WO2006103757A1 - Coolant composition for fuel cell - Google Patents

Coolant composition for fuel cell Download PDF

Info

Publication number
WO2006103757A1
WO2006103757A1 PCT/JP2005/006050 JP2005006050W WO2006103757A1 WO 2006103757 A1 WO2006103757 A1 WO 2006103757A1 JP 2005006050 W JP2005006050 W JP 2005006050W WO 2006103757 A1 WO2006103757 A1 WO 2006103757A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
compound
coolant composition
composition
base
Prior art date
Application number
PCT/JP2005/006050
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Egawa
Hidemi Kado
Original Assignee
Shishiai-Kabushikigaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shishiai-Kabushikigaisha filed Critical Shishiai-Kabushikigaisha
Priority to PCT/JP2005/006050 priority Critical patent/WO2006103757A1/en
Priority to JP2007510283A priority patent/JP5027656B2/en
Publication of WO2006103757A1 publication Critical patent/WO2006103757A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/20Antifreeze additives therefor, e.g. for radiator liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a coolant composition used for cooling a fuel cell, in particular, a fuel cell for automobiles.
  • the conductivity of the composition is a fuel excellent in maintaining a low conductivity over a long period of time.
  • the present invention relates to a coolant composition for a battery.
  • a fuel cell is generally configured as a cell stack having a structure in which a large number of unit cells and separators, which are power generation units, are stacked. Stack power is generated during power generation, so a cooling plate was inserted every several cells to cool the cell stack.
  • a cooling fluid passage is formed inside the cooling plate, and the stack is cooled by the flow of the cooling fluid through the passage.
  • the coolant in the fuel cell performs power generation! /, And circulates in the stack to cool the stack. Therefore, if the electrical conductivity of the coolant is high, the electricity generated in the stack Flows to the coolant side and loses electricity, reducing the power generation in the fuel cell.
  • the coolant is lowered to the ambient temperature when not operating.
  • the performance of the fuel cell would be impaired, such as freezing in pure water and damage to the cooling plate due to volume expansion of the coolant.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-164244 Disclosure of the invention
  • the present invention has been made in view of such circumstances, and by suppressing the formation of ionic substances due to oxidation of the base, it maintains a low conductivity over a long period of time and is antifreeze. It is an object of the present invention to provide a fuel cell coolant composition that is superior to the above.
  • the fuel cell coolant composition of the present invention (hereinafter simply referred to as the composition) has a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula, and is unsaturated in the cyclic atomic arrangement. It is characterized by containing a compound in which a bond is present.
  • the base in this composition has one of low conductivity and non-freezing properties, specifically water, alcohols, glycols, and glycol ethers. What consists of 2 or more types of mixtures can be used.
  • Examples of alcohols include one or two or more selected from among methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol.
  • glycols examples include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol.
  • the thing which consists of 1 type or 2 types or more can be mentioned.
  • Glycol ethers include polyoxyalkylene glycol alkyl ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether ether, tetraethylene glycol monomethyl methanol ether, ethylene glycol monomethyl ether.
  • Chinoleatenore diethylene glycolenomonoeno chinoreatenore, triethyleneglycolenomonochinenoatenore, tetraethyleneglycolenore
  • monoethino elenotere ethyleneglycolole butylenoleatenore, diethyleneglycolole monobutinoleether, triethyleneglycolole butylenoleether, tetraethylene glycol monobutyl ether
  • a compound having a cyclic atomic arrangement in which a carbonyl group is introduced into the structural formula in the above-mentioned base, and having an unsaturated bond in the cyclic atomic arrangement (hereinafter simply referred to as a compound! /, It is included. Since this compound has a function of effectively suppressing the formation of an ionic substance by the above-mentioned base acid, it is cooled to dilute the composition containing this compound to cool the fuel cell. When used as a liquid, the coolant will maintain a low conductivity over a long period of time.
  • a compound having such a function a compound having a cyclic atomic arrangement in which a carbo group is introduced into the structural formula and having an unsaturated bond in the cyclic atomic arrangement is particularly preferable.
  • a compound having 3 to 35 carbon atoms in the cyclic atomic arrangement (especially 5 to: LO) force Effectively suppress the production of ionic substances by the base acid. It is preferable because of its excellent effect.
  • this compound examples include oxazolone, pyrazolone, jasmon, benzoquinone, pyrone, ⁇ pyridone , uracil, tropone, trobolone, chromone, naphthoquinone, oxindole, phthalide, oxanthrone, anthrone, anthraquinone, alizarin, atalidone, and And their derivatives.
  • the above compound is desirably contained in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the base.
  • the content of the compound is less than 0.01 parts by weight, when the content of the compound is insufficient to effectively suppress the formation of the ionic substance due to the oxidation of the base, the content of the compound exceeds 20 parts by weight. , You can not expect the effect of exceeding, it becomes uneconomical.
  • composition of the present invention may contain, for example, an antifoaming agent or a coloring agent in addition to the above-mentioned components within the range not inhibiting the low conductivity of the composition!
  • an antifoaming agent or a coloring agent in addition to the above-mentioned components within the range not inhibiting the low conductivity of the composition.
  • molybdate, tungstate, sulfate, nitrate, benzoate, amine, triazole, phosphate, and the like which are other conventionally known anti-corrosive additives, can be used in combination.
  • composition of the present invention contains a compound having a cyclic atomic arrangement in which a carbo group is introduced into the structural formula and having an unsaturated bond in the cyclic atomic arrangement. It is possible to effectively suppress the generation of ionic substances due to the acid of the agent, and to maintain a low conductivity over a long period of time.
  • Example 1 shows Example 1 in which 50% by weight of ethylene glycol and 50% by weight of ion-exchanged water were added as a base and 0.1% by weight of a-pyrone was added thereto.
  • Example 2 was obtained by adding 1.7% by weight of hinokitiol (trobolone) to the agent.
  • Comparative Example 1 an example in which only the above-mentioned base is effective is referred to as Comparative Example 1, and a case in which 1.0% by weight of furfuryl alcohol is added to the above-mentioned base is referred to as Comparative Example 2, and 5.0 to the above-mentioned base.
  • Comparative Example 3 was obtained by adding wt% cinnamon alcohol.
  • Example 1 On the other hand, in the composition of Example 1, the initial conductivity was 0.3, whereas the conductivity after the oxidation degradation test was 7.4. The fluctuation of the value was as small as 7.1, and it was confirmed that the increase in conductivity due to the deterioration of acidity of the base was effectively suppressed.
  • Example 2 Further, with respect to the composition of Example 2, the initial conductivity was 3.6 and the conductivity after the oxidative degradation test was 4.9, and the variation was extremely small as 1.3. It was confirmed that the increase in electrical conductivity due to deterioration of the base due to acid and soot was effectively suppressed, and the antioxidant effect of the base in the composition was far better than expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Fuel Cell (AREA)

