JPWO2006054373A1 - Sewage treatment apparatus and method - Google Patents

Sewage treatment apparatus and method Download PDF

Info

Publication number
JPWO2006054373A1
JPWO2006054373A1 JP2006544781A JP2006544781A JPWO2006054373A1 JP WO2006054373 A1 JPWO2006054373 A1 JP WO2006054373A1 JP 2006544781 A JP2006544781 A JP 2006544781A JP 2006544781 A JP2006544781 A JP 2006544781A JP WO2006054373 A1 JPWO2006054373 A1 JP WO2006054373A1
Authority
JP
Japan
Prior art keywords
sewage
disinfectant
water
amount
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006544781A
Other languages
Japanese (ja)
Inventor
小三田 栄
栄 小三田
府中 裕一
裕一 府中
槙田 則夫
則夫 槙田
安原 義晴
義晴 安原
吉田 秀潔
秀潔 吉田
昌次郎 渡邊
昌次郎 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JPWO2006054373A1 publication Critical patent/JPWO2006054373A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/12Emergency outlets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Abstract

本発明は、大量の降雨時に、下水処理場を経ないで放流される雨水混入下水や汚濁物質混入雨水、即ち、合流式下水道越流水(combined sewer overflow:CSO)、分流式下水道雨水越流水、分流式下水道汚水越流水(sanitary sewer overflow)などを、公共用水域に放流される前に速やかに消毒する手段を設けた下水道システム、並びに雨水混入下水や汚濁物質混入雨水の消毒方法及び装置を提供する。本発明の一態様は、下水道システムであって、下水処理場の処理容量を超えない量の下水が下水処理場に流れ込む場合には、下水を、下水処理場において所定の処理を行った後に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流し、大量の降雨によって下水処理場の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ込むか若しくは流れ込むおそれのある場合には、下水処理場の処理容量を超える量の雨水混入下水については、下水道の雨天時下水道越流水排除施設において分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、下水処理場の処理容量内の雨水混入下水については、下水処理場において所定の処理を行った後に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流することを特徴とする下水道システムに関する。The present invention relates to rainwater-mixed sewage or pollutant-mixed stormwater that is discharged without passing through a sewage treatment plant when a large amount of rainfall occurs, that is, combined sewer overflow (CSO), split-type sewer stormwater overflow, Providing a sewer system with a means to quickly disinfect sewer overflow, etc. before being released to public water areas, and a method and apparatus for disinfecting rainwater mixed with rainwater or contaminated rainwater To do. One aspect of the present invention is a sewage system, and when sewage that does not exceed the treatment capacity of the sewage treatment plant flows into the sewage treatment plant, the sewage is subjected to predetermined treatment in the sewage treatment plant, After disinfecting with chlorinated disinfectant and then releasing it to public waters, and when there is a possibility that sewage containing rainwater that exceeds the capacity of the sewage treatment plant will flow into the sewage treatment plant or may flow into it. For sewage mixed with rainwater exceeding the capacity of the sewage treatment plant, it is branched off at the sewer stormwater overflow drainage facility, disinfected with a bromine-based disinfectant, and then discharged into public waters for sewage treatment. For sewage mixed with rainwater within the treatment capacity of the plant, after the prescribed treatment at the sewage treatment plant, the sterilization treatment is performed with a chlorinated disinfectant and then discharged into public water areas. Sewer system to be related to.

Description

本発明は、排水(drainage)を消毒する方法及び装置に関し、特に、雨水(rainwater)で希釈された下水(sewage)、具体的には、合流式下水道越流水、分流式下水道雨水越流水或いは分流式下水道汚水越流水を消毒処理する方法及び装置、並びにかかる消毒装置を具備した下水道システムに関する。   The present invention relates to a method and apparatus for disinfecting drainage, and in particular, sewage diluted with rainwater, specifically combined sewer stormwater overflow, diverted sewer stormwater overflow or diversion. The present invention relates to a method and apparatus for disinfecting sewage sewage overflow water, and a sewer system equipped with such a disinfecting apparatus.

都市において、家庭汚水や産業排水は、合流式下水道又は分流式下水道によって下水処理場に送られて、砂等を除去するための沈砂池、浮遊固体(suspended solid;SS)を除去するための固液分離処理、活性汚泥処理、次いで、消毒をこの順序で経て、河川、湖沼、港湾、沿岸海域等の公共用水域(public water)に放流されている。   In cities, domestic sewage and industrial wastewater are sent to a sewage treatment plant by combined sewerage or shunt sewerage, and are used for sedimentation basins for removing sand, etc., and solids for removing suspended solids (SS). Liquid separation treatment, activated sludge treatment, and then disinfection are performed in this order, and then discharged into public water such as rivers, lakes, harbors, and coastal waters.

そして、消毒としては、一般的には、塩素ガスや、塩素系消毒剤で消毒することが一般的である。下水、屎尿、産業排水等には、感染症の源になる病原菌が含まれることがあるからである。一般的には、塩素系消毒剤が添加され、1mL当たりの大腸菌群数(大腸菌数)3000個(CFU/mL)以下にしている。なお、塩素系消毒剤を添加しないで、紫外線照射やオゾン添加が行われる場合もあるが、設備が膨大になるため用途が限られている。   And generally as disinfection, disinfecting with chlorine gas or a chlorine-type disinfectant is common. This is because sewage, human waste, industrial wastewater, and the like may contain pathogenic bacteria that are a source of infectious diseases. In general, a chlorine-based disinfectant is added to reduce the number of coliforms per 1 mL (the number of E. coli) to 3000 or less (CFU / mL). In some cases, ultraviolet irradiation or ozone addition may be performed without adding a chlorine-based disinfectant, but the use is limited because the facilities are enormous.

しかしながら、大量の降雨時には、下水処理場の処理容量の問題などから、下水処理場での各種処理及び消毒を経ないで雨水が混入した下水や、各種の汚濁物が混入した雨水を公共用水域に放流しなければならない事態が起こる。この雨天時に公共用水域に放流される雨水混入下水や汚濁物質混入雨水を、公共用水域に放流される前に速やかに消毒することが重要である。   However, when there is a large amount of rainfall, due to problems with the capacity of the sewage treatment plant, sewage mixed with rainwater without passing through various treatments and disinfection at the sewage treatment plant or rainwater mixed with various pollutants A situation occurs that must be released. It is important to sterilize sewage mixed with rainwater and polluted rainwater discharged to public waters during rainy weather before being discharged into public waters.

本発明は、大量の降雨時に、下水処理場を経ないで放流される雨水混入下水や汚濁物質混入雨水、或いは下水処理場内で生物処理及び消毒処理を経ないで放流される雨水が混入した簡易放流水を、公共用水域に放流される前に速やかに消毒する手段を設けた下水道システム、並びに雨水混入下水や汚濁物質混入雨水の消毒方法及び装置を提供する。   The present invention is simple in which a large amount of rainfall is mixed with sewage mixed with rainwater and polluted substances discharged without passing through a sewage treatment plant, or rainwater discharged without passing through biological treatment and disinfection treatment in a sewage treatment plant. Provided are a sewer system provided with means for quickly disinfecting discharged water before being discharged into public water areas, and a method and apparatus for disinfecting rainwater mixed sewage and contaminated rainwater.

合流式下水道の代表的な構成例を示すフロー図である。It is a flowchart which shows the typical structural example of a combined sewer. 分流式下水道の代表的な構成例を示すフロー図である。It is a flowchart which shows the typical structural example of a diversion sewer. 下水処理場の代表的な構成例を示すフロー図である。It is a flowchart which shows the typical structural example of a sewage treatment plant. 本発明の一態様にかかる下水処理装置の構成例を示す図である。It is a figure which shows the structural example of the sewage treatment apparatus concerning 1 aspect of this invention. 本発明の一態様にかかる下水処理装置の構成例を示す図である。It is a figure which shows the structural example of the sewage treatment apparatus concerning 1 aspect of this invention. 本発明の一態様にかかる下水処理装置の構成例を示す図である。It is a figure which shows the structural example of the sewage treatment apparatus concerning 1 aspect of this invention. 本発明の一態様にかかる下水処理装置の構成例を示す図である。It is a figure which shows the structural example of the sewage treatment apparatus concerning 1 aspect of this invention. 本発明の一態様にかかる下水処理装置の構成例を示す図である。It is a figure which shows the structural example of the sewage treatment apparatus concerning 1 aspect of this invention. 本発明の一実施形態にかかる消毒装置を説明する概略説明図であるIt is a schematic explanatory drawing explaining the disinfection apparatus concerning one Embodiment of this invention. 沈砂池に消毒剤を投入する本発明の一形態を説明する概略説明図である。It is a schematic explanatory drawing explaining one form of this invention which throws a disinfectant into a sand basin. 本発明の他の形態を示す概略説明図である。It is a schematic explanatory drawing which shows the other form of this invention. 消毒水を雨天時下水道越流水に添加するための添加装置の一実施態様を示す概略説明図である。It is a schematic explanatory drawing which shows one embodiment of the addition apparatus for adding disinfecting water to the sewer stormwater overflow. 消毒剤の貯留・供給装置として採用することのできる他の形態を示す概略説明図である。It is a schematic explanatory drawing which shows the other form which can be employ | adopted as a storage and supply apparatus of a disinfectant. 固体消毒剤の貯留部の具体的な構成例を示す図である。It is a figure which shows the specific structural example of the storage part of a solid disinfectant. 固体消毒剤貯槽の一形態を示す図である。It is a figure which shows one form of a solid disinfectant storage tank. 固体消毒剤貯槽の一形態を示す図である。It is a figure which shows one form of a solid disinfectant storage tank. 定量供給器の一形態を示す図である。It is a figure which shows one form of a fixed amount feeder. 定量供給器の一形態を示す図である。It is a figure which shows one form of a fixed amount feeder. 固体消毒剤貯槽にコンテナを接続した形態を示す図である。It is a figure which shows the form which connected the container to the solid disinfectant storage tank. 固体消毒剤コンテナの構成例を説明する図である。It is a figure explaining the structural example of a solid disinfectant container. 固体消毒剤供給設備の設置形態の一例を説明する図である。It is a figure explaining an example of the installation form of a solid disinfectant supply equipment. 固体消毒剤を収容した容器の他の形態を説明する図である。It is a figure explaining the other form of the container which accommodated the solid disinfectant. 固体消毒剤を水に溶解して消毒水を形成する溶解部の他の構成例を示す図である。It is a figure which shows the other structural example of the melt | dissolution part which melt | dissolves a solid disinfectant in water and forms disinfectant water. 本発明において使用することのできる他の形態の固体臭素系消毒剤貯留・供給装置を示す図である。It is a figure which shows the solid bromine-type disinfectant storage and supply apparatus of the other form which can be used in this invention. 本発明において使用することのできる他の形態の固体臭素系消毒剤貯留・供給装置を示す図である。It is a figure which shows the solid bromine-type disinfectant storage and supply apparatus of the other form which can be used in this invention. 流体・粉体移送用一軸ねじ式ポンプを用いた固体臭素系消毒剤貯留・供給装置の他の例を示す図である。It is a figure which shows the other example of the solid bromine-type disinfectant storage and supply apparatus using the uniaxial screw type pump for fluid and powder transfer. 固体臭素系消毒剤を固体のまま処理対象の雨天時下水道越流水に投入する本発明の一態様に係る消毒装置の一具体例を示す図である。It is a figure which shows one specific example of the disinfecting apparatus which concerns on one aspect | mode of this invention which throws a solid bromine-type disinfectant into the sewer stormwater overflow to be processed with solid. 消毒剤注入装置の一形態を示す図である。It is a figure which shows one form of the disinfectant injection device. 消毒剤注入装置の他の形態を示す図である。It is a figure which shows the other form of a disinfectant injection device. 消毒剤注入装置の他の形態を示す図である。It is a figure which shows the other form of a disinfectant injection device. 固体の消毒剤を雨天時下水道越流水に投入した後の未溶解消毒剤残存率、残留ハロゲン濃度、大腸菌群数の時間的推移を示すグラフである。It is a graph which shows the time transition of undissolved disinfectant residual ratio, residual halogen concentration, and the number of coliform bacteria after throwing a solid disinfectant into sewer overflow in rainy weather. 本発明の他の態様にかかる雨天時下水道越流水の消毒装置の概念を示す図である。It is a figure which shows the concept of the disinfection apparatus of the sewer stormwater overflow concerning the other aspect of this invention. 消毒剤を添加した後の雨天時下水道越流水の流路の形状を変化させた形態を示す図である。It is a figure which shows the form which changed the shape of the flow path of the sewer stormwater overflow after adding a disinfectant. 消毒剤を添加した後の雨天時下水道越流水の流路507の形状を変化させた他の形態を示す図である。It is a figure which shows the other form which changed the shape of the flow path 507 of the sewer stormwater overflow after adding a disinfectant. 消毒剤を添加した後の雨天時下水道越流水の流路507の形状を変化させた他の形態を示す図である。It is a figure which shows the other form which changed the shape of the flow path 507 of the sewer stormwater overflow after adding a disinfectant. 固体消毒剤を処理対象の雨天時下水道越流水に投入する消毒装置の一形態の概念を示す図である。It is a figure which shows the concept of one form of the disinfection apparatus which throws a solid disinfectant into the sewer stormwater overflow to be processed. 固体の臭素系消毒剤を固体のままで処理対象の雨天時下水道越流水に投入して消毒を行う方式の消毒装置の他の構成例を示す図である。It is a figure which shows the other structural example of the disinfection apparatus of the system which throws in a solid bromine-type disinfectant into the sewer stormwater overflow to be processed, and performs disinfection. 固体の臭素系消毒剤を固体のままで処理対象の雨天時下水道越流水に投入して消毒を行う方式の消毒装置の他の構成例を示す図である。It is a figure which shows the other structural example of the disinfection apparatus of the system which throws in a solid bromine-type disinfectant into the sewer stormwater overflow to be processed, and performs disinfection. 下水処理設備における雨天時越流水に対して所定量のハロゲン系消毒剤を添加した際の、降雨後経過時間と消毒後大腸菌群数の関係とを示すグラフである。It is a graph which shows the relationship between the elapsed time after rainfall, and the number of coliform bacteria after disinfection when a predetermined amount of halogen-based disinfectant is added to rainwater overflow in a sewage treatment facility. 降雨後0.5時間経過後(図39のA点)での雨天時下水に対して種々の濃度のハロゲン系消毒剤を添加した場合の、消毒後の大腸菌群数を示すグラフである。40 is a graph showing the number of coliform bacteria after sterilization when halogen-based disinfectants having various concentrations are added to sewage in rainy weather after 0.5 hours have passed since rain (point A in FIG. 39). 降雨後45分経過後(図39のB点)での雨天時下水に対して種々の濃度のハロゲン系消毒剤を添加した場合の、消毒後の大腸菌群数を示すグラフである。FIG. 40 is a graph showing the number of coliform bacteria after disinfection when halogen-based disinfectants having various concentrations are added to sewage in rainy weather after 45 minutes from rain (point B in FIG. 39). 降雨後1.5時間経過後(図39のC点)での雨天時下水に対して種々の濃度のハロゲン系消毒剤を添加した場合の、消毒後の大腸菌群数を示すグラフである。FIG. 40 is a graph showing the number of coliform bacteria after disinfection when halogen-based disinfectants having various concentrations are added to sewage in rainy weather after 1.5 hours have elapsed since rain (point C in FIG. 39). 種々の降雨後経過時間における雨天時越流水に対してハロゲン系消毒剤を添加した場合の、消毒剤添加後経過時間と被処理液中の残留ハロゲン濃度との関係を示すグラフである。It is a graph which shows the relationship between the elapsed time after disinfection agent addition, and the residual halogen density | concentration in a to-be-processed liquid at the time of adding a halogen-type disinfectant with respect to the rainwater overflowing time in various elapsed time after rainfall. 本発明の一態様に係る雨天時下水道越流水の消毒装置の構成例を示す図である。It is a figure which shows the structural example of the disinfection apparatus of the sewer stormwater overflow which concerns on 1 aspect of this invention. 消毒剤が添加された雨天時下水道越流水に対して還元剤を添加する処理を行う本発明の一形態を説明する図である。It is a figure explaining one form of this invention which performs the process which adds a reducing agent with respect to the sewer stormwater overflow to which the disinfectant was added. 消毒装置が消毒する排水を収集する下水管路網と処理地域を示す図である。It is a figure which shows the sewer pipe network which collects the waste_water | drain which the disinfection apparatus disinfects, and a processing area. 消毒装置が消毒する排水を収集する下水管路網と処理地域及び隣接する処理地域を示す図である。It is a figure which shows the sewer network which collects the waste_water | drain which the disinfection apparatus disinfects, a process area, and an adjacent process area. 本発明に係る雨天時下水道越流水消毒装置の制御装置の構成例を示す図である。It is a figure which shows the structural example of the control apparatus of the sewer sewage overflow water disinfection apparatus which concerns on this invention. 本発明にかかる雨天時下水道越流水消毒装置の制御方法に用いられるマッピング処理を示す図で、同図(a)は各処理地域A,B、C、D、E、Xで測定された降雨情報をマッピング処理した模式図で、同図(b)は同図(a)の時間t後の模式図である。It is a figure which shows the mapping process used for the control method of the sewer stormwater overflow disinfection apparatus concerning this invention, The figure (a) is the rain information measured in each process area A, B, C, D, E, X. (B) is a schematic diagram after time t in FIG. (A). 本発明にかかる雨天時下水道越流水消毒装置の制御装置の他の構成例を示す図である。It is a figure which shows the other structural example of the control apparatus of the sewer sewage overflow water disinfection apparatus concerning the present invention. 本発明にかかる雨天時下水道越流水消毒装置の制御装置の他の構成例を示す図である。It is a figure which shows the other structural example of the control apparatus of the sewer sewage overflow water disinfection apparatus concerning the present invention. 本発明にかかる異常検知機構を有する排水消毒装置の一実施形態によって消毒が実行される状態を示す系統図である。It is a systematic diagram which shows the state by which disinfection is performed by one Embodiment of the waste water disinfection apparatus which has an abnormality detection mechanism concerning this invention. 薬剤添加量の過剰、過小を検知する処理手順を示す図である。It is a figure which shows the process sequence which detects the excess and the smallness of a chemical | medical agent addition amount. 薬剤添加量の過剰、過小を検知する処理手順を示す図である。It is a figure which shows the process sequence which detects the excess and the smallness of a chemical | medical agent addition amount. 薬剤添加量の過剰を検知する処理手順を示す図である。It is a figure which shows the process sequence which detects the excess of chemical | medical agent addition amount. 固体消毒剤の異常供給を検知して供給を停止する制御装置の概念を示す図である。It is a figure which shows the concept of the control apparatus which detects the abnormal supply of a solid disinfectant and stops supply. 本発明によって固体臭素系消毒剤による雨天時下水道越流水の消毒を行う装置の運転方法の一形態を説明する図である。It is a figure explaining one form of the operation | movement method of the apparatus which disinfects the sewer stormwater overflow by the solid bromine type disinfectant by this invention. 本発明にかかる雨天時下水道越流水の消毒システムの制御体系の一例を示す概念図である。It is a conceptual diagram which shows an example of the control system of the disinfection system of the sewer stormwater overflow concerning this invention. 実施例4で用いた雨天時下水道越流水の消毒装置の構成を示す図である。It is a figure which shows the structure of the disinfection apparatus of the sewer stormwater overflow used in Example 4. 実施例5の結果を示すグラフである。10 is a graph showing the results of Example 5.

図46において、710は処理場、711は下水管、P1,P2,P3は中継ポンプである。   In FIG. 46, 710 is a treatment plant, 711 is a sewer pipe, and P1, P2, and P3 are relay pumps.

図48において、710は処理場、720は降雨情報測定手段、721aは処理地域Aの降雨情報、722aは処理地域Aの降雨情報、730は制御装置、731は降雨情報マッピング処理手段、732は降雨情報推定処理手段、733は予想降雨量、734は予想降雨強度、735は予想流入量、736は大腸菌群数推定処理手段、737は予測値/実測値補正処理手段、741は薬剤添加量、742は薬剤消費量、743は排水消毒装置運転開始時刻、750は濁度測定手段、751は流入水濁度、752は実測値測定手段、753は降雨量、754は降雨強度、755は流入水量、756は薬剤供給量、757は放流水残留薬剤濃度である。   In FIG. 48, reference numeral 710 is a treatment site, 720 is rainfall information measuring means, 721a is rainfall information of the processing area A, 722a is rainfall information of the processing area A, 730 is a control device, 731 is rainfall information mapping processing means, and 732 is rainfall. Information estimation processing means, 733 is expected rainfall, 734 is expected rainfall intensity, 735 is expected inflow, 736 is coliform group number estimation processing means, 737 is predicted value / actual value correction processing means, 741 is drug addition amount, 742 Is the chemical consumption, 743 is the drainage disinfection operation start time, 750 is the turbidity measuring means, 751 is the influent water turbidity, 752 is the actual value measuring means, 753 is the rainfall amount, 754 is the rainfall intensity, 755 is the inflow water amount, Reference numeral 756 denotes a chemical supply amount, and reference numeral 757 denotes a discharged water residual chemical concentration.

図50において、710は処理場、720は降雨情報測定手段、721xは処理地域Xの降雨情報、722xは処理地域Xの降雨情報、730は制御装置、731は降雨情報マッピング処理手段、732は降雨情報推定処理手段、733は予想降雨量、734は予想降雨強度、735は予想流入量、736は大腸菌群数推定処理手段、737は予測値/実測値補正処理手段、737a〜737cは補正値加算処理手段、741は薬剤添加量、742は薬剤消費量、743は排水消毒装置運転開始時刻、750は濁度測定手段、751は流入水濁度、752は実測値測定手段、753は降雨量、754は降雨強度、755は流入水量、756は薬剤供給量、757は放流水残留薬剤濃度、760は地域特性シュミレーション手段、761は予想流入水量、762は予想流入汚濁負荷である。   In FIG. 50, reference numeral 710 is a treatment site, 720 is rainfall information measuring means, 721x is rainfall information of the processing area X, 722x is rainfall information of the processing area X, 730 is a control device, 731 is rainfall information mapping processing means, and 732 is rainfall. Information estimation processing means, 733 is expected rainfall, 734 is expected rainfall intensity, 735 is expected inflow, 736 is E. coli group number estimation processing means, 737 is predicted value / actual value correction processing means, and 737a to 737c are correction value additions Processing means, 741 is the amount of drug added, 742 is the amount of drug consumed, 743 is the drainage disinfection start time, 750 is the turbidity measuring means, 751 is the influent water turbidity, 752 is the actual value measuring means, 753 is the rainfall, 754 is rainfall intensity, 755 is the inflow water amount, 756 is the chemical supply amount, 757 is the concentration of residual chemical in the effluent water, 760 is the regional characteristic simulation means, and 761 is the forecast Input water, 762 are expected inflow pollution loads.

図51において、710は処理場、720は降雨情報測定手段、721xは処理地域Xの降雨情報、722xは処理地域Xの降雨情報、730は制御装置、737は予測値/実測値補正処理手段、737a,737bは補正値加算処理手段、738は薬剤添加量算出処理手段、739は薬剤添加率設定手段、741は薬剤添加量、742は薬剤消費量、752は実測値測定手段、753は降雨量、754は降雨強度、755は流入水量、756は薬剤供給量、757は放流水残留薬剤濃度、760は地域特性シュミレーション手段、761は予想流入水量、762は予想流入汚濁負荷である。   In FIG. 51, reference numeral 710 denotes a processing site, 720 denotes rainfall information measuring means, 721x denotes rainfall information about the processing area X, 722x denotes rainfall information about the processing area X, 730 denotes a control device, 737 denotes a predicted value / actual value correction processing means, 737a and 737b are correction value addition processing means, 738 is a medicine addition amount calculation processing means, 739 is a medicine addition rate setting means, 741 is a medicine addition amount, 742 is a medicine consumption, 752 is a measured value measurement means, and 753 is a rainfall amount. , 754 is the rainfall intensity, 755 is the inflow water amount, 756 is the chemical supply amount, 757 is the residual chemical concentration of the discharged water, 760 is the regional characteristic simulation means, 761 is the expected inflow water amount, and 762 is the expected inflow pollution load.

図52において、810は沈砂池、810aは流入部、810bは沈砂部、811は放流水路、812は河川、813は放流水残留ハロゲン濃度計、814は放流口監視カメラ、820はスクリーン、821は原水流量計、830は消毒剤添加装置、831はホッパ、832は消毒剤、833は供給機、834はエジェクタ、835はホッパ重量、836は供給機回転数、840は溶解装置、841は溶解槽、842は攪拌機、843は溶解槽残留ハロゲン濃度計、X1はホッパ重量計である。   In FIG. 52, 810 is a sand basin, 810a is an inflow portion, 810b is a sand settling portion, 811 is a discharge channel, 812 is a river, 813 is a discharge water residual halogen concentration meter, 814 is a discharge port monitoring camera, 820 is a screen, and 821 is a screen. Raw water flow meter, 830 is a disinfectant addition device, 831 is a hopper, 832 is a disinfectant, 833 is a feeder, 834 is an ejector, 835 is a hopper weight, 836 is the number of revolutions of the feeder, 840 is a dissolution device, and 841 is a dissolution tank , 842 is a stirrer, 843 is a dissolution tank residual halogen concentration meter, and X1 is a hopper weight meter.

図53において、813は放流水残留ハロゲン濃度計、843は溶解槽残留ハロゲン濃度計、870は残留ハロゲンン高レベル判定出力、871は残留ハロゲン低レベル判定出力、901は放流水残留ハロゲン濃度高レベルしきい値、902は溶解槽残留ハロゲン濃度低レベルしきい値、903は溶解槽残留ハロゲン濃度高レベルしきい値、904は残留ハロゲン濃度差(消毒剤消費量)低レベルしきい値である。   In FIG. 53, 813 is a residual water residual halogen concentration meter, 843 is a dissolution tank residual halogen concentration meter, 870 is a residual halogen high level determination output, 871 is a residual halogen low level determination output, and 901 is a high level of residual water residual halogen concentration. Threshold is a dissolution tank residual halogen concentration low level threshold, 903 is a dissolution tank residual halogen concentration high level threshold, and 904 is a residual halogen concentration difference (disinfectant consumption) low level threshold.

図54において、835はホッパ重量計、836は供給機回転数、881は薬剤添加量過小判定出力、883は薬剤添加量過剰判定出力、910は供給機回転数→吐出量換算係数、911は薬剤吐出量添加量低レベルしきい値、912は薬剤吐出量添加量高レベルしきい値、913は薬剤吐出量判定処理サンプリング周期である。   In FIG. 54, 835 is a hopper weigh scale, 836 is a supply machine rotation speed, 881 is a drug addition amount under-determination output, 883 is a drug addition amount over-determination output, 910 is a supply machine rotation speed → discharge amount conversion coefficient, and 911 is a drug The discharge amount addition amount low level threshold value, 912 is a drug discharge amount addition amount high level threshold value, and 913 is a drug discharge amount determination processing sampling cycle.

図55において、814は放流口監視カメラ、890は魚類異常判定出力、921は魚類判定パターン、922は魚類漂流判定用移動範囲座標1、923は魚類漂流判定用移動範囲座標2、924は魚類漂流判定時間、925は漂流魚類個体数高レベルしきい値である。   In FIG. 55, 814 is a discharge port monitoring camera, 890 is a fish abnormality determination output, 921 is a fish determination pattern, 922 is a fish drift determination movement range coordinate 1, 923 is a fish drift determination movement range coordinate 2, and 924 is a fish drift. The determination time, 925, is a drifting fish population high level threshold.

図59において、551は消毒剤貯留槽、552は消毒剤計量手段、553は消毒剤移送配管、554は消毒剤混合手段、555は乾燥空気供給手段、556は除塵手段、557は消毒対象水、559は固体臭素系消毒剤、560は圧力調整手段である。   In FIG. 59, 551 is a disinfectant storage tank, 552 is disinfectant metering means, 553 is disinfectant transfer piping, 554 is disinfectant mixing means, 555 is dry air supply means, 556 is dust removal means, 557 is water to be disinfected, 559 is a solid bromine-based disinfectant, and 560 is a pressure adjusting means.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

「合流式下水道」(combined sewer)とは、家庭汚水及び産業排水と雨水とを同一の管に捕集して下水処理場へ送る方式であり、下水処理場にて、通常は、最初沈殿池による懸濁固形分の除去処理、曝気槽による生物処理、最終沈殿池による汚泥の除去、並びに塩素系消毒剤による消毒などの各処理が行われる。合流式下水道システムの代表的な構成例を図1に示す。一般家庭、工場等の汚水排出源から排出された汚水は下水道管渠に捕集される。また、雨水も雨水溝などを経由して同じ下水道管渠に捕集される。このようにして下水道管渠に集められた汚水及び雨水は、下水処理場に送られて、沈殿処理、曝気(生物反応)処理、最終沈殿処理、消毒処理などの各処理を経て、公共水域に放流される。公共水域としては、河川、湖沼、港湾、沿岸海域などが挙げられる。しかしながら、降雨量が多い場合には、下水処理場で処理可能な量を越える雨水混入下水が流入するおそれがある。このため、下水道管路の途中に雨水吐き室、ポンプ場(排水機場)等の雨水混入下水の排除施設が設けられている。雨水吐き室では、場合によっては濾過スクリーンなどを設置して夾雑物を排除した後に越流水を放流している。また、ポンプ場には、通常、沈砂池が設置され、排除された雨水混入下水は沈砂池によって簡易処理された後放流される。このような雨天時における雨水混入下水の放流水は、一般に合流式下水道越流水(combined sewer overflow:CSO)と呼ばれている。   “Combined sewer” is a system that collects domestic sewage and industrial wastewater and rainwater in the same pipe and sends them to the sewage treatment plant. Each process such as the removal of suspended solids by the biological treatment, biological treatment by the aeration tank, removal of sludge by the final sedimentation basin, and disinfection by the chlorine-based disinfectant are performed. A typical configuration example of a combined sewer system is shown in FIG. Sewage discharged from sewage discharge sources such as general households and factories is collected in sewer pipes. Rainwater is also collected in the same sewer pipe via the rainwater ditch. The sewage and rainwater collected in the sewer pipes in this way are sent to a sewage treatment plant, and after passing through precipitation treatment, aeration (biological reaction) treatment, final precipitation treatment, disinfection treatment, etc., to the public water area It is released. Public waters include rivers, lakes, harbors and coastal waters. However, when there is a large amount of rainfall, there is a risk that rainwater-mixed sewage will flow in that exceeds the amount that can be treated at the sewage treatment plant. For this reason, facilities for removing rainwater-mixed sewage such as a rainwater discharge chamber and a pumping station (drainage station) are provided in the middle of the sewer pipe. In the rain spout chamber, in some cases, a filter screen or the like is installed to remove contaminants, and then overflow water is discharged. The pumping station is usually equipped with a sand basin, and the sewage mixed with rainwater is discharged after being simply treated by the sand basin. Such sewage effluent discharged during rainy weather is generally called combined sewer overflow (CSO).

一方、「分流式下水道」(separated sewer)とは、家庭汚水及び産業排水と、雨水とを別々の管に捕集し、家庭汚水及び産業排水を下水処理場へ送り、雨水を公共水域に放流する方式である。分流式下水道システムの代表的な構成例を図2に示す。一般家庭、工場等の汚水排出源から排出された汚水は、分流式下水道の汚水管渠に捕集され、下水処理場に送られて所定の処理を経て、公共水域に放流される。一方、雨水は、雨水溝などを経由して分流式下水道の雨水管渠に捕集され、雨水管路の複数箇所に設置されたポンプ場(排水機場)から公共水域に放流される。このような分流式下水道において、雨水管路のポンプ場から排出される分流式下水道の雨水越流水は、本来、雨水のみが含まれるはずである。しかし、現実には、大量の雨が降ったときなどには、大量の雨水が下水道を流れ、このときに、道路などの地表面に存在する汚濁物や、下水道内に堆積したヘドロも一緒に流してしまう。従って、分流式下水道の雨水越流水にも、地表面に存在する汚濁物及びヘドロに起因する大腸菌が含まれることがある。   On the other hand, “separated sewer” means collecting domestic sewage and industrial effluent and rainwater in separate pipes, sending domestic sewage and industrial effluent to a sewage treatment plant, and releasing rainwater into public water bodies. It is a method to do. A typical configuration example of the diversion sewer system is shown in FIG. Sewage discharged from sewage discharge sources such as general households and factories is collected in a sewage pipe of a sewerage sewer, sent to a sewage treatment plant, and discharged into a public water area through a predetermined treatment. On the other hand, rainwater is collected in rainwater pipes of a sewerage sewer through a rainwater ditch, etc., and discharged into public water areas from pump stations (drainage station) installed at multiple locations on the rainwater pipe. In such a diversion sewer, the stormwater overflow of the diversion sewer discharged from the pump station of the stormwater pipe should originally contain only rainwater. However, in reality, when a large amount of rain falls, a large amount of rainwater flows through the sewer, and at this time, pollutants present on the ground such as roads and sludge accumulated in the sewer are also brought together. It will be washed away. Therefore, the rainwater overflow water of the sewerage sewer system may contain E. coli caused by contaminants and sludge existing on the ground surface.

上記の合流式下水道越流水及び分流式下水道の雨水越流水のいずれの場合においても、越流水中の大腸菌群数が放流規制値(3000CFU/mL以下)を超えることがあり、消毒をすることが所望される。ここで、CFUとは、コロニー形成単位(colony forming unit)を意味する。   In any of the above-mentioned combined sewer stormwater overflow and diversion sewer stormwater overflow, the number of coliforms in the overflow water may exceed the discharge regulation value (3000 CFU / mL or less) and may be disinfected. Desired. Here, CFU means a colony forming unit.

下水処理場の一般的な構成例を図3に示す。下水道管路から送られてきた下水は、揚水ポンプによって下水処理場に導入され、最初沈殿池(初沈池)で処理されて、夾雑物や懸濁固形分が沈殿によって除去される。次に、曝気槽で生物処理を行った後、最終沈殿池で沈殿処理を行なって汚泥を分離した後、処理水を消毒槽(塩素混和槽)で消毒する。塩素混和槽に代えて、或いはこれと組みあわせてUV照射によって処理水を消毒することもある。この一連の処理を経たものが下水処理水として公共水域に放流される。しかしながら、合流式下水道システムの場合には、下水道管渠を雨水と汚水とが一緒に流れるため、大量の降雨時には、下水処理場の処理容量を超える量の雨水混入下水が流れてくることがある。この場合、揚水ポンプ場において一部の下水を排除して公共水域に放流することがある。また、最初沈殿池の処理容量と曝気槽の処理容量とは一般に異なり、曝気槽の処理容量の方が小さい。従って、最初沈殿池の処理容量内であるが、曝気槽の処理容量を超える量の下水が下水処理場に導入された場合には、曝気槽に下水を導入する前に、その一部を排除して、消毒槽(塩素混和槽及び/又はUV照射槽)で簡易処理した後に公共水域に放流することがある。また、下水処理場によっては、この放流水に対して消毒槽を設置するスペースがないことがあり、そのような場合には、未処理のまま公共水域に放流されることがある。このような下水処理場内での雨水混入下水の放流水も合流式下水道越流水(combined sewer overflow:CSO)と呼ばれ、その消毒処理が重要な課題となっている。   A typical configuration example of a sewage treatment plant is shown in FIG. The sewage sent from the sewage pipe is introduced into the sewage treatment plant by a pump and processed in the first sedimentation basin (primary sedimentation basin), and impurities and suspended solids are removed by sedimentation. Next, after biological treatment is performed in an aeration tank, sedimentation is performed in a final sedimentation tank to separate sludge, and then treated water is sterilized in a disinfection tank (chlorine mixing tank). The treated water may be disinfected by UV irradiation instead of or in combination with a chlorine mixing tank. What passed through this series of treatment is discharged into public water as treated sewage. However, in the case of a combined sewer system, rainwater and sewage flow together in the sewer pipe, so when there is a large amount of rain, an amount of sewage mixed with rainwater may exceed the treatment capacity of the sewage treatment plant. . In this case, some sewage may be removed and discharged into public water areas at the pumping pump station. Further, the treatment capacity of the first sedimentation basin is generally different from the treatment capacity of the aeration tank, and the treatment capacity of the aeration tank is smaller. Therefore, if the amount of sewage that is within the treatment capacity of the first settling basin but exceeds the treatment capacity of the aeration tank is introduced into the sewage treatment plant, a part of the sewage is eliminated before introducing the sewage into the aeration tank. In some cases, after simple treatment in a disinfection tank (chlorine mixing tank and / or UV irradiation tank), it is discharged into public water areas. Also, depending on the sewage treatment plant, there may be no space for installing a disinfecting tank for the discharged water. In such a case, it may be discharged into a public water area without being treated. Such sewage sewage discharge water in the sewage treatment plant is also called combined sewer overflow (CSO), and its disinfection treatment is an important issue.

