JPWO2006103757A1 - Coolant composition for fuel cell - Google Patents

Coolant composition for fuel cell Download PDF

Info

Publication number
JPWO2006103757A1
JPWO2006103757A1 JP2007510283A JP2007510283A JPWO2006103757A1 JP WO2006103757 A1 JPWO2006103757 A1 JP WO2006103757A1 JP 2007510283 A JP2007510283 A JP 2007510283A JP 2007510283 A JP2007510283 A JP 2007510283A JP WO2006103757 A1 JPWO2006103757 A1 JP WO2006103757A1
Authority
JP
Japan
Prior art keywords
fuel cell
compound
coolant composition
base
atomic arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007510283A
Other languages
Japanese (ja)
Other versions
JP5027656B2 (en
Inventor
江川 浩司
浩司 江川
英美 角
英美 角
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shishiai KK
Original Assignee
Shishiai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai KK filed Critical Shishiai KK
Publication of JPWO2006103757A1 publication Critical patent/JPWO2006103757A1/en
Application granted granted Critical
Publication of JP5027656B2 publication Critical patent/JP5027656B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本発明は、基剤の酸化によるイオン性物質の生成を抑制することにより、長期に渡って低導電率を維持するとともに不凍性に優れる燃料電池用冷却液組成物に関するものであり、構造式中にカルボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在する化合物を含有することで特徴づけられたものである。The present invention relates to a coolant composition for a fuel cell that maintains low conductivity over a long period of time and is excellent in antifreeze by suppressing generation of an ionic substance due to oxidation of a base. It is characterized by containing a compound having a cyclic atomic arrangement into which a carbonyl group is introduced and having an unsaturated bond in the cyclic atomic arrangement.

Description

本発明は、燃料電池、特には自動車用燃料電池の冷却に使用される冷却液組成物に関し、詳細には該組成物の導電率を長期に亘って低導電率の維持に優れる燃料電池用冷却液組成物に関する。   TECHNICAL FIELD The present invention relates to a coolant composition used for cooling a fuel cell, particularly an automotive fuel cell, and more specifically, cooling for a fuel cell excellent in maintaining a low conductivity over a long period of time. It relates to a liquid composition.

燃料電池は、一般に発電単位である単セルとセパレータを多数積層した構造のセルスタックとして構成されている。発電時にはスタックから熱が発生するので、このセルスタックを冷却するために数セル毎に冷却板が挿入されていた。   A fuel cell is generally configured as a cell stack having a structure in which a large number of single cells, which are power generation units, and separators are stacked. Since heat is generated from the stack during power generation, a cooling plate is inserted every several cells to cool the cell stack.

冷却板内部には冷却液通路が形成されており、この通路を冷却液が流れることにより、スタックが冷却されるようになっていた。   A coolant passage is formed inside the cooling plate, and the stack is cooled by the flow of the coolant through the passage.

このように、燃料電池の冷却液は、発電を実行しているスタック内を循環してスタックを冷却するため、冷却液の電気伝導率が高いと、スタックで生じた電気が冷却液側へと流れて電気を損失し、該燃料電池における発電力を低下させることになる。   In this way, the coolant of the fuel cell circulates in the stack that is generating power to cool the stack, so if the electrical conductivity of the coolant is high, the electricity generated in the stack will move to the coolant side. It flows and loses electricity, and the power generation in the fuel cell is reduced.

そこで、従来の燃料電池の冷却液には、導電率が低い、換言すれば電気絶縁性が高い純水が使用されていた。   Therefore, pure water having low electrical conductivity, in other words, high electrical insulation, has been used as a conventional fuel cell coolant.

ところが、例えば自動車用燃料電池や家庭用コージェネレーションシステム用燃料電池を考慮した場合、非作動時に冷却液は周囲の温度まで低下してしまう。特に氷点下での使用可能性がある場合、純水では凍結してしまい、冷却液の体積膨張による冷却板の破損など、燃料電池の電池性能を損なう恐れがあった。   However, for example, when considering a fuel cell for automobiles and a fuel cell for household cogeneration systems, the cooling liquid is lowered to the ambient temperature during non-operation. In particular, when there is a possibility of use below freezing point, there is a possibility that the battery performance of the fuel cell is impaired, such as freezing in pure water and damage to the cooling plate due to volume expansion of the coolant.

このような事情から、燃料電池、特には自動車用燃料電池の冷却液には、低導電性および不凍性が要求される。   Under such circumstances, low conductivity and antifreeze are required for the coolant of fuel cells, particularly automobile fuel cells.