Abstract

A coolant composition for fuel cells which prevents a base from oxidizing and thus generating an ionic substance and thereby maintains low conductivity over long. It further has excellent antifreezing properties. The composition is characterized by containing a compound represented by a structural formula which includes a cyclic atomic arrangement having a carbonyl group introduced therein and having an unsaturated bond therein.

Description

燃料電池用冷却液組成物  Coolant composition for fuel cell
技術分野  Technical field
[0001] 本発明は、燃料電池、特には自動車用燃料電池の冷却に使用される冷却液組成 物に関し、詳細には該組成物の導電率を長期に亘つて低導電率の維持に優れる燃 料電池用冷却液組成物に関する。  TECHNICAL FIELD [0001] The present invention relates to a coolant composition used for cooling a fuel cell, in particular, a fuel cell for automobiles. Specifically, the conductivity of the composition is a fuel excellent in maintaining a low conductivity over a long period of time. The present invention relates to a coolant composition for a battery.
背景技術  Background art
[0002] 燃料電池は、一般に発電単位である単セルとセパレータを多数積層した構造のセ ルスタックとして構成されている。発電時にはスタック力 熱が発生するので、このセ ルスタックを冷却するために数セル毎に冷却板が挿入されて ヽた。  [0002] A fuel cell is generally configured as a cell stack having a structure in which a large number of unit cells and separators, which are power generation units, are stacked. Stack power is generated during power generation, so a cooling plate was inserted every several cells to cool the cell stack.
[0003] 冷却板内部には冷却液通路が形成されており、この通路を冷却液が流れることによ り、スタックが冷却されるようになっていた。  [0003] A cooling fluid passage is formed inside the cooling plate, and the stack is cooled by the flow of the cooling fluid through the passage.
[0004] このように、燃料電池の冷却液は、発電を実行して!/、るスタック内を循環してスタック を冷却するため、冷却液の電気伝導率が高いと、スタックで生じた電気が冷却液側 へと流れて電気を損失し、該燃料電池における発電力を低下させることになる。  [0004] In this way, the coolant in the fuel cell performs power generation! /, And circulates in the stack to cool the stack. Therefore, if the electrical conductivity of the coolant is high, the electricity generated in the stack Flows to the coolant side and loses electricity, reducing the power generation in the fuel cell.
[0005] そこで、従来の燃料電池の冷却液には、導電率が低!、、換言すれば電気絶縁性が 高!、純水が使用されて 、た。  [0005] Therefore, conventional fuel cell coolants have low electrical conductivity, in other words, high electrical insulation! Pure water was used.
[0006] ところが、例えば自動車用燃料電池や家庭用コージェネレーションシステム用燃料 電池を考慮した場合、非作動時に冷却液は周囲の温度まで低下してしまう。特に氷 点下での使用可能性がある場合、純水では凍結してしまい、冷却液の体積膨張によ る冷却板の破損など、燃料電池の電池性能を損なう恐れがあった。  However, when considering, for example, a fuel cell for automobiles and a fuel cell for household cogeneration systems, the coolant is lowered to the ambient temperature when not operating. In particular, when there is a possibility of use below freezing point, there was a risk that the performance of the fuel cell would be impaired, such as freezing in pure water and damage to the cooling plate due to volume expansion of the coolant.
[0007] このような事情から、燃料電池、特には自動車用燃料電池の冷却液には、低導電 性および不凍性が要求される。  [0007] Under such circumstances, a low conductivity and antifreeze are required for a coolant of a fuel cell, particularly an automobile fuel cell.