また、分流式下水道の汚水管渠は、本来、汚水のみが流れるはずであり、大量の降雨時においても汚水管渠を流れる下水の量は増加しない。しかしながら、実際には相当量の不明水が分流式下水道の汚水管渠内に侵入しており、汚水管渠から越流して公共水域に放流されてしまう下水が存在する。これは、分流式下水道の汚水越流水(sanitary sewer overflow:SSO)と呼ばれており、その消毒処理が重要な課題となっている。   In addition, the sewage pipes of the sewerage sewerage should originally only flow sewage, and the amount of sewage flowing through the sewage pipes will not increase even during heavy rainfall. However, in reality, a considerable amount of unknown water has entered the sewage pipe basin of the diversion sewer, and there is sewage that overflows from the sewage pipe basin and is discharged into the public water area. This is called sanitary sewer overflow (SSO) in a sewer system, and its disinfection treatment is an important issue.

本発明の一態様は、これらの合流式下水道越流水、分流式下水道雨水越流水、分流式下水道汚水越流水を速やかに消毒処理する手段(図1〜図3に示す本発明による消毒装置)を備えた下水道システムを提供する。   One aspect of the present invention is a means for quickly disinfecting these combined sewer stormwater overflow, diverted sewer stormwater overflow, and diverted sewer sewage overflow water (disinfection apparatus according to the present invention shown in FIGS. 1 to 3). Provide a sewer system equipped.

即ち、本発明によれば、晴天時若しくは少量の雨天時で、下水処理場の処理容量を超えない量の下水が下水処理場に流れ込む場合には、下水を、下水処理場において、最初沈殿池、曝気槽、最終沈殿池などの所定の処理を行った後、塩素系消毒剤及び/又はUV照射によって消毒処理を行った後に公共水域に放流するが、大量の降雨によって下水処理場の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ込むか若しくは流れ込むおそれのある場合には、下水処理場の処理容量を超える量の雨水混入下水については、下水道管路の雨天時下水道越流水排除施設、例えば雨水吐き室、ポンプ場(排水機場)、或いは下水処理場の揚水ポンプ場において分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、下水処理場の処理容量内の雨水混入下水については、下水処理場において最初沈殿池、曝気槽、最終沈殿池などの所定の処理を行った後に、塩素系消毒剤及び/又はUV照射によって消毒処理を行った後に公共水域に放流することを特徴とする下水道システムが提供される。   That is, according to the present invention, when the amount of sewage that does not exceed the treatment capacity of the sewage treatment plant flows into the sewage treatment plant at the time of fine weather or a small amount of rain, the sewage is first settling in the sewage treatment plant. After performing predetermined treatments such as aeration tanks and final sedimentation basins, disinfecting with chlorinated disinfectant and / or UV irradiation and then discharging into public water areas, but the treatment capacity of the sewage treatment plant due to heavy rainfall If there is a possibility that sewage containing more than the amount of rainwater will flow into the sewage treatment plant or there is a risk of stormwater flowing into the sewage treatment plant, the sewer sewage overflow in the sewer pipeline will be used for sewage mixed with stormwater that exceeds the treatment capacity of the sewage treatment plant. For example, after branching at a drainage facility, such as a rainwater discharge chamber, a pumping station (drainage station), or a pumping pumping station of a sewage treatment plant, disinfecting with a bromine-based disinfectant and then discharging it into public water areas, the sewage treatment plant For sewage mixed with rainwater within the capacity, after performing predetermined treatments such as the first sedimentation tank, aeration tank, and final sedimentation tank at the sewage treatment plant, disinfecting with chlorine-based disinfectant and / or UV irradiation, the public A sewer system is provided which is characterized by being discharged into water.

また、本発明の他の形態によれば、分流式下水道であって、下水道の汚水管渠を流れる汚水については、下水処理場において、最初沈殿池、曝気槽、最終沈殿池などの所定の処理を行った後に、塩素系消毒剤及び/又はUV照射によって消毒処理を行った後に公共水域に放流し、下水道の雨水管渠を流れる雨水については、雨水排除施設、例えばポンプ場(排水機場)から公共水域に放流するが、ファーストフラッシュと呼ばれる降雨直後や大量の降雨などによって消毒が必要となる場合には、下水道の雨水管渠を流れる雨水について、雨水排除施設において臭素系消毒剤による消毒処理を行った後に公共水域に放流することを特徴とする下水道システムが提供される。   Further, according to another embodiment of the present invention, the sewage flowing through the sewer pipe of the sewer system is a predetermined treatment such as a first settling basin, an aeration tank, and a final settling basin at a sewage treatment plant. After performing sterilization treatment by chlorine-based disinfectant and / or UV irradiation, the rainwater flowing through sewer storm sewers is publicized from rainwater drainage facilities such as pump stations (drainage stations). When it is discharged into the water area, but it needs to be disinfected immediately after the rain called “first flush” or a large amount of rain, etc., the rainwater flowing through the sewer storm sewer was disinfected with a bromine-based disinfectant at the rainwater drainage facility. A sewer system is provided which is characterized by later discharge into public waters.

更に、本発明の他の形態によれば、晴天時若しくは少量の雨天時で、下水処理場の曝気槽の処理容量を超えない量の下水が下水処理場に流れ込む場合には、下水を、下水処理場において、最初沈殿池、曝気槽、最終沈殿池などの所定の処理を行った後に、塩素系消毒剤及び/又はUV照射によって消毒処理を行った後に公共水域に放流するが、大量の降雨によって下水処理場の最初沈殿池の処理容量は超えないが曝気槽の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ込むか若しくは流れ込むおそれのある場合には、曝気槽の処理容量を超える量の雨水混入下水については、下水処理場での最初沈殿池における処理の後に分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、曝気槽の処理容量内の雨水混入下水については、下水処理場での最初沈殿池における処理に続いて、曝気槽、最終沈殿池などの所定の処理を行い、続いて塩素系消毒剤及び/又はUV照射によって消毒処理を行った後に公共水域に放流することを特徴とする下水道システムが提供される。   Further, according to another aspect of the present invention, when the amount of sewage that does not exceed the treatment capacity of the aeration tank of the sewage treatment plant flows into the sewage treatment plant during fine weather or a small amount of rain, In a treatment plant, after performing predetermined treatment such as first sedimentation tank, aeration tank, final sedimentation tank, etc., after disinfection treatment with chlorinated disinfectant and / or UV irradiation, it is discharged into public waters. If the sewage containing the amount of rainwater that does not exceed the treatment capacity of the first settling basin of the sewage treatment plant but exceeds the treatment capacity of the aeration tank flows into or may flow into the sewage treatment plant, the treatment capacity of the aeration tank For sewage mixed with stormwater, the water will be branched after treatment in the first sedimentation basin at the sewage treatment plant, disinfected with a bromine-based disinfectant, then discharged into public water, and rainwater within the treatment capacity of the aeration tank. In mixed sewage In addition, after the treatment in the first sedimentation basin at the sewage treatment plant, predetermined treatments such as an aeration tank and final sedimentation basin are performed, followed by disinfection treatment with a chlorine-based disinfectant and / or UV irradiation. A sewer system is provided which is characterized by being discharged into water.

また、本発明の他の態様は、上述の合流式下水道越流水、分流式下水道雨水越流水又は分流式下水道汚水越流水を消毒処理するための装置を提供する。かかる装置は、一態様においては、固体臭素系消毒剤の貯留・供給装置と、該固体臭素系消毒剤の貯留・供給装置から供給される固体臭素系消毒剤を、合流式下水道越流水、分流式下水道雨水越流水、分流式下水道汚水越流水に添加・混合する消毒剤添加・混合装置とを具備する。   Moreover, the other aspect of this invention provides the apparatus for disinfecting the above-mentioned combined-type sewer sewage overflow, split-type sewer stormwater overflow, or split-type sewer sewage overflow. In one aspect, the apparatus includes a solid bromine-based disinfectant storage / supply device, and a solid bromine-based disinfectant supplied from the solid bromine-based disinfectant storage / supply device. Disinfectant addition / mixing device added to and mixed with sewer stormwater overflow and diversion sewer sewage overflow.

上記に説明したように、本発明が対象とする被処理水としては、合流式下水道において大量の降雨時に下水処理場における適正な処理を経ないで公共水域に放流されてしまう雨水が混入した下水、即ち合流式下水道越流水(CSO)、分流式下水道において降雨時に雨水管渠から公共水域に放流される汚濁物質を含んだ雨水、即ち分流式下水道雨水越流水、分流式下水道において、汚水管渠から公共水域に放流される不明水を含んだ汚水、即ち分流式下水道汚水越流水(SSO)を挙げることができる。以下の説明においては、これらの合流式下水道越流水、分流式下水道雨水越流水又は分流式下水道汚水越流水を総称して、雨天時下水道越流水(sewer stormwater overflow)と呼ぶ。また、本明細書の説明においては、本発明によって消毒処理する処理対象水を、場合により雨天時下水道越流水と称するがこの記載は本発明を限定するものではない。   As explained above, the treated water targeted by the present invention is sewage mixed with rainwater that would be discharged into public water areas without proper treatment at the sewage treatment plant when there is a large amount of rain in the combined sewerage system. In other words, in the combined sewer overflow (CSO), in the sewer sewer, the rainwater containing pollutants released from the rainwater pipe into the public water area during rainfall, that is, in the sewer sewer stormwater overflow, the sewer sewer Examples include sewage containing unknown water discharged into public water areas, that is, sewer sewage overflow (SSO). In the following description, these combined sewer stormwater overflow, diverted sewer stormwater overflow or diverted sewer sewage overflow water will be collectively referred to as sewer stormwater overflow. In the description of the present specification, the water to be disinfected by the present invention is sometimes referred to as sewer stormwater overflow, but this description does not limit the present invention.

上記に説明した本発明の概念は、また図4に示すように規定することもできる。図4において、下水は分岐装置に流入する。流入下水が所定値以下の場合には、流入下水は出口1から流出し、出口1から流出した下水は塩素又はUVで消毒する消毒槽を有する消毒施設に送られて消毒処理がなされる。消毒処理がなされた下水は公共水域に放流することができる。また、流入下水が所定値以上の量である場合には、所定値以下の量の流入下水は出口1から流出し、上記と同様の処理がされる。流入下水量から所定値の下水量を除いた下水量は出口2から流出し、下水を臭素系消毒剤によって消毒する臭素下水消毒装置に送られ、臭素系消毒剤による消毒処理がなされる。臭素下水消毒装置で消毒処理がなされた下水も、公共水域に放流することができる。なお、ここでの所定値とは、例えば、下水処理場の処理容量、或いは図3に示すように下水処理場内で最初沈殿池と曝気槽の間で分岐させる場合には曝気槽の処理容量を指す。   The concept of the present invention described above can also be defined as shown in FIG. In FIG. 4, sewage flows into the branching device. When the inflowing sewage is less than or equal to a predetermined value, the inflowing sewage flows out from the outlet 1, and the sewage flowing out from the outlet 1 is sent to a disinfection facility having a disinfection tank that is disinfected with chlorine or UV to be sterilized. Disinfected sewage can be discharged into public waters. When the amount of inflow sewage is greater than or equal to a predetermined value, the amount of inflow sewage less than or equal to a predetermined value flows out from the outlet 1 and is processed in the same manner as above. A sewage amount obtained by subtracting a predetermined amount of sewage from the inflow sewage amount flows out from the outlet 2 and is sent to a bromine sewage disinfection device that disinfects the sewage with a bromine disinfectant, and is subjected to disinfection treatment with the bromine disinfectant. Sewage that has been disinfected by bromine sewage disinfection equipment can also be discharged into public waters. Here, the predetermined value is, for example, the processing capacity of the sewage treatment plant, or the processing capacity of the aeration tank in the case of branching between the first sedimentation tank and the aeration tank in the sewage treatment plant as shown in FIG. Point to.

即ち、本発明の他の態様は、
下水を塩素又はUVで消毒する消毒槽を有する消毒施設と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;
入口と出口1及び出口2を有し、入口への流入下水を出口1及び出口2に分ける分岐装置であって、入口への流入下水量が所定値以下の場合には流入下水量の全量を出口1に流し、流入下水量が所定値以上の場合には、所定値の下水量を出口1に流し、流入下水量から所定値の下水量を除いた下水量を出口2に流す分岐装置と;
から構成され、
上記分岐装置の出口1が上記消毒施設の下水導入部に接続され、上記分岐装置の出口2が上記臭素下水処理装置の下水導入部に接続されている下水処理装置に関する。
That is, another aspect of the present invention provides:
A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
A branching device that has an inlet, an outlet 1 and an outlet 2 and divides the inflowing sewage into the outlet 1 and the outlet 2, and when the inflowing sewage amount to the inlet is less than a predetermined value, A branching device that flows to the outlet 1 and, when the inflow sewage amount is greater than or equal to a predetermined value, causes the sewage amount to flow to the outlet 1 and flows the sewage amount obtained by removing the sewage amount from the inflow sewage amount to the outlet 2; ;
Consisting of
The present invention relates to a sewage treatment apparatus in which an outlet 1 of the branch device is connected to a sewage introduction section of the sterilization facility, and an outlet 2 of the branch apparatus is connected to a sewage introduction section of the bromine sewage treatment apparatus.

上記の態様において、流入下水量が所定値以上の場合に流入下水量から所定値の下水量を除いた下水量(分岐装置の出口2から流出する下水量)は、上記に説明した雨天時下水道越流水という概念で考えることができる。   In the above aspect, when the inflow sewage amount is equal to or greater than a predetermined value, the sewage amount obtained by removing the sewage amount from the inflow sewage amount (the sewage amount flowing out from the outlet 2 of the branching device) is the sewerage system in the rainy weather described above. It can be thought of as the concept of overflow water.

消毒施設としては、たとえば下水処理場を例示することができる。消毒施設は、図5に示すように、最初沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が消毒槽の下水導入部に接続されるようにすることができる。更に、消毒施設は、図6に示すように、最初沈殿池、ばっき槽及び最終沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続されるようにすることもできる。   An example of the disinfection facility is a sewage treatment plant. As shown in FIG. 5, the disinfection facility further has an initial settling basin, and the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank. Can be done. Furthermore, as shown in FIG. 6, the disinfection facility further includes an initial settling basin, a basin tank, and a final settling basin, and a sewage introduction section for the first settling basin is connected to the introduction section of the disinfection facility, Make sure that the outlet is connected to the sewage introduction section of the flash tank, the outlet of the flash tank is connected to the sewage introduction section of the final sedimentation tank, and the exit of the final sedimentation tank is connected to the sewage introduction section of the disinfection tank You can also.

更に、消毒施設内においても分岐装置及び臭素消毒装置を配置して、所定値以上の流入水が流入した場合にはその超過分を分岐して臭素消毒装置によって消毒処理することができる。即ち、本発明の他の態様は、消毒施設が、更に、最初沈殿池と、入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と、下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1が消毒槽の下水導入部に接続され、分岐装置の出口2が臭素下水処理装置の下水導入部に接続される上記に記載の下水処理装置に関する。かかる形態の構成例を図7に示す。更には、本発明の他の態様は、消毒施設が、更に、最初沈殿池と、ばっき槽と、最終沈殿池と、入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と、下水を臭素系消毒剤によって消毒する臭素下水処理装置(device)とを有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続されて、分岐装置の出口2が臭素下水処理装置の下水導入部に接続される上記に記載の下水処理装置に関する。かかる形態の構成例を図8に示す。   Further, a branching device and a bromine disinfection device are also arranged in the disinfection facility, and when inflow water of a predetermined value or more flows, the excess can be branched and disinfected by the bromine disinfection device. In other words, according to another aspect of the present invention, the disinfection facility further includes an initial settling basin, an inlet and an outlet 1 and an outlet 2, and the effluent water from the first settling basin is received at the entrance to the outlet 1 and the outlet 2. When the amount of water flowing into the branching device is equal to or less than a predetermined value, the entire amount of water flowing into the outlet 1 is allowed to flow to the outlet 1. And a bronze sewage treatment device that disinfects sewage with a bromine-based disinfectant, and the first settling basin at the introduction of the disinfection facility. The outlet of the first sedimentation tank is connected to the inlet of the branching device, the outlet 1 of the branching device is connected to the sewage introducing portion of the disinfection tank, and the outlet 2 of the branching device is the sewage of the bromine sewage treatment device. The present invention relates to the above-described sewage treatment apparatus connected to the introduction section. A configuration example of this form is shown in FIG. Further, according to another aspect of the present invention, the disinfection facility further includes a first settling basin, a batch tank, a final settling basin, an inlet and an outlet 1 and an outlet 2, and effluent water from the first basin. Is divided into an outlet 1 and an outlet 2, and when the amount of water flowing into the branching device is below a predetermined value, the entire amount of the inflowing water flows to the outlet 1, and the amount of inflowing water exceeds the predetermined value. In some cases, a branching device for flowing a predetermined amount of water to the outlet 1 and removing the predetermined amount of water from the inflowing water amount to the outlet 2, and a bromine sewage treatment device (device) for disinfecting sewage with a bromine-based disinfectant The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the inlet of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flash tank. Connected, the outlet of the tank is connected to the sewage introduction section of the final sedimentation basin, and the final sedimentation basin exit There is connected to the sewage inlet portion of the sterilization bath, to sewage treatment apparatus according to the exit 2 of the branching unit is connected to the sewage inlet portion of bromine sewage treatment apparatus. A configuration example of this form is shown in FIG.

更に、上記の図7又は図8に示す分岐装置及び臭素下水消毒装置を含む装置を消毒施設内にのみ配置した構成も本発明の一態様に含まれる。即ち、本発明の他の態様は、下水処理場における下水処理装置であって、
最初沈殿池と;
下水を塩素又はUVで消毒する消毒槽を有する消毒設備と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置;とからなり、
分岐装置の出口1が消毒設備の下水導入部に接続され、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置に関する。
Furthermore, the structure which arrange | positioned the apparatus containing the branch apparatus and bromine sewage disinfection apparatus shown in FIG. 7 or FIG. 8 only in the disinfection facility is also included in one aspect of the present invention. That is, another aspect of the present invention is a sewage treatment apparatus in a sewage treatment plant,
First sedimentation basin;
A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 And consist of
The present invention relates to a sewage treatment apparatus characterized in that an outlet 1 of a branching device is connected to a sewage introduction part of a disinfection facility, and an outlet 2 of the branching apparatus is connected to a sewage introduction part of a bromine sewage treatment apparatus.

更に本発明の他の態様は、下水処理場における下水処理装置であって、
最初沈殿池と;
ばっき槽と;
最終沈殿池と;
下水を塩素又はUVで消毒する消毒槽を有する消毒設備と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と;からなり、
下水処理装置の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒設備の下水導入部に接続されて、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置に関する。
Furthermore, another aspect of the present invention is a sewage treatment apparatus in a sewage treatment plant,
First sedimentation basin;
With a tank;
The final sedimentation basin;
A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
A branching device having an inlet, an outlet 1 and an outlet 2 that receives the effluent water from the first sedimentation basin and separates it into the outlet 1 and the outlet 2. A diverter that causes the entire amount to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and removes the predetermined amount of water from the inflow water amount to the outlet 2; ,
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the inlet of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flash tank. The outlet of the tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device The present invention relates to a sewage treatment apparatus.

上記に説明した下水処理装置においては、消毒施設によって下水中の大腸菌群数を下水1ccあたり3000個以下にすることができる。また、消毒施設によって下水中の大腸菌数を下水100ccあたり200個以下にすることができる。更に、分岐装置の入口は合流式下水道に接続することができる。また、臭素下水処理装置によって下水中の大腸菌群数を下水1ccあたり3000個以下にすることができる。更に、臭素下水処理装置によって下水中の大腸菌数を下水100ccあたり200個以下にすることができる。消毒施設及び/又は臭素下水処理装置によって消毒された下水は公共水域に流すことができる。また、上記に規定の下水処理装置において、臭素下水処理装置は、固体臭素系消毒剤の貯留・供給装置と、該固体臭素系消毒剤の貯留・供給装置から供給される固体臭素系消毒剤を、被処理水に添加・混合する消毒剤添加・混合装置とを具備することができる。また、固体臭素系消毒剤の貯留・供給装置は、固体臭素系消毒剤の貯槽と、貯槽内の固体臭素系消毒剤を所定の量計量して排出する定量供給機とを備え、該貯槽及び定量供給機は、圧縮空気をその内部に噴射する複数個の噴射口で構成された固体臭素系消毒剤の撹拌手段を備えることができる。また、定量供給機は、計量手段を有する回転テーブルを備えることができる。更に、消毒剤添加・混合装置は、被処理水の一部を受容して固体臭素系消毒剤を混合・溶解する消毒水調製装置と、消毒水を被処理水に投入する手段とを備えることができる。更に、消毒剤添加・混合装置は、被処理水が流れる流路内に設置することができる。更に、固体臭素系消毒剤の貯留・混合装置及び添加・混合装置は、固体臭素系消毒剤を貯留する貯留槽、貯留槽に接続されており、消毒剤を固体のままで注入点まで移送するための消毒剤移送配管、消毒剤移送配管に接続されており、配管内を移送されてきた固体臭素系消毒剤を消毒対象の被処理水に加える消毒剤注入装置、から構成することができる。更に、消毒剤が添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解するように装置を構成することができる。更には、被処理水のサンプルを採取するための分取ラインと、サンプリングされた被処理水サンプルに消毒剤を添加するための消毒剤供給手段と、消毒剤が添加された被処理水サンプルの有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、を更に備え、有効ハロゲン濃度測定装置によって測定された消毒剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて消毒剤添加・混合装置によって被処理水中に加えられる消毒剤の添加量を制御する消毒剤添加量制御手段を備えるように下水処理装置を構成することができる。また、消毒剤を添加した後の被処理水中に還元剤を添加する還元剤供給装置と、消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて還元剤の添加量を制御する還元剤添加量制御装置を更に備えることができる。   In the sewage treatment apparatus described above, the number of coliforms in the sewage can be reduced to 3000 or less per 1 cc of sewage by the disinfection facility. Moreover, the number of E. coli in sewage can be reduced to 200 or less per 100 cc of sewage by disinfection facilities. Furthermore, the entrance of the branching device can be connected to a combined sewer. In addition, the bromine sewage treatment apparatus can reduce the number of coliform bacteria in sewage to 3000 or less per 1 cc of sewage. Furthermore, the bromine sewage treatment apparatus can reduce the number of E. coli in sewage to 200 or less per 100 cc of sewage. Sewage sterilized by a disinfection facility and / or bromine sewage treatment device can flow to public water bodies. In the sewage treatment apparatus defined above, the bromine sewage treatment apparatus comprises a storage / supply device for a solid bromine-based disinfectant and a solid bromine-based disinfectant supplied from the storage / supply device for the solid bromine-based disinfectant. And a disinfectant addition / mixing device for adding / mixing to the water to be treated. The storage and supply device for the solid bromine-based disinfectant includes a storage tank for the solid bromine-based disinfectant and a quantitative supply device for measuring and discharging a predetermined amount of the solid bromine-based disinfectant in the storage tank. The metering feeder can be equipped with a solid bromine-based disinfectant agitation means composed of a plurality of injection ports for injecting compressed air into the inside thereof. Moreover, the fixed quantity feeder can be provided with a rotary table having a weighing means. Further, the disinfectant addition / mixing device includes a disinfecting water preparation device that receives a part of the water to be treated and mixes / dissolves the solid bromine-based disinfectant, and a unit for introducing the disinfecting water into the water to be treated. Can do. Furthermore, the disinfectant addition / mixing device can be installed in a flow path through which water to be treated flows. Furthermore, the storage / mixing device and the addition / mixing device for the solid bromine-based disinfectant are connected to the storage tank for storing the solid bromine-based disinfectant and the storage tank, and the disinfectant is transferred to the injection point while remaining solid. The disinfectant transfer pipe is connected to the disinfectant transfer pipe, and the disinfectant injection device for adding the solid bromine-based disinfectant transferred through the pipe to the water to be disinfected can be configured. Furthermore, the apparatus can be configured so that the disinfectant completely dissolves from the addition position until it reaches the discharge location of the water to be treated. Furthermore, a preparative line for collecting a sample of the water to be treated, a disinfectant supply means for adding a disinfectant to the sampled water sample to be treated, and a sample of the water to be treated to which the disinfectant has been added. An effective halogen concentration measuring device for measuring the effective halogen concentration, and the addition of a disinfectant according to the degree of decrease in the effective halogen concentration in the treated water sample after addition of the disinfectant measured by the effective halogen concentration measuring device. The sewage treatment apparatus can be configured to include disinfectant addition amount control means for controlling the addition amount of the disinfectant added to the water to be treated by the mixing device. Also, a reducing agent supply device that adds a reducing agent to the treated water after adding the disinfectant, and an effective halogen concentration measuring device that measures the effective halogen concentration in the treated water after adding the disinfectant are measured. Further, a reducing agent addition amount control device for controlling the addition amount of the reducing agent according to the effective halogen concentration in the water to be treated after the addition of the disinfectant can be further provided.

また、本発明の他の態様は、下水を消毒処理する方法であって、
流入下水を、流入下水量が所定値以下の場合には流入下水量の全量を塩素又はUVによって消毒し、流入下水量が所定値以上の場合には、所定値の下水量を塩素又はUVによって消毒し、同時に流入下水量から所定値の下水量を除いた下水量を臭素系消毒剤によって消毒することを特徴とする下水処理方法に関する。
Another aspect of the present invention is a method for disinfecting sewage,
Inflow sewage is sterilized by chlorine or UV when the inflow sewage amount is below a predetermined value, and when the inflow sewage amount is greater than or equal to a predetermined value, the sewage amount at a predetermined value is chlorine or UV. The present invention relates to a sewage treatment method characterized by disinfecting and simultaneously disinfecting a sewage amount obtained by removing a predetermined amount of sewage amount from an inflow sewage amount with a bromine-based disinfectant.

かかる方法において、塩素又はUVによる消毒によって下水中の大腸菌群数を下水1ccあたり3000個以下にすることが好ましい。また、塩素又はUVによる消毒によって下水中の大腸菌数を下水100ccあたり200個以下にすることができる。更に、上記の方法によって処理対象の下水として合流式下水道の下水を処理することができる。上記の方法においては、臭素系消毒剤による消毒によって下水中の大腸菌群数を下水1ccあたり3000個以下にすることができる。また、臭素系消毒剤による消毒によって下水中の大腸菌数を下水100ccあたり200個以下にすることができる。更に、塩素又はUVによって消毒された下水及び/又は臭素系消毒剤によって消毒された下水を公共水域に流すことができる。また、臭素系消毒剤による消毒処理の時間は3分以内であることができる。また、臭素系消毒剤として固体の臭素系消毒剤を被処理水に添加・混合して消毒を行うことができる。更に、臭素系消毒剤として、固体の臭素系系消毒剤を被処理水の一部に混合・溶解して消毒水を調製し、調製された消毒水を被処理水に投入することによって消毒を行うことができる。更に、消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解するようにすることができる。更に、上記の方法においては、被処理水の一部をサンプリングして臭素系消毒剤を添加し、臭素系消毒剤が添加された被処理水サンプルの有効ハロゲン濃度を測定して、測定された臭素系消毒剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて被処理水に加える臭素系消毒剤の添加量を制御することを更に含むことができる。また、上記の方法においては、臭素系消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定し、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて、臭素系消毒剤を添加した後の被処理水中に還元剤を添加することができる。   In such a method, the number of coliforms in the sewage is preferably 3000 or less per 1 cc of sewage by disinfection with chlorine or UV. Further, the number of E. coli in sewage can be reduced to 200 or less per 100 cc of sewage by disinfection with chlorine or UV. Furthermore, the sewage from the combined sewer can be treated as sewage to be treated by the above method. In the above method, the number of coliforms in sewage can be reduced to 3000 or less per 1 cc of sewage by disinfection with a bromine-based disinfectant. In addition, disinfection with a bromine-based disinfectant can reduce the number of E. coli in sewage to 200 or less per 100 cc of sewage. Furthermore, sewage sterilized by chlorine or UV and / or sewage sterilized by bromine-based disinfectants can be run into public water bodies. Also, the time for disinfection treatment with bromine-based disinfectant can be within 3 minutes. Further, as a bromine-based disinfectant, a solid bromine-based disinfectant can be added to and mixed with the water to be treated for disinfection. In addition, as a bromine-based disinfectant, a solid bromine-based disinfectant is mixed and dissolved in a part of the water to be treated to prepare disinfecting water, and the prepared disinfecting water is poured into the water to be treated. It can be carried out. Further, the disinfectant can be completely dissolved from the addition position until it reaches the discharge point of the water to be treated. Further, in the above method, a part of the water to be treated was sampled and a bromine-based disinfectant was added, and the effective halogen concentration of the sample to be treated to which the bromine-based disinfectant was added was measured and measured. The method may further include controlling the amount of the bromine-based disinfectant added to the water to be treated according to the degree of decrease in the effective halogen concentration in the water to be treated after the addition of the bromine-based disinfectant. Further, in the above method, the effective halogen concentration in the treated water after adding the bromine-based disinfectant is measured, and the bromine-based disinfecting is performed according to the measured effective halogen concentration in the treated water after the disinfectant is added. A reducing agent can be added to the water to be treated after the agent is added.

以下に本発明において用いることのできる種々の形態の臭素消毒装置及び臭素消毒装置による消毒の制御方法などについて詳細に説明する。上記で述べたように、以下の説明においては、本発明によって分岐装置で出口2に誘導され、臭素系消毒剤で消毒処理される処理対象水を、場合により雨天時下水道越流水と呼ぶが、この記載は本発明を限定するものではない。また、以下の説明においては便宜上臭素消毒装置を単に消毒装置と呼ぶことがある。
汚水や排水などの下水の消毒は、通常、紫外線照射、オゾン殺菌や、次亜塩素酸ナトリウムなどの塩素系消毒剤を用いて行われている。特に塩素系消毒剤は、紫外線照射やオゾン殺菌に比べて、設備が簡潔であり、汚れの状態に対して適用性が高いなど、利点が多い。
In the following, various forms of bromine disinfection devices that can be used in the present invention, disinfection control methods using the bromine disinfection devices, and the like will be described in detail. As described above, in the following description, the water to be treated, which is guided to the outlet 2 by the branching device according to the present invention and is sterilized with the bromine-based disinfectant, is sometimes referred to as sewer stormwater overflow, This description is not intended to limit the invention. In the following description, the bromine disinfection device may be simply referred to as a disinfection device for convenience.
Disinfection of sewage such as sewage and drainage is usually performed using ultraviolet irradiation, ozone sterilization, and a chlorine-based disinfectant such as sodium hypochlorite. In particular, chlorine-based disinfectants have many advantages, such as simple equipment and high applicability to soil conditions, compared to ultraviolet irradiation and ozone sterilization.

しかし、通常の下水処理に適用された技術を雨天時下水道越流水の処理に転用すると次の問題点が生じる。まず、雨天時下水道越流水には、アンモニア、アミンが共存するため、下記式(1)に代表される化学反応が生じ、活性塩素がクロラミンに変化し、殺菌効果がl/10以下に低下する。従って、病原菌の数は、変わらなくてもアンモニアやアミンが存在すると、塩素系消毒剤の添加量を増大させる必要がある。   However, if the technology applied to normal sewage treatment is diverted to the treatment of sewer stormwater overflow, the following problems arise. First, since ammonia and amine coexist in sewer stormwater overflow, a chemical reaction represented by the following formula (1) occurs, active chlorine changes to chloramine, and the bactericidal effect decreases to 1/10 or less. . Therefore, even if the number of pathogenic bacteria does not change, if ammonia or amine is present, it is necessary to increase the addition amount of the chlorine-based disinfectant.

式1Formula 1

NH4 ++HClO→NH2Cl+H2O+H+ (1)
また、塩素系消毒剤を用いるときの消毒時間は15分以上必要であるので("下水道施設計画・設計指針と解説"参照)、雨天時下水道越流水と塩素系消毒剤を混和し、15分以上滞留させる混和槽が必要となる。しかし、雨天時下水道越流水の排除施設にはそのような混和槽を設置できる空間的余裕がない。
NH 4 + + HClO → NH 2 Cl + H 2 O + H + (1)
In addition, the disinfection time when using a chlorine-based disinfectant is 15 minutes or more (see "Sewerage Facility Planning / Design Guidelines and Explanations"), so mix the sewer overflow water with the chlorine-based disinfectant in the rain, 15 minutes A mixing tank for retaining the above is required. However, the facility for draining sewer stormwater overflow does not have enough space to install such a mixing tank.

そこで、雨天時下水道越流水の消毒処理には、消毒時間が短い消毒剤、及び、その混合方法が求められる。   Therefore, a disinfectant having a short disinfection time and a mixing method thereof are required for the disinfection treatment of sewer stormwater overflow.

本発明の特徴の一つは、雨天時下水道越流水の消毒に固体臭素系消毒剤を用いるという点にある。本発明において用いることのできる固体臭素系消毒剤としては、例えば、1−ブロモ−3−クロロ−5,5−ジメチルヒダントイン(BCDMH)、1,3−ジブロモ−5,5−ジメチルヒダントイン(DBDMH)などを挙げることができる。   One of the features of the present invention is that a solid bromine-based disinfectant is used for disinfecting sewer stormwater overflow. Examples of the solid bromine-based disinfectant that can be used in the present invention include 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH), 1,3-dibromo-5,5-dimethylhydantoin (DBDMH). And so on.

本発明の一側面では、固体臭素系消毒剤を貯留する装置と、該固体消毒剤を水に混合して消毒水を得る消毒水調製装置と、前記消毒水を、有機物と、アンモニア又はアンモニウムイオンとを含む雨天時下水道越流水に添加して消毒を行う消毒水添加装置とを具備する雨天時下水道越流水の消毒装置が提供される。   In one aspect of the present invention, an apparatus for storing a solid bromine-based disinfectant, a disinfecting water preparation apparatus for obtaining disinfecting water by mixing the solid disinfectant with water, the disinfecting water, an organic substance, ammonia or ammonium ions And a disinfecting water adding device for disinfecting and adding to the sewer stormwater overflow including the above.

本発明において、前記雨天時下水道越流水中の全有機物炭素(total organic carbon)が、5mg/L以上であることが好ましい。前記雨天時下水道越流水中のアンモニウムイオン濃度が、1mg/L以上であることが好ましい。   In the present invention, the total organic carbon in the sewer stormwater overflow is preferably 5 mg / L or more. The ammonium ion concentration in the sewer stormwater overflow is preferably 1 mg / L or more.

前記消毒水中の消毒剤の濃度は、活性塩素濃度に換算して、100mg/L as Cl〜10g/L as Clであることが好ましい。   The concentration of the disinfectant in the disinfecting water is preferably 100 mg / L as Cl to 10 g / L as Cl in terms of active chlorine concentration.

前記雨天時下水道越流水中の消毒剤の添加濃度は、活性塩素濃度に換算して、0.5mg/L as Cl〜25mg/L as Clであることが好ましい。   The addition concentration of the disinfectant in the sewer stormwater overflow is preferably 0.5 mg / L as Cl to 25 mg / L as Cl in terms of active chlorine concentration.

前記添加工程は、前記消毒水を前記雨天時下水道越流水の水面下に導入させる工程を含むことが好ましい。更に、消毒された雨天時下水道越流水を公共水域に放流する工程を更に含むことが好ましい。   The adding step preferably includes a step of introducing the disinfecting water under the surface of the sewer stormwater overflow. Furthermore, it is preferable to further include a step of discharging the sterilized sewer stormwater overflow into the public water area.

本発明の他の側面では、消毒剤と雨天時下水道越流水の一部とから消毒水を製造する装置と、
雨天時下水道越流水中の砂を除去するための沈砂池と、
前記消毒水を沈砂池に導入するための第1流路と、
を有し、前記雨天時下水道越流水が前記沈砂池に滞留中に消毒される、雨天時下水道越流水を消毒する装置が提供される。
In another aspect of the present invention, an apparatus for producing disinfecting water from a disinfectant and a part of sewer stormwater overflow,
A sand basin for removing sand in sewer stormwater overflow,
A first flow path for introducing the disinfecting water into the sand basin;
There is provided an apparatus for disinfecting sewer stormwater overflow, wherein the sewer stormwater overflow is disinfected while staying in the sand basin.