上記要求に対応することができる燃料電池用冷却液組成物として、従来、水とグリコール類の混合溶液からなる基剤と、冷却液の導電率を低導電率にて維持するアミン系のアルカリ性添加剤を含むものが提案されている(特許文献1参照)。
特開2001−164244号公報
Conventionally, as a fuel cell coolant composition that can meet the above requirements, a base composed of a mixed solution of water and glycols, and an amine-based alkaline addition that maintains the conductivity of the coolant at a low conductivity The thing containing an agent is proposed (refer patent document 1).
JP 2001-164244 A

ところが、上記組成物におけるグリコール類などの基剤は、燃料電池作動中に酸化してイオン性物質を生成する。このため、長期間の使用により冷却液中のイオン性物質量も増加し、この結果、冷却液の低導電率を維持できなくなるという事態を招いていた。   However, bases such as glycols in the composition are oxidized during fuel cell operation to produce ionic substances. For this reason, the amount of ionic substances in the cooling liquid increases with long-term use, and as a result, the low conductivity of the cooling liquid cannot be maintained.

本発明は、このような事情に鑑みなされたものであり、基剤の酸化によるイオン性物質の生成を抑制することにより、長期に渡って低導電率を維持するとともに不凍性に優れる燃料電池用冷却液組成物を提供することを目的とするものである。   The present invention has been made in view of such circumstances, and by suppressing generation of an ionic substance due to oxidation of the base, a fuel cell that maintains low conductivity over a long period of time and is excellent in antifreeze An object of the present invention is to provide a cooling liquid composition.

本発明の燃料電池用冷却液組成物(以下、単に組成物という)は、構造式中にカルボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在する化合物を含有することで特徴づけられたものである。   The fuel cell coolant composition of the present invention (hereinafter simply referred to as a composition) has a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula, and an unsaturated bond exists in the cyclic atomic arrangement. It is characterized by containing a compound.

この組成物における基剤には、低導電率であって、不凍性を有するもの、具体的には水、アルコール類、グリコール類、及びグリコールエーテル類の中から選ばれる1種若しくは2種以上の混合物からなるものを使用することができる。   The base in this composition has low electrical conductivity and antifreeze, specifically, one or more selected from water, alcohols, glycols, and glycol ethers. Can be used.

アルコール類としては、例えばメタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、ヘプタノール、オクタノールの中から選ばれる1種若しくは2種以上からなるものを挙げることができる。   Examples of alcohols include one or more selected from methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol.

グリコール類としては、例えばエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3−プロパンジオール、1,3−ブタンジオール、1,5−ペンタンジオール、ヘキシレングリコールの中から選ばれる1種若しくは2種以上からなるものを挙げることができる。   Examples of glycols include one selected from ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol, or The thing which consists of 2 or more types can be mentioned.

グリコールエーテル類としては、ポリオキシアルキレングリコールのアルキルエーテル、例えばエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノメチルエーテル、テトラエチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノブチルエーテル、テトラエチレングリコールモノブチルエーテルの中から選ばれる1種若しくは2種以上からなるものを挙げることができる。   Glycol ethers include polyoxyalkylene glycol alkyl ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether, tetraethylene glycol monomethyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, triethylene glycol. Mention may be made of one or more selected from monoethyl ether, tetraethylene glycol monoethyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, triethylene glycol monobutyl ether and tetraethylene glycol monobutyl ether. .

上記基剤内に構造式中にカルボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在する化合物(以下、単に化合物という)が含まれているのである。この化合物は、上述の基剤の酸化によるイオン性物質の生成を効果的に抑制する機能を有していることから、この化合物を含む組成物を希釈して燃料電池を冷却する冷却液として用いた場合、当該冷却液は長期に亘って低導電率が維持されることになる。   The above base contains a compound having a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula and having an unsaturated bond in the cyclic atomic arrangement (hereinafter simply referred to as a compound). . Since this compound has a function of effectively suppressing the production of ionic substances due to the oxidation of the above-mentioned base, it is used as a cooling liquid for cooling the fuel cell by diluting the composition containing this compound. In such a case, the coolant has a low conductivity for a long time.

このような機能を持つ化合物としては、構造式中にカルボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在するものであれば特に限定されないが、特には、環状の原子配列における炭素数が3〜35のもの(特には5〜10のもの)が、基剤の酸化によるイオン性物質の生成を効果的に抑制する効果に優れる点で好ましい。   The compound having such a function is not particularly limited as long as it has a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula and an unsaturated bond exists in the cyclic atomic arrangement. Are preferably those having 3 to 35 carbon atoms (especially those having 5 to 10 carbon atoms) in the cyclic atomic arrangement in that they are excellent in the effect of effectively suppressing the production of ionic substances due to oxidation of the base.