[0008] 上記要求に対応することができる燃料電池用冷却液組成物として、従来、水とダリ コール類の混合溶液からなる基剤と、冷却液の導電率を低導電率にて維持するアミ ン系のアルカリ性添加剤を含むものが提案されている(特許文献 1参照)。  [0008] As a fuel cell coolant composition capable of meeting the above requirements, conventionally, a base composed of a mixed solution of water and darikols, and an ammonia that maintains the conductivity of the coolant at a low conductivity. A material containing an alkaline additive has been proposed (see Patent Document 1).
特許文献 1:特開 2001— 164244号公報 発明の開示 Patent Document 1: Japanese Patent Laid-Open No. 2001-164244 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] ところが、上記組成物におけるグリコール類などの基剤は、燃料電池作動中に酸化 してイオン性物質を生成する。このため、長期間の使用により冷却液中のイオン性物 質量も増加し、この結果、冷却液の低導電率を維持できなくなるという事態を招いて いた。  [0009] However, bases such as glycols in the composition are oxidized during the operation of the fuel cell to produce an ionic substance. For this reason, the mass of ionic substances in the cooling liquid increases with long-term use, and as a result, the low conductivity of the cooling liquid cannot be maintained.
[0010] 本発明は、このような事情に鑑みなされたものであり、基剤の酸化によるイオン性物 質の生成を抑制することにより、長期に渡って低導電率を維持するとともに不凍性に 優れる燃料電池用冷却液組成物を提供することを目的とするものである。  [0010] The present invention has been made in view of such circumstances, and by suppressing the formation of ionic substances due to oxidation of the base, it maintains a low conductivity over a long period of time and is antifreeze. It is an object of the present invention to provide a fuel cell coolant composition that is superior to the above.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の燃料電池用冷却液組成物(以下、単に組成物という)は、構造式中にカル ボニル基を導入した環状の原子配列を持ち、かつ前記環状の原子配列中に不飽和 結合が存在する化合物を含有することで特徴づけられたものである。  [0011] The fuel cell coolant composition of the present invention (hereinafter simply referred to as the composition) has a cyclic atomic arrangement in which a carbonyl group is introduced in the structural formula, and is unsaturated in the cyclic atomic arrangement. It is characterized by containing a compound in which a bond is present.
[0012] この組成物における基剤には、低導電率であって、不凍性を有するもの、具体的に は水、アルコール類、グリコール類、及びグリコールエーテル類の中力 選ばれる 1 種若しくは 2種以上の混合物からなるものを使用することができる。  [0012] The base in this composition has one of low conductivity and non-freezing properties, specifically water, alcohols, glycols, and glycol ethers. What consists of 2 or more types of mixtures can be used.
[0013] アルコール類としては、例えばメタノール、エタノール、プロパノール、ブタノール、 ペンタノール、へキサノール、ヘプタノール、ォクタノールの中力 選ばれる 1種若しく は 2種以上からなるものを挙げることができる。  [0013] Examples of alcohols include one or two or more selected from among methanol, ethanol, propanol, butanol, pentanol, hexanol, heptanol, and octanol.
[0014] グリコール類としては、例えばエチレングリコール、ジエチレングリコール、トリエチレ ングリコール、プロピレングリコール、 1, 3—プロパンジオール、 1, 3—ブタンジォー ル、 1, 5—ペンタンジオール、へキシレングリコールの中力 選ばれる 1種若しくは 2 種以上からなるものを挙げることができる。  [0014] Examples of glycols include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,5-pentanediol, and hexylene glycol. The thing which consists of 1 type or 2 types or more can be mentioned.