本発明において、前記消毒水製造装置は、消毒剤貯留装置と、前記消毒剤を前記雨天時下水道越流水に添加する装置と、前記消毒剤と前記雨天時下水道越流水とを混合する装置とを有することが好ましい。また、前記沈砂池が2以上の沈砂部を有し、前記第1流路は、各々の沈砂部に消毒水を導入するための分配槽を有することが好ましい。   In the present invention, the disinfecting water production apparatus includes a disinfectant storage device, an apparatus for adding the disinfectant to the sewer stormwater overflow, and an apparatus for mixing the disinfectant and the sewer stormwater overflow. It is preferable to have. Moreover, it is preferable that the said sand settling basin has two or more sand settling parts, and the said 1st flow path has a distribution tank for introduce | transducing disinfection water into each sand settling part.

前記第1流路は、前記消毒水を前記雨天時下水道越流水の水面下に導入するための添加装置に連結されていることが好ましい。   The first flow path is preferably connected to an addition device for introducing the disinfecting water below the surface of the sewer stormwater overflow.

消毒された雨天時下水道越流水を公共水域に放流することができるように貯留するための貯留池又は放流水路を更に含むことが好ましい。   It is preferable to further include a reservoir or discharge channel for storing the sterilized sewer stormwater overflow so that it can be discharged into the public water area.

前記貯留池又は放流水路に、消毒された雨天時下水道越流水の水質を検査するための計測器が設けられていることが好ましい。   It is preferable that a measuring instrument for inspecting the quality of the sterilized sewer stormwater overflow is provided in the reservoir or the discharge channel.

前記沈砂池中の雨天時下水道越流水の一部を前記消毒水製造装置に導入するための第2流路を更に有することが好ましい。   It is preferable to further have a second flow path for introducing part of the sewer stormwater overflow in the sand basin into the disinfecting water production apparatus.

本発明においては、有機物と、アンモニア又はアンモニウムイオンとを含む雨天時下水道越流水が消毒される。   In the present invention, sewer stormwater overflow containing organic matter and ammonia or ammonium ions is disinfected.

例えば、合流式下水道では、汚水や排水などの下水と雨水とが混合して下水道管渠を流れる。そして、このように両者が混合した下水、特に、下水処理場で処理されないで放流される雨天時下水道越流水が、本発明によって消毒される。   For example, in a combined sewer, sewage such as sewage or drainage and rainwater mix and flow through a sewer pipe. And the sewage which mixed both in this way, especially the sewer stormwater overflow discharged without being processed in a sewage treatment plant is disinfected by this invention.

分流式下水道では、生下水の下水道(汚水管渠)と雨水の下水道(雨水管渠)とが別れている方式であり、雨水管渠を流れ、公共水域に放流される雨天時下水道越流水が、本発明によって消毒される。   In the sewer type sewer, the sewer (raw water pipe) of raw sewage is separated from the sewer (rain pipe) of rainwater, and the sewer stormwater overflow flowing through the rainwater pipe and discharged into public water areas is Disinfected by the invention.

雨天時下水道越流水中の有機物の含有量としては、例えば、この雨天時下水道越流水には、全有機物炭素(total organic carbon)が、5mg/L以上であってもよく、10mg/L以上であってもよく、30mg/L以上であってもよく、50mg/L以上であってもよい。合流式下水でも、分流式下水でも、一般的には、全有機物炭素(total organic carbon)が、5mg/L以上である。   As for the content of organic matter in sewer stormwater overflow, for example, the total organic carbon in this sewer stormwater overflow may be 5 mg / L or more, and 10 mg / L or more. It may be 30 mg / L or more, or 50 mg / L or more. Whether combined sewage or split sewage, generally, the total organic carbon is 5 mg / L or more.

処理対象の雨天時下水道越流水のアンモニウムイオン濃度が、1mg/L以上であってもよく、10mg/L以上であってもよい。雨天時下水道越流水中にアンモニウムイオンが含まれているときには、活性臭素がブロマミン(NH2Br、NHBr2等)に変化する。しかし、ブロマミンの場合には、次亜臭素酸と同程度の消毒効果を維持するため、効果的に消毒することができる。合流式下水では、一般的には、アンモニアイオン濃度が、1mg/L以上である。また、分流式下水では、降雨直後のファーストフラッシュ(first flush)と呼ばれる越流水では、アンモニアイオン濃度が1mg/L以上であることが多い。The ammonium ion concentration of sewer stormwater overflow to be treated may be 1 mg / L or more, or 10 mg / L or more. When ammonium ions are contained in sewer stormwater overflow, active bromine changes to bromamine (NH 2 Br, NHBr 2, etc.). However, in the case of bromamine, it can be effectively disinfected because it maintains the same disinfecting effect as hypobromite. In combined sewage, the ammonia ion concentration is generally 1 mg / L or more. In the case of diversion sewage, in the overflow water called first flush immediately after rainfall, the ammonia ion concentration is often 1 mg / L or more.

本発明の一側面では、雨水で希釈された下水を主対象とするが、分流式下水道による雨水を対象にしてもよい。更に、下水、し尿、若しくは、産業排水、又は、これらの処理水など、有機物とアンモニア又はアミンを含む水を、本発明の方法で処理してもよい。   In one aspect of the present invention, sewage diluted with rainwater is mainly targeted, but rainwater by a shunt sewer may be targeted. Furthermore, water containing organic matter and ammonia or amine, such as sewage, human waste, industrial wastewater, or treated water thereof, may be treated by the method of the present invention.

本発明の一側面では、被処理水には、大腸菌を含んでいる。このような水は、特に消毒をする必要が高いからである。合流式下水には、一般的には、大腸菌も含まれている。また、分流式雨水にも、大腸菌が含まれていることが多い。   In one aspect of the present invention, the water to be treated contains E. coli. This is because it is particularly necessary to disinfect such water. The combined sewage generally contains E. coli. Also, diversion rainwater often contains E. coli.

本発明では、固体臭素系消毒剤が用いられる。塩素系消毒剤と比べて、臭素系消毒剤は、消毒時間が短いことが特徴である。臭素系消毒剤では、数十秒から数分、例えば30秒〜15分、好ましくは40秒〜10分、より好ましくは45秒〜5分、更に好ましくは50秒〜3分で消毒ができる。また、次亜臭素酸(HOBr)は天然で容易に分解するので、排水に残存した次亜臭素酸を分解処理するための装置を設ける必要がない。これに対して、塩素系消毒剤では、活性塩素が下水中のアンモニアと反応し、クロラミンを形成し、殺菌力を低下させるため、雨天時下水道越流水の排除施設の滞留時間内で消毒することは困難である。また、クロラミンの残留性が高いため、分解処理するための装置を設ける必要がある。   In the present invention, a solid bromine-based disinfectant is used. Compared with chlorine-based disinfectants, bromine-based disinfectants are characterized by a shorter disinfection time. With a bromine-based disinfectant, disinfection can be performed in several tens of seconds to several minutes, for example, 30 seconds to 15 minutes, preferably 40 seconds to 10 minutes, more preferably 45 seconds to 5 minutes, and even more preferably 50 seconds to 3 minutes. Moreover, since hypobromite (HOBr) is easily decomposed naturally, it is not necessary to provide an apparatus for decomposing the hypobromite remaining in the waste water. On the other hand, with chlorine-based disinfectants, active chlorine reacts with ammonia in sewage to form chloramine and reduce sterilizing power, so disinfect within the residence time of drainage facilities in sewer stormwater overflow. It is difficult. Moreover, since the persistence of chloramine is high, it is necessary to provide an apparatus for the decomposition treatment.

本発明で好適に用いられる固体臭素系消毒剤としては、1−ブロモ−3−クロロ−5,5−ジメチルヒダントイン(BCDMH)、1,3−ジブロモ−5,5−ジメチルヒダントイン(DBDMH)などを挙げることができる。   Examples of the solid bromine-based disinfectant preferably used in the present invention include 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH), 1,3-dibromo-5,5-dimethylhydantoin (DBDMH) and the like. Can be mentioned.

本発明の一側面では、所定の消毒剤を水に混合する工程を含む。本発明では、雨天時下水道越流水の排除施設で消毒剤を雨天時下水道越流水に添加してもよい。雨天時下水道越流水の排除施設としては、例えば、合流式下水道の雨水吐き室、ポンプ場(排水機場)、分流式下水道のポンプ場(排水機場)、下水処理場の揚水ポンプ場、下水処理場の最初沈殿池から曝気槽への流路から分岐して雨天時下水道越流水を公共水域に放流する施設などを挙げることができる。本発明の消毒剤は、これらの雨天時下水道越流水排除施設に流入する下水管渠で添加しても良いし、雨水排除ポンプ井で添加してもよいし、雨水排除ポンプ流入管内で添加してもよい。また、これらの雨天時下水道越流水排除施設には沈砂池を設けている場合が多い。その場合には、消毒剤を、沈砂池中、或いは沈砂池の流入部で添加してもよい。消毒剤の添加場所は、上記の1ヶ所に限らず、数ヶ所に分けて添加することができる。   One aspect of the present invention includes a step of mixing a predetermined disinfectant with water. In the present invention, a disinfectant may be added to sewer stormwater overflow at a facility for draining sewer stormwater overflow. Examples of drainage facilities for sewer overflow in rainy weather include, for example, a rainwater discharge room for a combined sewer, a pumping station (drainage station), a pumping station for a sewerage sewerage (drainage station), a pumping pump station for a sewage treatment plant, and a sewage treatment plant A facility that branches from the flow path from the first sedimentation basin to the aeration tank and discharges sewer stormwater overflow into public waters. The disinfectant of the present invention may be added at a sewer pipe that flows into these sewer overflow drainage facilities during rainy weather, may be added at a rainwater drain pump well, or may be added within a rainwater drain pump inflow pipe. May be. In many cases, these sewer stormwater overflow drainage facilities have sand basins. In that case, you may add a disinfectant in a sedimentation basin or the inflow part of a sedimentation basin. The addition place of the disinfectant is not limited to the above-mentioned one place, and can be added in several places.

あるいは、雨天時下水道越流水の排除施設に、雨天時下水道越流水が流れる主流路と、主流路から分岐するバイパス流路とを設け、このバイパス流路に消毒槽を設置してもよい。この消毒槽にて、消毒剤を雨天時下水道越流水に添加し、消毒剤を雨天時下水道越流水に溶解させてもよい。   Alternatively, a drainage facility for sewer stormwater overflow may be provided with a main channel through which sewer stormwater overflow flows and a bypass channel branched from the main channel, and a disinfection tank may be installed in the bypass channel. In this disinfecting tank, a disinfectant may be added to the sewer stormwater overflow, and the disinfectant may be dissolved in the sewer stormwater overflow.

消毒剤を添加する場所が雨水排除ポンプの流入側であれば、ポンプ内の撹拌力によって、消毒剤と雨天時下水道越流水との混合が十分行われるため、好ましい。また、消毒剤を沈砂池流入部で添加すれば、沈砂池での滞留時間を反応時間に利用することができるので好ましい。   If the place where the disinfectant is added is the inflow side of the rainwater draining pump, it is preferable because the disinfectant and the sewer stormwater overflow are sufficiently mixed by the stirring force in the pump. Further, it is preferable to add a disinfectant at the inflow portion of the sand basin because the residence time in the sand basin can be used for the reaction time.

本発明で用いられる消毒剤は、室温で固体であるので、消毒剤を水に溶解させて消毒水にして、雨天時下水道越流水に添加することができる。溶解方法は特に限定しないが、エジェクターによる水流撹拌、流路撹拌、混合装置を設けた溶解槽のいずれでもよい。   Since the disinfectant used in the present invention is solid at room temperature, the disinfectant can be dissolved in water to make disinfectant water, and can be added to sewer stormwater overflow. The dissolution method is not particularly limited, and any of a water flow stirring by an ejector, a flow path stirring, and a dissolution tank provided with a mixing device may be used.

例えば、消毒剤の飽和溶解濃度に対して、1重量%以上、好ましくは10重量%以上、更に好ましくは20重量%以上の消毒剤が溶解している消毒水を用いても良い。もっとも、添加した消毒剤の全てを水に溶解させる必要はなく、消毒水中に固体の消毒剤が残留していてもよい。   For example, disinfecting water in which 1% by weight or more, preferably 10% by weight or more, more preferably 20% by weight or more of the disinfectant is dissolved with respect to the saturated dissolution concentration of the disinfectant may be used. However, it is not necessary to dissolve all of the added disinfectant in water, and a solid disinfectant may remain in the disinfecting water.

消毒水の濃度は、活性塩素濃度に換算して、100mg/L as Cl〜10g/L as Clであることが好ましく、200mg/L as Cl〜2g/L as Clであることが更に好ましい。消毒水の濃度が、100mg/L as Clより小さい場合には、消毒水の添加量が多量になるばかりでなく、希釈水によって消毒剤が消費される場合もあるので、殺菌が十分でないおそれがある。一方、消毒水の濃度が、10g/L as Clより大きい場合には、消毒剤と雨天時下水道越流水との混合が不充分となり、消毒効果が低減する。   The concentration of the disinfecting water is preferably 100 mg / L as Cl to 10 g / L as Cl, more preferably 200 mg / L as Cl to 2 g / L as Cl in terms of active chlorine concentration. If the concentration of disinfecting water is less than 100 mg / L as Cl, not only will the amount of disinfecting water be increased, but also the disinfectant may be consumed by diluting water, so sterilization may not be sufficient. is there. On the other hand, when the concentration of the disinfecting water is larger than 10 g / L as Cl, mixing of the disinfectant and the sewer stormwater overflow becomes insufficient, and the disinfecting effect is reduced.

消毒水添加量は、消毒水中の消毒剤の濃度、降雨量、雨天時下水道越流水の水質等に依存し、一般には、降雨量、即ち、雨天時下水道越流水の量及び水質の増加に対応して、消毒水添加量が増加する。しかし、本発明の一実施態様では、雨水が増すことによって流入水質の汚濁度が減じる。したがって、本発明の一実施態様では、雨水が増え、流入水量が3倍になったとしても、消毒水又は消毒剤の添加量を3倍にする必要はない。したがって、あらかじめビーカテスト等で流入水質における最適添加量を見出し、その値に流入水量を乗じて消毒水又は消毒剤添加量を定めるのが合理的である。   The amount of disinfecting water depends on the concentration of the disinfectant in the disinfecting water, the amount of rainfall, the quality of the sewer stormwater overflow, etc., and generally corresponds to the increase in rainfall, that is, the amount of sewer stormwater overflow and water quality. As a result, the amount of disinfecting water added increases. However, in one embodiment of the present invention, the increase in rainwater reduces the pollution of incoming water quality. Therefore, in one embodiment of the present invention, even if rainwater increases and the inflow water amount triples, it is not necessary to triple the amount of disinfecting water or disinfectant added. Therefore, it is reasonable to find the optimum addition amount in the influent water quality by a beaker test or the like in advance and determine the addition amount of the disinfecting water or the disinfectant by multiplying the value by the inflow water amount.

流入水質の把握については、濁度もしくは電気伝導度を測定することにより、雨水の混入状態を把握することができる。この指標であれば、オンタイム検出が可能である。これらの指標以外には、降雨パターン、雨天時下水道越流水中の粒子性状、SS含有量、化学的酸素要求量(COD、Chemical Oxygen Demand)、生物学的酸素要求量(BOD、Biological Oxygen Demand)等を用いることができ、これらの指標を任意に組み合わせても良い。また、流入水量については、様々な流量計を利用してもよいが、雨水排除ポンプの稼動台数・負荷状況から割り出してもかまわない。   Regarding inflow water quality, it is possible to grasp the mixed state of rainwater by measuring turbidity or electrical conductivity. With this index, on-time detection is possible. In addition to these indicators, rainfall patterns, particulate properties in sewer stormwater overflow, SS content, chemical oxygen demand (COD), biological oxygen demand (BOD), biological oxygen demand (BOD) Etc., and these indices may be arbitrarily combined. In addition, various flow meters may be used for the inflow water amount, but it may be determined from the number of operating rainwater pumps and the load status.

次いで、上記消毒水を、所定の雨天時下水道越流水に添加して、消毒する。例えば、消毒水槽中の消毒水をバイパス流路を介して、メイン流路に導入させる。   Next, the disinfecting water is added to a predetermined sewer stormwater overflow to disinfect. For example, the disinfecting water in the disinfecting water tank is introduced into the main channel via the bypass channel.

雨天時下水道越流水が、雨水が混入した下水、屎尿、又は、産業排水等の場合には、通常、雨天時下水道越流水中の消毒剤の添加濃度が、活性塩素濃度に換算して、0.5〜25mg/L as Clであることが好ましく、1〜15mg/L as Clであることが更に好ましい。消毒剤の添加濃度は、消毒水中の消毒剤の濃度及び量、並びに、雨天時下水道越流水の量から計算することができる。消毒剤の添加濃度は、雨天時下水道越流水中で消毒剤が消費される前の値である。   When the sewer stormwater overflow is sewage mixed with rainwater, manure, industrial wastewater, etc., the concentration of the disinfectant in the sewer stormwater overflow is usually 0 in terms of active chlorine concentration. It is preferably 5 to 25 mg / L as Cl, more preferably 1 to 15 mg / L as Cl. The added concentration of the disinfectant can be calculated from the concentration and amount of the disinfectant in the disinfecting water and the amount of sewer overflow water in rainy weather. The added concentration of the disinfectant is a value before the disinfectant is consumed in the sewer stormwater overflow.

被処理水が、雨水が混入した下水、尿尿、産業排水等の場合、これらの被処理水は、一般的に大腸菌群が104〜107CFU/mLの範囲で含まれるが、消毒剤の上記添加量により、確実に速やかに通常、1分程度で被処理水に対する殺菌を行うことができる。When treated water is sewage mixed with rainwater, urine, industrial wastewater, etc., these treated waters generally contain coliforms in the range of 10 4 to 10 7 CFU / mL. By the above-mentioned addition amount, the water to be treated can be sterilized quickly and reliably usually in about 1 minute.

図9は、本発明の一実施形態を説明する概略説明図である。     FIG. 9 is a schematic explanatory diagram illustrating an embodiment of the present invention.

雨天時下水道越流水が、メインの下水管渠から放流用の流路12に流れこんでいる。流路12内の雨天時下水道越流水は、放流ゲート11を越えて放流水路17に移動し、公共水域19に放流される。放流水路17中の雨天時下水道越流水について、残留ハロゲン検出器、濁度計、電気伝導度計などの計測器18で計測する。残留ハロゲン検出器は、次亜臭素酸等の活性ハロゲンの残留濃度を測定する。このように、残留ハロゲン検出器は、放流ゲートから放流口の手前の間に配置されることが好ましい。   Sewer stormwater overflow flows from the main sewer pipe into the discharge channel 12. The sewer stormwater overflow in the channel 12 moves over the discharge gate 11 to the discharge water channel 17 and is discharged into the public water area 19. The sewer stormwater overflow in the discharge channel 17 is measured by a measuring device 18 such as a residual halogen detector, a turbidimeter, and an electric conductivity meter. The residual halogen detector measures the residual concentration of active halogen such as hypobromous acid. Thus, the residual halogen detector is preferably arranged between the discharge gate and the front of the discharge port.

残留ハロゲン検出器で検出した活性ハロゲン濃度がLC50値(例えば、BCDMHの場合には、活性塩素(Cl2)換算で、0.4mg/L)以上の場合には、LC50値以下になるように、望ましくはLC50値の1/2(例えば、BCDMHの場合には、活性塩素(Cl2)換算で0.2mg/L)以上の場合には、LC50値の1/2以下になるように、消毒剤又は消毒水の供給量を減らすか、もしくは一時的に遮断する。これにより、公共用水域中の水棲生物に与える悪影響を軽減することができる。When the active halogen concentration detected by the residual halogen detector is LC 50 value (for example, in the case of BCDMH, 0.4 mg / L in terms of active chlorine (Cl 2 )) or more, the LC 50 value or less is obtained. Thus, desirably, when the LC 50 value is ½ (for example, in the case of BCDMH, 0.2 mg / L in terms of active chlorine (Cl 2 )) or more, the LC 50 value is ½ or less. Reduce the supply of disinfectant or disinfecting water or temporarily shut off. As a result, adverse effects on aquatic organisms in public waters can be reduced.

そして、これらの計測値及び大腸菌群数が所定の放流基準を満たしていることを確認して、河川等の公共水域19に放流される。   Then, after confirming that these measured values and the number of coliform bacteria satisfy a predetermined release standard, the result is discharged into a public water area 19 such as a river.

公共水域(public water)には、河川、湖沼、港湾、沿岸海域、公共溝渠、かんがい用水路、及び、その他の公共の用に供される水域または水路が含まれる。   Public water includes rivers, lakes, harbors, coastal waters, public trenches, irrigation canals, and other public waters or canals.

図9の実施態様では、流路12にバイパス流路20が接続している。流路12に流れ込んだ雨天時下水道越流水の一部が、バイパス流路20に導入される。そして、この雨天時下水道越流水には、臭素系消毒剤が添加されて、消毒水に変換して、再び、流路12に戻される。   In the embodiment of FIG. 9, a bypass channel 20 is connected to the channel 12. A part of the sewer stormwater overflow that has flowed into the channel 12 is introduced into the bypass channel 20. Then, a bromine-based disinfectant is added to the sewer stormwater overflow, converted into disinfecting water, and returned to the flow path 12 again.

流路12には、汲み上げポンプ13が配置されている。流路12の雨天時下水道越流水の一部は、汲み上げポンプ13によってバイパス流路20に揚水される。   A pumping pump 13 is disposed in the flow path 12. A part of the sewer stormwater overflow in the channel 12 is pumped to the bypass channel 20 by the pump 13.

バイパス流路20には、自動スクリーン22、流量計23、消毒剤添加装置30、溶解装置40、ポンプ46がこの順序に配置されている。   In the bypass channel 20, an automatic screen 22, a flow meter 23, a disinfectant addition device 30, a dissolution device 40, and a pump 46 are arranged in this order.

消毒剤添加装置30は、固体臭素系消毒剤39を貯蔵するためのホッパー32と、固体臭素系消毒剤39を供給するための供給機34と、消毒剤をバイパス流路に排出するためのエジェクター36とを有する。   The disinfectant addition device 30 includes a hopper 32 for storing the solid bromine-based disinfectant 39, a feeder 34 for supplying the solid bromine-based disinfectant 39, and an ejector for discharging the disinfectant to the bypass channel. 36.

固体臭素系消毒剤が添加されたバイパス流路20内の雨天時下水道越流水は、溶解装置40に導かれる。溶解装置40は、固体の臭素系消毒剤を雨天時下水に溶解するものである。消毒剤が液体のときには、消毒剤を雨天時下水に混合するものである。装置40は、攪拌槽41aと貯留槽41bとに分かれた溶解槽を有する。もっとも、このように溶解槽を2槽に分ける必要はない。   The sewer stormwater overflow in the bypass channel 20 to which the solid bromine-based disinfectant is added is guided to the dissolving device 40. The dissolution apparatus 40 dissolves a solid bromine-based disinfectant in sewage during rainy weather. When the disinfectant is liquid, the disinfectant is mixed with sewage in rainy weather. The apparatus 40 has a dissolution tank divided into a stirring tank 41a and a storage tank 41b. However, it is not necessary to divide the dissolution tank into two tanks in this way.

攪拌槽41aには、水位計42及び排水を攪拌するための攪拌機44が設けられている。攪拌槽41a内の雨天時下水道越流水は、攪拌機44で攪拌され、雨天時下水道越流水中に固体の消毒剤を溶解して消毒水を形成することができる。貯留槽41aでオーバフローした消毒水が、貯留槽41bに移送される。   The stirring tank 41a is provided with a water level gauge 42 and a stirrer 44 for stirring the waste water. The sewer stormwater overflow in the agitation tank 41a is agitated by the agitator 44, and the disinfectant can be formed by dissolving the solid disinfectant in the sewer stormwater overflow. The disinfecting water overflowed in the storage tank 41a is transferred to the storage tank 41b.

固体の消毒剤の溶解度が小さいときには、溶解装置40を設けることが好ましい。一方、固体の消毒剤の溶解度が大きいときには、流路中で速やかに消毒剤が溶解するので、必ずしも溶解装置は必要でない。   When the solubility of the solid disinfectant is small, it is preferable to provide a dissolving device 40. On the other hand, when the solubility of the solid disinfectant is high, the disinfectant is quickly dissolved in the flow path, and thus a dissolution apparatus is not necessarily required.

装置40で得られた消毒水は、好ましくは、ポンプ46により、流路47を通って雨天時下水道越流水の流路12に導かれる。   The disinfecting water obtained by the apparatus 40 is preferably guided by the pump 46 to the flow path 12 of the sewer stormwater overflow through the flow path 47.

なお、雨天時下水道越流水の流路12或いは放流流路17に溜め部分を形成したり、或いは撹拌機や邪魔板を配置して、消毒水と雨天時下水道越流水との混合を促進させることができる。   In addition, a reservoir portion is formed in the flow channel 12 or the discharge flow channel 17 of the sewer stormwater overflow, or a stirrer or baffle plate is arranged to promote mixing of the disinfecting water and the sewer stormwater overflow. Can do.

また、雨天時下水道越流水の排除施設に沈砂池が配置されている場合には、沈砂池の流入部又は沈砂池の沈砂部に消毒水を導入してもよい。一般的な沈砂池の構成を図10に示す。沈砂池10は、流入部11と、沈砂部14a,b,cとに分かれる。   Moreover, when a sand basin is arranged in the facility for draining sewer stormwater overflow, disinfecting water may be introduced into the inflow part of the sand basin or the sand sink part of the sand basin. FIG. 10 shows a general sand basin configuration. The sand settling basin 10 is divided into an inflow portion 11 and sand settling portions 14a, b, and c.

沈砂池10の流入部11に、汲み上げポンプ13を配置する。雨天時下水道越流水の流路12から沈砂池の流入部11に導入された雨天時下水道越流水の一部が、汲み上げポンプ13によってバイパス流路20に揚水される。一方、流入部11の雨天時下水道越流水の他の部分は、沈砂部14a、14b、14cに流入する。   A pumping pump 13 is disposed in the inflow portion 11 of the sand basin 10. A part of the sewer stormwater overflow introduced from the flow channel 12 of the sewer stormwater overflow into the inflow portion 11 of the sand basin is pumped to the bypass flow channel 20 by the pump 13. On the other hand, the other part of the sewer stormwater overflow in the inflow part 11 flows into the sand settling parts 14a, 14b, 14c.

バイパス流路20に導入された雨天時下水道越流水の一部は、図9に示す消毒剤供給装置、溶解装置によって消毒剤が溶解されて消毒水を形成し、この消毒水が、流路47を介して、沈砂池10に導かれる。消毒水は、直接、沈砂池10に導かれても良いし、図11に示されるように、分配槽48を介して、沈砂池10に導かれても良い。   A part of the sewer stormwater overflow introduced into the bypass channel 20 is dissolved by the disinfectant supply device and dissolution device shown in FIG. 9 to form disinfectant water. Through the sand basin 10. The disinfecting water may be directly guided to the sand basin 10 or may be guided to the sand basin 10 via the distribution tank 48 as shown in FIG.

即ち、図11では、流路47に、分配槽48が設けられている。図11では、説明の便宜上、沈砂池10の沈砂部14a、14b、14cを図示し、流入部11は省略されている。   That is, in FIG. 11, the distribution tank 48 is provided in the flow path 47. In FIG. 11, for convenience of explanation, the sand settling portions 14a, 14b, and 14c of the sand settling basin 10 are illustrated, and the inflow portion 11 is omitted.

消毒水は、沈砂池10の流入部11に導かれても良いし、図11に示されるように、沈砂池10の沈砂部14a、14b、14cの各々の上流に導入されてもよい。   The disinfecting water may be guided to the inflow portion 11 of the sand basin 10 or may be introduced upstream of each of the sand settling portions 14a, 14b, and 14c of the sand basin 10 as shown in FIG.

図11に示されるように、消毒水が、沈砂池10の沈砂部14a、14b、14cの各々の上流に導入される場合には、分配槽48において、消毒水を沈砂部14a、14b、14cの各々に導かれる消毒水を予め分配することが好ましい。   As shown in FIG. 11, when disinfecting water is introduced upstream of each of the sand settling portions 14 a, 14 b, 14 c of the sand basin 10, the disinfecting water is supplied to the sand settling portions 14 a, 14 b, 14 c in the distribution tank 48. It is preferable to preliminarily distribute the disinfecting water led to each of the above.

沈砂部14a、14b、14cでは、雨天時下水道越流水中に含まれている砂が沈降して除去される。同時に、雨天時下水道越流水と消毒水とが混合し、雨天時下水道越流水が消毒される。消毒された雨天時下水道越流水は、ポンプ16によって放流水路17に誘導され、公共水域19に放流される。沈砂部14a、14b、14cでは、雨天時下水道越流水及び消毒水は、好ましくは、1秒〜30分滞留し、更に好ましくは、1秒〜15分滞留し、更になお好ましくは、1秒〜10分滞留する。   In the sand settling portions 14a, 14b, and 14c, sand contained in the sewer stormwater overflow is settled and removed. At the same time, sewer stormwater overflow and disinfecting water are mixed to disinfect the sewer stormwater overflow. The sterilized sewer stormwater overflow is guided to the discharge water channel 17 by the pump 16 and discharged to the public water area 19. In the sand settling portions 14a, 14b, and 14c, the sewer stormwater overflow and the disinfecting water are preferably retained for 1 second to 30 minutes, more preferably 1 second to 15 minutes, and still more preferably 1 second to Stay for 10 minutes.

図12に、消毒水を雨天時下水道越流水に添加するための添加装置の一実施態様を示す。添加装置50は、水平方向に伸びる管52と、この管52に連通し、消毒水を雨天時下水道越流水に導入する導入部を有する。管52は、消毒水の供給流路に連流し、図示されていない支持体で支えられている。導入部の一実施態様は、例えば、管52から吊り下がる複数のホース54である。ホースの開口端56は、雨天時下水道越流水の水面下に位置することが好ましい。分配槽48から分配された消毒水は、消毒水の供給流路、管52、ホース54をこの順序に流れて、雨天時下水道越流水15に添加される。   FIG. 12 shows an embodiment of an adding device for adding disinfecting water to sewer overflow water in rainy weather. The addition device 50 has a pipe 52 extending in the horizontal direction and an introduction section that communicates with the pipe 52 and introduces disinfecting water into sewer stormwater overflow. The pipe 52 communicates with the disinfecting water supply flow path and is supported by a support (not shown). One embodiment of the introduction part is, for example, a plurality of hoses 54 suspended from the pipe 52. The open end 56 of the hose is preferably located below the surface of the sewer stormwater overflow. The disinfecting water distributed from the distribution tank 48 flows through the disinfecting water supply channel, the pipe 52 and the hose 54 in this order, and is added to the sewer stormwater overflow 15.

ホース54の開口端56が雨天時下水道越流水15の水面上に位置するときには、ホースの開口端56から消毒水の飛沫が風等により、ミストを形成し、周囲の機器、特に電装機器を腐食させる危険がある。ホースの開口端56は雨天時下水道越流水15の水面下に配置されていることが好ましい。   When the open end 56 of the hose 54 is located on the surface of the sewer stormwater overflow 15 during rainy weather, the disinfecting water splashes from the open end 56 of the hose form mist and corrode surrounding equipment, particularly electrical equipment. There is a risk of causing it. The open end 56 of the hose is preferably disposed below the surface of the sewer stormwater overflow 15 in rainy weather.

管52は、消毒水で腐食されない材質であることが好ましく、例えば、インコネル等の金属材料、ポリテトラフルオロエチレン、ポリ塩化ビニル等のプラスチック材料を用いることができる。管52は、ホースを支えるのに十分な機械強度を有することが好ましい。剛性であることが好ましいが、柔軟であってもよい。   The tube 52 is preferably made of a material that is not corroded by disinfecting water. For example, a metal material such as Inconel, or a plastic material such as polytetrafluoroethylene or polyvinyl chloride can be used. The tube 52 preferably has sufficient mechanical strength to support the hose. It is preferably rigid, but may be flexible.

各々の管52には、例えば、2〜20本、好ましくは、2〜10本、更に好ましくは、2〜6本のホースを吊り下げても良い。隣接する2本のホース間の間隔は、一定であることが好ましい。消毒水を排水に効率よく混合することができるからである。もっとも、隣接する2本のホース間の間隔が異なっていても良い。ホース54は、柔軟であることが好ましいが、剛性であってもよい。   For example, 2 to 20 hoses, preferably 2 to 10 hoses, and more preferably 2 to 6 hoses may be hung on each pipe 52. The distance between two adjacent hoses is preferably constant. This is because disinfecting water can be efficiently mixed with waste water. But the space | interval between two adjacent hoses may differ. The hose 54 is preferably flexible, but may be rigid.

なお、上記では、雨天時下水道越流水の一部を分岐して消毒剤溶解用の水として用いる例を示したが、水道水や雑用水などを消毒剤溶解用の水として用いることもできる。   In addition, although the example which branched a part of sewer overflow water at the time of rain and used as water for disinfectant dissolution was shown above, tap water, miscellaneous water, etc. can also be used as water for disinfectant dissolution.

本発明において、消毒剤の貯留・供給装置として採用することのできる他の形態を図13に示す。固体臭素系消毒剤の貯留・供給槽100は、筒型、例えば円筒型の貯留部101と供給部102とに分かれる。貯留部101の底部には、槽内の固体消毒剤を撹拌するための撹拌翼などの撹拌装置が備えられ、モーター104に接続して回転するようになっている。また、貯留部101には、空気源設備105から空気が供給される。供給部102から、所定量の固体消毒剤が排出されて、誘導管107を通って、薬品溶解部109の溶解コーン108に落下する。   FIG. 13 shows another embodiment that can be adopted as a disinfectant storage / supply device in the present invention. The solid bromine-based disinfectant storage / supply tank 100 is divided into a cylindrical storage unit 101 and a supply unit 102, for example, a cylindrical type. A stirring device such as a stirring blade for stirring the solid disinfectant in the tank is provided at the bottom of the storage unit 101, and is connected to the motor 104 to rotate. In addition, air is supplied to the storage unit 101 from the air source facility 105. A predetermined amount of solid disinfectant is discharged from the supply unit 102, passes through the guide tube 107, and falls onto the dissolution cone 108 of the chemical dissolution unit 109.