この化合物の具体例としては、オキサゾロン、ピラゾロン、ジャスモン、ベンゾキノン、ピロン、γ−ピリドン、ウラシル、トロポン、トロポロン、クロモン、ナフトキノン、オキシンドール、フタリド、オキサントロン、アントロン、アントラキノン、アリザリン、アクリドン、及びそれらの誘導体を挙げることができる。   Specific examples of this compound include oxazolone, pyrazolone, jasmon, benzoquinone, pyrone, γ-pyridone, uracil, tropone, tropolone, chromone, naphthoquinone, oxindole, phthalide, oxanthrone, anthrone, anthraquinone, alizarin, acridone, and their Derivatives can be mentioned.

上記化合物は、基剤100重量部に対して0.01〜20重量部の範囲で含まれていることが望ましい。化合物の含有量が0.01重量部を下回る場合、基剤の酸化によるイオン性物質の生成を効果的に抑制する効果が十分でなく、化合物の含有量が20重量部を上回る場合には、上回る分だけの効果が期待できず、不経済となる。   The compound is preferably contained in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the base. When the content of the compound is less than 0.01 parts by weight, the effect of effectively suppressing the production of ionic substances due to oxidation of the base is not sufficient, and when the content of the compound exceeds 20 parts by weight, It is not possible to expect the effect of exceeding it, and it becomes uneconomical.

尚、本発明の組成物には、当該組成物の低伝導率を阻害しない範囲で、前記成分以外に例えば消泡剤や着色剤等を含有させてもよいし、他の従来公知の防錆添加剤である、モリブデン酸塩、タングステン酸塩、硫酸塩、硝酸塩、安息香酸塩、アミン、トリアゾール、及びリン酸塩などを併用することができる。   In addition, the composition of the present invention may contain, for example, an antifoaming agent or a colorant in addition to the above-described components, as long as the low conductivity of the composition is not impaired. Additives such as molybdate, tungstate, sulfate, nitrate, benzoate, amine, triazole, and phosphate can be used in combination.

尚、本発明は、下記実施例に限定されるものではなく、「特許請求の範囲」に記載された範囲で自由に変更して実施することができる。   In addition, this invention is not limited to the following Example, It can implement freely by changing in the range described in the "Claims".

本発明の組成物は、構造式中にカルボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在する化合物を含有することから、基剤の酸化によるイオン性物質の生成を効果的に抑制し、長期に渡って低導電率を維持することができる。   Since the composition of the present invention contains a compound having a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula and an unsaturated bond is present in the cyclic atomic arrangement, ions generated by oxidation of the base It is possible to effectively suppress the generation of the active substance and maintain the low conductivity over a long period of time.

以下、本発明の組成物を実施例に従いさらに詳しく説明する。下記表1には、50重量%のエチレングリコール及び50重量%のイオン交換水を基剤とし、これに0.1重量%のα−ピロンを添加したものを実施例1とし、前記基剤に1.7重量%のヒノキチオール(トロポロン)を添加したものを実施例2とした。   Hereinafter, the composition of the present invention will be described in more detail with reference to Examples. In Table 1 below, 50% by weight of ethylene glycol and 50% by weight of ion-exchanged water are used as a base, and 0.1% by weight of α-pyrone is added as Example 1. Example 2 was prepared by adding 1.7% by weight of hinokitiol (tropolone).

また、前記基剤のみからなるものを比較例1とし、前記基剤に1.0重量%のフルフリルアルコールを添加したものを比較例2とし、前記基剤に5.0重量%の桂皮アルコールを添加したものを比較例3とした。   Moreover, what comprised only the said base was made into the comparative example 1, what added 1.0 weight% furfuryl alcohol to the said base was made into the comparative example 2, and 5.0 weight% cinnamon alcohol was added to the said base. Comparative Example 3 was obtained by adding

Figure 2006103757
Figure 2006103757

上記実施例1及び2、並びに比較例1〜3の各組成物について、酸化劣化試験を行い、試験後の導電率(μS/cm)を測定した。その結果を表2に示した。尚、各組成物の酸化劣化試験は、100℃で168時間の条件で実施した。   About each composition of the said Examples 1 and 2, and Comparative Examples 1-3, the oxidation deterioration test was done and the electrical conductivity (microS / cm) after a test was measured. The results are shown in Table 2. In addition, the oxidation deterioration test of each composition was implemented on the conditions for 168 hours at 100 degreeC.

