in spectrum, blue-green light emission by heating was also confirmed with the naked eye. However, the intensity of light emission did not return completely. After the measurement, the Co awakening arin6 dispersion film became colorless at the place where the excitation light hit, and the dye was decomposed by the excitation light.
[0039] 蛍光色は加熱と徐冷により、緑色一青色との間で可逆的に、蛍光色が変化すること が肉眼で観察された。  [0039] It was observed with the naked eye that the fluorescent color reversibly changed between green and blue by heating and slow cooling.
産業上の利用可能性  Industrial applicability
[0040] 本発明の分子内電荷移動型蛍光色素分散ポリマーおよびその新規機能を利用し た蛍光発現方法を利用することにより、温度変化表示素子、新しいタイプの温度面発 光センサー(サーモグラフィー)、温度 ·極性制御による波長可変プラスチックレーザ 一、ストレスセンサー、面発光をするバイモルフ型平面スピーカーなどに応用できる。  [0040] By using the intramolecular charge transfer type fluorescent dye dispersion polymer of the present invention and the fluorescence expression method using the novel function, a temperature change display element, a new type of temperature surface emitting sensor (thermography), temperature · Polarized wavelength tunable plastic laser 1. It can be applied to stress sensors and bimorph type flat speakers that emit surface light.
[0041] 以上から、以下の発明が少なくとも提供される。  [0041] As described above, at least the following inventions are provided.
1.電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、 電荷移動型色素が、 DCM、 DCM2、 Nile Redおよび Coumarin6力 なる群から選択 される少なくとも 1種であり、強誘電フッ素含有高分子が、フッ化ビ-リデンとトリフルォ 口エチレンとの共重合体である組成物。  1. A composition comprising a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin6 A composition in which the dielectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
[0042] 2.電荷移動型色素が、強誘電フッ素含有高分子に対して、 0. 01から 1重量%未 満の範囲で含まれる上記 1に記載の組成物。 [0043] 3.電荷移動型色素および強誘電フッ素含有高分子を含有し、温度により蛍光波 長および Zまたは発光強度が変化する蛍光色変換性組成物。 [0042] 2. The composition according to 1 above, wherein the charge transfer dye is contained in a range of 0.01 to less than 1% by weight based on the ferroelectric fluorine-containing polymer. [0043] 3. A fluorescent color-converting composition that contains a charge transfer dye and a ferroelectric fluorine-containing polymer, and whose fluorescence wavelength and Z or emission intensity change depending on temperature.
[0044] 4.電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、 電荷移動型色素が、 DCM、 DCM2、 Nile Redおよび Coumarin6力 なる群から選択 される少なくとも 1種であり、強誘電フッ素含有高分子が、フッ化ビ-リデンとトリフルォ 口エチレンとの共重合体である上記 3に記載の組成物。  [0044] 4. A composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin6 4. The composition according to 3 above, wherein the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
[0045] 5.電荷移動型色素および強誘電フッ素含有高分子からなる薄膜を使用し、該薄 膜に付与する温度を変化させることにより、該電荷移動型色素が発する蛍光色を変 化させることを特徴とする、蛍光色変換方法。 [0045] 5. Using a thin film composed of a charge transfer dye and a ferroelectric fluorine-containing polymer, and changing the temperature applied to the thin film, thereby changing the fluorescent color emitted by the charge transfer dye. A fluorescent color conversion method characterized by the above.
[0046] 6.強誘電フッ素含有高分子が、フッ化ビ-リデンとトリフルォロエチレンとの共重合 体である、上記 5に記載の蛍光色変換方法。 [0046] 6. The fluorescent color conversion method according to 5 above, wherein the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
[0047] 7.蛍光色の変化が、蛍光スペクトル波長の変化による、上記 5または 6に記載の蛍 光色変換方法。 [0047] 7. The fluorescent color conversion method according to 5 or 6 above, wherein the change in fluorescence color is due to a change in fluorescence spectrum wavelength.
[0048] 8.電荷移動型色素が、 DCM、 DCM2、 Nile Redおよび Coumarin6からなる群から 選択される少なくとも 1種である上記 5〜上記 7いずれかに記載の蛍光変換方法。  [0048] 8. The fluorescence conversion method according to any one of 5 to 7 above, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin6.
[0049] 9.上記 1〜4いずれかに記載の組成物を含有する薄膜を有する、温度変化表示素 子。 [0049] 9. A temperature change display element having a thin film containing the composition according to any one of 1 to 4 above.
[0050] 10.上記 5〜7いずれかに記載の蛍光色変換方法を使用した、温度変化表示素子  [0050] 10. Temperature change display element using the fluorescent color conversion method according to any one of 5 to 7 above