[0015] グリコールエーテル類としては、ポリオキシアルキレングリコールのアルキルエーテ ル、例えばエチレングリコールモノメチルエーテル、ジエチレングリコールモノメチル エーテル、トリエチレングリコーノレモノメチノレエーテル、テトラエチレングリコーノレモノメ チノレエーテノレ、エチレングリコーノレモノェチノレエーテノレ、ジエチレングリコーノレモノエ チノレエーテノレ、トリエチレングリコーノレモノェチノレエーテノレ、テトラエチレングリコーノレ モノェチノレエーテノレ、エチレングリコーノレモノブチノレエーテノレ、ジエチレングリコーノレ モノブチノレエーテル、トリエチレングリコーノレモノブチノレエーテル、テトラエチレンダリ コールモノブチルエーテルの中力 選ばれる 1種若しくは 2種以上からなるものを挙 げることができる。 [0015] Glycol ethers include polyoxyalkylene glycol alkyl ethers such as ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, triethylene glycol monomethyl ether ether, tetraethylene glycol monomethyl methanol ether, ethylene glycol monomethyl ether. Chinoleatenore, diethylene glycolenomonoeno chinoreatenore, triethyleneglycolenomonochinenoatenore, tetraethyleneglycolenore One or more selected from monoethino elenotere, ethyleneglycolole butylenoleatenore, diethyleneglycolole monobutinoleether, triethyleneglycolole butylenoleether, tetraethylene glycol monobutyl ether You can list things that consist of:
[0016] 上記基剤内に構造式中にカルボ二ル基を導入した環状の原子配列を持ち、かつ 前記環状の原子配列中に不飽和結合が存在する化合物(以下、単に化合物と!/、う) が含まれているのである。この化合物は、上述の基剤の酸ィ匕によるイオン性物質の生 成を効果的に抑制する機能を有していることから、この化合物を含む組成物を希釈し て燃料電池を冷却する冷却液として用いた場合、当該冷却液は長期に亘つて低導 電率が維持されることになる。  [0016] A compound having a cyclic atomic arrangement in which a carbonyl group is introduced into the structural formula in the above-mentioned base, and having an unsaturated bond in the cyclic atomic arrangement (hereinafter simply referred to as a compound! /, It is included. Since this compound has a function of effectively suppressing the formation of an ionic substance by the above-mentioned base acid, it is cooled to dilute the composition containing this compound to cool the fuel cell. When used as a liquid, the coolant will maintain a low conductivity over a long period of time.
[0017] このような機能を持つ化合物としては、構造式中にカルボ-ル基を導入した環状の 原子配列を持ち、かつ前記環状の原子配列中に不飽和結合が存在するものであれ ば特に限定されないが、特には、環状の原子配列における炭素数が 3〜35のもの( 特には 5〜: LOのもの)力 基剤の酸ィ匕によるイオン性物質の生成を効果的に抑制す る効果に優れる点で好まし ヽ。  [0017] As a compound having such a function, a compound having a cyclic atomic arrangement in which a carbo group is introduced into the structural formula and having an unsaturated bond in the cyclic atomic arrangement is particularly preferable. Although it is not limited, in particular, those having 3 to 35 carbon atoms in the cyclic atomic arrangement (especially 5 to: LO) force Effectively suppress the production of ionic substances by the base acid. It is preferable because of its excellent effect.
[0018] この化合物の具体例としては、ォキサゾロン、ピラゾロン、ジャスモン、ベンゾキノン、 ピロン、 Ί ピリドン、ゥラシル、トロポン、トロボロン、クロモン、ナフトキノン、ォキシン ドール、フタリド、ォキサントロン、アントロン、アントラキノン、ァリザリン、アタリドン、及 びそれらの誘導体を挙げることができる。 [0018] Specific examples of this compound include oxazolone, pyrazolone, jasmon, benzoquinone, pyrone, Ίpyridone , uracil, tropone, trobolone, chromone, naphthoquinone, oxindole, phthalide, oxanthrone, anthrone, anthraquinone, alizarin, atalidone, and And their derivatives.
[0019] 上記化合物は、基剤 100重量部に対して 0. 01〜20重量部の範囲で含まれている ことが望ましい。化合物の含有量が 0. 01重量部を下回る場合、基剤の酸化によるィ オン性物質の生成を効果的に抑制する効果が十分でなぐ化合物の含有量が 20重 量部を上回る場合には、上回る分だけの効果が期待できず、不経済となる。  [0019] The above compound is desirably contained in the range of 0.01 to 20 parts by weight with respect to 100 parts by weight of the base. When the content of the compound is less than 0.01 parts by weight, when the content of the compound is insufficient to effectively suppress the formation of the ionic substance due to the oxidation of the base, the content of the compound exceeds 20 parts by weight. , You can not expect the effect of exceeding, it becomes uneconomical.