図13に示す消毒剤貯留装置によれば、貯留部の形状を筒型、例えば円筒型にすると共に、撹拌翼による機械的撹拌と空気による撹拌によって、粉体の圧密とブリッジの形成を防止している。従来のホッパーのように、貯留部が逆円錐型であると、固体消毒剤によってブリッジが形成されて供給不良を起こしやすい。特に、本発明では、大量の降雨時の雨天時下水道越流水を消毒するということを目的としているので、固体の臭素系消毒剤を長期間貯留し、年に十数回〜数十回の大量の降雨時に速やかに雨天時下水道越流水に添加して消毒を行わなければならない。また、このような消毒剤の添加装置は、例えば、下水道の雨水吐き室やポンプ場などに設置され、無人状態で遠隔操作により作動させるため、長期間圧密やブリッジを形成しないで貯留・供給ができなければならない。更に、固体臭素系消毒剤は、他の固体粉体と比べて圧密やブリッジを起こしやすいという特性を有しており、圧密及びブリッジを防止することは、固体臭素系消毒剤をスムーズに供給するためには必須である。図13に示す消毒剤貯留装置100では、固体消毒剤を、撹拌翼103によって機械的に撹拌すると共に、空気源105からの空気を、槽100の底部の複数箇所に設けられた空気孔より噴出させることによって撹拌する。なお、空気源105からの空気の導入ラインには、除湿器を設置して、乾燥空気が貯留部101に供給されるようにすることが好ましい。撹拌用空気の湿度は、例えば圧力0.5MPaの際の露点が5℃以下とすることが好ましい。撹拌用空気を除湿することにより、加水分解による固体臭素系消毒剤の劣化を防止することができる。撹拌用空気の供給は、間欠的に行うことができる。撹拌用空気の供給量は、貯留部1m3に対して80NL/min程度にすることが好ましい。空気源105としては、常時0.5MPa以上の圧力が確保できる機器を用いることが好ましい。また、貯留部101内に連続的に乾燥空気を供給して内部を加圧状態とすることにより、供給部102からの固体消毒剤の排出を目づまりなく円滑に行うことができる。貯留部101内の空気は集塵装置106を通って排気される。According to the disinfectant storage device shown in FIG. 13, the shape of the storage part is cylindrical, for example, cylindrical, and powder compaction and bridge formation are prevented by mechanical stirring by a stirring blade and stirring by air. ing. If the storage part is an inverted cone type as in a conventional hopper, a bridge is formed by the solid disinfectant, which tends to cause a supply failure. In particular, the present invention aims to disinfect sewer stormwater overflow during heavy rain, so a solid bromine-based disinfectant is stored for a long period of time, and a large number of dozens to dozens of times a year When it rains, it must be added to the sewer stormwater overflow and sterilized immediately. In addition, such a disinfectant addition device is installed in, for example, a sewer storm water discharge chamber or a pumping station and is operated by remote operation in an unattended state, so that storage and supply can be performed without forming a compaction or a bridge for a long period of time. It must be possible. Furthermore, solid bromine-based disinfectants have the property of causing compaction and bridging more easily than other solid powders, and the prevention of compaction and bridging provides a solid bromine-based disinfectant smoothly. It is essential for this. In the disinfectant storage device 100 shown in FIG. 13, the solid disinfectant is mechanically agitated by the agitating blade 103, and air from the air source 105 is ejected from air holes provided at a plurality of locations at the bottom of the tank 100. To stir. In addition, it is preferable to install a dehumidifier in the introduction line of air from the air source 105 so that dry air is supplied to the storage unit 101. As for the humidity of the stirring air, for example, the dew point at a pressure of 0.5 MPa is preferably 5 ° C. or less. By dehumidifying the stirring air, it is possible to prevent deterioration of the solid bromine-based disinfectant due to hydrolysis. The supply of the stirring air can be performed intermittently. The supply amount of the stirring air is preferably about 80 NL / min with respect to 1 m 3 of the reservoir. As the air source 105, it is preferable to use a device that can always secure a pressure of 0.5 MPa or more. Further, by supplying dry air continuously into the storage unit 101 to make the inside pressurized, the solid disinfectant can be smoothly discharged from the supply unit 102 without being obscure. The air in the storage unit 101 is exhausted through the dust collector 106.

集塵装置106としては、バグフィルター、水洗塔、サイクロンなどを用いることができる。   As the dust collector 106, a bag filter, a water washing tower, a cyclone, or the like can be used.

固体消毒剤の貯留部101の形状は、円筒型が好ましいが、撹拌機や空気パージによる粉体流動機構を備えれば、円錐状や角型のものも用いることができる。また、貯留部での固体消毒剤の撹拌手段としては、上記の機械的撹拌、空気ブローによる撹拌の他に、容器自体を振動させる手法も採用できる。   The shape of the solid disinfectant storage unit 101 is preferably a cylindrical shape, but a conical shape or a rectangular shape can also be used if a powder flow mechanism by a stirrer or air purge is provided. Further, as a means for stirring the solid disinfectant in the storage unit, a method of vibrating the container itself can be employed in addition to the mechanical stirring and the stirring by air blow.

固体消毒剤の貯留部101の具体的な構成例を図14を参照して説明する。   A specific configuration example of the solid disinfectant storage unit 101 will be described with reference to FIG.

図14を参照して説明すると、固体消毒剤の貯留部は、固体消毒剤の貯槽100と、貯槽100内の粉体を所定の量計量して供給先に排出する定量供給機102とを備えている。貯槽100は支持フレーム112に取付けられ、定量供給機102は貯槽100の下面に取付けられている。   Referring to FIG. 14, the solid disinfectant storage unit includes a solid disinfectant storage tank 100, and a fixed amount feeder 102 that measures a predetermined amount of powder in the storage tank 100 and discharges it to a supply destination. ing. The storage tank 100 is attached to the support frame 112, and the metering feeder 102 is attached to the lower surface of the storage tank 100.

図15及び図16を参照して貯槽100について説明する。貯槽100は、円筒容器状に形成され、排出口124が形成された底板100a、固体消毒剤投入口126が設けられた天井板100b、及び円筒状の容器本体100cを備えている。投入口126から固体消毒剤が容器内に投入される。また底板100a上には、底板100aを貫通する駆動軸128を有し鉛直方向に延びる軸線115を中心に所定の方向Rに回転される粉体の攪拌手段である攪拌翼130を備えている。   The storage tank 100 is demonstrated with reference to FIG.15 and FIG.16. The storage tank 100 is formed in a cylindrical container shape, and includes a bottom plate 100a in which a discharge port 124 is formed, a ceiling plate 100b in which a solid disinfectant input port 126 is provided, and a cylindrical container body 100c. A solid disinfectant is introduced into the container from the inlet 126. Further, on the bottom plate 100a, there is provided a stirring blade 130 which is a powder stirring means having a drive shaft 128 penetrating the bottom plate 100a and rotating in a predetermined direction R around an axis 115 extending in the vertical direction.

容器本体100cは、その周縁の周方向に等間隔で8個所、攪拌翼130の近傍に開口する圧縮空気の噴射口である噴射ノズル132を備えている。底板100aには、軸線115の回りに等間隔で4個所攪拌翼130に向けて開口する噴射ノズル132を備えている。噴射ノズル132の各々には、圧縮空気源162の乾燥圧縮空気が、逆止弁164を介して供給される。圧縮空気は、その噴射量、噴射間隔などが自在に制御されて供給される。   The container main body 100c includes eight injection nozzles 132 that are compressed air injection ports that open in the vicinity of the stirring blades 130 at eight equal intervals in the circumferential direction of the peripheral edge thereof. The bottom plate 100 a is provided with injection nozzles 132 that open toward the four stirring blades 130 at equal intervals around the axis 115. Each of the injection nozzles 132 is supplied with dry compressed air from a compressed air source 162 via a check valve 164. The compressed air is supplied with its injection amount, injection interval, etc. freely controlled.

逆止弁164は周知のものでよく、例えば弁体が弁座に対して垂直に移動するポペット弁、あるいは弁板が弁座に対しヒンジを中心に揺動開閉するスイングキャッチ弁などを用いることができる。そして粉体が圧縮空気源の方向に逆流するのを確実に止めるために、弁体あるいは弁板を周知の手段であるスプリング165などによって押さえ、圧縮空気が流されたときにのみ開弁するようにするとよい。   The check valve 164 may be a well-known valve, for example, a poppet valve whose valve body moves perpendicularly to the valve seat, or a swing catch valve whose valve plate swings around the hinge with respect to the valve seat. Can do. In order to reliably stop the powder from flowing backward in the direction of the compressed air source, the valve body or the valve plate is pressed by a known means such as a spring 165 so that the valve is opened only when the compressed air is flowed. It is good to.

固体消毒剤投入口126には、その開口を閉じる、蓋部材、あるいは開閉自在なバタフライ弁などが取付けられる。また天井板100bには、集塵設備につながる集塵口100dが備えられている。容器本体100cの外周部には、貯槽100を支持フレーム12(図14)上に載置するためのブラケット100eが4個備えられている。   The solid disinfectant inlet 126 is attached with a lid member or an openable butterfly valve that closes the opening. The ceiling plate 100b is provided with a dust collection port 100d connected to the dust collection facility. Four brackets 100e for mounting the storage tank 100 on the support frame 12 (FIG. 14) are provided on the outer periphery of the container body 100c.

攪拌翼130は、軸線115を中心に容器本体100cの内周部まで放射状に反対方向に延びた一対の放射翼131、131を備えている。放射翼131の各々は、連通する上方に凸の中空三角断面を有し、半径方向先端部は回転方向Rの側に向けて曲げられ、また上方に突出されている。放射翼131には、その中空部に駆動軸128内を通して前述の逆止弁164を介した加圧空気が圧縮空気源162から供給され、三角断面の上端の稜線上及び回転方向R側の面には、その噴射口133が複数個形成されている。   The stirring blade 130 includes a pair of radiating blades 131 and 131 extending radially in the opposite direction from the axis 115 to the inner peripheral portion of the container body 100c. Each of the radiating blades 131 has an upwardly projecting hollow triangular cross section that communicates with each other, and the distal end portion in the radial direction is bent toward the rotation direction R side and protrudes upward. Pressurized air is supplied from the compressed air source 162 to the radiating blade 131 through the check shaft 164 through the drive shaft 128 in the hollow portion thereof, and is on the ridgeline at the upper end of the triangular cross section and the surface on the rotation direction R side. A plurality of the injection ports 133 are formed.

図17及び図18を参照して定量供給機102について説明する。定量供給機102は、円筒状の容器本体134、容器本体134の底板136上に配設され底板136を貫通する駆動軸138を有して鉛直方向に延びる軸線115を中心に所定の回転方向RRに回転される回転テーブル140、及び回転テーブル140上に一体に備えられた攪拌手段である攪拌翼142を備えている。定量供給機102は、駆動軸138を回転駆動させる駆動源144を備えている。   The fixed quantity feeder 102 will be described with reference to FIGS. 17 and 18. The metering feeder 102 has a cylindrical container body 134, a drive shaft 138 that is disposed on the bottom plate 136 of the container body 134 and passes through the bottom plate 136, and has a predetermined rotational direction RR about an axis 115 that extends in the vertical direction. And a stirring blade 142 which is a stirring means integrally provided on the rotary table 140. The quantitative feeder 102 includes a drive source 144 that rotates the drive shaft 138.

容器本体134は、貯槽100の排出口124と実質的に同じ大きさの内径を有した円筒状を成し、底板136には供給口146が形成され、円筒の上端は取付フランジ147を有して開放されており、貯槽100の底板100aの排出口124の部分に取付けられる。   The container body 134 has a cylindrical shape having an inner diameter substantially the same size as the discharge port 124 of the storage tank 100, a supply port 146 is formed in the bottom plate 136, and an upper end of the cylinder has a mounting flange 147. And is attached to the portion of the outlet 124 of the bottom plate 100a of the storage tank 100.

回転テーブル140は、計量手段としての上下及び半径方向外方が開口された計量室140aを、外周の周方向に複数個備えている。計量室140aの外方及び下方の開口は、容器本体134の周壁及び底板136によって実質上閉じられている。容器本体134内の粉体は、回転テーブル140を所定の方向RRに回転させると、順次に計量室140aに上側の開口から導入され、すり切り板140bの部分においてこの上側の開口も閉じられ、計量室140aに閉じ込められる。回転方向RRのすり切り板140bの中央においては、下側の開口は供給口146に開けられ、計量室140a内の粉体は放出される。したがって、計量室140aの容積及び回転テーブル40の回転数を規定することにより、所定の量の粉体が計量されて供給口146に排出される。   The turntable 140 includes a plurality of measuring chambers 140a that are opened in the upper and lower directions and radially outward as measuring means in the circumferential direction of the outer periphery. The outer and lower openings of the measuring chamber 140a are substantially closed by the peripheral wall of the container body 134 and the bottom plate 136. When the rotary table 140 is rotated in a predetermined direction RR, the powder in the container body 134 is sequentially introduced from the upper opening into the weighing chamber 140a, and the upper opening is also closed at the portion of the scraping plate 140b. It is confined in the chamber 140a. At the center of the cutting plate 140b in the rotation direction RR, the lower opening is opened in the supply port 146, and the powder in the measuring chamber 140a is discharged. Therefore, by defining the volume of the measuring chamber 140a and the rotational speed of the turntable 40, a predetermined amount of powder is measured and discharged to the supply port 146.

円筒状の容器本体134は、その周縁の3個所、攪拌翼142の近傍の下部に開口する圧縮空気の噴射口である噴射ノズル148を備えている。噴射ノズル148には、前述の貯槽100に備えられた噴射ノズル132と同様に、圧縮空気源162の乾燥圧縮空気が、噴射量、噴射間隔などを制御されて逆止弁164を介し供給される。   The cylindrical container body 134 is provided with spray nozzles 148 that are compressed air spray ports that open at three locations on the periphery of the container body 134 and in the lower part near the stirring blades 142. As with the above-described injection nozzle 132 provided in the storage tank 100, the dry compressed air from the compressed air source 162 is supplied to the injection nozzle 148 via the check valve 164 with the injection amount, the injection interval, etc. controlled. .

攪拌翼142は、軸線115を中心に容器本体134の内周部まで放射状に反対方向に延びる一対の放射翼143、143を備えている。放射翼143の各々は、連通し上方に凸の中空三角断面を有し、半径方向先端部は上方に突出されている。放射翼143には、その中空部に駆動軸138内を通して前述の逆止弁164を介した加圧空気が圧縮空気源162から供給され、三角断面の上端の稜線上及び回転方向RR側の面には、その噴射口150が複数個形成されている。   The stirring blade 142 includes a pair of radiating blades 143 and 143 that extend radially in the opposite direction from the axis 115 to the inner peripheral portion of the container main body 134. Each of the radiating blades 143 has a hollow triangular cross-section that communicates upward and has a radially leading end protruding upward. Pressurized air from the compressed air source 162 is supplied to the radiating blade 143 through the check shaft 164 through the drive shaft 138 into the hollow portion thereof, and the surface on the ridge line at the upper end of the triangular cross section and the rotation direction RR side. A plurality of the injection ports 150 are formed.

定量供給機102の供給口146には管部材107が接続されている。定量供給機102から供給された固体消毒剤は、管部材107の下方に配置された、排出した粉体を水に溶かす溶解手段である溶解コーン108に落下する。溶解コーン108からの溶解水は流水が圧送された管路20のエジェクタ109に流され、エジェクタ109の吸引作用によって吸引され、輸送管路47により目的の場所に送られる。   A pipe member 107 is connected to the supply port 146 of the fixed amount feeder 102. The solid disinfectant supplied from the metering feeder 102 falls to a dissolution cone 108 that is disposed below the pipe member 107 and is a dissolution means for dissolving the discharged powder in water. Dissolved water from the dissolving cone 108 flows into the ejector 109 of the pipe line 20 to which the flowing water is pumped, sucked by the suction action of the ejector 109, and sent to the target location through the transport pipe line 47.

溶解コーン108においては、上方の拡がった漏斗状本体の上端部周縁の複数個のノズルから水が放出され、放出された水は漏斗状本体の内面に沿って渦巻状になって下方に流される。そしてこの流れの中に、管部材107から粉体を投入することにより、粉体は溶解される。もっとも、粉体の全てを水に溶解させる必要はなく、消毒水中に固体の消毒剤が残留していてもよい。   In the melting cone 108, water is discharged from a plurality of nozzles at the periphery of the upper end portion of the funnel-shaped main body that expands upward, and the discharged water is swirled along the inner surface of the funnel-shaped main body and flows downward. . The powder is melted by introducing the powder from the tube member 107 into this flow. However, it is not necessary to dissolve all of the powder in water, and a solid disinfectant may remain in the disinfecting water.

上記に説明した構成の固体消毒剤貯留・供給装置によれば、薬剤供給部と薬品溶解部の間に溶解コーンを設け、供給部で切り出した薬品は溶解コーンに落下する構造とした。この構造により、薬品溶解部と供給部とを切り離すことができ、消毒水が固体薬剤の貯留部に逆流することが防止できる。   According to the solid disinfectant storage / supply apparatus having the above-described configuration, a dissolution cone is provided between the drug supply unit and the drug dissolution unit, and the drug cut out by the supply unit falls to the dissolution cone. With this structure, the chemical dissolution part and the supply part can be separated, and the disinfecting water can be prevented from flowing back to the solid drug storage part.

薬品供給部としては、上記に説明したテーブルフィーダー方式のものの他に、スクリューフィーダー方式、ロータリーバルブ方式の供給装置を採用することができる。また、薬品溶解部としては、上記に説明した渦流式溶解コーンとエジェクタとの併用の他に、円形又は角形の滑り台給水方式や、単純槽と攪拌機とを組みあわせた形式や、ラインミキサーなどの形式のものを採用することができる。   As the chemical supply unit, in addition to the table feeder type described above, a screw feeder type or rotary valve type supply device can be adopted. In addition to the combined use of the vortex-type melting cone and ejector described above, the chemical dissolving section includes a circular or square slide water supply system, a combination of a simple tank and a stirrer, a line mixer, etc. A form can be adopted.

また、貯留部101の消毒剤投入口126に、固体消毒剤のコンテナを接続できるような形態にすることもできる。図19によれば、固体消毒剤の貯槽101は、消毒剤投入口126において、固体消毒剤の収容された開閉自在な排出口184を有する複数個の容器であるコンテナ186(図示は1個)と排出口184を介して連結される(図19の状態)。   In addition, a solid disinfectant container can be connected to the disinfectant inlet 126 of the storage unit 101. According to FIG. 19, the solid disinfectant storage tank 101 has a container 186 (one in the figure) which is a plurality of containers having openable and closable discharge ports 184 in which a solid disinfectant is accommodated. Are connected via the discharge port 184 (state of FIG. 19).

図20を参照してコンテナ186について説明する。コンテナ186は、排出口184が下端に形成された容器本体114と、排出口184に設けられ常時は排出口184を閉じている弁体であるコーン116と、コーン116に一端が連結され容器本体114内を上方に延びて他端が外方に突出した軸部材であるコーンロッド118とを備えている。排出口184は、コーンロッド118の突出端を把持してコーン116を操作することにより開閉される。コーンロッド118は、容器本体114内に配設されたばねを有する付勢手段120によって、コーン116を排出口184を閉じる方向に付勢されている。   The container 186 will be described with reference to FIG. The container 186 includes a container main body 114 having a discharge port 184 formed at the lower end, a cone 116 that is provided in the discharge port 184 and normally closes the discharge port 184, and one end connected to the cone 116. 114 and a cone rod 118 that is a shaft member that extends upward in the interior and projects the other end outward. The discharge port 184 is opened and closed by gripping the protruding end of the cone rod 118 and operating the cone 116. The cone rod 118 is biased in a direction to close the discharge port 184 by a biasing means 120 having a spring disposed in the container main body 114.

容器本体114は、円筒状たて型の本体部114a、粉体の投入口114bを有した上蓋部114c、コーン116が当接し排出口184の形成された漏斗状の底部114d、及び底部114dの先端部に形成され貯槽101に挿脱自在に連結される円筒状のガイド部114eを備えている。本体部114aの下部外周には、保管、移動、貯槽101上への載置、などのためのフレーム14fが備えられている。   The container main body 114 includes a cylindrical vertical main body 114a, a top lid 114c having a powder inlet 114b, a funnel-shaped bottom 114d in which a cone 116 abuts and a discharge port 184 is formed, and a bottom 114d. A cylindrical guide portion 114e formed at the tip end portion and detachably connected to the storage tank 101 is provided. A frame 14f for storage, movement, placement on the storage tank 101, and the like is provided on the lower outer periphery of the main body 114a.

コーン116は、中空の円錐体状を成し、その底面の外周縁には排出口184に当接するシール材であるコーンシール117が取付けられ、頂部はコーンロッド118に連結されている。   The cone 116 has a hollow cone shape, and a cone seal 117 that is a seal material that comes into contact with the discharge port 184 is attached to the outer peripheral edge of the bottom surface of the cone 116, and the top portion is connected to the cone rod 118.

コーンロッド118は、上蓋部114cに取付けられたシャフトガイド114gによって上下に摺動自在に案内されている。付勢手段120は、シャフトガイド114gとコーンロッド118のピン119との間に圧縮コイルばね121を備えている。圧縮コイルばね121の中をコーンロッド118が通されている。コーンロッド118の突出した上端には、弁開閉手段(弁開閉手段については後に述べる)によって解除自在に把持される円板状のフランジ部122が備えられている。   The cone rod 118 is guided to be slidable up and down by a shaft guide 114g attached to the upper lid portion 114c. The urging means 120 includes a compression coil spring 121 between the shaft guide 114 g and the pin 119 of the cone rod 118. A cone rod 118 is passed through the compression coil spring 121. A disc-shaped flange portion 122 that is releasably gripped by a valve opening / closing means (the valve opening / closing means will be described later) is provided at the protruding upper end of the cone rod 118.

図21を参照して、上述のごとく構成された固体消毒剤供給設備の設置形態の一例について説明する。固体消毒剤の貯槽101及び定量供給機102のそばには、間隔を置いて、固体消毒剤を収容したコンテナ186が複数個、3段の棚156に、図20の紙面に垂直の方向に複数列、格納されている。貯槽101及び定量供給機102と棚156との間には、スタッカクレーン158が備えられ、スタッカクレーン158によって棚156のコンテナ186は必要に応じて適宜に出し入れされ、取り出されたコンテナ186は、貯槽101上に、排出口184のガイド部114eを貯槽の投入口126に挿入させ載置される。   With reference to FIG. 21, an example of the installation form of the solid disinfectant supply equipment configured as described above will be described. Near the solid disinfectant storage tank 101 and the metering feeder 102, there are a plurality of containers 186 containing solid disinfectants at intervals, and a plurality of three-stage shelves 156 in a direction perpendicular to the paper surface of FIG. Column, stored. A stacker crane 158 is provided between the storage tank 101 and the quantitative feeder 102 and the shelf 156. The container 186 of the shelf 156 is appropriately taken in and out as necessary by the stacker crane 158, and the removed container 186 is stored in the storage tank. On 101, the guide part 114e of the discharge port 184 is inserted and placed in the storage port 126 of the storage tank.

載置されたコンテナ186の上方には弁開閉手段160が備えられている。弁開閉手段160は、空気圧シリンダによって水平方向に開閉されコンテナ186のコーンロッド118のフランジ122を着脱自在に把持すると共に、上下方向に移動させる空気圧シリンダを備え、コーンロッド118を動かしてコンテナ186の弁体であるコーン116を開閉する。   A valve opening / closing means 160 is provided above the placed container 186. The valve opening / closing means 160 includes a pneumatic cylinder that is opened and closed horizontally by a pneumatic cylinder and detachably grips the flange 122 of the cone rod 118 of the container 186 and moves in the vertical direction. The cone 116 which is a valve body is opened and closed.

図22を参照して固体消毒剤を収容した容器の他の形態である、フレコンバッグ180を用いた実施形態について説明する。フレコンバッグ180は、柔軟な袋により形成された、粉体などを収容するのに用いられる周知のものである。フレコンバッグ180は、袋の下部にテープ、ロープなどにより開閉自在に縛られ閉じられる排出口180aを備え、上部には吊り下げ用のロープ180bを備えている。粉体の収容されたフレコンバッグ180は、格納場所において電動チェンブロック184を用いて吊り金具182により吊り下げられ移動され、貯槽101上に、排出口180aを固体消毒剤投入口126に挿入させて位置付けられる。そして、排出口180aをそれを閉じているテープ、ロープなどを解いて開け、固体消毒剤を貯槽101に充填する。   With reference to FIG. 22, an embodiment using a flexible container bag 180 which is another form of a container containing a solid disinfectant will be described. The flexible container bag 180 is a well-known bag that is formed of a flexible bag and is used to store powder or the like. The flexible container bag 180 includes a discharge port 180a that can be freely opened and closed by a tape, a rope, or the like at the bottom of the bag, and a rope 180b for suspension at the top. The flexible container bag 180 containing the powder is suspended and moved by the hanging metal fitting 182 using the electric chain block 184 in the storage place, and the discharge port 180a is inserted into the solid disinfectant input port 126 on the storage tank 101. Positioned. Then, the discharge port 180a is opened by unwrapping the tape, rope, etc., which are closed, and the storage tank 101 is filled with the solid disinfectant.

上述したとおりの固体消毒剤供給設備の作用について説明する。   The operation of the solid disinfectant supply facility as described above will be described.

(1)必要なときに必要量の固体消毒剤を供給できる:
固体消毒剤を複数個の容器である、コンテナ186あるいはフレコンバッグ180に分けて収容し、供給先の必要量に応じて容器を貯槽101に順次に連結し貯槽101内に粉体を充填し、充填された粉体を定量供給機102によって所定の量計量して供給先に供給するので、容器及び貯槽内に収容する粉体の量を少なくでき、圧密による粉体の固化を防止できる。また、貯槽101内に攪拌手段130、定量供給機102内に攪拌手段142を備えると共に、圧縮空気を定期的に貯槽101及び/又は定量供給機102内に、周壁、攪拌手段などから噴射するので、粉体の固化をさらに防止できる。したがって、必要なときに必要量の粉体を供給することができる。
(1) The required amount of solid disinfectant can be supplied when needed:
The solid disinfectant is divided into a plurality of containers, the container 186 or the flexible container bag 180, and the containers are sequentially connected to the storage tank 101 according to the required amount of the supply destination, and the storage tank 101 is filled with powder, Since a predetermined amount of the filled powder is measured and supplied to the supply destination by the quantitative feeder 102, the amount of the powder stored in the container and the storage tank can be reduced, and solidification of the powder due to compaction can be prevented. In addition, the storage unit 101 includes the stirring unit 130 and the fixed amount supply unit 102, and the compressed air is periodically injected into the storage tank 101 and / or the fixed amount supply unit 102 from the peripheral wall and the stirring unit. Further, solidification of the powder can be further prevented. Therefore, a necessary amount of powder can be supplied when necessary.

(2)作業者などに粉体が触れない:
固体消毒剤を収容した容器である、コンテナ186あるいはフレコンバッグ180を、貯槽101上にその排出口を投入口126を介して連結して載置し固体消毒剤を貯槽101に充填するので、粉体の封入された袋を開封し粉体を貯槽101に充填するような作業は不要であり、作業者などに粉体の触れるのが防止される。
(2) The powder does not touch workers etc .:
Since the container 186 or the flexible container bag 180, which is a container containing the solid disinfectant, is placed on the storage tank 101 with its discharge port connected via the input port 126, and the solid disinfectant is filled in the storage tank 101, It is unnecessary to open the bag in which the body is sealed and fill the storage tank 101 with the powder, and the operator can be prevented from touching the powder.

(3)逆止弁:
貯槽101及び定量供給機102内に、逆止弁164を介して圧縮空気を噴射するので、貯槽101及び定量供給機102内を加圧状態に維持することができ、供給口146からの粉体の排出をよりスムースに行える。
(3) Check valve:
Since the compressed air is injected into the storage tank 101 and the quantitative supply machine 102 via the check valve 164, the storage tank 101 and the quantitative supply apparatus 102 can be maintained in a pressurized state, and the powder from the supply port 146 can be maintained. Can be discharged more smoothly.

(4)定量供給機に連結した柔軟な管部材:
定量供給機102の粉体供給口146に連結した管部材107を、柔軟な塩化ビニルのごとき合成樹脂によって形成することにより、加圧された定量供給機102内の回転テーブル140の計量室140aが回転テーブル140の回転により固体消毒剤供給口146に間欠的に連通すると、管部材107に間欠的に加圧状態の固体消毒剤が排出されその作用によって管部材107は伸縮振動する。したがって、固体消毒剤が管部材107の中に閉塞されるのが防止される。管部材107として鋼管などを用いた場合に行われる閉塞を防止するための外部から打撃を与えることも不要になる。管部材107を透明なものにすれば、その中の粉体の状態が確認でき好都合である。
(4) Flexible pipe member connected to the quantitative feeder:
By forming the pipe member 107 connected to the powder supply port 146 of the fixed quantity feeder 102 with a synthetic resin such as flexible vinyl chloride, the weighing chamber 140a of the rotary table 140 in the pressurized constant quantity feeder 102 is formed. When the rotary table 140 is intermittently communicated with the solid disinfectant supply port 146, the solid disinfectant in a pressurized state is intermittently discharged to the tube member 107, and the tube member 107 expands and contracts due to its action. Therefore, the solid disinfectant is prevented from being blocked in the tube member 107. It is also unnecessary to give a hit from the outside for preventing the blockage performed when a steel pipe or the like is used as the pipe member 107. If the tube member 107 is made transparent, the state of the powder therein can be confirmed, which is convenient.

(5)溶解手段:
さらに、定量供給機102により計量され排出された固体消毒剤を、溶解手段である溶解コーン108を通して溶解水にして搬送するようにすれば、単に流水の圧送された輸送管路に粉体を投入し供給先に送るのに比べて、効率良く、効果的に送ることができる。
(5) Dissolution means:
Furthermore, if the solid disinfectant measured and discharged by the quantitative feeder 102 is transported as dissolved water through the dissolution cone 108 which is a dissolution means, the powder is simply put into the transport line that is pumped with running water. Compared with sending to a supplier, it can be sent efficiently and effectively.

また、上記に説明の装置においては、下記のように、本発明の範囲内においてさまざまな変形あるいは修正ができる。   Further, the apparatus described above can be variously modified or modified within the scope of the present invention as described below.

(1)定量供給機の設置位置:
本実施の形態においては、定量供給機102は貯槽101外に取付けられているが、定量供給機102を貯槽101内に、例えば攪拌手段130と同一の軸線115上で駆動するように配設してもよい。
(1) Installation position of quantitative feeder:
In this embodiment, the fixed amount feeder 102 is attached outside the storage tank 101. However, the constant amount feeder 102 is disposed in the storage tank 101 so as to be driven on the same axis 115 as the stirring means 130, for example. May be.

(2)逆止弁の設置位置:
本実施の形態においては、圧縮空気源162の圧縮空気を貯槽101及び定量供給機102の複数個の噴射ノズル132、148、噴射口133、150などに、共通の逆止弁164を介して供給したが、貯槽101、定量供給機102、攪拌翼130、攪拌翼142などの大きさ、形状、そして扱う固体消毒剤の種類、圧縮空気の供給間隔などに応じて、噴射ノズル、噴射口の部分に固体消毒剤が詰まらないように、逆止弁を噴射ノズル及び/又は噴射口の部分それぞれに備えてもよい。
(2) Check valve installation position:
In the present embodiment, the compressed air from the compressed air source 162 is supplied to the storage tank 101 and the plurality of injection nozzles 132 and 148 and the injection ports 133 and 150 of the metering feeder 102 via the common check valve 164. However, depending on the size, shape, type of solid disinfectant to be handled, supply interval of compressed air, etc. In order to prevent clogging of the solid disinfectant, a check valve may be provided in each of the injection nozzle and / or the injection nozzle part.

固体消毒剤を水に溶解して消毒水を形成する溶解部の他の構成例を図23に示す。上記図13等で説明した固体消毒剤の貯槽101が、雨天時下水道越流水の流路12に設けられたピット210の上に設置されている。定量供給機102に接続した消毒剤誘導管107がピット210の中に向かって配置される。流路12内には、水中混合機202が取り付けられた水中エジェクタ201が設置される。流路12内の雨天時下水道越流水の一部がポンプ203によって揚水され、ストレーナ205で夾雑物を除去した後、配管207,208を通して、水中混合機202及び水中エジェクタ201に供給される。水中混合機202内に、上方の消毒剤誘導管107から落下する固体消毒剤が投入され、水中エジェクタ201内で水中に十分に混合されて消毒水が形成されて、放出口204から、被処理水、即ち雨天時下水道越流水中に投入される。なお、図23bは、図23aのA−A線を上から見た図であり、このように、放出口204を分岐させて配置することもできる。   FIG. 23 shows another configuration example of the dissolving unit that forms the disinfecting water by dissolving the solid disinfectant in water. The solid disinfectant storage tank 101 described with reference to FIG. 13 and the like is installed on a pit 210 provided in the flow path 12 of sewer stormwater overflow. A disinfectant guide tube 107 connected to the metering feeder 102 is disposed toward the pit 210. An underwater ejector 201 to which an underwater mixer 202 is attached is installed in the flow path 12. A part of the sewer stormwater overflow in the flow path 12 is pumped by the pump 203, and after removing impurities by the strainer 205, it is supplied to the underwater mixer 202 and the underwater ejector 201 through the pipes 207 and 208. A solid disinfectant that falls from the upper disinfectant guide tube 107 is introduced into the underwater mixer 202, and is sufficiently mixed in water in the underwater ejector 201 to form disinfecting water. It is poured into water, that is, sewer stormwater overflow. FIG. 23b is a view of the AA line in FIG. 23a as viewed from above. In this way, the discharge port 204 can also be branched.

このような構成とすることにより、装置の高さを低くすることができる。従来の固体消毒剤貯留・供給装置では、供給装置の下方に混合機が配置されるので、装置の高さがどうしても高くなってしまう。上記の構成とすることで、混合機が下水流路内に配置されるので、装置の高さが低くなる。実際には、従来の固体消毒剤貯留・供給装置では5.5m程度の高さであったものが、図23に示す構成では、装置高さを2〜3m程度にすることができる。装置の高さを低くできることで、装置を設置する際の制約がなくなる。このように固体消毒剤貯留槽の設置高さを低くすることができるので、貯留槽への固体消毒剤の補充をラインによって行う場合などに、動力を小さくすることができる。また、混合機への給水揚程が小さくなるため、給水のための動力を小さくすることができる。更に、従来の固体消毒剤貯留・供給装置では、消毒剤混合機及び消毒水投入装置が、雨天時下水道越流水流路の上部の地上に配置されているので、混合機から消毒水が溢れ出した場合、消毒水が周りに散乱してしまうが、図23に示す構成では、消毒剤の混合機が雨天時下水道越流水中に配置されるので、例えば消毒水排出管の目づまりなどによって混合機から消毒水が溢れだしても、処理対照の雨天時下水道越流水中に入るだけであり、周りを汚染することがない。   With such a configuration, the height of the apparatus can be reduced. In the conventional solid disinfectant storage / supply device, since the mixer is disposed below the supply device, the height of the device inevitably increases. By setting it as said structure, since a mixer is arrange | positioned in a sewer flow path, the height of an apparatus becomes low. Actually, the conventional solid disinfectant storage / supply device has a height of about 5.5 m, but in the configuration shown in FIG. 23, the height of the device can be about 2 to 3 m. By reducing the height of the device, there are no restrictions when installing the device. Thus, since the installation height of the solid disinfectant storage tank can be lowered, the power can be reduced when the solid disinfectant is replenished to the storage tank by a line. Moreover, since the feed water head to a mixer becomes small, the motive power for water supply can be made small. Furthermore, in the conventional solid disinfectant storage / supply device, the disinfectant mixer and disinfecting water input device are arranged above the sewer stormwater overflow channel, so that disinfecting water overflows from the mixer. In this case, the disinfecting water is scattered around. However, in the configuration shown in FIG. 23, the disinfectant mixer is placed in the sewer stormwater overflow. Even if disinfecting water overflows from the machine, it will only enter the sewer stormwater overflow, and will not contaminate the surroundings.

本発明において使用することのできる他の形態の固体臭素系消毒剤貯留・供給装置を図24に示す。図24に示す固体臭素系消毒剤の貯留・供給装置は、上部に固体臭素系消毒剤投入口252を有する貯留槽250と、貯留槽250の下部の開口(固体臭素系消毒剤排出口)に取り付けられた固体臭素系消毒剤定量供給装置251とから構成される。貯留槽250は、例えば中央部が幅広の樽型の形状で、中心軸260が傾斜するように、フレーム257によって設置されており、モーター253によって軸260を中心として回転するように構成されている。貯留槽250の内壁には、撹拌用の邪魔板256を複数設置することが好ましい。貯留槽250の下部の開口(固体臭素系消毒剤排出口)には、スクリューフィーダー255が取り付けられていて、貯留槽250内に収容されている固体臭素系消毒剤は、モーター254によってフィーダー255を回転させることで、所定量が誘導管107を通って供給される。誘導管の下方に図13で示す溶解コーン108や、図23で示す水中混合機202などの固体消毒剤溶解装置を配置することができる。この方式の貯留槽によれば、固体臭素系消毒剤のような圧密しやすい粉体を、貯留槽の回転によって混合することでブリッジの防止を図ることができる。また、貯留槽の機高を低くすることができ、更に固体消毒剤撹拌用の空気が不要といった利点がある。   FIG. 24 shows another type of solid bromine-based disinfectant storage / supply device that can be used in the present invention. The solid bromine-based disinfectant storage / supply device shown in FIG. 24 includes a storage tank 250 having a solid bromine-based disinfectant inlet 252 in the upper part and an opening (solid bromine-based disinfectant outlet) in the lower part of the storage tank 250. And a solid bromine-based disinfectant quantitative supply device 251 attached thereto. The storage tank 250 has, for example, a barrel-like shape with a wide central portion, is installed by a frame 257 so that the central shaft 260 is inclined, and is configured to rotate around the shaft 260 by a motor 253. . It is preferable to install a plurality of baffle plates 256 for stirring on the inner wall of the storage tank 250. A screw feeder 255 is attached to the lower opening (solid bromine-based disinfectant discharge port) of the storage tank 250, and the solid bromine-based disinfectant accommodated in the storage tank 250 is fed to the feeder 255 by the motor 254. By rotating, a predetermined amount is supplied through the guide tube 107. A solid disinfectant dissolving device such as the dissolving cone 108 shown in FIG. 13 or the underwater mixer 202 shown in FIG. 23 can be arranged below the guide tube. According to this type of storage tank, bridging can be prevented by mixing a compacted powder such as a solid bromine-based disinfectant by rotation of the storage tank. In addition, the height of the storage tank can be reduced, and there is an advantage that air for stirring the solid disinfectant is unnecessary.