Claims

請求の範囲 The scope of the claims
[1] 電荷移動型色素および強誘電フッ素含有高分子を含有する組成物であって、電荷 移動型色素が、 DCM、 DCM2、 Nile Redおよび Coumarin6力 なる群から選択され る少なくとも 1種であり、強誘電フッ素含有高分子が、フッ化ビ-リデンとトリフルォロェ チレンとの共重合体である組成物。  [1] A composition containing a charge transfer dye and a ferroelectric fluorine-containing polymer, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red, and Coumarin6 force, A composition in which the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
[2] 電荷移動型色素が、強誘電フッ素含有高分子に対して、 0. 01から 1重量%未満の 範囲で含まれる請求項 1記載の組成物。  [2] The composition according to claim 1, wherein the charge transfer dye is contained in an amount of 0.01 to less than 1% by weight based on the ferroelectric fluorine-containing polymer.
[3] 電荷移動型色素および強誘電フッ素含有高分子を含有し、温度により蛍光波長お よび Zまたは発光強度が変化する蛍光色変換性組成物。 [3] A fluorescent color-converting composition that contains a charge transfer dye and a ferroelectric fluorine-containing polymer, and whose fluorescence wavelength, Z, or emission intensity varies with temperature.
[4] 電荷移動型色素が、 DCM、 DCM2、 Nile Redおよび Coumarin6からなる群から選 択される少なくとも 1種であり、強誘電フッ素含有高分子が、フッ化ビ-リデンとトリフ ルォロエチレンとの共重合体である請求項 3記載の組成物。 [4] The charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red, and Coumarin6, and the ferroelectric fluorine-containing polymer is a co-polymer of vinylidene fluoride and trifluoroethylene. 4. The composition according to claim 3, which is a polymer.
[5] 電荷移動型色素および強誘電フッ素含有高分子からなる薄膜を使用し、該薄膜に 付与する温度を変化させることにより、該電荷移動型色素が発する蛍光色を変化さ せることを特徴とする、蛍光色変換方法。  [5] Using a thin film composed of a charge transfer dye and a ferroelectric fluorine-containing polymer, and changing the temperature applied to the thin film, the fluorescent color emitted from the charge transfer dye is changed. A fluorescent color conversion method.
[6] 強誘電フッ素含有高分子が、フッ化ビ-リデンとトリフルォロエチレンとの共重合体 である、請求項 5に記載の蛍光色変換方法。 6. The fluorescent color conversion method according to claim 5, wherein the ferroelectric fluorine-containing polymer is a copolymer of vinylidene fluoride and trifluoroethylene.
[7] 蛍光色の変化が、蛍光スペクトル波長の変化による、請求項 5または 6に記載の蛍 光色変換方法。 [7] The fluorescent color conversion method according to [5] or [6], wherein the change in fluorescence color is due to a change in fluorescence spectrum wavelength.
[8] 電荷移動型色素が、 DCM、 DCM2、 Nile Redおよび Coumarin6からなる群から選 択される少なくとも 1種である請求項 5〜請求項 7いずれかに記載の蛍光変換方法。  [8] The fluorescence conversion method according to any one of claims 5 to 7, wherein the charge transfer dye is at least one selected from the group consisting of DCM, DCM2, Nile Red and Coumarin6.
[9] 請求項 1〜4 、ずれかに記載の組成物を含有する薄膜を有する、温度変化表示素 子。 [9] A temperature change display element having a thin film containing the composition according to any one of claims 1 to 4.
[10] 請求項 5〜請求項 7にいずれかに記載の蛍光色変換方法を使用した、温度変化表 示素子。  [10] A temperature change display element using the fluorescent color conversion method according to any one of claims 5 to 7.
PCT/JP2006/307649 2005-04-28 2006-04-11 Fluorescence conversion composition, and fluorescence conversion method and device using said composition WO2006117982A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007514549A JPWO2006117982A1 (en) 2005-04-28 2006-04-11 Fluorescent color converting composition, fluorescent color converting method and device using the composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-131793 2005-04-28
JP2005131793 2005-04-28

Publications (1)

Publication Number Publication Date
WO2006117982A1 true WO2006117982A1 (en) 2006-11-09

Family

ID=37307785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/307649 WO2006117982A1 (en) 2005-04-28 2006-04-11 Fluorescence conversion composition, and fluorescence conversion method and device using said composition

Country Status (2)