[0020] 尚、本発明の組成物には、当該組成物の低伝導率を阻害しな!ヽ範囲で、前記成分 以外に例えば消泡剤や着色剤等を含有させてもよ!ヽし、他の従来公知の防鲭添カロ 剤である、モリブデン酸塩、タングステン酸塩、硫酸塩、硝酸塩、安息香酸塩、ァミン 、トリァゾール、及びリン酸塩などを併用することができる。  [0020] It should be noted that the composition of the present invention may contain, for example, an antifoaming agent or a coloring agent in addition to the above-mentioned components within the range not inhibiting the low conductivity of the composition! On the other hand, molybdate, tungstate, sulfate, nitrate, benzoate, amine, triazole, phosphate, and the like, which are other conventionally known anti-corrosive additives, can be used in combination.
[0021] 尚、本発明は、下記実施例に限定されるものではなぐ「特許請求の範囲」に記載さ れた範囲で自由に変更して実施することができる。 Note that the present invention is not limited to the following examples, but is described in “Claims”. It is possible to change and implement freely within the specified range.
発明の効果  The invention's effect
[0022] 本発明の組成物は、構造式中にカルボ-ル基を導入した環状の原子配列を持ち、 かつ前記環状の原子配列中に不飽和結合が存在する化合物を含有することから、 基剤の酸ィ匕によるイオン性物質の生成を効果的に抑制し、長期に渡って低導電率を 維持することができる。  The composition of the present invention contains a compound having a cyclic atomic arrangement in which a carbo group is introduced into the structural formula and having an unsaturated bond in the cyclic atomic arrangement. It is possible to effectively suppress the generation of ionic substances due to the acid of the agent, and to maintain a low conductivity over a long period of time.
実施例  Example
[0023] 以下、本発明の組成物を実施例に従いさらに詳しく説明する。下記表 1には、 50重 量%のエチレングリコール及び 50重量%のイオン交換水を基剤とし、これに 0. 1重 量%の a—ピロンを添加したものを実施例 1とし、前記基剤に 1. 7重量%のヒノキチ オール(トロボロン)を添加したものを実施例 2とした。  [0023] Hereinafter, the composition of the present invention will be described in more detail with reference to Examples. Table 1 below shows Example 1 in which 50% by weight of ethylene glycol and 50% by weight of ion-exchanged water were added as a base and 0.1% by weight of a-pyrone was added thereto. Example 2 was obtained by adding 1.7% by weight of hinokitiol (trobolone) to the agent.
[0024] また、前記基剤のみ力もなるものを比較例 1とし、前記基剤に 1. 0重量%のフルフリ ルアルコールを添カ卩したものを比較例 2とし、前記基剤に 5. 0重量%の桂皮アルコー ルを添加したものを比較例 3とした。  [0024] In addition, an example in which only the above-mentioned base is effective is referred to as Comparative Example 1, and a case in which 1.0% by weight of furfuryl alcohol is added to the above-mentioned base is referred to as Comparative Example 2, and 5.0 to the above-mentioned base. Comparative Example 3 was obtained by adding wt% cinnamon alcohol.
[0025] [表 1] [0025] [Table 1]
O o l£ ΛΓΗn I O o l £ ΛΓΗn I
O 〇 O ○
t ID ^ヽ—  t ID ^ ヽ —
o O o O
in  in
o 〇  o 〇
ID LD  ID LD
o O o O
ID 〇  ID 〇
[0026] 上記実施例 1及び 2、並びに比較例 1〜3の各組成物について、酸化劣化試験を 行い、試験後の導電率 SZcm)を測定した。その結果を表 2に示した。尚、各組 成物の酸化劣化試験は、 100°Cで 168時間の条件で実施した。 [0026] The compositions of Examples 1 and 2 and Comparative Examples 1 to 3 were subjected to an oxidative deterioration test, and the conductivity (SZcm) after the test was measured. The results are shown in Table 2. The oxidative degradation test of each composition was conducted at 100 ° C for 168 hours.
[0027] [表 2] 較例比 O 00 [0027] [Table 2] Comparison ratio O 00
実施例  Example
ID C劣後酸化化O ID C Subordinate Oxidation O
( LD J (LD J
COCO
O O
COCO
CM CO CM CO
d d
Figure imgf000007_0001
Figure imgf000007_0001