図25は、本発明において使用することのできる他の形態の固体臭素系消毒剤貯留・供給装置を示す図である。図25に示す装置においては、固体臭素系消毒剤貯留槽310の底部の排出口に、流体・粉体移送用一軸ねじ式ポンプ312が接続されている。一軸ねじ式ポンプ312のスクリュー部をモーター314によって回転させることにより、貯留槽310内の固体臭素系消毒剤を強制的に吸引して、水平方向に移送することができる。一軸ねじ式ポンプ312の終端部には固体臭素系消毒剤の誘導管107が接続されている。誘導管の下方に図13で示す溶解コーン108や、図23で示す水中混合機202などの固体消毒剤溶解装置を配置することができる。この方法によれば、薬品貯槽の直下部に固体臭素系消毒剤の溶解装置を設置する必要がなくなるため、設備の高さを低くすることができる。また、薬品供給設備の付近に、固体臭素系消毒剤溶解用の多量の溶解水を配置・誘導する必要がなくなるので、プラント全体としての工事費を削減することができ、また設置条件が緩和される。この目的で使用することのできる流体・粉体移送用一軸ねじ式ポンプとしては、例えば、英国Mono Pump Ltd.社のモノポンプなどを用いることができる。また、かかる装置は、固体臭素系消毒剤貯留・供給装置としての用途の固体臭素系消毒剤の貯留槽に固体臭素系消毒剤を補充するための移送手段としても用いることができる。なお、図25に示す固体臭素系消毒剤貯留槽310は、所謂ホッパー型であるが、底面に機械的撹拌装置やエアパージなどの圧密・ブリッジ防止機構311が設置されており、この機構によってブリッジの形成などを防止している。勿論、例えば、図13、図15、図24などに示す貯留槽を用いることもできる。   FIG. 25 is a diagram showing another form of a solid bromine-based disinfectant storage / supply device that can be used in the present invention. In the apparatus shown in FIG. 25, a fluid / powder transfer single screw pump 312 is connected to a discharge port at the bottom of the solid bromine-based disinfectant storage tank 310. By rotating the screw part of the single screw pump 312 by the motor 314, the solid bromine-based disinfectant in the storage tank 310 can be forcibly sucked and transferred in the horizontal direction. A solid bromine-based disinfectant guide tube 107 is connected to the end of the single screw pump 312. A solid disinfectant dissolving device such as the dissolving cone 108 shown in FIG. 13 or the underwater mixer 202 shown in FIG. 23 can be arranged below the guide tube. According to this method, since it is not necessary to install a solid bromine-based disinfectant dissolving device immediately below the chemical storage tank, the height of the facility can be reduced. In addition, it is not necessary to place and guide a large amount of dissolved water for dissolving the solid bromine-based disinfectant in the vicinity of the chemical supply equipment, so that the construction cost for the entire plant can be reduced and the installation conditions are eased. The As a single screw screw pump for fluid / powder transfer that can be used for this purpose, for example, a mono pump manufactured by Mono Pump Ltd. of the United Kingdom can be used. Such a device can also be used as a transfer means for replenishing a solid bromine-based disinfectant storage tank for use as a solid bromine-based disinfectant storage / supply device. Note that the solid bromine-based disinfectant storage tank 310 shown in FIG. 25 is a so-called hopper type, but a compacting / bridge prevention mechanism 311 such as a mechanical stirring device or an air purge is installed on the bottom surface. Prevents formation. Of course, for example, the storage tank shown in FIG. 13, FIG. 15, FIG.

流体・粉体移送用一軸ねじ式ポンプを用いた固体臭素系消毒剤貯留・供給装置の他の例を図26に示す。固体臭素系消毒剤貯留槽310と一軸ねじ式ポンプ312の構成は、図25に示す構成と同様である。図26に示すシステムにおいては、更に、別の一軸ねじ式ポンプ320を配置し、この導入口322に固体臭素系消毒剤を溶解するための溶解用水を導入する。一軸ねじ式ポンプ312のスクリュー部をモーター321によって回転させることによって溶解用水が移送されて、配管324を通って、導入口325より、固体臭素系消毒剤が移送されている一軸ねじ式ポンプ312に導入される。好ましくは、一軸ねじ式ポンプ312内で混合された溶解用水と固体臭素系消毒剤は、次に乳化分散機326に導入され、モーター327によって乳化分散機326を運転することにより、固体臭素系消毒剤のスラリーが形成され、誘導管328を通って移送される。誘導管328内を移送される固体臭素系消毒剤のスラリーは、そのまま、処理対象の雨天時下水道越流水中に投入することができる。乳化分散機326としては、例えば、グラインダ様の形状を持つ乳化ポンプなどを用いることができる。このように、固体臭素系消毒剤を水中でスラリー状に分散させてこれを処理対象の雨天時下水道越流水に投入することにより、水に溶解しにくい固体臭素系消毒剤をある程度の濃度の水スラリーとして投入点まで移送し、速やかに処理対象の雨天時下水道越流水中に分散させて溶解させることが可能である。   FIG. 26 shows another example of a solid bromine-based disinfectant storage / supply device using a single screw pump for fluid / powder transfer. The configuration of the solid bromine-based disinfectant storage tank 310 and the single screw pump 312 is the same as the configuration shown in FIG. In the system shown in FIG. 26, another single screw pump 320 is further arranged, and water for dissolving for dissolving the solid bromine-based disinfectant is introduced into the inlet 322. The water for dissolution is transferred by rotating the screw portion of the single screw pump 312 by the motor 321, and passes through the pipe 324 to the single screw pump 312 to which the solid bromine-based disinfectant is transferred from the inlet 325. be introduced. Preferably, the dissolving water and the solid bromine-based disinfectant mixed in the single screw pump 312 are then introduced into the emulsifying disperser 326, and the emulsifying disperser 326 is operated by the motor 327, so that the solid bromine-based disinfectant is operated. An agent slurry is formed and transported through the guide tube 328. The solid bromine-based disinfectant slurry transferred through the guide tube 328 can be directly put into the sewer stormwater overflow to be treated. As the emulsification disperser 326, for example, an emulsification pump having a grinder-like shape can be used. In this way, a solid bromine-based disinfectant is dispersed in a slurry form in water, and this is thrown into sewer stormwater overflow to be treated. It can be transported as a slurry to the entry point, and quickly dispersed and dissolved in the sewer stormwater overflow to be treated.

このように一軸ねじ式ポンプを二つ組みあわせることで、例えば、固体臭素系消毒剤移送用の一軸ねじ式ポンプ312の能力を給水用の一軸ねじ式ポンプ320の能力よりも大きくすることにより、貯槽310内の薬品を強制的に一軸ねじ式ポンプ312内に吸い込ませることができる。従って、固体臭素系消毒剤移送用の一軸ねじ式ポンプと給水用一軸ねじ式ポンプの能力を適当に調整することによって、薬剤の供給量を微妙に調節することができる。   By combining two single screw pumps in this way, for example, by making the capability of the single screw pump 312 for transferring the solid bromine-based disinfectant larger than the capability of the single screw pump 320 for water supply, The medicine in the storage tank 310 can be forcibly sucked into the single screw pump 312. Accordingly, by appropriately adjusting the capacities of the single screw pump for transferring the solid bromine-based disinfectant and the single screw pump for supplying water, the supply amount of the medicine can be finely adjusted.

上記に説明の雨天時下水道越流水の消毒装置は、固体の臭素系消毒剤をまず水、例えば処理対象の雨天時下水道越流水の一部を分取したものに混合・溶解して消毒水を形成し、これを雨天時下水道越流水に投入して消毒を行うというものである。しかしながら、本発明の他の態様においては、固体の臭素系消毒剤を固体のまま処理対象の雨天時下水道越流水に注入・溶解して消毒処理を行うこともできる。   The above-described disinfection device for sewer stormwater overflow is mixed with a solid bromine-based disinfectant first, for example, a portion of sewer stormwater overflow to be treated. It is formed, and this is thrown into sewer stormwater overflow and disinfected. However, in another aspect of the present invention, the disinfecting treatment can be performed by injecting and dissolving the solid bromine-based disinfectant into the sewer stormwater overflow to be treated in the solid state.

図27に、固体臭素系消毒剤を固体のまま処理対象の雨天時下水道越流水に投入する本発明の一態様に係る消毒装置の一具体例を示す。消毒剤貯留槽401には、粉末状又は顆粒状の固体臭素系消毒剤408が収容されている。消毒剤408は、バルブ404を開放することにより、消毒剤切り出し装置402と計量装置403とを介して、消毒剤移送配管405に送られる。消毒剤移送配管405の末端は消毒剤注入装置409に接続され、ここで消毒剤408が消毒対象の雨天時下水道越流水412に加えられる。図27に示す消毒装置においては、消毒剤注入装置409は、モータ406に接続した撹拌翼407が取り付けられており、この撹拌翼407の作用により、粉末状又は顆粒状の固体臭素系消毒剤408が被処理対象水中に溶解される。   FIG. 27 shows a specific example of a disinfecting apparatus according to one aspect of the present invention in which a solid bromine-based disinfectant is put into a sewer stormwater overflow to be treated in a solid state. The disinfectant storage tank 401 contains a solid bromine-based disinfectant 408 in the form of powder or granules. The disinfectant 408 is sent to the disinfectant transfer pipe 405 through the disinfectant cutting device 402 and the metering device 403 by opening the valve 404. The end of the disinfectant transfer pipe 405 is connected to a disinfectant injection device 409, where the disinfectant 408 is added to the sewer stormwater overflow 412 to be disinfected. In the disinfecting apparatus shown in FIG. 27, the disinfectant injecting apparatus 409 is provided with a stirring blade 407 connected to a motor 406. By the action of the stirring blade 407, a powdery or granular solid bromine-based disinfectant 408 is provided. Is dissolved in the water to be treated.

なお、消毒剤注入装置409は、好ましくは、消毒対象の被処理水の噴流を生起せしめる手段を有していて、生起せしめられた噴流の作用によって消毒剤注入装置内が減圧状態となり、この減圧により発生する吸引力によって粉末状又は顆粒状の固体臭素系消毒剤が移送せしめられるような構造を有していることが好ましい。このような構造の幾つかの具体例を図28〜図30に示す。   The disinfectant injecting device 409 preferably has a means for generating a jet of water to be sterilized, and the disinfectant injecting device is depressurized by the action of the generated jet. It is preferable that the powdery or granular solid bromine-based disinfectant is transferred by the suction force generated by the above. Some specific examples of such a structure are shown in FIGS.

図28に示す消毒剤注入装置409は、モータ406と撹拌翼407とを接続するシャフトの周りを囲む細管424と、細管424の終端部付近を囲むカバー421から構成されている。細管424の終端部は被処理水412中に配置されており、細管の上部には消毒剤移送配管405が接続されている。モータ406により撹拌翼407を回転させることによって、カバー内に水流が発生し、細管の終端部の近傍で噴流422が生じる。この噴流によって細管424内が減圧状態となり、これによって生じる吸引力により粉末状又は顆粒状の固体臭素系消毒剤423が細管424の終端部に向かって空気移送される。移送された消毒剤423は、水流422に加えられ、撹拌翼407によって消毒対象水と混合される。   The disinfectant injection device 409 shown in FIG. 28 includes a narrow tube 424 that surrounds the shaft that connects the motor 406 and the stirring blade 407, and a cover 421 that surrounds the vicinity of the end of the thin tube 424. The end of the narrow tube 424 is disposed in the water to be treated 412, and a disinfectant transfer pipe 405 is connected to the upper portion of the narrow tube. By rotating the stirring blade 407 by the motor 406, a water flow is generated in the cover, and a jet 422 is generated in the vicinity of the end portion of the narrow tube. The inside of the thin tube 424 is decompressed by this jet flow, and the powdery or granular solid bromine-based disinfectant 423 is air-transferred toward the end of the thin tube 424 by the suction force generated thereby. The transferred disinfectant 423 is added to the water stream 422 and mixed with the water to be disinfected by the stirring blade 407.

また、図29に示す消毒剤注入装置409は、雨天時下水道越流水を流す流路内に、オリフィスを形成する板状部材431が配置されている。そして、オリフィスの出口近傍に消毒剤移送配管405が接続されている。排水の水流がオリフィスを通過することによって噴流432が生起し、この噴流により消毒剤移送配管405の末端付近が減圧状態となり、これによって生じる吸引力により粉末状又は顆粒状の消毒剤433が噴流に向かって移送され、噴流の撹拌作用によって排水と混合される。   Further, in the disinfectant injection device 409 shown in FIG. 29, a plate-like member 431 that forms an orifice is disposed in a flow path for flowing sewer stormwater overflow. A disinfectant transfer pipe 405 is connected near the outlet of the orifice. A jet 432 is generated by the flow of the drainage water passing through the orifice, and this jet reduces the vicinity of the end of the disinfectant transfer pipe 405, and the suction force generated thereby causes the powdery or granular disinfectant 433 to be jetted. And is mixed with waste water by the stirring action of the jet.

更に、図30に示す消毒剤注入装置409は、雨天時下水道越流水の水流412中にポンプ441が配置され、これから排水が配管443内に導入され、エジェクタ442を通て再び水流412に戻される。そして、消毒剤移送配管405がエジェクタ442に接続されている。エジェクタ442によって噴流が発生せしめられて、消毒剤移送配管405の末端付近が減圧状態となり、これによって生じる吸引力により粉末状又は顆粒状の消毒剤が配管443に向かって移送され、噴流の撹拌作用によって排水と混合される。消毒剤注入装置内を減圧状態にするための手段としては、上記の構成の他に、消毒剤注入装置409の近傍に吸引機を設置することもできる。   Further, in the disinfectant injection device 409 shown in FIG. 30, the pump 441 is disposed in the water stream 412 in the sewer stormwater overflow, and the drainage is introduced into the pipe 443 from this, and returned to the water stream 412 again through the ejector 442. . A disinfectant transfer pipe 405 is connected to the ejector 442. A jet flow is generated by the ejector 442, and the vicinity of the end of the disinfectant transfer pipe 405 is in a reduced pressure state, and the powder or granular disinfectant is transferred toward the pipe 443 by the suction force generated thereby, and the jet stirring action Mixed with waste water. As a means for reducing the pressure in the disinfectant injection device, a suction machine can be installed in the vicinity of the disinfectant injection device 409 in addition to the above-described configuration.

このように、固体の臭素系消毒剤を固体のまま直接処理対象の雨天時下水道越流水に投入して混合することにより、以下のような利点が得られる。   Thus, the following advantages can be obtained by mixing and mixing the solid bromine-based disinfectant directly into the sewer stormwater overflow to be treated.

まず、消毒剤を予め水に溶解又は懸濁してから消毒対象水に注入する方法で必要な消毒剤を溶解する為の設備、即ち溶解槽、撹拌装置、イジェクタなどが不要であり、設備コストが低くなる。更に、水に溶解又は懸濁した後の消毒水を消毒対象水への注入点まで圧送するための設備、即ち移送ポンプ、イジェクタなども不要である。また、スラリー状の消毒液を消毒対象水に注入する場合には、消毒剤が溶解槽内に不均一に分布することを防止するために、溶解槽での十分な撹拌を継続しなければならないが、固体の臭素系消毒剤を固体のまま直接処理対象の雨天時下水道越流水に投入して混合することにより、この操作も不要となる。更に、溶液又はスラリー状の消毒剤が配管内に堆積して閉塞することもない。   First, the equipment for dissolving the necessary disinfectant by the method of dissolving or suspending the disinfectant in water in advance and then injecting it into the water to be disinfected, ie, the dissolution tank, the stirring device, the ejector, etc. is unnecessary, and the equipment cost is reduced. Lower. Furthermore, equipment for pumping disinfecting water after being dissolved or suspended in water to the injection point into the water to be disinfected, that is, a transfer pump, an ejector and the like are also unnecessary. In addition, when the slurry-like disinfectant is poured into the water to be disinfected, sufficient agitation must be continued in the dissolution tank to prevent the disinfectant from being unevenly distributed in the dissolution tank. However, this operation becomes unnecessary by putting the solid bromine-based disinfectant directly into the sewer stormwater overflow to be treated and mixing it in the solid state. Further, the disinfectant in the form of a solution or slurry does not accumulate in the pipe and clog.

特に、雨天時下水道越流水の消毒を消毒液の注入によって行う場合には、消毒液の必要注入量は、降雨状態によって左右され、大きく変動するために、雨天時下水の確実な消毒処理を行うためには、常に必要注入量以上の消毒液を準備しておく必要がある。しかしながら、一旦水に溶解した消毒剤は、固体状態に比べて消毒活性の低下が著しく、消毒剤を溶液状態で保管することは困難である。従って、必要注入量以上に調製した溶液は廃棄せざるを得ず、運転コストの増大及び資源の無駄につながる。しかしながら、固体の臭素系消毒剤を固体のまま直接処理対象の雨天時下水道越流水に投入して混合するという手法を採用することにより、必要量のみを必要時に貯留槽から排出するので、消毒剤の注入量を適切に制御することが可能であり、注入が終了した時点で無駄になる消毒剤溶解液が生じない。更に、消毒剤を溶解する水を予め確保することが困難な設備においても、確実な消毒処理を行うことが可能である。更に消毒剤注入量の制御が容易であり、過剰注入や注入不足の危険性が低くなる。更には、消毒剤注入装置において噴流を生起せしめる構造を採用することにより、消毒剤移送配管内を減圧状態として粉末状又は顆粒状の消毒剤を移送することで、移送配管中に破損が生じても、消毒剤が破損部分から吹き出すことがない。   In particular, when disinfecting sewer stormwater overflow by injecting disinfectant solution, the required amount of disinfectant solution depends on the rain condition and varies greatly. In order to achieve this, it is necessary to always prepare a disinfectant that exceeds the required injection amount. However, the disinfectant once dissolved in water has a significant decrease in disinfecting activity compared to the solid state, and it is difficult to store the disinfectant in a solution state. Therefore, a solution prepared in excess of the required injection amount must be discarded, leading to an increase in operating cost and waste of resources. However, by adopting a method in which solid bromine-based disinfectant is directly injected into the sewer stormwater overflow to be treated and mixed, only the necessary amount is discharged from the storage tank when necessary. It is possible to appropriately control the injection amount of the liquid, and a disinfectant solution that is wasted when the injection is completed does not occur. Furthermore, it is possible to perform a reliable disinfection process even in facilities where it is difficult to secure water for dissolving the disinfectant in advance. Furthermore, the amount of the disinfectant injected can be easily controlled, and the risk of excessive injection or insufficient injection is reduced. Furthermore, by adopting a structure that generates a jet in the disinfectant injection device, the disinfectant transfer pipe is depressurized and the powder or granular disinfectant is transferred, causing damage in the transfer pipe. However, the disinfectant does not blow out from the damaged part.

上記に説明の形態は、固体臭素系消毒剤を固体のまま処理対象の雨天時下水道越流水に投入・混合することで雨天時下水道越流水の消毒を行うというものであるが、雨天時下水道越流水に固体臭素系消毒剤を投入して消毒処理を行うためには、消毒剤と処理対象の雨天時下水道越流水との混合操作を消毒剤の注入点で行う必要性は必ずしもない。   In the form described above, the solid bromine-based disinfectant is disinfected into the sewer stormwater overflow to be treated and mixed to dispose of the sewer stormwater overflow. In order to perform disinfection treatment by introducing a solid bromine-based disinfectant into running water, it is not always necessary to perform a mixing operation between the disinfectant and the sewer stormwater overflow to be treated at the injection point of the disinfectant.

混合操作の目的の第一は、固体の消毒剤を被処理水中に溶解することである。消毒剤が固体のままでは、消毒剤と被処理水との接触効率が低く、消毒速度の低下を招く。消毒剤を溶解することによって、消毒剤と被処理水との接触効率が向上して消毒速度が速まる。雨天時下水道越流水が公共水域に放流されるまでの時間に制約がある場合には、十分な消毒効果を得るために、消毒速度を速めることが重要となる。   The first purpose of the mixing operation is to dissolve a solid disinfectant in the water to be treated. If the disinfectant remains solid, the contact efficiency between the disinfectant and the water to be treated is low, and the disinfection rate is reduced. By dissolving the disinfectant, the contact efficiency between the disinfectant and the water to be treated is improved and the disinfection speed is increased. When there is a restriction on the time until sewer overflow water is discharged into public waters in the rain, it is important to increase the disinfection speed in order to obtain a sufficient disinfection effect.

混合操作の目的の第二は、消毒剤を被処理水中に均一に拡散させることである。消毒対象とする被処理水の全体に消毒剤を均一に行き渡らせなければ、消毒剤濃度が高い箇所では過剰添加となって消毒剤が無駄になるばかりでなく、公共水域に高濃度の残留ハロゲンが放流される可能性がある。一方、消毒剤濃度が低い箇所では、添加不足になって十分な消毒が行われないことになる。消毒剤を被処理水中に均一に拡散させて消毒剤濃度を均等にすることによって、過不足のない消毒剤の添加が可能になる。   The second purpose of the mixing operation is to disperse the disinfectant uniformly in the water to be treated. If the disinfectant is not evenly distributed throughout the water to be disinfected, the disinfectant is excessively added at locations where the disinfectant concentration is high, and the disinfectant is wasted. May be released. On the other hand, at locations where the concentration of the disinfectant is low, the addition becomes insufficient and sufficient disinfection is not performed. By uniformly diffusing the disinfectant in the water to be treated to make the disinfectant concentration uniform, it is possible to add the disinfectant without excess or deficiency.

混合操作の目的の第三は、消毒剤を被処理水中に溶解・拡散させることによって、雨天時下水道越流水が公共水域に到る迄の間に、残留ハロゲンを一定値以下の濃度にまで低減することである。消毒剤が固体のままで、或いは溶解した消毒剤が不均一で高濃度のままで公共水域に流出すると、局所的に高濃度の残留ハロゲンを放流することになり、放流先の生態系に悪影響を与える可能性がある。これを防ぐためには、雨天時下水道越流水が公共水域に到るまでの間に、消毒剤が完全に溶解し、更に溶解後に残留ハロゲンが低減するだけの時間が必要である。このため、消毒剤を混合することによって溶解・拡散させることが重要である。   The third purpose of the mixing operation is to dissolve and disperse the disinfectant in the treated water, thereby reducing the residual halogen to a concentration below a certain level before the sewer stormwater overflow reaches the public water area. It is to be. If the disinfectant remains solid or the dissolved disinfectant remains in a non-uniform and high concentration and flows into public waters, it will release a high concentration of residual halogen locally, adversely affecting the destination ecosystem. May give. In order to prevent this, it is necessary for the disinfectant to completely dissolve before the sewer stormwater overflow reaches the public water area, and for the residual halogen to be reduced after dissolution. For this reason, it is important to dissolve and diffuse by mixing a disinfectant.

ところで、ハロゲン系消毒剤がその消毒能力(酸化力)によって消毒を行い、酸化反応の終了によって酸化力が消失するまでに要する時間は、溶解に要する時間に比べて十分に短い。例えば、ハロゲン系消毒剤として1−ブロモ−3−クロロ−5,5−ジメチルヒダントイン(BCDMH)を用いて、有効ハロゲン濃度が2mg/L as Cl程度で消毒処理を行う場合、消毒剤の酸化力の消失は、有効ハロゲン濃度が0.5mg/L as Cl以下に低減したことを指標とすることができる。消毒剤の添加量が10mg/L as Clの場合、被処理水中に消毒剤が溶解するのに要する時間が1分程度であるのに対して、有効ハロゲン濃度が2mg/L as Clから0.5mg/L as Clに低下するのに要する時間は10〜30秒程度である。この時間に幅があるのは、被処理水、即ち雨天時下水道越流水中の有機物質濃度による影響を受けるためである。したがって、消毒剤を少しづつ溶解して、完全に溶解してから更に30秒程度の時間を確保することで、十分な消毒効果と、放流水の残留ハロゲン濃度の低減の両方を図ることができる。   By the way, the time required for the halogen-based disinfectant to disinfect by its disinfecting ability (oxidizing power) and for the oxidizing power to disappear upon completion of the oxidation reaction is sufficiently shorter than the time required for dissolution. For example, when 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is used as a halogen-based disinfectant and an effective halogen concentration is about 2 mg / L as Cl, the oxidizing power of the disinfectant The disappearance of can be used as an indicator that the effective halogen concentration has been reduced to 0.5 mg / L as Cl or less. When the addition amount of the disinfectant is 10 mg / L as Cl, the time required for the disinfectant to dissolve in the water to be treated is about 1 minute, whereas the effective halogen concentration is from 0 to 2 mg / L as Cl. The time required to decrease to 5 mg / L as Cl is about 10 to 30 seconds. This time varies because it is affected by the concentration of organic substances in the water to be treated, that is, sewer stormwater overflow. Therefore, by dissolving the disinfectant little by little and securing a time of about 30 seconds after complete dissolution, both a sufficient disinfecting effect and a reduction in the residual halogen concentration of the discharged water can be achieved. .

このことを、図31に模式的に示す。図31は、固体の消毒剤を固体のままで被処理水中に投入した場合の、未溶解の消毒剤の残存率、残留ハロゲン濃度、及び大腸菌群の時間経過を示す。時間経過と共に消毒剤が溶解するので、未溶解の消毒剤の量は低減し、残留ハロゲン濃度は上昇する。しかしながら、残留ハロゲン濃度は、消毒反応などの酸化反応に伴ってハロゲンが消費されて減少するので、消毒剤の溶解による増加分と酸化反応による消費に伴う減少分とが相殺し、増加し続けることはなく、ある存在量で推移することになる。そして、未溶解の消毒剤がなくなった後に、残留ハロゲン濃度は急激に減少する。この間の大腸菌群は、常に供給される酸化力に曝露されるために、残留ハロゲンが枯渇するまで低減し続ける。   This is schematically shown in FIG. FIG. 31 shows the residual rate of undissolved disinfectant, the residual halogen concentration, and the time course of the coliform group when the solid disinfectant is put into the water to be treated as a solid. As the disinfectant dissolves over time, the amount of undissolved disinfectant decreases and the residual halogen concentration increases. However, the residual halogen concentration decreases due to the consumption of halogens accompanying oxidation reactions such as disinfection reactions, so the increase due to dissolution of the disinfectant offsets the decrease due to consumption due to oxidation reactions and continues to increase. There will be no abundance. And after there is no undissolved disinfectant, the residual halogen concentration decreases rapidly. During this time, the coliform group is constantly exposed to the oxidative power supplied, and thus continues to decrease until the residual halogen is depleted.

したがって、本発明の他の態様によれば、固体臭素系消毒剤を、固体のまま処理対象の雨天時下水道越流水に投入し、消毒剤が添加位置から公共水域に到達するまでの間に完全に溶解するようにして、雨天時下水道越流水の消毒を行うことができる。   Therefore, according to another aspect of the present invention, the solid bromine-based disinfectant is put into the sewer stormwater overflow to be treated as a solid, and the disinfectant completely reaches the public water area from the addition position. It is possible to disinfect the sewer stormwater overflow in the rain.

図32にかかる技術思想に基づいた本発明の他の態様にかかる雨天時下水道越流水の消毒装置の概念を示す。図32において、501は消毒剤貯留装置であり、その中に固体臭素系消毒剤502が貯留されている。固体臭素系消毒剤は、注入量制御装置503によって計量され、消毒剤移送配管504を経由して、雨天時下水道越流水の流路505に設けられた消毒剤添加位置506まで移送され、消毒対象の雨天時下水道越流水507に添加される。消毒剤が添加された雨天時下水道越流水は、消毒剤添加位置506から雨天時下水道越流水放流口508までの流路507を一定時間をかけて流下した後に、放流口508から河川などの公共水域509に放流される。   The concept of the disinfection device for sewer stormwater overflow according to another aspect of the present invention based on the technical idea shown in FIG. 32 is shown. In FIG. 32, reference numeral 501 denotes a disinfectant storage device in which a solid bromine-based disinfectant 502 is stored. The solid bromine-based disinfectant is weighed by the injection amount control device 503 and transferred to the disinfectant addition position 506 provided in the flow path 505 of the sewer stormwater overflow via the disinfectant transfer pipe 504 to be disinfected. Added to the sewer overflow water 507 during rainy days. The sewer stormwater overflow to which the disinfectant is added flows down the channel 507 from the disinfectant addition position 506 to the sewer stormwater overflow outlet 508 over a certain period of time, and then the public such as a river from the outlet 508. It is discharged into the water area 509.

好ましい態様においては、放流口508に到達するまでの時間として、消毒剤添加位置506で消毒剤が添加されてから少なくとも2分間、更に消毒剤が完全に溶解してから少なくとも1分間を確保することが好ましい。このことによって、消毒剤は、流路507を流下しながら、水流によって雨天時下水道越流水中に溶解し且つ拡散する。消毒剤は、溶解したものから順次消毒能力(酸化力)を発現して消毒反応を行い、酸化反応によって消毒能力(酸化力)が消失する。よって、固体の臭素系消毒剤が流路507を流下しながら水流によって雨天時下水道越流水中に溶解することにより、少しずつ一定時間にわたって消毒力(酸化力)を供給し続けることになる。供給された消毒能力は、逐次酸化反応によって消費されて消失するため、放流口508においては、残留ハロゲンが高濃度に残留することがない。   In a preferred embodiment, at least 2 minutes after the disinfectant is added at the disinfectant addition position 506 and at least 1 minute after the disinfectant is completely dissolved are ensured as the time to reach the outlet 508. Is preferred. As a result, the disinfectant dissolves and diffuses in the sewer stormwater overflow by the water flow while flowing down the flow path 507. The disinfectant develops a disinfecting ability (oxidizing power) in order from the dissolved one to perform a disinfecting reaction, and the disinfecting ability (oxidizing power) is lost by the oxidation reaction. Therefore, the solid bromine-based disinfectant is dissolved in the sewer stormwater overflow by the water flow while flowing down the flow path 507, so that the disinfecting power (oxidizing power) continues to be supplied little by little for a certain time. The supplied disinfecting capacity is consumed by the sequential oxidation reaction and disappears, so that residual halogen does not remain at a high concentration at the outlet 508.

図33は、消毒剤を添加した後の雨天時下水道越流水の流路507の形状を変化させた形態を示す。消毒剤の添加位置506から放流口508までの時間を確保するために、流路507を迂流式水路507aとしている。なお、迂流式水路507aを同一容量の槽とすることも可能であるが、その場合には、槽内での短絡流を防止して流れを押し出し流れに近づけるために、槽内に仕切板を配置することが好ましい。なお、迂流式水路は、水平迂流式、上下迂流式のいずれでもよい。   FIG. 33 shows a form in which the shape of the flow path 507 of the sewer stormwater overflow after the addition of the disinfectant is changed. In order to secure the time from the disinfectant addition position 506 to the outlet 508, the flow path 507 is a bypass water path 507a. It is also possible to use the bypass water channel 507a as a tank of the same capacity, but in that case, in order to prevent a short-circuit flow in the tank and to bring the flow closer to the extruded flow, a partition plate in the tank Is preferably arranged. Note that the detour channel can be either a horizontal detour method or a vertical detour method.

図34は別の形態例を示す。この例では、流路の途中に脱ハロゲン剤添加装置510を設置している。消毒剤が過剰添加された場合に、放流口508に達するまでに残留ハロゲンが十分に低下しない場合があり得る。このような場合に備えて、脱ハロゲン剤添加装置510から亜硫酸ナトリウムなどの還元剤を添加して、残留ハロゲンを中和する。脱ハロゲン剤添加装置509からの還元剤の添加位置は、迂流式水路507aの途中でもよいし、迂流式水路7aの下流でもよい。   FIG. 34 shows another example. In this example, a dehalogenating agent adding device 510 is installed in the middle of the flow path. When the disinfectant is excessively added, the residual halogen may not be sufficiently lowered until the discharge port 508 is reached. In preparation for such a case, a reducing agent such as sodium sulfite is added from the dehalogenating agent adding apparatus 510 to neutralize residual halogen. The addition position of the reducing agent from the dehalogenating agent addition device 509 may be in the middle of the bypass water channel 507a or downstream of the bypass water channel 7a.

図35は、更に別の形態例を示す。この例では、消毒剤を添加した後の雨天時下水道越流水の流路を、スタティックミキサ507bによって構成した。流路を長くしなくても放流口508までの時間を確保することが可能な場合、スタティックミキサ507bによって水流による溶解・混合を促進することで、消毒効果をより高めることができる。   FIG. 35 shows still another embodiment. In this example, the flow path of sewer stormwater overflow after addition of the disinfectant was constituted by the static mixer 507b. When it is possible to secure the time to the discharge port 508 without lengthening the flow path, the disinfection effect can be further enhanced by promoting the dissolution / mixing by the water flow by the static mixer 507b.

更に図36は、更に別の形態例を示す。例えば合流式下水道の雨水吐き室やポンプ場などの雨天時下水道越流水排除施設511からの雨天時下水道越流水に対して消毒剤の添加を行う場合には、放流口508に達するまでの十分な時間を確保できないことがある。この場合に、雨天時下水道越流水排除施設511の上流の下水道管渠513に注入点514を設けて、ここに固体臭素系消毒剤を添加することで、消毒剤が被処理水に添加されてから放流口に達するまでの時間を確保する。但し、この場合には、消毒剤が添加された下水の一部が下水処理場512に流入することになる。そこで、消毒剤が添加された下水が下水処理場512に達する迄に残留ハロゲン濃度が低減しない場合には、その途中に脱ハロゲン剤添加装置510を設置して、亜硫酸ナトリウムなどの還元剤を添加することにより、残留ハロゲンの中和を行うことができる。   FIG. 36 shows still another embodiment. For example, when adding a disinfectant to rainwater sewer stormwater overflow facilities 511 such as a rainwater spout chamber or pumping station of a combined sewer, it is sufficient to reach the outlet 508. Time may not be secured. In this case, the pouring point 514 is provided in the sewer pipe 513 upstream of the sewer stormwater overflow drainage facility 511, and the solid bromine-based disinfectant is added thereto so that the disinfectant is added to the treated water. The time to reach the discharge outlet from is secured. However, in this case, a part of the sewage to which the disinfectant is added flows into the sewage treatment plant 512. Therefore, in the case where the residual halogen concentration does not decrease until the sewage to which the disinfectant is added reaches the sewage treatment plant 512, a dehalogenating agent adding device 510 is installed on the way and a reducing agent such as sodium sulfite is added. By doing so, the residual halogen can be neutralized.

固体の臭素系消毒剤を固体のままで処理対象の雨天時下水道越流水に投入して消毒を行う方式の消毒装置の他の構成例を図37に示す。消毒剤貯留槽551には、粉末状又は顆粒状の固体の臭素系消毒剤559が収容されている。消毒剤559は、注入量制御装置558が接続された注入装置552で計量され、消毒剤移送配管553を介して、流路557内の雨天時下水道越流水に投入され、消毒がされた後、放流口508より公共水域に放流される。   FIG. 37 shows another configuration example of a disinfecting apparatus in which a solid bromine-based disinfectant is put into a sewer stormwater overflow to be treated in a solid state to disinfect. The disinfectant storage tank 551 stores a powdery or granular solid bromine-based disinfectant 559. The disinfectant 559 is measured by the injection device 552 to which the injection amount control device 558 is connected, and is put into the sewer stormwater overflow in the flow path 557 via the disinfectant transfer pipe 553 and is disinfected. It is discharged into the public water area from the outlet 508.