Figure 2006103757
Figure 2006103757

表2から、酸化劣化後の各組成物の導電率を見ると、基剤のみからなる比較例1の組成物が、初期の導電率が0.2に対して酸化劣化試験後の導電率は43となっており、その変動は42.8と大きく、基剤が酸化劣化して導電率が大きく上昇していることが確認された。   From Table 2, when the electrical conductivity of each composition after oxidative degradation is seen, the composition of Comparative Example 1 consisting only of the base material has an initial electrical conductivity of 0.2, and the electrical conductivity after the oxidative degradation test is 43. The fluctuation was as large as 42.8, and it was confirmed that the conductivity was greatly increased due to oxidative degradation of the base.

これに対し、比較例2の組成物の場合、初期の導電率が2.5に対して酸化劣化試験後の導電率は53となっており、その変動は50.5と比較例1よりも大きく、基剤の酸化劣化による導電率の上昇が全く抑制されておらず、むしろ導電率を上昇させていることが確認された。   On the other hand, in the case of the composition of Comparative Example 2, the initial conductivity is 2.5, and the conductivity after the oxidative degradation test is 53. It was confirmed that the increase in conductivity due to oxidative deterioration of the base was not suppressed at all, but rather increased in conductivity.

比較例3の組成物の場合には、初期の導電率が4.2に対して酸化劣化試験後の導電率は28となっており、その変動は23.8であり、基剤の酸化劣化による導電率の上昇が幾分抑制されていることが確認された。   In the case of the composition of Comparative Example 3, the initial conductivity was 4.2 and the conductivity after the oxidative degradation test was 28, and the variation was 23.8, indicating that the base was oxidatively degraded. It was confirmed that the increase in conductivity due to was somewhat suppressed.

これに対して、実施例1の組成物にあっては、初期の導電率が0.3に対して酸化劣化試験後の導電率は7.4となっており、その導電率の変動は7.1と僅かであり、基剤の酸化劣化による導電率の上昇が効果的に抑制されていることが確認された。   On the other hand, in the composition of Example 1, the initial conductivity was 0.3 while the conductivity after the oxidative degradation test was 7.4, and the variation in the conductivity was 7 It was confirmed that the increase in conductivity due to oxidative deterioration of the base was effectively suppressed.

さらに、実施例2の組成物については、初期導電率が3.6に対して酸化劣化試験後の導電率が4.9となっており、その変動は1.3と極めて小さく、基剤の酸化劣化による導電率の上昇が効果的に抑制されており、当該組成物における基剤の酸化防止効果が予想を超えて遙かに良いことが確認された。   Furthermore, the composition of Example 2 has an initial conductivity of 3.6, and the conductivity after the oxidative degradation test is 4.9, and its variation is as small as 1.3. It was confirmed that the increase in conductivity due to oxidative degradation was effectively suppressed, and the antioxidant effect of the base in the composition was much better than expected.

以上の結果から、実施例1及び2に係る組成物にあっては、厳しい条件下での酸化劣化試験を経た後であるにも拘わらず、導電率の上昇は極めて小さいことから、これらの組成物を希釈して燃料電池の冷却液として適用した場合においても、基剤の酸化によるイオン性物質の生成を効果的に抑制できることが予測され、長期に渡っての低導電率の維持が期待できる。   From the above results, the compositions according to Examples 1 and 2 have an extremely small increase in conductivity despite being subjected to an oxidative deterioration test under severe conditions. Even when the product is diluted and applied as a coolant for a fuel cell, it is predicted that the production of ionic substances due to the oxidation of the base can be effectively suppressed, and the maintenance of low conductivity over a long period can be expected. .

Claims (5)