[0028] 表 2から、酸化劣化後の各組成物の導電率を見ると、基剤のみからなる比較例 1の 組成物が、初期の導電率が 0. 2に対して酸化劣化試験後の導電率は 43となってお り、その変動は 42. 8と大きぐ基剤が酸化劣化して導電率が大きく上昇していること が確認された。 [0028] From Table 2, the electrical conductivity of each composition after oxidative degradation is shown. The composition of Comparative Example 1 consisting only of the base material has an initial electrical conductivity of 0.2 after the oxidative degradation test. The conductivity was 43, and the fluctuation was as large as 42.8. It was confirmed that the conductivity was greatly increased due to oxidative degradation.
[0029] これに対し、比較例 2の組成物の場合、初期の導電率が 2. 5に対して酸化劣化試 験後の導電率は 53となっており、その変動は 50. 5と比較例 1よりも大きぐ基剤の酸 化劣化による導電率の上昇が全く抑制されておらず、むしろ導電率を上昇させて 、 ることが確認された。 [0030] 比較例 3の組成物の場合には、初期の導電率が 4. 2に対して酸化劣化試験後の 導電率は 28となっており、その変動は 23. 8であり、基剤の酸化劣化による導電率の 上昇が幾分抑制されて 、ることが確認された。 [0029] On the other hand, in the case of the composition of Comparative Example 2, the initial conductivity was 2.5, whereas the conductivity after the oxidative degradation test was 53, and the variation was compared with 50.5. It was confirmed that the increase in conductivity due to the oxidation degradation of the base larger than Example 1 was not suppressed at all, but rather the conductivity was increased. [0030] In the case of the composition of Comparative Example 3, the initial conductivity was 4.2, whereas the conductivity after the oxidative degradation test was 28, and the variation was 23.8. It was confirmed that the increase in conductivity due to oxidative degradation of the steel was somewhat suppressed.
[0031] これに対して、実施例 1の組成物にあっては、初期の導電率が 0. 3に対して酸化劣 化試験後の導電率は 7. 4となっており、その導電率の変動は 7. 1と僅かであり、基剤 の酸ィ匕劣化による導電率の上昇が効果的に抑制されていることが確認された。  [0031] On the other hand, in the composition of Example 1, the initial conductivity was 0.3, whereas the conductivity after the oxidation degradation test was 7.4. The fluctuation of the value was as small as 7.1, and it was confirmed that the increase in conductivity due to the deterioration of acidity of the base was effectively suppressed.
[0032] さらに、実施例 2の組成物については、初期導電率が 3. 6に対して酸化劣化試験 後の導電率が 4. 9となっており、その変動は 1. 3と極めて小さぐ基剤の酸ィ匕劣化に よる導電率の上昇が効果的に抑制されており、当該組成物における基剤の酸化防 止効果が予想を超えて遙かに良いことが確認された。  [0032] Further, with respect to the composition of Example 2, the initial conductivity was 3.6 and the conductivity after the oxidative degradation test was 4.9, and the variation was extremely small as 1.3. It was confirmed that the increase in electrical conductivity due to deterioration of the base due to acid and soot was effectively suppressed, and the antioxidant effect of the base in the composition was far better than expected.
[0033] 以上の結果から、実施例 1及び 2に係る組成物にあっては、厳しい条件下での酸ィ匕 劣化試験を経た後であるにも拘わらず、導電率の上昇は極めて小さいことから、これ らの組成物を希釈して燃料電池の冷却液として適用した場合にお!、ても、基剤の酸 化によるイオン性物質の生成を効果的に抑制できることが予測され、長期に渡っての 低導電率の維持が期待できる。  [0033] From the above results, in the compositions according to Examples 1 and 2, the increase in electrical conductivity is extremely small despite being subjected to the oxidation deterioration test under severe conditions. Therefore, even when these compositions are diluted and applied as a fuel cell coolant, it is predicted that the production of ionic substances due to the oxidation of the base can be effectively suppressed. It can be expected to maintain low conductivity across the board.