図38に他の構成例を示す。消毒剤貯留槽551には、粉末状又は顆粒状の固体の臭素系消毒剤559が収容されている。消毒剤559は、注入量制御装置558が接続された注入装置552で計量され、消毒剤移送配管553に送られる。消毒剤移送配管553の末端は、消毒剤混合装置554に接続されており、消毒剤混合装置554に供給された消毒剤559は、混合装置554内で、流路557を流れる雨天時下水道越流水に投入され、混合される。また、貯留槽551と注入量制御装置552には、乾燥空気供給装置555から乾燥空気が注入される。これにより、貯留槽551と注入量制御装置552の内部を常に乾燥状態且つ加圧状態に保つことができる。更に、貯留槽551及び注入量制御装置552の内部の気圧を一定の加圧状態に保つために、乾燥空気供給装置555と貯留槽551及び注入量制御装置552との間に圧力調整装置560を配置することができる。貯留槽551及び注入量制御装置552からの排気は、除塵装置556によって排気中の消毒剤を除去した後に大気中に排出する。消毒剤混合装置554から排出された消毒処理水に対して、還元剤添加混合装置561によって還元剤を添加して、残留ハロゲンの中和処理を行ってから放流口508から放流することもできる。消毒剤混合装置554としては、消毒剤を消毒対象水と消毒可能な状態まで混合する機能を有する装置であればよい。例えば、迂流壁を有する水路、管路又は槽、気体供給機と連結する散気装置、超音波発生装置、回転翼を有する撹拌装置、レジューサ若しくはポンプなどを用いることができる。   FIG. 38 shows another configuration example. The disinfectant storage tank 551 stores a powdery or granular solid bromine-based disinfectant 559. The disinfectant 559 is measured by the injection device 552 to which the injection amount control device 558 is connected, and is sent to the disinfectant transfer pipe 553. The end of the disinfectant transfer pipe 553 is connected to the disinfectant mixing device 554, and the disinfectant 559 supplied to the disinfectant mixing device 554 passes through the sewer stormwater overflow flowing through the flow path 557 in the mixing device 554. And mixed. Also, dry air is injected into the storage tank 551 and the injection amount control device 552 from the dry air supply device 555. Thereby, the inside of the storage tank 551 and the injection amount control device 552 can always be kept in a dry state and a pressurized state. Further, in order to keep the air pressure inside the storage tank 551 and the injection amount control device 552 in a constant pressurized state, a pressure adjusting device 560 is provided between the dry air supply device 555 and the storage tank 551 and the injection amount control device 552. Can be arranged. The exhaust from the storage tank 551 and the injection amount control device 552 is discharged into the atmosphere after the disinfectant in the exhaust is removed by the dust removing device 556. It is also possible to add a reducing agent to the sterilized water discharged from the disinfectant mixing device 554 by the reducing agent addition mixing device 561 to neutralize residual halogen, and then discharge it from the outlet 508. The disinfectant mixing device 554 may be any device having a function of mixing the disinfectant with the disinfecting target water until it can be disinfected. For example, a water channel having a bypass wall, a pipe or tank, an air diffuser connected to a gas supply device, an ultrasonic generator, an agitator having a rotating blade, a reducer or a pump can be used.

次に、本発明において固体臭素系消毒剤の注入量を制御する方法について説明する。固体臭素系消毒剤などのハロゲン系消毒剤の使用量は少ない方が環境や人類に与える影響が少なく、好ましいことは言うまでもない。しかしながらこれまでは、安全対策上の見地から、病原菌の十分な消毒効果を達成・維持するために、本来必要である消毒剤有効成分濃度を越える過剰な消毒剤を用いてきたのが実情である。   Next, a method for controlling the injection amount of the solid bromine-based disinfectant in the present invention will be described. Needless to say, the use of a halogen-based disinfectant such as a solid bromine-based disinfectant has less influence on the environment and mankind and is preferable. However, until now, from the viewpoint of safety measures, in order to achieve and maintain a sufficient disinfecting effect of pathogenic bacteria, it has been the actual situation that an excessive disinfectant exceeding the concentration of the active ingredient of the disinfectant originally necessary has been used. .

しかし、公共水域に放流される消毒処理後の排水中の残留ハロゲン濃度が高すぎる場合には、公共水域及びその周辺に生育する水棲生物や動植物などの生態系に悪影響を及ぼすことが明らかになるにつれ、適正な消毒剤濃度を排水に添加することが必要であるとの認識を有するに至った。   However, it is clear that if the residual halogen concentration in the wastewater after disinfection discharged into public water areas is too high, it adversely affects ecosystems such as aquatic organisms and animals and plants that grow in and around public water areas. As a result, it has been recognized that it is necessary to add an appropriate concentration of disinfectant to the waste water.

ところで、本発明が処理対象とする雨天時下水道越流水は、非常に短時間で水質が激しく変動するので、適正な消毒剤濃度を決定することが非常に困難である。すなわち、雨天時下水道越流水の水質は、降雨の状況により瞬時に大きく変動し、汚水濃度が高く且つ還元性の有機物濃度及び/又は無機物濃度が高い場合と、雨水による希釈が進んで汚水濃度が低下し且つ還元性の有機物濃度及び/又は無機物濃度が低下した場合では、消毒剤の必要量が大きく異なり、水質変動に応じた適切な最少量の消毒剤の添加を行うことが困難である、という問題がある。   By the way, the sewer stormwater overflow to be treated by the present invention has a drastic fluctuation in water quality in a very short time, so it is very difficult to determine an appropriate disinfectant concentration. In other words, the quality of sewer stormwater overflow varies greatly depending on the rainfall conditions, and when the sewage concentration is high and the concentration of reducing organic and / or inorganic substances is high, dilution with rainwater proceeds and the sewage concentration increases. When the reduced and reducing organic and / or inorganic concentrations are reduced, the required amount of disinfectant varies greatly, and it is difficult to add an appropriate minimum amount of disinfectant according to water quality fluctuations. There is a problem.

そこで、本発明においては、排水の水質変動に応じて、適正な消毒効果を発揮し且つ残留ハロゲンを発生させないような消毒剤の適正量を求め、この最少必要量の消毒剤を被処理液中に添加することができる。   Therefore, in the present invention, an appropriate amount of the disinfectant that exhibits an appropriate disinfecting effect and does not generate residual halogen according to the water quality fluctuation of the waste water is obtained, and this minimum amount of disinfectant is contained in the liquid to be treated. Can be added.

以下に、本発明において消毒剤の注入量を制御する一つの方法の技術思想を具体例に基づいて説明する。以下の説明は、一具体例を挙げて説明しているもので、本発明はこの記載に限定されるものではない。まず、既設の下水処理施設において、降雨時の種々の時点における合流式下水道越流水を採水してビーカにとり、消毒剤としてBCDMHを用い、消毒剤添加量を3ppm(=mg/L)としてビーカに加えて、90秒間消毒処理を行った。降雨開始後の経過時間と消毒処理後の処理水中の大腸菌群数との関係を求めた。結果を図39に示す。   Below, the technical idea of one method for controlling the injection amount of the disinfectant in the present invention will be described based on specific examples. The following description is given with a specific example, and the present invention is not limited to this description. First, in an existing sewage treatment facility, the combined sewer overflow at various times during the rain is sampled into a beaker, BCDMH is used as the disinfectant, and the disinfectant addition amount is 3 ppm (= mg / L). In addition, the sterilization treatment was performed for 90 seconds. The relationship between the elapsed time after the start of rainfall and the number of coliform bacteria in the treated water after disinfection was obtained. The results are shown in FIG.

図39から、降雨後30分経過(A時点)では消毒処理後の大腸菌群数が9000CFU/mL、降雨後45分経過(B時点)では消毒処理後の大腸菌群数が4700CFU/mLであり、いずれも消毒目標値(水質汚濁防止法に定める放流基準値:3000CFU/mL以下)を満足しない。降雨後1時間30分経過(C時点)で消毒後の大腸菌群数は10CFU/mL未満となり、消毒目標値以下になったことが分かる。これは、降雨の継続に従って雨天時下水の性状が変化することにより、同じ消毒剤添加量(3ppm)であっても消毒効果が異なり、消毒剤過剰又は消毒剤過小の状態が生じることを示している。即ち、降雨開始直後は、下水中の大腸菌群が高い濃度で流出するため、これを十分に消毒処理するためには多量の消毒剤が必要となるが、降雨開始からある程度時間が経過した時点では、雨水によって汚水が希釈されて排水中の大腸菌群数が減少するため、消毒処理に必要な消毒剤の量が少なくなる。   From FIG. 39, the number of coliforms after disinfection is 9000 CFU / mL after 30 minutes after rain (A time point), and the number of coliform groups after disinfection is 4700 CFU / mL after 45 minutes after rain (time B). Neither of them satisfies the disinfection target value (release standard value stipulated in the Water Pollution Control Law: 3000 CFU / mL or less). It can be seen that the number of coliform bacteria after sterilization became less than 10 CFU / mL after 1 hour and 30 minutes after raining (time point C), which was below the sterilization target value. This shows that the disinfection effect is different even if the amount of sewage in rainy weather changes as rain continues, even if the same disinfectant addition amount (3 ppm), and the disinfectant excess or disinfectant understate occurs. Yes. That is, immediately after the start of rainfall, coliform bacteria in the sewage flow out at a high concentration, so a large amount of disinfectant is necessary to fully disinfect this, but at the time when a certain amount of time has passed since the start of rainfall. Since sewage is diluted by rainwater and the number of coliforms in the wastewater is reduced, the amount of disinfectant required for disinfection is reduced.

次に、降雨開始から0.5時間経過後(図39のA点)の合流式下水道越流水を採水したものをビーカにとり、BCDMHを種々の添加率で加えて90秒間消毒処理を行い、処理水中の大腸菌群数を計測した。結果を図40に示す。BCDMH添加率が2ppmでは、消毒処理後の大腸菌群数は104CFU/mL以上であり、消毒目標値である3000CFU/mLを満足しない。処理水中の消毒処理後の大腸菌群数は、BCDMH添加率が4ppmでは3000CFU/mLを僅かに超える程度となり、BCDMH添加率が6ppmでは100CFU/mL以下となり、消毒目標値を大きく下回った。以上のことから、この時点の下水道越流水の消毒には、4.2〜4.3ppm程度の添加率でBCDMHを加えることが必要なことが分かる。Next, 0.5 hours after the start of rainfall (point A in FIG. 39), the collected sewage overflow water was collected into a beaker, BCDMH was added at various addition rates, and sterilization was performed for 90 seconds. The number of coliforms in the treated water was counted. The results are shown in FIG. When the BCDMH addition rate is 2 ppm, the number of coliform bacteria after disinfection is 10 4 CFU / mL or more, which does not satisfy the disinfection target value of 3000 CFU / mL. The number of coliforms after disinfection in the treated water was slightly over 3000 CFU / mL at a BCDMH addition rate of 4 ppm, and was below 100 CFU / mL at a BCDMH addition rate of 6 ppm, which was well below the target disinfection value. From the above, it can be understood that BCDMH needs to be added at an addition rate of about 4.2 to 4.3 ppm for disinfection of sewer overflows at this point.

更に、降雨開始から45分経過後(図39のB点)及び1.5時間経過後(図39のC点)についても同様に、BCDMH添加率と、90秒消毒処理後の大腸菌群数との関係を調べ、結果を図41及び図42に示した。これらの図より、B点(降雨45分経過後)では、下水道越流水の消毒に必要なBCDMH添加率は3.5〜3.6ppm程度、C点(降雨1.5時間経過後)では、下水道越流水の消毒に必要なBCDMH添加率は1.6〜1.7ppm程度であることが分かる。   Further, after 45 minutes from the start of rainfall (point B in FIG. 39) and after 1.5 hours (point C in FIG. 39), the BCDMH addition rate and the number of coliforms after 90 seconds of disinfection were similarly determined. The results are shown in FIG. 41 and FIG. From these figures, at point B (after 45 minutes of rainfall), the BCDMH addition rate required for disinfection of sewer overflow water is about 3.5 to 3.6 ppm, and at point C (after 1.5 hours of rainfall), It can be seen that the BCDMH addition rate required for disinfection of sewer overflows is about 1.6 to 1.7 ppm.

次に、図39でのA点(降雨後30分経過)、B点(降雨後45分経過)及びC点(降雨後1.5時間経過)での合流式下水道越流水を採水したものをビーカにとり、BCDMHを図39の実験と同じ添加率3ppmで加え、BCDMH添加後の経過時間と処理水中の残留ハロゲン濃度との関係を調べた。結果を図43に示す。A点(降雨後30分経過)では、消毒剤添加直後ですでに残留ハロゲン濃度は0.1mg/L asCl2未満であり、図39の結果と併せて考えると、BCDMH添加率3ppmでは被処理液の消毒効果は充分でないといえる。B点(降雨後45分経過)では、消毒剤添加後約20秒で残留ハロゲン濃度が約0.1mg/L as Cl2であり、100秒でほぼ0mg/L as Cl2に近いことがわかる。図39の結果(消毒時間90秒で大腸菌群数が4700CFU/mL)と併せて考えると、B時点での消毒剤添加量3ppmは、必要量よりも未だ若干少ないといえる。また、C時点では、消毒剤添加後約20秒では残留ハロゲン濃度が0.3mg/L as Cl2強と高く、約150秒まで徐々に低下するが、約150秒以降は約0.1mg/L as Cl2強で安定(消毒作用の飽和)している。これより、C時点(降雨後1.5時間)での消毒剤の添加量3ppmは過剰で、消毒処理後に残留ハロゲンが残存してしまったことがわかる。Next, sampled sewage overflow water at point A (30 minutes after rain), point B (45 minutes after rain) and point C (1.5 hours after rain) in FIG. In a beaker, BCDMH was added at the same addition rate of 3 ppm as in the experiment of FIG. 39, and the relationship between the elapsed time after addition of BCDMH and the residual halogen concentration in the treated water was examined. The results are shown in FIG. At point A (30 minutes after the rain), the residual halogen concentration is already less than 0.1 mg / L asCl 2 immediately after the disinfectant is added, and considering the results in FIG. It can be said that the disinfection effect of the liquid is not sufficient. At point B (45 minutes after rain), the residual halogen concentration is about 0.1 mg / L as Cl 2 after about 20 seconds after adding the disinfectant, and it is close to almost 0 mg / L as Cl 2 after 100 seconds. . When considered together with the result of FIG. 39 (disinfection time 90 seconds and the number of coliforms is 4700 CFU / mL), it can be said that the amount of disinfectant addition 3 ppm at time B is still slightly less than the required amount. In addition, at time C, the residual halogen concentration is as high as 0.3 mg / L as Cl 2 at about 20 seconds after addition of the disinfectant and gradually decreases to about 150 seconds, but after about 150 seconds, it is about 0.1 mg / L. L as Cl 2 is strong and stable (saturation of disinfection action). From this, it can be seen that the amount of addition of 3 ppm of the disinfectant at the time point C (1.5 hours after the rain) was excessive, and residual halogen remained after the disinfection treatment.

これらの結果を踏まえて、当該下水処理施設の雨天時下水の処理においては、消毒剤処理後の残留ハロゲン濃度を、消毒目標値を確実に達成するための多少の余裕を見て、図43でのB線とC線のほぼ中間地点に設定すればよい。即ち、図43から、BCDMH添加後20秒の時点で残留ハロゲン濃度を0.2mg/L as Cl2に設定すればよい。実際の消毒処理に当たっては、定期的に排水のサンプルを採り、所定濃度の消毒剤を入れて残留ハロゲン濃度の減少程度を測定する。これが上記で設定した設定値(上記の場合には消毒剤添加後20秒で残留ハロゲン濃度0.2mg/L as Cl2)よりも高い場合には、排水への消毒剤の投入量を排水サンプルに投入した濃度よりも低い値に調整し、逆に残留ハロゲン濃度の減少程度が設定値よりも低い場合には消毒剤投入量を排水サンプルに投入した濃度よりも高い値に調整する。この作業を定期的に繰り返して、排水への消毒剤の投入量を経時的に制御することにより、消毒剤投入量を、充分な消毒効果が得られ且つ残留ハロゲンが生じない最適値に維持することが可能になる。なお、サンプルに投入する消毒剤の濃度は、その時点で排水中にに実際に投入している濃度とすることが好ましい。このようにすれば、消毒剤投入濃度の大きな変動を防ぐことができ、より緻密な制御が可能となるからである。また、サンプルにおいて測定された残留ハロゲン濃度の減少程度と設定値との差から、実際に排水中に投入する濃度をどの程度増減させればよいかについては、当業者が経験的に決定することができる。Based on these results, in the rainwater treatment of the sewage treatment facility, the residual halogen concentration after the disinfectant treatment is shown in FIG. 43 with some allowance for surely achieving the disinfection target value. What is necessary is just to set to the substantially halfway point of B line and C line. That is, from FIG. 43, the residual halogen concentration may be set to 0.2 mg / L as Cl 2 20 seconds after the addition of BCDMH. In actual disinfection treatment, drainage samples are taken periodically, a predetermined concentration of disinfectant is added, and the degree of decrease in residual halogen concentration is measured. If this is higher than the set value set above (in this case, the residual halogen concentration 0.2 mg / L as Cl 2 20 seconds after adding the disinfectant), the amount of disinfectant input to the wastewater is set to the drainage sample. The concentration is adjusted to a value lower than the concentration input to the sample, and conversely, if the degree of decrease in the residual halogen concentration is lower than the set value, the disinfectant input amount is adjusted to a value higher than the concentration input to the drainage sample. By periodically repeating this operation and controlling the amount of disinfectant input to the waste water over time, the amount of disinfectant input is maintained at an optimum value at which a sufficient disinfecting effect is obtained and no residual halogen is generated. It becomes possible. Note that the concentration of the disinfectant to be added to the sample is preferably set to the concentration actually input into the waste water at that time. This is because a large variation in the concentration of the disinfectant can be prevented and more precise control can be performed. In addition, from the difference between the decrease in residual halogen concentration measured in the sample and the set value, the person skilled in the art will empirically determine how much the concentration actually put into the wastewater should be increased or decreased. Can do.

なお、図39、図43の曲線は、対象となる下水処理設備が同じであれば、多少の変動はあるがほぼ同様の傾向を示す。したがって、処理対象の下水処理設備において、図39、図43のようなグラフを作成して残留ハロゲン濃度の減少程度の目標値を設定すれば、以降の降雨時には、この設定値に基づいて雨天時下水に対する消毒剤添加量の制御を行うことができる。   Note that the curves in FIGS. 39 and 43 show almost the same tendency although there are some fluctuations if the target sewage treatment facilities are the same. Therefore, in the sewage treatment facility to be treated, if graphs as shown in FIG. 39 and FIG. 43 are created and a target value for reducing the residual halogen concentration is set, then it will be rained on the basis of this set value during subsequent rainfall. The amount of disinfectant added to the sewage can be controlled.

この技術思想に基づいて構成した本発明の一態様に係る雨天時下水道越流水の消毒装置の構成例を図44に示す。   FIG. 44 shows a configuration example of a sewage overflow water disinfection device according to one embodiment of the present invention configured based on this technical idea.

図44に示す消毒装置は、被処理液(雨天時下水道越流水)601の導入ライン602と、消毒槽(沈砂池)603と、被処理液に消毒剤を導入するための消毒剤導入手段604とを備える。消毒剤導入手段としては、上述の種々の形態の消毒剤供給装置を用いることができる。消毒剤導入手段604は、消毒槽603の上流のライン602中に導入してもよいし、或いは消毒槽603に直接投入してもよい。上記に説明したように、消毒槽(沈砂池)603を設けずに雨天時下水道越流水の流路中に消毒剤を投入してもよい。また、被処理液導入ライン602の途中に、試験用の被処理液サンプルを採取するための分取ライン612が接続されている。分取ライン612には、揚水ポンプ616が接続されている。   The disinfection apparatus shown in FIG. 44 includes an introduction line 602 for a liquid to be treated (sewer stormwater overflow) 601, a disinfection tank (sedimentation basin) 603, and a disinfectant introduction means 604 for introducing a disinfectant into the liquid to be treated. With. As the disinfectant introduction means, the disinfectant supply devices in various forms described above can be used. The disinfectant introduction means 604 may be introduced into the line 602 upstream of the disinfection tank 603 or may be directly introduced into the disinfection tank 603. As described above, the disinfectant may be introduced into the flow path of the sewer stormwater overflow without providing the disinfection tank (sedimentation basin) 603. In addition, a sorting line 612 for collecting a test liquid sample to be tested is connected in the middle of the liquid to be processed introduction line 602. A pumping pump 616 is connected to the sorting line 612.

本発明による消毒方法を実施するためには、まず、準備段階として、処理対象となる雨天時下水道越流水排除施設において、降雨時に、降雨開始から種々の時間が経過した後の複数の越流水サンプルを採取して、これに適当量の消毒剤を加えて消毒後の大腸菌群数を測定することによって、降雨後の経過時間と消毒後の大腸菌群数との関係(図39のグラフ)と、消毒剤添加後の経過時間と被処理水の残留ハロゲン濃度との関係(図43のグラフ)を作成して、これらの関係から、目標とすべき残留ハロゲン減少程度の値を設定しておく。例えば、図39及び図43に示す関係が得られた場合には、上記に説明したように、消毒剤添加後20秒で残留ハロゲン濃度0.2mg/L as Cl2という目標値が設定される。In order to carry out the disinfection method according to the present invention, first, as a preparatory stage, in a sewer stormwater overflow drainage facility to be treated, a plurality of overflow water samples after various times have elapsed since the start of rainfall during rainfall. , And by adding an appropriate amount of disinfectant to this and measuring the number of coliform bacteria after disinfection, the relationship between the elapsed time after rainfall and the number of coliform bacteria after disinfection (graph of FIG. 39), A relationship (graph of FIG. 43) between the elapsed time after adding the disinfectant and the residual halogen concentration of the water to be treated is created, and from these relationships, a value of the degree of residual halogen reduction to be targeted is set. For example, when the relationship shown in FIG. 39 and FIG. 43 is obtained, as described above, a target value of a residual halogen concentration of 0.2 mg / L as Cl 2 is set 20 seconds after the addition of the disinfectant. .

雨天時下水道越流水の消毒は、消毒剤導入手段604から適当量の消毒剤を投入して、消毒槽603で処理することによって行うが、本発明方法においては、消毒剤を添加する前の被処理液を、周期的にライン612よりサンプリングする。サンプリングされた被処理液は、モニタリング槽613に収容され、ここで所定量の濃度の消毒剤614が添加され、撹拌機(図示せず)によって混合撹拌される。モニタリング槽に加える消毒剤の濃度は、緻密な濃度制御を可能にするためには、その時点で消毒剤導入手段604によって被処理液中に実際に供給されている消毒剤の濃度とすることが好ましい。モニタリング槽613には、被処理液中の残留ハロゲン濃度を測定する測定器615が接続されており、消毒剤添加後の残留ハロゲン濃度の数値を継時的に測定する。この目的で用いることのできる残留ハロゲン濃度測定器としては、例えば、ポーラログラフ方式による遊離塩素計(例えば、東亜ディーケーケー(株)製造の製品名CLM−37又はCLM−22)などを挙げることができる。測定された残留ハロゲン濃度値は記録計618によって記録される。そして、当該雨天時下水道越流水排除施設に関して、予め設定されている目標値と、モニタリング槽613において測定された値とを比較する。例えば、当該下水処理設備に関して図39及び図43のグラフが得られている場合には、設定値は消毒剤添加後20秒で残留ハロゲン濃度が0.2mg/L as Cl2という値であるので、モニタリング槽613で消毒剤が添加された被処理水サンプルの、消毒剤添加後20秒における残留ハロゲン濃度を測定する。そして、この値が設定値である0.2mg/L as Cl2よりも高い場合には、消毒剤導入手段604から投入する消毒剤の濃度を減少させ、逆に0.2mg/L as Cl2よりも低い場合には、消毒剤導入手段604から投入する消毒剤の濃度を増加させる。この消毒剤投入濃度の制御は、予め設定した残留ハロゲン濃度減少程度の目標値を入力したコンピュータ(図示せず)に、残留ハロゲン濃度測定器615での測定値を通信ライン604を通してインプットし、設定値と測定値との比較結果に応じて投入消毒剤量を制御する自動制御装置(図示せず)を用いることにより、自動的に行うことができる。残留ハロゲン濃度減少程度の測定が完了した被処理水サンプルは、戻しライン617を介して被処理液導入ライン602に戻し、被処理液と共に消毒槽603に導入する。消毒槽603では、消毒剤が加えられた被処理液が短い場合には1分以内、長い場合には10分以内滞留されて、消毒剤との反応が進められる。消毒処理が行われた被処理水は、ポンプ606により揚水されて、排水路607を介して、公共水域608に放流される。Disinfection of sewer stormwater overflow is performed by adding an appropriate amount of disinfectant from the disinfectant introduction means 604 and processing in the disinfecting tank 603. In the method of the present invention, the amount of disinfectant before the disinfectant is added. The processing liquid is periodically sampled from line 612. The sampled liquid to be treated is stored in a monitoring tank 613, where a predetermined amount of a disinfectant 614 is added and mixed and stirred by a stirrer (not shown). The concentration of the disinfectant added to the monitoring tank may be the concentration of the disinfectant actually supplied to the liquid to be treated by the disinfectant introduction unit 604 at that time in order to enable precise concentration control. preferable. The monitoring tank 613 is connected to a measuring device 615 for measuring the residual halogen concentration in the liquid to be treated, and continuously measures the numerical value of the residual halogen concentration after adding the disinfectant. Examples of the residual halogen concentration measuring instrument that can be used for this purpose include a polarographic free chlorine meter (for example, product name CLM-37 or CLM-22 manufactured by Toa DKK Co., Ltd.). The measured residual halogen concentration value is recorded by a recorder 618. And regarding the said sewer stormwater overflow drainage facility, the preset target value and the value measured in the monitoring tank 613 are compared. For example, when the graphs of FIG. 39 and FIG. 43 are obtained for the sewage treatment facility, the set value is 20 mg after adding the disinfectant and the residual halogen concentration is 0.2 mg / L as Cl 2 . In the monitoring tank 613, the residual halogen concentration of the treated water sample to which the disinfectant is added is measured 20 seconds after the disinfectant is added. When this value is higher than the set value of 0.2 mg / L as Cl 2 , the concentration of the disinfectant introduced from the disinfectant introduction means 604 is decreased, and conversely 0.2 mg / L as Cl 2. If lower, the concentration of the disinfectant introduced from the disinfectant introduction means 604 is increased. The disinfectant input concentration is controlled by inputting the measured value of the residual halogen concentration measuring device 615 through the communication line 604 to a computer (not shown) that has input a target value for reducing the residual halogen concentration set in advance. This can be done automatically by using an automatic control device (not shown) that controls the amount of the input disinfectant according to the comparison result between the value and the measured value. The treated water sample for which the measurement of the residual halogen concentration reduction degree is completed is returned to the treated liquid introduction line 602 via the return line 617 and introduced into the disinfection tank 603 together with the treated liquid. In the disinfection tank 603, the liquid to be treated to which the disinfectant is added is retained within 1 minute when the liquid to be treated is short, and within 10 minutes when it is long, and the reaction with the disinfectant is advanced. The treated water that has been subjected to the disinfection treatment is pumped by the pump 606 and discharged into the public water area 608 through the drainage channel 607.

なお、被処理液サンプルは、消毒剤投入位置よりも上流から採取することが好ましい。消毒剤投入位置よりも下流からサンプルを採取する、即ち消毒剤が添加されている被処理液をサンプルとして採取すると、消毒途中のある時点での残留ハロゲン濃度を測定することになるが、図43に示したように、残留ハロゲン濃度は消毒剤添加後の経過時間に極めて敏感に依存して変化するので、これでは適切な制御はできないからである。   In addition, it is preferable to collect a liquid sample to be processed from the upstream of the disinfectant input position. When a sample is collected from the downstream of the disinfectant input position, that is, when the liquid to be treated to which the disinfectant is added is collected as a sample, the residual halogen concentration at a certain point during the disinfection is measured. This is because the residual halogen concentration changes very sensitively depending on the elapsed time after the addition of the disinfectant, and thus cannot be controlled appropriately.

この態様によれば、上記のモニタリング操作を、定期的、例えば1分〜60分毎、好ましくは5分〜20分毎に行い、その結果に応じて消毒剤の添加濃度を調整する。これによって、特に時間の経過によってその性状が大きく変動する雨天時越流水の消毒処理に際して、充分な消毒効果を与えると共に、残留ハロゲンを公共用水域に放出することのない、適切な消毒剤添加濃度を維持することが可能になる。   According to this aspect, the above monitoring operation is performed periodically, for example, every 1 to 60 minutes, preferably every 5 to 20 minutes, and the concentration of the disinfectant added is adjusted according to the result. As a result, an appropriate disinfectant concentration that gives sufficient disinfecting effects and does not release residual halogens into public water areas, especially when disinfecting rainwater overflowing water, whose properties vary greatly over time. Can be maintained.

なお、雨天時下水道越流水の消毒においては、消毒剤の添加量は、消毒剤の種類や越流水の性状などによっても変化するが、一般に1〜10mg/L(ppm)、好ましくは2〜6mg/Lであり、本発明においても、この範囲内で消毒剤添加量を制御することが好ましい。   In addition, in disinfection of sewer stormwater overflow, the amount of disinfectant added varies depending on the type of disinfectant and the nature of the overflow water, but generally 1 to 10 mg / L (ppm), preferably 2 to 6 mg. In the present invention, it is preferable to control the addition amount of the disinfectant within this range.

上述したように、消毒槽603は、特別な反応槽でなくても、雨天時下水道越流水の流路であってもよく、固体臭素系消毒剤による消毒に必要な接触時間を取れればよい。ここで、固体臭素系消毒剤による消毒に必要な接触時間とは、処理対象の雨天時下水道越流水の最大越流量を設定し、少なくとも20秒、できれば30秒、更に好ましくは60秒とすればよい。また、処理対象の雨天時下水道越流水の最大越流量の設定方法は、次のようにするのが合理的である。下水道において越流水が生じるのは、合流式下水道における大量の雨天時、若しくは分流式下水道における不明水やマンホール等から雨水が大量に混入した場合である。下水道への雨水の流入は、降雨状況によって大きく変化する。つまり、台風や集中豪雨などの場合には浸水被害が出たり、河川の氾濫が生じることまである。本発明は、このような極端に大量の降雨の場合を想定するものではない。なぜなら、このような場合の雨天時下水道越流水の水質は、雨水と殆ど同じ清澄な水となり、消毒が必要ではなくなるからである。様々な調査を通じて、処理対象としての雨天時下水道越流水の最大越流量は、晴天時下水量の20倍から10倍に設定することが望ましい。このように、処理対象の雨天時下水道越流水の量を明確にし、固体臭素系消毒剤の接触時間を設定することにより、消毒槽若しくは雨天時下水道越流水流路の大きさを決定することができる。   As described above, the disinfection tank 603 may not be a special reaction tank, but may be a sewer stormwater overflow channel, as long as it has a contact time required for disinfection with a solid bromine-based disinfectant. Here, the contact time required for disinfection with the solid bromine-based disinfectant is set to the maximum overflow flow rate of the sewer stormwater overflow to be treated, at least 20 seconds, preferably 30 seconds, more preferably 60 seconds. Good. In addition, it is reasonable to set the maximum overflow rate of sewer stormwater overflow to be treated as follows. Overflow water is generated in the sewerage system when there is a large amount of rain in the combined sewerage system or when a large amount of rainwater is mixed from unknown water or manholes in the sewerage system. The inflow of rainwater into the sewer varies greatly depending on the rainfall conditions. In other words, in the case of a typhoon or heavy rain, flooding may occur or rivers may overflow. The present invention does not assume such an extremely large amount of rainfall. This is because the quality of sewer stormwater overflow is almost the same as that of rainwater, and disinfection is not necessary. Through various surveys, it is desirable to set the maximum overflow rate of sewer stormwater overflow as a treatment target to 20 to 10 times the amount of clear sewage. Thus, by clarifying the amount of sewer stormwater overflow to be treated and setting the contact time of the solid bromine-based disinfectant, it is possible to determine the size of the disinfection tank or sewer stormwater overflow channel it can.

また、図44で示す雨天時下水道越流水消毒装置によって消毒剤が添加された処理水の残留ハロゲン濃度を測定し、残留ハロゲン濃度が高い場合には、還元剤を加えて中和を行った後に放流することが好ましい。図45に示すシステムは、図44の消毒槽603の下流の消毒剤が添加された雨天時下水道越流水に対する処理方法を示す。消毒剤が添加された雨天時下水道越流水は、消毒槽603から排水流路に誘導される。ここで、残留ハロゲン濃度検出計623によって処理水の残留ハロゲン濃度を測定し、残留ハロゲン濃度が高い場合には、還元剤621を投入し、還元槽622で残留ハロゲンの中和を行った後に、排水路607を介して公共水域608に放流する。なお、還元剤621は、図45に示すように排水流路620に直接投入してもよいし、還元槽622に投入してもよい。また、還元槽622を設けずに、排水流路607中で中和が行われるようにしてもよい。還元剤の添加量は、残留ハロゲン濃度の設定値(先の例では0.2mg/L)に対して化学的に等量であれば十分である。なぜならば、実際の消毒処理後の残留ハロゲン濃度は、設定値より低い値になるからである。更に、ハロゲン検出計623を、図44に示す消毒剤導入手段と連動させて、排水流路620中の被処理水中の残留ハロゲン濃度が高い場合には、投入する消毒剤の量を制御することもできる。このようにすれば、固体臭素系消毒剤の添加量を最小にし、且つ、還元剤添加量を過剰にすることなく、ハロゲンの無害化が達成される。   In addition, when the residual halogen concentration of the treated water to which the disinfectant is added is measured by the sewer overflow water disinfecting apparatus shown in FIG. 44 and the residual halogen concentration is high, the neutralizing is performed by adding the reducing agent. It is preferable to discharge. The system shown in FIG. 45 shows a treatment method for sewer stormwater overflow to which a disinfectant downstream of the disinfection tank 603 of FIG. 44 is added. The sewer stormwater overflow to which the disinfectant is added is guided from the disinfection tank 603 to the drainage channel. Here, the residual halogen concentration of the treated water is measured by the residual halogen concentration detector 623. When the residual halogen concentration is high, the reducing agent 621 is added and the residual halogen is neutralized in the reduction tank 622. It is discharged into a public water area 608 through a drainage channel 607. Note that the reducing agent 621 may be input directly into the drainage channel 620 as shown in FIG. 45 or may be input into the reducing tank 622. Further, neutralization may be performed in the drainage channel 607 without providing the reduction tank 622. It is sufficient that the amount of the reducing agent added is chemically equivalent to the set value of the residual halogen concentration (0.2 mg / L in the previous example). This is because the residual halogen concentration after the actual disinfection process is lower than the set value. Furthermore, the halogen detector 623 is linked with the disinfectant introduction means shown in FIG. 44 to control the amount of disinfectant to be introduced when the residual halogen concentration in the water to be treated in the drainage channel 620 is high. You can also. In this way, halogen addition can be made harmless by minimizing the addition amount of the solid bromine-based disinfectant and without increasing the addition amount of the reducing agent.

また、本発明に係る雨天時下水道越流水の消毒システムにおいて、処理地域の降雨情報から、降雨開示時刻、降雨総量、降雨継続時間の予測を行い、この予測値に基づいて消毒剤の添加量を制御することができる。   Further, in the disinfection system for sewer stormwater overflow according to the present invention, the rainfall disclosure time, the total amount of rainfall, and the rainfall duration time are predicted from the rainfall information of the treatment area, and the addition amount of the disinfectant is determined based on the predicted value. Can be controlled.

従来、この種の排水消毒装置の制御方法としては、排水消毒装置を設置する処理場内に設けられた測定装置により、排水の流入量及び流入汚濁負荷、降雨量、降雨強度を測定し、該測定した測定値から該排水消毒装置に流入する排水中の大腸菌群数を推定して薬剤の添加量を予測し制御していた。   Conventionally, as a control method for this type of wastewater disinfection device, the inflow amount of wastewater, the inflow pollution load, the rainfall amount, the rainfall intensity are measured by a measuring device provided in the treatment plant where the wastewater disinfection device is installed, and the measurement is performed. Based on the measured values, the number of coliforms in the wastewater flowing into the wastewater disinfection device was estimated to control and control the amount of drug added.

図46は、家庭排水や工場排水などの下水を収集する下水管路網と処理地域を示す図である。処理地域X内で発生した下水、雨水を含む下水及び地表を流下した雨水等の排水は、処理地域X内に設けられた下水管711に流入する。各下水管711に流入した排水は合流し、該合流した排水は直接下水処理場710に設けられた下水消毒装置に流入するか又は各中継ポンプP1、P2、P3により下水処理場に送水される。   FIG. 46 is a diagram showing a sewage pipe network for collecting sewage such as household wastewater and factory wastewater, and a treatment area. Wastewater such as sewage generated in the treatment area X, sewage containing rainwater, and rainwater flowing down the ground surface flows into a sewage pipe 711 provided in the treatment area X. The waste water that flows into each sewage pipe 711 joins, and the joined waste water flows directly into a sewage disinfection device provided in the sewage treatment plant 710 or is sent to the sewage treatment plant by the relay pumps P1, P2, and P3. .