燃料電池を冷却する冷却液組成物において、
構造式中にカルボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在する化合物を含有することを特徴とする燃料電池用冷却液組成物。
In the coolant composition for cooling the fuel cell,
A coolant composition for a fuel cell, comprising a compound having a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula and having an unsaturated bond in the cyclic atomic arrangement.
化合物の環状の原子配列における炭素数が3〜35であることを特徴とする請求項1記載の燃料電池用冷却液組成物。 2. The coolant composition for a fuel cell according to claim 1, wherein the number of carbon atoms in the cyclic atomic arrangement of the compound is 3 to 35. 化合物が、オキサゾロン、ピラゾロン、ジャスモン、ベンゾキノン、ピロン、γ−ピリドン、ウラシル、トロポン、トロポロン、クロモン、ナフトキノン、オキシンドール、フタリド、オキサントロン、アントロン、アントラキノン、アリザリン、アクリドン、及びそれらの誘導体であることを特徴とする請求項2記載の燃料電池用冷却液組成物。 The compound is oxazolone, pyrazolone, jasmon, benzoquinone, pyrone, γ-pyridone, uracil, tropone, tropolone, chromone, naphthoquinone, oxindole, phthalide, oxanthrone, anthrone, anthraquinone, alizarin, acridone, and derivatives thereof. The fuel cell coolant composition according to claim 2, wherein: 化合物が、水、アルコール類、グリコール類、及びグリコールエーテル類の中から選ばれるいずれか1種若しくは2種以上の混合物からなる基剤中に含まれていることを特徴とする請求項3記載の燃料電池用冷却液組成物。 4. The compound according to claim 3, wherein the compound is contained in a base composed of one or a mixture of two or more selected from water, alcohols, glycols, and glycol ethers. A fuel cell coolant composition. 化合物の含有量が基剤100重量部に対して0.01〜20重量部であることを特徴とする請求項4記載の燃料電池用冷却液組成物。 5. The fuel cell coolant composition according to claim 4, wherein the content of the compound is 0.01 to 20 parts by weight with respect to 100 parts by weight of the base.
JP2007510283A 2005-03-30 2005-03-30 Coolant composition for fuel cell Active JP5027656B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006050 WO2006103757A1 (en) 2005-03-30 2005-03-30 Coolant composition for fuel cell

Publications (2)

Publication Number Publication Date
JPWO2006103757A1 true JPWO2006103757A1 (en) 2008-09-04
JP5027656B2 JP5027656B2 (en) 2012-09-19

Family

ID=37053031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007510283A Active JP5027656B2 (en) 2005-03-30 2005-03-30 Coolant composition for fuel cell

Country Status (2)

Country Link
JP (1) JP5027656B2 (en)
WO (1) WO2006103757A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2022176380A1 (en) * 2021-02-22 2022-08-25

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737608B2 (en) * 1989-06-15 1995-04-26 大日精化工業株式会社 Colored antifreeze
WO2000060019A1 (en) * 1999-04-02 2000-10-12 Shishiai-Kabushikigaisha Blackening inhibitors and antifreeze fluid/cooling fluid compositions with the use thereof
US6818146B2 (en) * 2001-01-16 2004-11-16 Shell Oil Company Chemical base for engine coolant/antifreeze with improved thermal stability properties
US7452479B2 (en) * 2001-02-14 2008-11-18 Shell Oil Company Chemical base for fuel cell engine heat exchange coolant/antifreeze comprising 1,3-propanediol
DE10122769A1 (en) * 2001-05-10 2002-11-14 Basf Ag Antifreeze concentrates containing the dye C.I. Reactive Violet 5
AU2003248060A1 (en) * 2003-07-11 2005-01-28 Shishiai-Kabushikigaisha Cooling fluid composition for fuel battery

Also Published As

Publication number Publication date
WO2006103757A1 (en) 2006-10-05
JP5027656B2 (en) 2012-09-19

Similar Documents

Publication Publication Date Title
RU2315797C2 (en) Composition of fuel element cooling fluid concentrate
CA2449208C (en) Coolant comprising azole derivatives for cooling systems in fuel-cell drives
CN110023451B (en) Coolant comprising azole derivatives and further corrosion inhibitors for cooling systems in electric vehicles with fuel cells and/or batteries
AU2002346913A1 (en) Corrosion inhibiting compositions and methods for fuel cell coolant systems
US20080166615A1 (en) Cooling liquid composition for fuel cell
KR101021207B1 (en) Coolant based on azole derivatives containing 1,3-propanediol for fuel cell cooling systems
JPWO2005091413A1 (en) Coolant composition for fuel cell
EP1501140A1 (en) Cooling liquid composition for fuel cell
JP2006509347A (en) Environmentally friendly and inexpensive dielectric coolant for fuel cell stacks
US20050109979A1 (en) Coolant composition for fuel cell
JP5027656B2 (en) Coolant composition for fuel cell
JP2022506350A (en) New antifreeze and coolant for fuel cells, storage batteries and batteries
US11108102B2 (en) Coolant
KR101204330B1 (en) Cooling Liquid Composition for Fuel-Cell
US20050244692A1 (en) Fuel cell coolant composition
JP2008059990A (en) Cooling liquid composition for fuel cell
WO2005105948A1 (en) Heating medium composition
JP2022109341A (en) Cooling liquid composition and concentrated cooling liquid composition
JP4785527B2 (en) Coolant composition for fuel cell
JP2019172774A (en) Coolant composition
JP2008059988A (en) Cooling liquid composition for fuel cell
JP2006278199A (en) Cooling liquid composition for fuel cell
JP2008059825A (en) Cooling liquid composition for fuel cell
JP2006278197A (en) Cooling liquid composition for fuel cell

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120622

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5027656

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250