Claims

請求の範囲 The scope of the claims
[1] 燃料電池を冷却する冷却液組成物にお ヽて、  [1] For a coolant composition for cooling a fuel cell,
構造式中にカルボ二ル基を導入した環状の原子配列を持ち、かつ前記環状の原 子配列中に不飽和結合が存在する化合物を含有することを特徴とする燃料電池用 冷却液組成物。  A coolant composition for fuel cells, comprising a compound having a cyclic atomic arrangement in which a carbonyl group is introduced into the structural formula and having an unsaturated bond in the cyclic atomic arrangement.
[2] 化合物の環状の原子配列における炭素数が 3〜35であることを特徴とする請求項 1 記載の燃料電池用冷却液組成物。  [2] The coolant composition for fuel cells according to [1], wherein the compound has 3 to 35 carbon atoms in a cyclic atomic arrangement.
[3] ィ匕合物が、ォキサゾロン、ピラゾロン、ジャスモン、ベンゾキノン、ピロン、 γ —ピリドン[3] The compound is oxazolone, pyrazolone, jasmon, benzoquinone, pyrone, γ-pyridone
、ゥラシル、トロポン、トロボロン、クロモン、ナフトキノン、ォキシンドーノレ、フタリド、ォ キサントロン、アントロン、アントラキノン、ァリザリン、アタリドン、及びそれらの誘導体 であることを特徴とする請求項 2記載の燃料電池用冷却液組成物。 3. The fuel cell coolant composition according to claim 2, which is uracil, tropone, trobolone, chromone, naphthoquinone, oxindone, phthalide, oxanthrone, anthrone, anthraquinone, alizarin, attaridone, and derivatives thereof.
[4] 化合物が、水、アルコール類、グリコール類、及びグリコールエーテル類の中力 選 ばれる 、ずれか 1種若しくは 2種以上の混合物力もなる基剤中に含まれて 、ることを 特徴とする請求項 3記載の燃料電池用冷却液組成物。 [4] The compound is characterized in that it is contained in a base that can be selected from water, alcohols, glycols, and glycol ethers, and also has one or more kinds of mixture power. 4. The fuel cell coolant composition according to claim 3.
[5] 化合物の含有量が基剤 100重量部に対して 0. 01〜20重量部であることを特徴とす る請求項 4記載の燃料電池用冷却液組成物。 5. The fuel cell coolant composition according to claim 4, wherein the content of the compound is 0.01 to 20 parts by weight with respect to 100 parts by weight of the base.
PCT/JP2005/006050 2005-03-30 2005-03-30 Coolant composition for fuel cell WO2006103757A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2005/006050 WO2006103757A1 (en) 2005-03-30 2005-03-30 Coolant composition for fuel cell
JP2007510283A JP5027656B2 (en) 2005-03-30 2005-03-30 Coolant composition for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/006050 WO2006103757A1 (en) 2005-03-30 2005-03-30 Coolant composition for fuel cell