本発明の一態様においては、このような下水システムにおいて、処理地域内の下水、雨水を含む下水及び地表を流下した雨水等を含む排水、特に雨天時下水道越流水を薬剤により消毒する消毒装置の制御方法において、処理地域に設けられた測定点又は該処理地域及び隣接する処理地域に設けられた測定点から降雨情報を収集し、降雨情報から処理地域内における降雨開始時刻、降雨総量及び降雨継続時間の予測を行い、該予測した降雨開始時刻、降雨総量及び降雨継続時間から薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻を予測し該排水消毒装置を制御する。   In one aspect of the present invention, in such a sewage system, a disinfecting apparatus for disinfecting sewage in a treatment area, sewage containing rainwater, drainage containing rainwater flowing down the surface of the earth, and particularly sewage overflow water in rainy weather with a chemical. In the control method, rainfall information is collected from the measurement points provided in the treatment area or measurement points provided in the treatment area and adjacent treatment areas, and the rainfall start time, the total amount of rainfall and the rainfall continuation in the treatment area are obtained from the rain information. Time prediction is performed, and the drainage disinfection device is controlled by predicting the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time from the predicted rainfall start time, total rainfall amount, and rainfall duration.

こののような消毒装置の制御方法を採用すると、処理地域に設けられた測定点又は該処理地域及び隣接する処理地域に設けられた測定点より収集された降雨情報から処理地域内における降雨開始時刻、降雨総量及び降雨継続時間のを予測するので、薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻をリアルタイムに予測することができる。   When such a method for controlling a disinfection device is adopted, the rain start time in the processing area is determined from the measurement points provided in the processing area or the rain information collected from the measurement points provided in the processing area and the adjacent processing area. Since the total amount of rainfall and the rainfall duration time are predicted, the amount of added medicine, the amount of consumed medicine, and the operation start time of the drainage disinfection device can be predicted in real time.

また、他の形態によれば、処理地域内の下水、雨水を含む下水及び地表を流下した雨水等を含む排水、特に雨天時下水道越流水を薬剤により消毒する消毒装置の制御装置において、処理地域又は該処理地域及び隣接する処理地域の降雨情報を測定する降雨情報測定手段と、降雨情報測定手段により測定された降雨情報から処理地域内における降雨開始時刻、降雨総量及び降雨継続時間の予測を行う降雨情報予測処理手段と、降雨情報予測処理手段により予測された降雨開始時刻、降雨総量及び降雨継続時間から薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻の予測を行う大腸菌群数予測処理手段を具備することができる。   Further, according to another embodiment, in the control device of the disinfection device that disinfects wastewater including wastewater including rainwater and rainwater flowing down the surface of the processing area, particularly drainage including rainwater flowing down on the surface of the ground, particularly in a rainy weather, the treatment area Or, the rainfall information measuring means for measuring the rainfall information of the processing area and the adjacent processing area, and the rainfall start time, the total amount of rainfall and the rainfall duration in the processing area are predicted from the rainfall information measured by the rain information measuring means. Rainfall information prediction processing means and coliform group number prediction processing for predicting the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time from the rain start time, the total rainfall amount, and the rain duration time predicted by the rain information prediction processing means Means can be provided.

このように排水消毒装置の制御装置は、処理地域又は該処理地域及び隣接する処理地域の降雨情報を測定する降雨情報測定手段と降雨情報から処理地域内における降雨開始時刻、降雨総量及び降雨継続時間の予測を行う降雨情報予測処理手段と降雨開始時刻、降雨総量及び降雨継続時間から薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の予測を行う大腸菌群数予測処理手段を具備するので、薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻をリアルタイムに予測することができる。   As described above, the control device of the wastewater disinfection device includes the rain information measuring means for measuring the rain information of the treatment area or the treatment area and the adjacent treatment area, and the rain start time, the total amount of rainfall, and the rainfall duration in the treatment area from the rain information. Since it has a precipitation information prediction processing means for predicting and a coliform group number prediction processing means for predicting a drug addition amount, a medicine consumption amount and a disinfection device operation start time from a rainfall start time, a total rainfall amount and a rainfall continuation time, It is possible to predict the addition amount, chemical consumption, and drainage disinfection device operation start time in real time.

他の形態によれば、上述のの消毒装置の制御装置において、降雨情報測定手段により測定された降雨情報から排水消毒装置に流入する排水の流入水量及び流入汚濁負荷を予測する地域特性シミュレーション手段と該地域特性シミュレーション手段により予測された流入水量及び流入汚濁負荷により薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻の補正をする予測値補正処理手段を具備することができる。   According to another aspect, in the above-described disinfection device control device, the regional characteristic simulation means for predicting the inflow water amount and inflow pollution load of the wastewater flowing into the wastewater disinfection device from the rain information measured by the rain information measurement means; Predicted value correction processing means for correcting the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time based on the inflow water amount and the inflow pollution load predicted by the regional characteristic simulation means can be provided.

このように地域特性シミュレーション手段により予測された流入水量及び流入汚濁負荷により薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の補正をする予測値補正処理手段を具備するので、該薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻の予測をさらに正確に行うことができる。   As described above, since it includes the predicted value correction processing means for correcting the drug addition amount, the drug consumption amount, and the disinfection device operation start time based on the inflow water amount and the inflow pollution load predicted by the regional characteristic simulation means, the drug addition amount, Prediction of chemical consumption and drainage disinfection device operation start time can be more accurately performed.

更に他の形態によれば、上述の消毒装置の制御装置において、消毒装置に流入する被処理水の流入水濁度を測定する濁度測定手段を設け、降雨情報予測処理手段により予測された降雨開始時刻、降雨総量及び降雨継続時間及び濁度測定手段により測定された流入水濁度から薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻の予測を行うことができる。   According to still another aspect, in the control device for the disinfection device described above, the turbidity measuring means for measuring the inflow turbidity of the treated water flowing into the disinfection device is provided, and the rainfall predicted by the rainfall information prediction processing means From the start time, the total amount of rainfall, the duration of rainfall, and the inflow water turbidity measured by the turbidity measuring means, it is possible to predict the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time.

このように降雨情報予測処理手段により予測された降雨開始時刻、降雨総量及び降雨継続時間及び濁度測定手段により測定された流入水濁度から薬剤添加量、薬剤消費量及び消毒装置運転開始時刻を予測するので、該薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻の予測をさらに正確に行うことができる。   Thus, the amount of added medicine, the amount of medicine consumed, and the start time of the disinfection device are calculated from the rainfall start time predicted by the rainfall information prediction processing means, the total rainfall amount and the duration of rainfall, and the inflow water turbidity measured by the turbidity measuring means. Since the prediction is made, it is possible to more accurately predict the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time.

更に他の形態によれば、処理地域内の下水、雨水を含む下水及び地表を流下した雨水等を含む排水、特に雨天時下水道越流水を薬剤により消毒する消毒装置の制御装置において、処理地域又は該処理地域及び隣接する処理地域の降雨情報を測定する降雨情報測定手段と、降雨情報測定手段により測定された降雨情報から排水消毒装置に流入する排水の流入水量及び流入汚濁負荷を予測する地域特性シミュレーション手段と、予め排水に対する薬剤添加率を設定する薬剤添加率設定手段と、地域特性シミュレーション手段により予測された流入水量、流入汚濁負荷及び薬剤添加率設定手段より設定された薬剤添加率から薬剤添加量及び薬剤消費量の予測を行う薬剤添加量算出処理手段を具備することができる。   According to yet another aspect, in the control device of the disinfection device for disinfecting wastewater including wastewater including rainwater and rainwater flowing down the surface of the treatment area, particularly drainage including rainwater flowing down the surface of the earth, particularly in the rainy weather, Rain characteristics measuring means for measuring rainfall information in the treatment area and adjacent treatment areas, and regional characteristics for predicting the amount of influent water flowing into the waste water disinfection device and the inflow pollution load from the rain information measured by the rain information measuring means Drug addition from the drug addition rate set by the simulation means, the drug addition rate setting means for preliminarily setting the drug addition rate with respect to the drainage, and the inflow water amount, the inflow pollution load and the drug addition rate setting means predicted by the regional characteristic simulation means A medicine addition amount calculation processing means for predicting the amount and the medicine consumption amount can be provided.

このように処理地域又は該処理地域及び隣接する処理地域の降雨情報を測定する降雨情報測定手段と、降雨情報から排水消毒装置に流入する排水の流入水量及び流入汚濁負荷を予測する地域特性シミュレーション手段と、予め被処理水に対する薬剤添加率を設定する薬剤添加率設定手段と、流入水量、流入汚濁負荷及び薬剤添加率から薬剤添加量及び薬剤消費量の予測を行う薬剤添加量算出処理手段を具備するので、薬剤添加量及び薬剤消費量を簡単な構成でリアルタイムに予測することができる。   In this way, the rainfall information measuring means for measuring the rainfall information of the treatment area or the treatment area and the adjacent treatment area, and the regional characteristic simulation means for predicting the amount of influent water flowing into the waste water disinfection device and the inflow pollution load from the rain information. And a chemical addition rate setting means for setting a chemical addition rate with respect to the water to be treated in advance, and a chemical addition amount calculation processing means for predicting the chemical addition amount and the chemical consumption amount from the inflow water amount, the inflow pollution load and the chemical addition rate. Therefore, the drug addition amount and the drug consumption amount can be predicted in real time with a simple configuration.

他の形態によれば、上述のいずれかの消毒装置の制御装置において、消毒装置が設置される処理施設における降雨量、降雨強度、該消毒装置に流入する被処理水の流入水量、消毒装置に供給される薬剤の薬剤供給量、消毒装置から放流される放流水残留薬剤濃度を測定する実測値測定手段を設け、実測値測定手段により測定された測定値により薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の予測を補正する実測値補正処理手段を具備することを特徴とする。   According to another aspect, in any of the above-described control devices for a disinfection device, the amount of rainfall in the treatment facility where the disinfection device is installed, the rainfall intensity, the amount of inflow water to be treated flowing into the disinfection device, the disinfection device Measured value measurement means for measuring the amount of drug supplied and the concentration of residual drug discharged from the disinfection device is provided, and the amount of drug added, the amount of drug consumed, and the disinfection based on the measured value measured by the measured value measurement means An actual value correction processing unit for correcting the prediction of the apparatus operation start time is provided.

このように実測値測定手段により測定された測定値で薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の予測を補正する実測値補正処理手段を具備するので、該薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の予測をさらに正確に行うことができる。   As described above, since the measurement value correction processing means for correcting the prediction of the drug addition amount, the drug consumption amount, and the disinfection device operation start time with the measurement values measured by the actual value measurement means is provided, the drug addition amount, the drug consumption amount In addition, the sterilizer operation start time can be predicted more accurately.

図47は、上記に説明の形態の消毒装置が消毒する排水を収集する下水管路網と処理地域及び隣接する処理地域を示す図である。図47に示すように、雨天時下水道越流水の消毒装置を設置する下水処理場710の処理地域Xの周囲には、同様の下水処理場を有する処理地域A、B、C、D、Eが隣接して存在する。なお、本実施形態例における下水管路網の基本的構成は、図46に示す下水管網と同一であるのでその説明は省略する。   FIG. 47 is a diagram showing a sewage pipeline network that collects waste water to be sterilized by the disinfecting apparatus described above, a processing area, and an adjacent processing area. As shown in FIG. 47, treatment areas A, B, C, D, and E having similar sewage treatment plants are disposed around the treatment area X of the sewage treatment plant 710 where the sewage overflow water disinfection device is installed. Adjacent to each other. The basic configuration of the sewage pipe network in this embodiment is the same as that of the sewage pipe network shown in FIG.

図48は、本発明にかかる排水消毒装置の制御装置の構成例を示す図である。同図に示すように、処理地域A内には複数の降雨情報測定手段720、720…が設けられ、該降雨情報測定手段720、720…で処理地域A内の降雨情報721a、722a…が測定できるようになっている。なお、各降雨情報測定手段720は、図示は省略するが、処理地域A内の中継ポンプが設置されているポンプ場、排水機場、処理場、計測設備を有する施設に設けられている。その他の処理地域B、C、D、E、Xについても、同様な降雨情報測定手段でそれぞれの処理地域の降雨量、降雨強度などの降雨情報を測定するようになっている。該各処理地域A,B、C、D、E、Xで測定された降雨情報は、市販の電話回線を利用したデータ伝送装置やアメダスシステムなどを利用して制御装置730に連続的又は定期的に伝送されてくるようになっている。   FIG. 48 is a diagram illustrating a configuration example of a control device of the drainage disinfection device according to the present invention. As shown in the figure, a plurality of rainfall information measuring means 720, 720,... Are provided in the processing area A, and the rainfall information 721a, 722a, etc. in the processing area A are measured by the rain information measuring means 720, 720,. It can be done. Although not shown, each rainfall information measuring means 720 is provided in a facility having a pump station, a drainage station, a treatment plant, and a measurement facility in which a relay pump in the treatment area A is installed. For other processing areas B, C, D, E, and X, rainfall information such as rainfall amount and rainfall intensity in each processing area is measured by the same rainfall information measuring means. The rainfall information measured in each of the processing areas A, B, C, D, E, and X is continuously or periodically transmitted to the control device 730 using a data transmission device or an AMeDAS system using a commercially available telephone line. To be transmitted.

図49は、雨天時下水道越流水消毒装置の制御方法に用いられるマッピング処理を示す図で、同図(a)は各処理地域A,B、C、D、E、Xで測定された降雨情報をマッピング処理した模式図で、同図(b)は同図(a)の時間t経過後の模式図である。上記制御装置730に入力された処理地域A,B、C、D、E、Xからの降雨情報は、降雨情報マッピング処理手段731により図49(a)に示すような模式図にマッピング処理される。各処理地域A,B、C、D、E、Xで測定された降雨情報は、連続的又は定期的に制御装置730に伝送されるので、図49(a)に示す模式図は時間t経過後に図49(b)に示すような模式図となる。なお、上記マッピング処理された降雨情報は、Aで示すように降雨強度の強弱で表されている。   FIG. 49 is a diagram showing a mapping process used in the control method of the sewer overflow water disinfection device in rainy weather. FIG. 49 (a) shows the rainfall information measured in each processing area A, B, C, D, E, X. (B) is a schematic view after the elapse of time t in FIG. (A). The rainfall information from the processing areas A, B, C, D, E, and X input to the control device 730 is mapped by the rainfall information mapping processing means 731 into a schematic diagram as shown in FIG. . Since the rainfall information measured in each processing area A, B, C, D, E, and X is transmitted continuously or periodically to the control device 730, the schematic diagram shown in FIG. Later, a schematic diagram as shown in FIG. Note that the rain information subjected to the mapping process is represented by the strength of the rain intensity as indicated by A.

次に、連続的又は定期的に伝送されマッピング処理された降雨情報の時系列推移(図49参照)から、降雨情報推定処理手段732より処理地域Xにおける降雨開始時刻、降雨総量及び降雨継続時間の予測を行う。また、該降雨情報推定処理手段732は、予測した降雨開始時刻、降雨総量及び降雨継続時間から、処理地域Xの処理場710における予想降雨量733、予想降雨強度734及び消毒装置に流入する被処理水の予想流入量735を求める。該求められた予想降雨量733、予想降雨強度734及び予想流入量735は既知の大腸菌群数推定処理手段736に入力される。また、大腸菌群数推定手段736には、下水処理場710に設置された濁度測定手段750で測定された消毒装置に流入する被処理水の流入水濁度751が入力されている。   Next, from the time series transition (see FIG. 49) of the rainfall information that is continuously or periodically transmitted and mapped, the rainfall information estimation processing means 732 determines the rainfall start time, total rainfall amount, and rainfall duration in the processing area X. Make a prediction. Further, the rainfall information estimation processing means 732 calculates the predicted rainfall amount 733, the predicted rainfall intensity 734, and the processing target that flows into the disinfection device from the predicted rainfall start time, total rainfall amount, and rainfall duration time in the processing area 710 of the processing area X. Calculate the expected water inflow 735. The calculated expected rainfall 733, expected rainfall intensity 734, and expected inflow 735 are input to known coliform group number estimation processing means 736. Further, the inflow turbidity 751 of the water to be treated flowing into the disinfection apparatus measured by the turbidity measuring means 750 installed in the sewage treatment plant 710 is input to the coliform group number estimating means 736.

大腸菌群数推定処理手段736は、上記入力された予想降雨量733、予想降雨強度734、予想流入量735及び流入水濁度751から、大腸菌群数を推定し、それに対する必要な薬剤添加量736a、薬剤消費量736b及び排水消毒装置運転開始時刻736cの予測を行う。   The coliform group number estimation processing means 736 estimates the number of coliform groups from the input predicted rainfall amount 733, predicted rainfall intensity 734, predicted inflow amount 735, and inflow water turbidity 751, and the necessary amount of drug addition 736a for the estimated coliform group number. The drug consumption amount 736b and the drainage disinfection device operation start time 736c are predicted.

次に処理地域Xの下水処理場710に設けられた実測値測定手段752より、処理場710における降雨量753、降雨強度754、該排水消毒装置に流入する排水の流入水量755、排水消毒装置に供給されるハロゲン系薬剤の薬剤供給量756、排水消毒装置から放流される排水の放流水残留薬剤濃度757を測定する。該測定された降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757を予測値/実測値補正処理手段737に入力する。   Next, from the actual measurement measuring means 752 provided in the sewage treatment plant 710 of the treatment area X, the amount of rainfall 753 at the treatment plant 710, the rainfall intensity 754, the amount of inflow water 755 flowing into the waste water disinfection device, and the waste water disinfection device. The supply amount 756 of the halogen-based chemical supplied and the concentration of residual chemical 757 in the discharged water discharged from the waste water disinfection device are measured. The measured rainfall amount 753, rainfall intensity 754, inflow water amount 755, chemical supply amount 756, and discharged water residual chemical concentration 757 are input to the predicted value / actual value correction processing means 737.

予測値/実測値補正処理手段737は、上記入力された降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757から薬剤添加量736a、薬剤消費量736b、排水消毒装置運転開始時刻736cの各予測値を補正する補正値を求める。該求められた各補正値は、補正値加算処理手段737a、737b、737cで薬剤添加量736a、薬剤消費量736b及び排水消毒装置運転開始時刻736cに加算処理され、薬剤添加量741、薬剤消費量742及び排水消毒装置運転開始時刻743が求められる。   The predicted value / actual value correction processing means 737 includes the input rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, discharge water residual drug concentration 757 to drug addition amount 736a, drug consumption amount 736b, waste water A correction value for correcting each predicted value of the sterilizer operation start time 736c is obtained. The obtained correction values are added and processed by the correction value addition processing means 737a, 737b, and 737c to the drug addition amount 736a, the drug consumption amount 736b, and the drainage disinfection device operation start time 736c. 742 and drainage disinfection device operation start time 743 are obtained.

制御装置730は、上記各補正値を加算処理することで求められた薬剤添加量741、薬剤消費量742及び排水消毒装置運転開始時刻743の各予測値により、排水消毒装置の運転、薬剤添加量、薬剤消費量の制御を行う。なお、薬剤添加量741は、排水消毒装置の実際の薬剤添加量設定値として、薬剤添加のリアルタイム制御に使用される。また、薬剤消費量742は、処理場710内にストックされている薬剤の保有量との比較を行い、排水消毒装置に添加する薬剤が不足する場合は警報などを発することで、運転員に薬剤の補充を求める目的で使用される。また、排水消毒装置運転開始時刻743は、運転員に排水消毒装置運転開始時刻を知らせるとともに、排水消毒装置の自動運転開始指令として使用する。   The control device 730 uses the predicted values of the drug addition amount 741, the drug consumption amount 742, and the drainage disinfection device operation start time 743 obtained by adding the correction values, and the drainage disinfection device operation and the drug addition amount. Control of drug consumption. The drug addition amount 741 is used for real-time control of drug addition as an actual drug addition amount setting value of the drainage disinfection device. Further, the drug consumption 742 is compared with the amount of drug stocked in the treatment plant 710, and when the drug to be added to the drainage disinfection device is insufficient, an alarm is issued to the operator. Used to seek replenishment. Further, the drainage disinfection device operation start time 743 informs the operator of the drainage disinfection device operation start time and is used as an automatic operation start command for the drainage disinfection device.

上記のように、各処理地域A,B,C,D,E、X内の各降雨情報測定手段20で測定された降雨情報をもとに降雨情報推定処理手段732が、処理地域X内における降雨開始時刻、降雨総量及び降雨継続時間を予測するとともに処理地域Xの処理場710における予想降雨量733、予想降雨強度734、予想流入量735を求め、この予想降雨量733、予想降雨強度734、予想流入量735から大腸菌群数推定処理手段736が大腸菌群数を推定し、それに対する排水消毒装置の制御に必要な薬剤添加量736a、薬剤消費量736b及び排水消毒装置運転開始時刻736cを予測するで、各予測値をリアルタイムにて予測することができる。   As described above, based on the rainfall information measured by the rainfall information measuring means 20 in each processing area A, B, C, D, E, X, the rainfall information estimation processing means 732 is provided in the processing area X. The rainfall start time, the total rainfall amount, and the rainfall duration time are predicted, and the predicted rainfall amount 733, the predicted rainfall intensity 734, and the expected inflow amount 735 at the treatment plant 710 in the processing area X are obtained. The Escherichia coli group number estimation processing means 736 estimates the coliform group number from the predicted inflow 735, and predicts the drug addition amount 736a, the drug consumption amount 736b, and the drainage disinfection device operation start time 736c necessary for controlling the drainage disinfection device corresponding thereto. Thus, each predicted value can be predicted in real time.

また、大腸菌群数推定処理手段736は予想降雨量733、予想降雨強度734、予想流入量735及び流入水濁度751から薬剤添加量736a、薬剤消費量736b及び消毒装置運転開始時刻736cを予測するので、各予測値の予測をさらに正確に行うことができる。   Further, the coliform group number estimation processing means 736 predicts the drug addition amount 736a, the drug consumption amount 736b, and the disinfection device operation start time 736c from the predicted rainfall 733, the predicted rainfall intensity 734, the predicted inflow amount 735, and the inflow water turbidity 751. Therefore, prediction of each predicted value can be performed more accurately.

さらに予測値/実測値補正処理手段737が降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757から補正値を求め、補正値加算処理手段737a、737b、737cで該各補正値を薬剤添加量736a、薬剤消費量736b及び消毒装置運転開始時刻736cに加算処理し、薬剤添加量741、薬剤消費量742及び消毒装置運転開始時刻743を求めるので、各予測値の予測をさらに正確に行うことができる。   Further, the predicted value / actual value correction processing means 737 obtains a correction value from the rainfall amount 753, the rainfall intensity 754, the inflow water amount 755, the medicine supply amount 756, and the discharged water residual medicine concentration 757, and the correction value addition processing means 737a, 737b, 737c. Thus, each correction value is added to the drug addition amount 736a, the drug consumption amount 736b, and the disinfection device operation start time 736c to obtain the drug addition amount 741, the drug consumption amount 742, and the disinfection device operation start time 743. Can be predicted more accurately.

図50は消毒装置の制御装置の他の構成例を示す図である。図50に示す消毒装置の制御装置の基本的構成は、図48に示す排水消毒装置の制御装置と略同一であるのでその説明は省略する。本消毒装置の制御装置が図48に示す消毒装置の制御装置と異なる点は、地域特性シミュレーション手段760を具備する点である。   FIG. 50 is a diagram illustrating another configuration example of the control device of the disinfection device. The basic configuration of the control device for the disinfection device shown in FIG. 50 is substantially the same as that of the drainage disinfection device shown in FIG. The control device of the present disinfection device is different from the control device of the disinfection device shown in FIG. 48 in that a regional characteristic simulation means 760 is provided.

処理地域X内の各降雨情報測定手段720より測定された降雨量、降雨強度などの降雨情報721x、722x…は、制御装置730の降雨情報マッピング処理手段731に入力されるとともに、地域特性シミュレーション手段760に入力される。該地域特性シミュレーション手段760は、市販の地域特性シミュレーションソフトウエアであり、予め登録した処理地域の地形情報、雨水収集ルート、下水管路網、下水排出人口、下水排出種別を設定初期条件として入力し、そして上記降雨情報721x、722x…を入力することで、水理・水質解析を行うものである。   The rainfall information 721x, 722x, and the like measured by the respective rainfall information measuring means 720 in the processing area X are input to the rainfall information mapping processing means 731 of the control device 730, and the regional characteristic simulation means. 760 is input. The regional characteristic simulation means 760 is a commercially available regional characteristic simulation software, which inputs pre-registered landform information, rainwater collection route, sewage pipe network, sewage discharge population, and sewage discharge type as set initial conditions. Then, hydraulic / water quality analysis is performed by inputting the rain information 721x, 722x.

地域特性シミュレーション手段760は、処理地域X内の降雨情報から排水消毒装置に流入する排水の予想流入水量761及び予想流入汚濁負荷762を求める。該求められた予想流入水量761及び予想流入汚濁負荷762は、実測値測定手段752により測定された降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757とともに予測値/実測値補正処理手段737に入力される。   The regional characteristic simulation means 760 obtains the expected inflow amount 761 and the expected inflow pollution load 762 of the wastewater flowing into the wastewater disinfection device from the rainfall information in the treatment area X. The calculated expected inflow water amount 761 and the expected inflow pollution load 762 are predicted together with the rainfall amount 753, the rainfall intensity 754, the inflow water amount 755, the drug supply amount 756, and the discharged water residual drug concentration 757 measured by the actual value measuring means 752. Value / actual value correction processing means 737.

予測値/実測値補正処理手段737は、入力された降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757、予想流入量761及び予想流入汚濁負荷762から薬剤添加量736a、薬剤消費量736b及び消毒装置運転開始時刻736cを補正する補正値を求める。該各補正値は、補正値加算処理手段737a、737b、737cで大腸菌群数推定処理手段736からの薬剤添加量736a、薬剤消費量736b及び排水消毒装置運転開始時刻736cの各予測値に加算処理され、薬剤添加量741、薬剤消費量742及び排水消毒装置運転開始時刻743の各予測値が求められる。制御装置730は、該各予測値により、排水消毒装置の運転、薬剤添加量、薬剤消費量の制御を行う。   The predicted value / actually measured value correction processing means 737 is based on the input rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, discharged water residual drug concentration 757, expected inflow amount 761, and expected inflow pollution load 762. Correction values for correcting the addition amount 736a, the drug consumption amount 736b, and the disinfection device operation start time 736c are obtained. The correction values are added to the predicted values of the added amount of medicine 736a, the amount of medicine consumed 736b and the drainage disinfection device operation start time 736c from the coliform group number estimation processing means 736 by the correction value addition processing means 737a, 737b and 737c. Then, predicted values of the drug addition amount 741, the drug consumption amount 742, and the drainage disinfection device operation start time 743 are obtained. The control device 730 controls the operation of the drainage disinfection device, the amount of added medicine, and the amount of consumed medicine according to each predicted value.

上記のように予測値/実測値補正処理手段737が地域特性シミュレーション手段760で求めた予想流入水量761及び予想流入汚濁負荷762から薬剤添加量736a、薬剤消費量736b及び排水消毒装置運転開始時刻736cを補正する補正値を求め、該各補正値を補正値加算処理手段737a、737b、737cにより大腸菌群数推定手段736からの薬剤添加量736a、薬剤消費量736b及び消毒装置運転開始時刻736cに加算処理することで、薬剤添加量741、薬剤消費量742及び消毒装置運転開始時刻743を求めるので、各予測値の予測をさらに正確に行うことができる。   As described above, the predicted value / actual value correction processing unit 737 uses the predicted inflow water amount 761 and the predicted inflow pollution load 762 obtained by the regional characteristic simulation unit 760 to add the drug addition amount 736a, the drug consumption amount 736b, and the drainage disinfection device operation start time 736c. Correction values are obtained, and each correction value is added to the added amount of medicine 736a, the amount of medicine consumed 736b from the E. coli group number estimation means 736, and the disinfection device operation start time 736c by the correction value addition processing means 737a, 737b, 737c. By processing, since the medicine addition amount 741, the medicine consumption amount 742, and the disinfection apparatus operation start time 743 are obtained, prediction of each predicted value can be performed more accurately.

なお、上記の形態例では、処理地域X内の各降雨情報測定手段720で測定された降雨情報721x、722x…のみを地域特性シミュレーション手段760に入力する場合を説明したが、これに限定されるものではなく、処理地域X及び隣接する処理地域A,B,C,D,Eの各降雨情報を入力しても良い。   In the above embodiment, a case has been described in which only the rainfall information 721x, 722x... Measured by the respective rainfall information measuring means 720 in the processing area X is input to the regional characteristic simulation means 760. However, the present invention is not limited to this. Instead, the rainfall information of the processing area X and the adjacent processing areas A, B, C, D, and E may be input.

図51は、消毒装置の制御装置の他の構成例を示す図である。まず、処理地域X内の各降雨情報測定手段720により測定された降雨量、降雨強度などの降雨情報721x、722x…は、地域特性シミュレーション手段760に入力される。   FIG. 51 is a diagram illustrating another configuration example of the control device of the disinfection device. First, rainfall information 721x, 722x, etc., such as the rainfall amount and rainfall intensity measured by each rainfall information measuring means 720 in the processing area X, is input to the regional characteristic simulation means 760.

地域特性シミュレーション手段760は、処理地域X内の降雨情報から消毒装置に流入する被処理水の予想流入水量761及び予想流入汚濁負荷762を求める。該求められた予想流入水量761及び予想流入汚濁負荷762は、薬剤添加量算出処理手段738に入力される。   The regional characteristic simulation means 760 obtains an estimated inflow amount 761 and an expected inflow pollution load 762 of the treated water flowing into the disinfection device from the rainfall information in the treatment area X. The calculated expected inflow water amount 761 and the expected inflow pollution load 762 are input to the chemical addition amount calculation processing means 738.

また、薬剤添加量算出処理手段738には、予め消毒装置に流入する排水に対する薬剤添加率を設定する薬剤添加率設定手段739で設定された薬剤添加率739aが入力されるようになっている。該薬剤添加量算出処理手段738は、入力された薬剤添加率739a、予想流入水量761及び予想流入汚濁負荷762から、薬剤添加量736a及び薬剤消費量736bの予測を行う。   Also, the drug addition rate calculation processing means 738 is inputted with the drug addition rate 739a set in advance by the drug addition rate setting means 739 for setting the drug addition rate for the waste water flowing into the disinfection apparatus. The medicine addition amount calculation processing means 738 predicts the medicine addition amount 736a and the medicine consumption amount 736b from the inputted medicine addition rate 739a, predicted inflow water amount 761, and expected inflow pollution load 762.

処理地域Xの処理場710に設けられた実測値測定手段752より、処理場710における降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757を測定する。該測定された降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757は、制御装置730の予測値/実測値補正処理手段737に入力される。   From the measured value measuring means 752 provided in the treatment area 710 of the treatment area X, the rainfall amount 753, the rainfall intensity 754, the inflow water amount 755, the chemical supply amount 756, and the discharged water residual chemical concentration 757 in the treatment area 710 are measured. The measured rainfall amount 753, rainfall intensity 754, inflow water amount 755, chemical supply amount 756, and discharged water residual chemical concentration 757 are input to the predicted value / actual value correction processing means 737 of the control device 730.

予測値/実測値補正処理手段737は、薬剤添加量算出処理手段738からの薬剤添加量736a及び薬剤消費量736bの各予測値を補正する補正値を上記入力された降雨量753、降雨強度754、流入水量755、薬剤供給量756、放流水残留薬剤濃度757から求める。該各補正値は、補正値加算処理手段737a、737bで薬剤添加量算出処理手段738からの薬剤添加量736a及び薬剤消費量736bの各予測値に加算処理され、薬剤添加量741及び薬剤消費量742を求める。制御装置730は、薬剤添加量741及び薬剤消費量742より排水消毒装置の制御を行う。   The predicted value / actual value correction processing means 737 receives the correction values for correcting the predicted values of the drug addition amount 736a and the drug consumption amount 736b from the drug addition amount calculation processing means 738, and the input rainfall amount 753 and rainfall intensity 754. Inflow water amount 755, chemical supply amount 756, and discharge water residual chemical concentration 757 are obtained. The correction values are added to the predicted values of the drug addition amount 736a and the drug consumption amount 736b from the drug addition amount calculation processing unit 738 by the correction value addition processing units 737a and 737b, and the drug addition amount 741 and the drug consumption amount are added. 742 is obtained. The control device 730 controls the drainage disinfection device based on the drug addition amount 741 and the drug consumption amount 742.

上記のように、処理地域X内の各降雨情報測定手段720で測定された降雨情報721x、722x…から地域特性シミュレーション手段760により予想流入水量761及び予想流入汚濁負荷762を求め、薬剤添加量算出手段738が該予想流入水量761、予想流入汚濁負荷762及び薬剤添加率設定手段739で設定された薬剤添加率739aから薬剤添加量741及び薬剤消費量742を予測するので、各予測値をリアルタイムにて予測することができる。   As described above, the predicted inflow water amount 761 and the expected inflow pollution load 762 are obtained by the regional characteristic simulation unit 760 from the rainfall information 721x, 722x... Measured by the respective rain information measurement units 720 in the processing area X, and the chemical addition amount calculation is performed. The means 738 predicts the drug addition amount 741 and the drug consumption amount 742 from the predicted inflow water amount 761, the expected inflow pollution load 762, and the drug addition rate 739a set by the drug addition rate setting means 739. Can be predicted.

なお、上記の形態例では、処理地域X内の各降雨情報測定手段720で測定された降雨情報721x、722x…のみを地域特性シミュレーション手段760に入力する場合を説明したが、本発明はこれに限定されるものではなく、処理地域X及び隣接する処理地域A,B,C,D,Eの各降雨情報を入力しても良い。   In the above embodiment, the case has been described in which only the rainfall information 721x, 722x... Measured by each of the rainfall information measuring means 720 in the processing area X is input to the regional characteristic simulation means 760. It is not limited, and each rainfall information of the processing area X and the adjacent processing areas A, B, C, D, and E may be input.

また、上記では、下水処理場での雨天時下水道越流水を消毒する形態について説明しているが、雨水吐き室、ポンプ場(排水機場)などの雨天時下水道越流水排除施設で雨天時下水道越流水を消毒する形態についても、上述の制御装置を適用することができる。   In addition, the above describes the form of disinfecting sewer stormwater overflow at a sewage treatment plant, but sewer stormwater overflow facilities such as a spout chamber and a pumping station (drainage station) are used to prevent sewer stormwater overflow. The control device described above can also be applied to the form of disinfecting running water.

更に、本発明に係る雨天時下水道越流水の消毒装置には、固体臭素系消毒剤添加量の過剰、過小を検知できる異常検知機構(固体臭素系消毒剤添加量検知手段)を備えることができる。   Furthermore, the rainwater sewer overflow water disinfecting apparatus according to the present invention can be provided with an abnormality detection mechanism (solid bromine-based disinfectant addition amount detection means) that can detect an excess or an excess of the solid bromine-based disinfectant addition amount. .

本発明において使用することのできる固体臭素系消毒剤添加量検知手段は、固体臭素系消毒剤添加直後の被処理水で計測した残留ハロゲン濃度と、消毒剤が添加された被処理水が放流される放流水路で計測した残留ハロゲン濃度とが所定のしきい値を越えること及び/又は両残留ハロゲン濃度を比較することによって、ハロゲン系薬剤添加量の過剰及び/又は過小を検知する手段である。即ちハロゲン系薬剤添加直後の被処理水で計測した残留ハロゲン濃度と、放流水路で計測した残留ハロゲン濃度とがそれぞれ所定のしきい値を越えた場合、ハロゲン系薬剤添加量の過剰または過小として検知する。またハロゲン系薬剤添加直後の被処理水で計測した残留ハロゲン濃度と、放流水路で計測した残留ハロゲン濃度とを比較して、その濃度差を消毒剤消費量としてこの消毒剤消費量を予め設定しておいた消毒剤消費量低レベルしきい値と比較して低レベルしきい値未満の場合は、消費していないのに必要以上の消毒剤を添加していることになるので、ハロゲン系薬剤添加量の過剰として検知する。   The solid bromine-based disinfectant addition amount detecting means that can be used in the present invention is a method in which the residual halogen concentration measured in the treated water immediately after the addition of the solid bromine-based disinfectant and the treated water to which the disinfectant is added are discharged. This is a means for detecting an excess and / or an excessive amount of the halogen-based chemical additive by comparing the residual halogen concentration measured in the discharge channel with a predetermined threshold value and / or comparing both residual halogen concentrations. In other words, if the residual halogen concentration measured in the treated water immediately after the addition of the halogen-based chemical and the residual halogen concentration measured in the discharge channel exceed the predetermined threshold values, it is detected that the halogen-based chemical addition amount is excessive or too small. To do. In addition, the residual halogen concentration measured in the treated water immediately after the addition of the halogen-based chemical is compared with the residual halogen concentration measured in the discharge channel, and the disinfectant consumption is set in advance using the concentration difference as the disinfectant consumption. If the amount of disinfectant used is less than the low level threshold compared to the low level threshold, it means that more disinfectant is added than necessary, but halogenated chemicals. It is detected as an excessive amount.