Country Link
JP (1) JPWO2006117982A1 (en)
WO (1) WO2006117982A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204614A (en) * 2015-04-28 2016-12-08 国立大学法人 筑波大学 Ferroelectric polymer sphere and method for producing the same
CN111256872A (en) * 2020-02-24 2020-06-09 复旦大学 Fluorescence temperature measurement system, temperature measurement method and temperature detection system
CN112921435A (en) * 2021-02-09 2021-06-08 上海大学 Agricultural light conversion sunshade net and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317544A (en) * 1987-06-19 1988-12-26 Rikagaku Kenkyusho Polymer film
JPS6416853A (en) * 1987-07-10 1989-01-20 Rikagaku Kenkyusho Increase of pyroelectric current
JPH01266153A (en) * 1988-04-19 1989-10-24 Mitsubishi Petrochem Co Ltd Antistatic resin composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317544A (en) * 1987-06-19 1988-12-26 Rikagaku Kenkyusho Polymer film
JPS6416853A (en) * 1987-07-10 1989-01-20 Rikagaku Kenkyusho Increase of pyroelectric current
JPH01266153A (en) * 1988-04-19 1989-10-24 Mitsubishi Petrochem Co Ltd Antistatic resin composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJIKI M. ET AL.: "Photophysics and New Functions of Intramolecular Charge Transfer Type Dyes in Various Polymer Matrices", POLYMER PREPRINTS, JAPAN, vol. 54, no. 1, 5 October 2005 (2005-10-05), pages 1337, XP003001632 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016204614A (en) * 2015-04-28 2016-12-08 国立大学法人 筑波大学 Ferroelectric polymer sphere and method for producing the same
CN111256872A (en) * 2020-02-24 2020-06-09 复旦大学 Fluorescence temperature measurement system, temperature measurement method and temperature detection system
CN111256872B (en) * 2020-02-24 2021-12-03 复旦大学 Fluorescent temperature measurement material, temperature measurement method and temperature detection system
CN112921435A (en) * 2021-02-09 2021-06-08 上海大学 Agricultural light conversion sunshade net and preparation method thereof

Also Published As

Publication number Publication date
JPWO2006117982A1 (en) 2008-12-18

Similar Documents

Publication Publication Date Title
Yuan et al. Carbon quantum dots: an emerging material for optoelectronic applications
Kwon et al. Advanced organic optoelectronic materials: Harnessing excited‐state intramolecular proton transfer (ESIPT) process
JP5080245B2 (en) Electronic devices including organic semiconductors
Kozlov et al. Optical properties of molecular organic semiconductor thin films under intense electrical excitation
JP2006236748A (en) Organic electroluminescent device
JP3715978B2 (en) Organic light emitting polymer
CN102668695A (en) Manufacturing method for substrate with electrode attached
Li et al. Unraveling the energy landscape and energy funneling modulated by hole transport layer for highly efficient perovskite LEDs
WO2006117982A1 (en) Fluorescence conversion composition, and fluorescence conversion method and device using said composition
Chen et al. Deep-red light-emitting electrochemical cells based on phosphor-sensitized thermally activated delayed fluorescence
Huebner et al. Electroluminescent colloidal inks for flexographic roll-to-roll printing
Cole et al. Inkjet‐printed self‐hosted tadf polymer light‐emitting diodes
Ibnaouf Optical and amplified spontaneous emission from an efficient conducting copolymer (PFO-co-MEH-PPV) in solution
Kwak et al. Polar laser dyes dispersed in polymer matrices: reverification of charge transfer character and new optical functions
Popova et al. Light emitting and electrical properties of pure amorphous thin films of organic compounds containing 2-tert-butyl-6-methyl-4H-pyran-4-ylidene
Buchhauser et al. Characterization of white-emitting copolymers for PLED displays
Gather et al. Improving the lifetime of white polymeric organic light-emitting diodes
Teng et al. Color changeable OLEDs controlled by doping ratio and driving voltage with an anthracene derivative doped layer
Zhang et al. Enhanced amplified spontaneous emission by assistant Förster energy transfer in DCJTB-C545T-Alq 3 coguest-host system
Hagen Enhanced luminous efficiency and brightness using DNA electron blocking layers in bio-organic light emitting diodes
JP4182516B2 (en) Functional organic thin film and method for producing the same
Suzuki Orientational enhancement in the electroluminescence of ionic emissive dyes doped in poly (vinylcarbazole)
Tanaka et al. Selective heat-transfer dye diffusion technique using laser irradiation for polymer electroluminescent devices
JP5415035B2 (en) Luminescent composition and method for producing organic electroluminescent device
Nüesch et al. Space charge and polarization effects upon doping organic light-emitting diodes with pyran-containing donor-acceptor molecules.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007514549

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06731596

Country of ref document: EP

Kind code of ref document: A1