Publications (1)

Publication Number Publication Date
WO2006103757A1 true WO2006103757A1 (en) 2006-10-05

Family

ID=37053031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/006050 WO2006103757A1 (en) 2005-03-30 2005-03-30 Coolant composition for fuel cell

Country Status (2)

Country Link
JP (1) JP5027656B2 (en)
WO (1) WO2006103757A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176380A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Negative electrode slurry for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060019A1 (en) * 1999-04-02 2000-10-12 Shishiai-Kabushikigaisha Blackening inhibitors and antifreeze fluid/cooling fluid compositions with the use thereof
JP2004523077A (en) * 2001-02-14 2004-07-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー A Novel Chemical Main Component of Heat Exchange Coolant / Antifreeze for Fuel Cell Engine
JP2004524439A (en) * 2001-01-16 2004-08-12 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Engine coolant / antifreeze chemical base with improved thermal stability
JP2004530017A (en) * 2001-05-10 2004-09-30 ビーエーエスエフ アクチェンゲゼルシャフト Dye C.I. I. Antifreeze concentrate containing ReactiveViolet5

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737608B2 (en) * 1989-06-15 1995-04-26 大日精化工業株式会社 Colored antifreeze
AU2003248060A1 (en) * 2003-07-11 2005-01-28 Shishiai-Kabushikigaisha Cooling fluid composition for fuel battery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000060019A1 (en) * 1999-04-02 2000-10-12 Shishiai-Kabushikigaisha Blackening inhibitors and antifreeze fluid/cooling fluid compositions with the use thereof
JP2004524439A (en) * 2001-01-16 2004-08-12 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー Engine coolant / antifreeze chemical base with improved thermal stability
JP2004523077A (en) * 2001-02-14 2004-07-29 シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー A Novel Chemical Main Component of Heat Exchange Coolant / Antifreeze for Fuel Cell Engine
JP2004530017A (en) * 2001-05-10 2004-09-30 ビーエーエスエフ アクチェンゲゼルシャフト Dye C.I. I. Antifreeze concentrate containing ReactiveViolet5

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022176380A1 (en) * 2021-02-22 2022-08-25 パナソニックIpマネジメント株式会社 Negative electrode slurry for lithium ion secondary battery, method for manufacturing negative electrode for lithium ion secondary battery, method for manufacturing lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5027656B2 (en) 2012-09-19
JPWO2006103757A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
US7201982B2 (en) Methods for fuel cell coolant systems
JP4478449B2 (en) Refrigerant for cooling system in fuel cell drive, containing azole derivative
WO2001023495A1 (en) Coolant, method of encapsulating coolant, and cooling system
KR101021207B1 (en) Coolant based on azole derivatives containing 1,3-propanediol for fuel cell cooling systems
EP1501140A1 (en) Cooling liquid composition for fuel cell
KR101420746B1 (en) Cooling Liquid Composition for Fuel-Cell Comprising Hydroquinone or Quinoline
WO2005091413A1 (en) Cooling fluid composition for fuel cell
US20050109979A1 (en) Coolant composition for fuel cell
JP2022506355A (en) New heat medium for cooling lithium storage batteries
WO2006103757A1 (en) Coolant composition for fuel cell
US11108102B2 (en) Coolant
CN100382371C (en) Cooling agent composition for fuel battery
US20050244692A1 (en) Fuel cell coolant composition
JP7111588B2 (en) coolant composition
JP2008059990A (en) Cooling liquid composition for fuel cell
WO2005105948A1 (en) Heating medium composition
JP2019172774A (en) Coolant composition
KR102584448B1 (en) Heat transfer fluid composition with improved thermal stability
JP2022109341A (en) Cooling liquid composition and concentrated cooling liquid composition
KR102036518B1 (en) Heating Medium Composition for Solar Heat With Long Life
JP2008059988A (en) Cooling liquid composition for fuel cell
JP2006278199A (en) Cooling liquid composition for fuel cell
EP4354558A1 (en) Cooling liquid composition for fuel cell
JP2008059825A (en) Cooling liquid composition for fuel cell
WO2005091412A1 (en) Cooling liquid composition for fuel cell

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007510283

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05727257

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5727257

Country of ref document: EP