また、固体臭素系消毒剤添加量検知手段は、固体臭素系消毒剤保有量(保有量から求めた消費量)と吐出量とを比較することで固体臭素系消毒剤添加量の過剰及び/又は過小を検知する手段である。即ち、固体臭素系消毒剤保有量の差分から求めた実際の消費量と回転数や流量計などの測定機器で計測した吐出量との誤差の比率が、予め設定しておいた薬剤吐出量添加量の高低レベルしきい値(比率)を超えた場合、薬剤添加量の過剰または過小として検知する。   In addition, the solid bromine-based disinfectant addition amount detection means compares the solid bromine-based disinfectant possession amount (consumption amount determined from the possession amount) with the discharge amount, and thus the excess of the solid bromine-based disinfectant addition amount and / or It is a means for detecting under-exposure. That is, the ratio of the error between the actual consumption calculated from the difference in the amount of solid bromine-based disinfectant held and the discharge measured by a measuring device such as the number of revolutions or flow meter is the preset drug discharge amount added. When the level threshold (ratio) of the amount is exceeded, it is detected that the amount of drug addition is excessive or too small.

また、固体臭素系消毒剤添加量検知手段は、放流水路に生息する魚類を画像監視することで固体臭素系消毒剤添加量の過剰を検知する手段である。即ち画像監視している魚類が死ぬまたは弱るなどして漂流していると判断した個体数が予め設定しておいた漂流魚類個体数高レベルしきい値を越えた場合、薬剤添加過剰と判定し検知する。   The solid bromine-based disinfectant addition amount detection means is a means for detecting an excess of the solid bromine-based disinfectant addition amount by monitoring images of fish inhabiting the discharge channel. In other words, if the number of individuals that are determined to be drifting due to the death or weakness of the fish being image monitored exceeds the preset high-level threshold for the number of drifting fish individuals, it is determined that the drug has been added excessively. Detect.

図52は本発明において使用することのできる異常検知機構を有する消毒装置の一実施形態によって被処理水の消毒が実行される状態を示す系統図であり、一例として、粉末状の固体臭素系消毒剤を用い、水に溶解して消毒水を形成してこれを被処理水に添加する方式を示している。以下の装置の構成は、上記で説明した各種形態の消毒剤貯留・供給装置や、固体臭素系消毒剤を固体のまま被処理水に投入する方式の消毒装置にも適用することができる。また、以下の説明では、沈砂池で雨天時下水道越流水の消毒を行う形態について説明しているが、上記で説明したような雨天時下水道越流水の流路において消毒を行う各種の形態についても適用することができる。   FIG. 52 is a system diagram showing a state in which disinfection of treated water is performed by an embodiment of a disinfection apparatus having an abnormality detection mechanism that can be used in the present invention. As an example, powdered solid bromine-based disinfection This shows a method in which an agent is used, dissolved in water to form disinfecting water, and this is added to water to be treated. The configuration of the following apparatus can be applied to the disinfectant storage / supply apparatus of the various forms described above and the disinfecting apparatus of the system in which the solid bromine-based disinfectant is put into the water to be treated as solid. Moreover, in the following description, although the form which disinfects sewer stormwater overflow in a sand basin is explained, various forms which disinfect in the flow path of sewer stormwater overflow as described above also Can be applied.

図52において、810は消毒装置によって消毒が実行される雨天時下水道越流水が流入、流出する沈砂池である。そして沈砂池810の流入部810aに流入した雨天時下水道越流水の一部は、ポンプP1によって汲み上げられてスクリーン820で異物が取り除かれ、原水流量計821で流量が測定された後に、消毒剤添加装置830に送られる。   In FIG. 52, reference numeral 810 denotes a sand basin into which sewer stormwater overflow flows and flows out, which is sterilized by a disinfection device. A part of the sewer stormwater overflow flowing into the inflow section 810a of the sand basin 810 is pumped up by the pump P1, foreign matter is removed by the screen 820, the flow rate is measured by the raw water flow meter 821, and then the disinfectant is added. Sent to device 830.

消毒剤添加装置830では、ホッパ831内に投入されている固体臭素系消毒剤832をモータM1を駆動することで供給機833からエジェクタ834に所定量ずつ供給して排水中に添加する。消毒剤が添加された水は溶解装置840の溶解槽841内に送られ、モータM2によって駆動される攪拌機842によって攪拌されて消毒剤が確実に溶解された後、ポンプP2によって沈砂池810の流入部810aに戻されることで被処理水の消毒が実行され、沈砂部810bを経て放流水路811から河川などの公共水域812に放流される。   In the disinfectant addition device 830, the solid bromine-based disinfectant 832 charged in the hopper 831 is supplied to the ejector 834 by a predetermined amount from the supply unit 833 by driving the motor M1, and added to the waste water. The water to which the disinfectant is added is sent into the dissolution tank 841 of the dissolution apparatus 840 and stirred by the stirrer 842 driven by the motor M2, and the disinfectant is reliably dissolved, and then flows into the sand basin 810 by the pump P2. By returning to the section 810a, the water to be treated is sterilized and discharged from the discharge channel 811 to the public water area 812 such as a river through the sand settling section 810b.

以下に説明する装置においては、前記の消毒を実行する上で、被処理水の過剰消毒或いは消毒不良を迅速且つ確実に防止するため、三種類の異常検知手段を設置している。即ち薬剤添加量の過剰、過小を検知する手段と、薬剤添加が確実に実行されていることを監視する手段と、薬剤添加量過剰判定を補完する手段とを具備している。以下説明する。   In the apparatus described below, three types of abnormality detection means are installed in order to quickly and surely prevent excessive sterilization or sterilization failure of treated water when performing the above-mentioned sterilization. That is, there are provided means for detecting whether the amount of added medicine is excessive or too small, means for monitoring that the addition of the medicine is surely executed, and means for complementing the determination of excess amount of the added medicine. This will be described below.

消毒を実行する上で、被処理水の過剰消毒或いは消毒不良を防止するため薬剤添加量の過剰、過小を検知する必要がある。そこで放流水路811と溶解装置840にそれぞれ残留ハロゲン濃度計813,843を設置し、両者の測定値を図示しないコンピュータ(又は電気回路)に入力することで図53に示す処理手順に従って薬剤添加量の過剰、過小を検知する。   In executing the disinfection, it is necessary to detect the excess or under-charge of the chemical addition amount in order to prevent excessive disinfection or disinfection failure of the water to be treated. Therefore, residual halogen concentration meters 813 and 843 are installed in the discharge water channel 811 and the dissolving device 840, respectively, and the measured values of both are input to a computer (or an electric circuit) (not shown), whereby the amount of added drug is determined according to the processing procedure shown in FIG. Detect excess and under.

即ち、図53において、まず残留ハロゲン濃度計813によって測定した放流水路811での残留ハロゲン濃度と、残留ハロゲン濃度計843によって測定した溶解装置840での残留ハロゲン濃度とを入力する。そして図53の残留ハロゲン濃度判定処理フローにおいて、まず残留ハロゲン濃度計813によって測定した放流水路811での残留ハロゲン濃度を予め設定しておいた放流水残留ハロゲン濃度高レベルしきい値901と比較してこれを越えていた場合は薬剤添加過剰と判定し、残留ハロゲン高レベル判定出力870を出力する。   53, first, the residual halogen concentration in the discharge water channel 811 measured by the residual halogen concentration meter 813 and the residual halogen concentration in the dissolving device 840 measured by the residual halogen concentration meter 843 are input. 53, first, the residual halogen concentration in the discharge water channel 811 measured by the residual halogen concentration meter 813 is compared with the preset discharge water residual halogen concentration high level threshold value 901. If it exceeds this, it is determined that the drug is excessively added, and a residual halogen high level determination output 870 is output.

次に残留ハロゲン濃度計843によって測定した溶解装置840での残留ハロゲン濃度を予め設定しておいた溶解槽残留ハロゲン濃度低レベルしきい値902と比較して低レベルしきい値902未満の場合は薬剤添加過小と判定し、残留ハロゲン低レベル判定出力871を出力する。次に溶解装置840での残留ハロゲン濃度を予め設定しておいた溶解槽残留ハロゲン濃度高レベルしきい値903と比較して高レベルしきい値903以上の場合は薬剤添加過剰と判定し、残留ハロゲン高レベル判定出力870を出力する。   Next, in the case where the residual halogen concentration in the melting apparatus 840 measured by the residual halogen concentration meter 843 is less than the low level threshold value 902 compared with the preset dissolution bath residual halogen concentration low level threshold value 902 It is determined that the chemical addition is too small, and a residual halogen low level determination output 871 is output. Next, when the residual halogen concentration in the dissolution apparatus 840 is higher than the high-level threshold value 903 compared with the preset dissolution tank residual halogen concentration 903, it is determined that the chemical is excessively added and the residual A halogen high level determination output 870 is output.

更に残留ハロゲン濃度計843によって測定した溶解装置840での残留ハロゲン濃度と、残留ハロゲン濃度計813によって測定した放流水路811での残留ハロゲン濃度との差分を消毒剤消費量として捉え、この消毒剤消費量が予め設定しておいた残留ハロゲン濃度差(消毒剤消費量)低レベルしきい値904と比較して低レベルしきい値904未満の場合は薬剤添加過剰と判定して残留ハロゲン高レベル判定出力870を出力する。即ち消毒剤は殺菌しようとする物質が多いとその消費量が増えるので、消毒剤消費量が少ないということは、消費していないのに(殺菌しようとする物質が多くないのに)必要以上の消毒剤を添加していることになる。従って、たとえ溶解装置840での残留ハロゲン濃度と放流水路811での残留ハロゲン濃度とがそれぞれ個別には所定の許容数値内に入っているとしても、必要以上の消毒剤を添加していると判定するのである。   Further, the difference between the residual halogen concentration in the dissolving device 840 measured by the residual halogen concentration meter 843 and the residual halogen concentration in the discharge water channel 811 measured by the residual halogen concentration meter 813 is regarded as the disinfectant consumption, and this disinfectant consumption. If the amount is less than the low threshold value 904 compared with the preset residual halogen concentration difference (disinfectant consumption) low level threshold 904, it is determined that the drug is excessively added and the residual halogen high level is determined. Output 870 is output. In other words, the amount of disinfectant increases when there are many substances to be sterilized, so the amount of consumption of disinfectant is low, even though it is not consumed (even though there are not many substances to be sterilized). Disinfectant is added. Therefore, even if the residual halogen concentration in the dissolving device 840 and the residual halogen concentration in the discharge water channel 811 are individually within the predetermined allowable values, it is determined that more disinfectant than necessary is added. To do.

以上の検知手段によれば、溶解槽841で計測した残留ハロゲン濃度(即ちハロゲン系薬剤添加直後の排水で計測した残留ハロゲン濃度)及びその下流の放流水路811で計測した残留ハロゲン濃度と、予め設定した残留ハロゲン濃度しきい値等とを比較することで薬剤添加過剰、過小を判定できるので、従来のように放流水路811だけで計測する場合に比べて、薬剤添加から測定点までの時間遅れがなく迅速且つ確実に薬剤添加の過剰、過小を判定できる。また二点で測定した残留ハロゲン濃度を比較してその濃度差を消毒剤消費量として薬剤添加過剰を判定するので、この点からも薬剤添加の過剰を判定できる。   According to the above detection means, the residual halogen concentration measured in the dissolution tank 841 (that is, the residual halogen concentration measured in the waste water immediately after the addition of the halogen-based chemical) and the residual halogen concentration measured in the discharge water channel 811 downstream thereof are set in advance. Compared with the residual halogen concentration threshold value and the like, it is possible to determine whether the drug is added excessively or too little, so that there is a time delay from the drug addition to the measurement point as compared with the case where measurement is performed only with the discharge water channel 811 as in the past. Therefore, it is possible to quickly and surely determine whether the drug is excessively added or too small. Further, since the residual halogen concentration measured at two points is compared and the concentration difference is used as the disinfectant consumption amount to determine the excessive drug addition, the excessive drug addition can also be determined from this point.

消毒を実行する上で、薬剤添加が確実に実行されていることを監視することが必要である。そこで消毒剤添加装置830のホッパ831に設けたホッパ重量計X1によってホッパの重量35を測定し、またモータM1の回転数36を測定し、両測定値を図示しないコンピュータ(又は電気回路)に入力することで図54に示す処理手順に従って薬剤添加が確実に実行されていることを監視する。   In performing disinfection, it is necessary to monitor that drug addition is being performed reliably. Therefore, the hopper weight 35 is measured by the hopper weight meter X1 provided in the hopper 831 of the disinfectant adding device 830, the rotation number 36 of the motor M1 is measured, and both measured values are input to a computer (or an electric circuit) not shown. By doing so, it is monitored that the addition of the medicine is surely executed according to the processing procedure shown in FIG.

即ち、図54の薬剤吐出量判定処理フローにおいて、まず時刻tより予め設定しておいた薬剤吐出量判定処理サンプリング周期913でk+1回サンプリングした供給機回転数836に〔供給機回転数−吐出量換算係数〕910をかけて求めた粉体薬剤吐出量と、時刻tと時刻t+kにおけるホッパ重量835の差分から求めた粉体薬剤消費量との比率が、予め設定しておいた薬剤吐出量添加量低レベルしきい値911未満の場合、薬剤添加量過小と判定し、薬剤添加量過小判定出力881を出力する。即ち本来、ホッパ重量835の差分から求めた粉体薬剤消費量と供給機回転数836から求めた粉体薬剤吐出量とは一致するはずであるが、ホッパ重量835の差分から求めた粉体薬剤消費量よりも供給機回転数836から求めた粉体薬剤吐出量の方が多いということは、供給機回転数836から求めた粉体薬剤吐出量が実際に吐出している吐出量よりも見かけ上多くなっているということであり、これは所定の粉体薬剤吐出量を得るために決定した供給機回転数836によっては所定の粉体薬剤吐出量を得ることが出来ず、もっと回転数を上げなければならないこと、あるいは、供給機833の機械的な不具合により、所定の粉体薬剤吐出量を得ることができないことを意味し、つまり薬剤添加量過小ということになる。   That is, in the medicine discharge amount determination process flow of FIG. 54, first, the supply machine speed 836 sampled k + 1 times in the medicine discharge amount determination process sampling period 913 set in advance from time t is set to [Supplier speed-discharge quantity. Conversion factor] The ratio between the powder medicine discharge amount obtained by multiplying 910 and the powder medicine consumption amount obtained from the difference between the hopper weight 835 at time t and time t + k is a preset medicine discharge amount addition. When the amount is lower than the low level threshold value 911, it is determined that the drug addition amount is too small, and the drug addition amount underdetermination output 881 is output. That is, the amount of powder medicine consumed originally determined from the difference in the hopper weight 835 and the amount of powder medicine discharged from the feeder rotation speed 836 should match, but the powder medicine obtained from the difference in the hopper weight 835. The fact that the amount of powder medicine discharged from the feeder rotation speed 836 is larger than the amount of consumption means that the amount of powder medicine discharge determined from the feeder rotation speed 836 is more apparent than the amount of discharge actually discharged. This means that the predetermined powder medicine discharge amount cannot be obtained depending on the supply machine rotational speed 836 determined to obtain the predetermined powder medicine discharge amount. This means that a predetermined powder medicine discharge amount cannot be obtained due to a problem that must be increased or a mechanical failure of the supply machine 833, that is, the medicine addition amount is too small.

一方、粉体薬剤吐出量と粉体薬剤消費量との比率が、予め設定しておいた薬剤吐出量添加量高レベルしきい値912以上の場合、薬剤添加量過剰と判定し、薬剤添加量過剰判定出力882を出力する。何れの条件も満たさない場合は出力しない。   On the other hand, when the ratio between the powder medicine discharge amount and the powder medicine consumption is equal to or higher than the preset medicine discharge amount addition level high level threshold 912, it is determined that the medicine addition amount is excessive, and the medicine addition amount An excess determination output 882 is output. If neither condition is met, no output is made.

このように粉体薬剤吐出量と粉体薬剤消費量とを比較することで、リアルタイムで薬剤添加が確実に実行されているか否かを監視することができる。   In this way, by comparing the powder drug discharge amount and the powder drug consumption amount, it is possible to monitor whether or not the drug addition has been reliably executed in real time.

消毒装置の残留ハロゲン濃度計が測定異常となり、薬剤添加過剰、過小の判定が不可能になる状態においても、消毒を実行すべく、残留ハロゲン濃度計による異常判定を補完するため、図55に示す画像処理技術を用いた放流水路の魚類生息状態判定処理を実行することができる。   In order to complement the abnormality determination by the residual halogen concentration meter in order to carry out disinfection even when the residual halogen concentration meter of the disinfection device becomes abnormal in measurement and it becomes impossible to determine whether the drug is excessively added or too small, as shown in FIG. It is possible to execute a fish inhabiting state determination process for a discharge channel using image processing technology.

即ち、放流水路811の放流口に放流口監視カメラ814を設置し、図55に示す魚類異常判定処理フローにおいて、放流口監視カメラ814の映像データと、予め設定しておいた魚類判定パターン921とのパターン比較を行ない、類似する映像パターンを放流水路811に生息する魚類と判断する。そして魚類と判断した各映像パターンに対して、最初に検知した座標より、その周辺区域即ち、魚類の移動範囲を示す2つの魚類漂流判定用移動範囲座標922,923を定め、魚類と判断した映像パターンがその座標範囲(点線で囲む範囲)内に予め設定しておいた魚類漂流判定時間924で定めた時間を超えて存在した場合、当該魚類は死ぬ或いは弱るなどして漂流している魚類と判定する。以上の判定処理を魚類と判断した全ての映像パターンに対して行ない、漂流している魚類個体数が予め設定しておいた漂流魚類個体数高レベルしきい値925を越えた場合、薬剤添加過剰と判定し、魚類異常判定出力890を出力する。   That is, the outlet monitoring camera 814 is installed at the outlet of the outlet water channel 811. In the fish abnormality determination processing flow shown in FIG. 55, the video data of the outlet monitoring camera 814, the fish determination pattern 921 set in advance, and The similar image pattern is determined to be a fish inhabiting the discharge water channel 811. Then, for each image pattern determined to be fish, two fish drift determination movement range coordinates 922 and 923 indicating the movement range of the fish are determined from the first detected coordinates, and the image determined to be fish. If the pattern exists within the coordinate range (the range surrounded by the dotted line) for a time exceeding the time set in the fish drift determination time 924, the fish is drifting due to death or weakening. judge. The above determination process is performed for all image patterns determined to be fish, and if the number of drifting fish individuals exceeds a preset drifting fish population high level threshold 925, excessive drug addition And the fish abnormality determination output 890 is output.

以上のように判定した薬剤添加量の過剰、過小に関する出力870,871,881,882,890は、消毒装置の運転員に異常発生を警報として知らしめる目的で使用したり、また薬剤添加過剰或いは過小に応じて薬剤投入量を増加或いは減少せしめる自動制御を実行する目的で使用したり、更に薬剤添加量過剰の場合に薬剤の投入自動停止や中和薬剤の自動投入を実行する目的で使用することができる。   The outputs 870, 871, 881, 882, and 890 relating to the excess and under-determination of the drug addition determined as described above are used for the purpose of notifying the operator of the disinfection device as an alarm, Used for the purpose of executing automatic control to increase or decrease the amount of drug input depending on the amount of decrease, or for the purpose of executing automatic stop of drug input or automatic input of neutralizing drug when the amount of drug addition is excessive be able to.

図56に示すように、固体臭素系消毒剤の貯留槽951をはかり(ロードセル)953の上に設置し、切り出し装置952の故障などによって消毒剤の供給速度が異常に速くなった場合に、検知器956によって異常供給を検知して非常供給停止装置955を作動させて、供給管954からの固体臭素系消毒剤の供給を停止することによって、固体臭素系消毒剤が異常に大量に供給されて、残留ハロゲンによって放流口周辺の環境が悪化するのを防止することができる。   As shown in FIG. 56, when a solid bromine-based disinfectant storage tank 951 is installed on a scale (load cell) 953 and the supply speed of the disinfectant becomes abnormally high due to a failure of the cutting device 952 or the like, detection is performed. By detecting the abnormal supply by the device 956 and operating the emergency supply stop device 955 to stop the supply of the solid bromine-based disinfectant from the supply pipe 954, the solid bromine-based disinfectant is supplied in an abnormally large amount. It is possible to prevent the environment around the outlet from deteriorating due to residual halogen.

本発明によって固体臭素系消毒剤による雨天時下水道越流水の消毒を行う装置の運転方法としては、例えば次のような方法がある。処理対象の雨天時下水道越流水が、合流式下水道や分流式下水道のポンプ場(排水機場)からの越流水である場合、越流水の放流は次のように行われることが多い。ポンプ場には沈砂池若しくは雨水貯留施設が配置されている。図57において、下水道管渠961内を流れる下水に雨水が混入して量が多くなると、可動ゲート962が開放されて雨水混入下水が越流する(雨天時下水道越流水)。越流水は沈砂池若しくは雨水貯留施設963に収容され、スクリーン971を通してポンプ井972に流入する。ポンプ井972内には雨水ポンプが配置されており、可動ゲート962が開放されてから所定時間経過後に雨水ポンプ964が作動して沈砂池若しくは雨水貯留施設963内の雨天時下水道越流水が放流流路965に誘導され、放流流路965から河川などの公共水域966に放流される。また、雨水ポンプ964は、通常複数台設置され、ポンプ井972内の水位によって雨水ポンプ964の稼働台数が制御されるようになっている。可動ゲート962の作動は、通常、中央監視室の作業員が、降雨確率、降雨情報、降雨量などの各種の気象情報に基づいて行う。このような場合、可動ゲート962が作動して沈砂池若しくは雨水貯留施設963内に雨天時下水道越流水が流れ込んだ際に、まず、ポンプ967を可動させて雨天時下水道越流水の一部を取り出して、混合装置969において固体臭素系消毒剤968と混合して消毒水を調整し、これを沈砂池若しくは雨水貯留施設963内に投入することができる。この際、沈砂池若しくは雨水貯留施設963の容量から算出した所定量の固体臭素系消毒剤をあらかじめ投入して沈砂池若しくは雨水貯留施設963内に溜まる雨天時下水道越流水の消毒を行うことができる。その後、雨水ポンプ964が作動して雨天時下水道越流水の公共水域への放流が始まったら、越流水の流量にあわせて適当量の固体臭素系消毒剤を投入するように、消毒剤の供給量を制御することができる。なお、図57では、固体臭素系消毒剤を水に溶解して消毒水を形成し、これを雨天時下水道越流水中に投入する方式を示しているが、固体臭素系消毒剤を固体のまま沈砂池の雨天時下水道越流水中に投入する方式でもよい。なお、このような制御は、ポンプ場などの雨天時下水道越流水排除施設や下水道管渠、下水処理場などにおける水量、残留ハロゲン濃度、放流ゲート(可動ゲート)開信号、雨水ポンプ運転信号などのモニター値を、中央制御室などの遠隔の管理施設に送り、管理施設において遠隔で制御することが好ましい。即ち、雨天時下水道越流水排除施設の現場では、無人で消毒剤の投入を制御することができるようにすることが好ましい。このような制御体系の概念を図58に示す。   Examples of the operation method of the apparatus for disinfecting sewer stormwater overflow with the solid bromine-based disinfectant according to the present invention include the following methods. When the sewer stormwater overflow to be treated is overflow water from a combined sewer or diversion sewer pump station (drainage station), the overflow water is often discharged as follows. The pumping station has a sand basin or rainwater storage facility. In FIG. 57, when rainwater enters the sewer pipe 961 and the amount increases, the movable gate 962 is opened, and the rainwater-mixed sewage overflows (rainwater sewer overflow). Overflow water is accommodated in a sand basin or rainwater storage facility 963 and flows into the pump well 972 through a screen 971. A rainwater pump is arranged in the pump well 972, and the rainwater pump 964 is activated after a predetermined time has passed since the movable gate 962 was opened, and the sewer stormwater overflow in the sand basin or the rainwater storage facility 963 is discharged. It is guided to a channel 965 and discharged from a discharge channel 965 to a public water area 966 such as a river. A plurality of rainwater pumps 964 are usually installed, and the number of operating rainwater pumps 964 is controlled by the water level in the pump well 972. The operation of the movable gate 962 is usually performed by an operator in the central monitoring room based on various types of weather information such as the probability of rainfall, rainfall information, and rainfall. In such a case, when the movable gate 962 is activated and the sewer stormwater overflow flows into the sand basin or the rainwater storage facility 963, first, the pump 967 is moved to take out a part of the sewer stormwater overflow. Then, the mixing device 969 can be mixed with the solid bromine-based disinfectant 968 to adjust the disinfecting water and put it into the sand basin or the rainwater storage facility 963. At this time, a predetermined amount of a solid bromine-based disinfectant calculated from the capacity of the sand basin or rainwater storage facility 963 can be added in advance to disinfect the sewer stormwater overflow accumulated in the sand basin or rainwater storage facility 963. . After that, when the rainwater pump 964 is activated and the discharge of sewer stormwater overflow into the public water area begins, supply of disinfectant so that an appropriate amount of solid bromine-based disinfectant is introduced in accordance with the flow rate of the overflow water. Can be controlled. FIG. 57 shows a method in which a solid bromine-based disinfectant is dissolved in water to form disinfecting water, and this is thrown into sewer stormwater overflow, but the solid bromine-based disinfectant remains solid. A method of throwing it into sewer stormwater overflow in a sand basin may be used. Such control includes the amount of water, residual halogen concentration, discharge gate (movable gate) opening signal, rainwater pump operation signal, etc. in sewer stormwater overflow facilities such as pump stations, sewer pipes, and sewage treatment plants. Preferably, the monitor value is sent to a remote management facility such as a central control room and controlled remotely at the management facility. In other words, it is preferable that the disinfectant input can be controlled unattended on the site of the sewer overflow overflow facility in the rain. The concept of such a control system is shown in FIG.

図58に示す制御体系によれば、臭素消毒装置の制御は、付帯する動力制御盤1002に組み込まれたシーケンサなどの制御ユニットによって自動的に行われる。   According to the control system shown in FIG. 58, the bromine disinfection device is automatically controlled by a control unit such as a sequencer incorporated in the accompanying power control panel 1002.

薬品供給器1003は、粉体流動槽(ロードセルを含む)、粉体流動機、薬品供給機、溶解コーン、付属弁類から構成される。   The chemical supply unit 1003 includes a powder flow tank (including a load cell), a powder flow machine, a chemical supply machine, a melting cone, and attached valves.

原水濁度計1004は、流入原水の濁度を常時出力する。   The raw water turbidity meter 1004 always outputs the turbidity of the incoming raw water.

溶解水流量計1005は、薬品溶解用の給水量を常時出力する。   The dissolved water flow meter 1005 always outputs a water supply amount for dissolving chemicals.

残留ハロゲン計1007は、放流水の残留ハロゲン濃度を常時出力する。   The residual halogen meter 1007 always outputs the residual halogen concentration of the discharged water.

動力制御盤1002では、以下の制御が行われる。
・注入量制御:中央操作室1001から「放流水量」のデータ、薬品供給機1003に付帯する供給機から「回転数」のデータを取込み、これを「給粉量」に変換して、水量変動に対して注入率を一定にして適性注入するように制御を行う。
・注入率制御:「供給機運転時間」、「放流水量」のデータを取込み、経時変化により大腸菌群数が減少することを想定して薬品注入率を段階的に減少させることで、過剰注入を防止する制御を行う。
・注入率演算制御:原水濁度計1004から「濁度」のデータ、中央操作室1001から「放流量」、「降雨強度」、「降雨量」のデータを取込み、原水中に含まれる大腸菌群数を演算し、薬注量(率)を決定して注入制御を行う。
・運転シーケンス管理:補機類1006について例えば集塵機の「連動運転」指令、CSO放流設備1008ついてゲートの「開閉」など、付帯機器に関する連動運転管理を行う。
・注入判定:薬品供給機1003の給粉量は供給機回転数から計算するが、これだけではブリッジなどによる空運転を検知できない。そのため、薬品を貯留している粉体流動部のロードセルで粉体変動重量を計測し、回転数からの計算値と比較して整合性を判定する。
・各データ記録:計装からの測定値、故障履歴などを盤内のレコーダで記録する。
In the power control panel 1002, the following control is performed.
・ Injection amount control: “Discharge water amount” data from the central operation room 1001 and “Rotation number” data from the supply device attached to the chemical supply device 1003 are taken and converted into “Powder supply amount” to change the water amount. In contrast, the injection rate is kept constant and control is performed so that appropriate injection is performed.
・ Injection rate control: By taking the data of “operator operating time” and “discharged water”, and reducing the chemical injection rate step by step assuming that the number of coliforms decreases with time, overinjection Control to prevent.
Injection rate calculation control: “turbidity” data from raw water turbidity meter 1004, “discharge flow rate”, “rainfall intensity”, “rainfall” data from central operation room 1001, and coliform bacteria contained in raw water The number is calculated, the injection amount (rate) is determined, and injection control is performed.
-Operation sequence management: For the auxiliary equipment 1006, for example, the "operated operation" command of the dust collector, the "opening / closing" of the gate for the CSO discharge facility 1008, etc., the associated operation management is performed.
Injection determination: The amount of powder supplied by the chemical feeder 1003 is calculated from the rotational speed of the feeder, but this alone cannot detect an idle operation due to a bridge or the like. Therefore, the powder fluctuation weight is measured by the load cell of the powder flow part storing the chemical, and the consistency is determined by comparing with the calculated value from the rotation speed.
・ Each data recording: Measurement values from instrumentation, failure history, etc. are recorded with a recorder in the panel.

なお、必要によって、運転モード、状態表示や各種データを中央操作室1001へ送り、中央操作室から運転・監視が行えるようにする。   If necessary, the operation mode, status display, and various data are sent to the central operation room 1001 so that the operation and monitoring can be performed from the central operation room.

放流開始後、即ち雨水ポンプ運転開始後の消毒剤の注入量は、タイマーによって数段階に分けて注入量を徐々に低下させることが好ましい。例えば、運転開始後0〜1時間、1〜3時間、3〜5時間、5時間〜の4段階に分けて、それぞれ消毒剤の注入率を10mg/L、7mg/L、5mg/L、3mg/Lというように徐々に低下させることができる。添加段階の数、各段階の長さ、各段階での消毒剤注入率などは、降雨量、降雨タイプ、降雨予報などの情報に基づいて適宜変更することができる。例えば、予め数パターンの添加プログラムを設定しておき、降雨量、降雨タイプなどの情報に基づいて選択することができる。このような場合でも、消毒剤注入点の下流の雨天時下水道越流水流路にハロゲン濃度計を設置し、残留ハロゲン濃度が異常に高い場合には、注入を停止したり、若しくは警報を発するなどの制御を行うことが好ましい。更に、制御設備上の安全対策としては、例えば、放流側に設置の残留ハロゲン計によって消毒剤の過剰注入検知機構を設け、過剰注入を検知したの場合には供給停止を行ったり、消毒剤供給装置においてブリッジ等によって供給が滞った場合を想定し、一定時間消毒剤貯留槽の重量が変化しなかった場合に警報を発したり、消毒剤溶解水がエジェクター上部の溶解コーンから逆流した場合に検知する機構を設けて、検知にて供給停止したり、消毒剤溶解水の供給量不足を検知する機構、即ち、電磁流量計の下限検知機構を設けて、異常検知により溶解水供給弁を閉として逆流を防止する、というような制御を行うことが好ましい。   It is preferable that the injection amount of the disinfectant after the start of discharge, that is, after the start of the rainwater pump operation, is gradually reduced in several stages by a timer. For example, the injection rate of the disinfectant is 10 mg / L, 7 mg / L, 5 mg / L, 3 mg, divided into four stages of 0 to 1 hour, 1 to 3 hours, 3 to 5 hours, and 5 hours after the start of operation. It can be gradually reduced like / L. The number of addition stages, the length of each stage, the disinfectant injection rate at each stage, and the like can be changed as appropriate based on information such as the amount of rainfall, the rainfall type, and the rainfall forecast. For example, several patterns of addition programs can be set in advance, and selection can be made based on information such as rainfall amount and rainfall type. Even in such a case, a halogen concentration meter is installed in the sewer stormwater overflow downstream of the disinfectant injection point, and if the residual halogen concentration is abnormally high, the injection is stopped or an alarm is issued. It is preferable to perform control. Furthermore, as a safety measure on the control equipment, for example, a disinfectant over-injection detection mechanism is provided by a residual halogen meter installed on the discharge side, and when over-injection is detected, supply is stopped or disinfectant supply Assuming that the supply is delayed due to a bridge etc. in the device, an alarm is issued when the weight of the disinfectant storage tank has not changed for a certain period of time, or when the disinfectant dissolved water flows backward from the dissolution cone above the ejector A mechanism to stop the supply by detection, or to detect a shortage of the disinfectant dissolved water supply amount, that is, to provide a lower limit detection mechanism for the electromagnetic flow meter, and to close the dissolved water supply valve by detecting an abnormality. It is preferable to perform control such as preventing backflow.

本発明の各種態様は、以下の通りである。
1.下水を塩素又はUVで消毒する消毒槽を有する消毒施設と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;
入口と出口1及び出口2を有し、入口への流入下水を出口1及び出口2に分ける分岐装置であって、入口への流入下水量が所定値以下の場合には流入下水量の全量を出口1に流し、流入下水量が所定値以上の場合には、所定値の下水量を出口1に流し、流入下水量から所定値の下水量を除いた下水量を出口2に流す分岐装置と;
から構成され、
上記分岐装置の出口1が上記消毒施設の下水導入部に接続され、上記分岐装置の出口2が上記臭素下水処理装置の下水導入部に接続されている下水処理装置。
2.消毒施設によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項1に記載の下水処理装置。
3.消毒施設によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項1に記載の下水処理装置。
4.分岐装置の入口は合流式下水道に接続されている請求項1に記載の下水処理装置。
5.臭素下水処理装置によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項1に記載の下水処理装置。
6.臭素下水処理装置によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項1に記載の下水処理装置。
7.消毒施設及び/又は臭素下水処理装置によって消毒された下水を公共水域に流す請求項1に記載の下水処理装置。
8.消毒施設は、最初沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が消毒槽の下水導入部に接続されている請求項1に記載の下水処理装置。
9.消毒施設は、最初沈殿池、ばっき槽及び最終沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続されている請求項1に記載の下水処理装置。
10.消毒施設は、更に、
最初沈殿池と、
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と、
下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1が消毒槽の下水導入部に接続され、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されている請求項1に記載の下水処理装置。
11.消毒施設は、更に、
最初沈殿池と、
ばっき槽と、
最終沈殿池と、
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と、
下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続されて、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されている請求項1に記載の下水処理装置。
Various aspects of the present invention are as follows.
1. A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
A branching device that has an inlet, an outlet 1 and an outlet 2 and divides the inflowing sewage into the outlet 1 and the outlet 2, and when the inflowing sewage amount to the inlet is less than a predetermined value, A branching device that flows to the outlet 1 and, when the inflow sewage amount is greater than or equal to a predetermined value, causes the sewage amount to flow to the outlet 1 and flows the sewage amount obtained by removing the sewage amount from the inflow sewage amount to the outlet 2; ;
Consisting of
A sewage treatment apparatus in which an outlet 1 of the branch device is connected to a sewage introduction section of the disinfection facility, and an outlet 2 of the branch apparatus is connected to a sewage introduction section of the bromine sewage treatment apparatus.
2. The sewage treatment apparatus according to claim 1, wherein the number of coliforms in the sewage is set to 3000 or less per 1 cc of sewage by a disinfection facility.
3. The sewage treatment apparatus according to claim 1, wherein the number of Escherichia coli in the sewage is reduced to 200 or less per 100 cc of sewage by a disinfection facility.
4). The sewage treatment apparatus according to claim 1, wherein an inlet of the branching device is connected to a combined sewer.
5. The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of coliform bacteria in the sewage to 3000 or less per 1 cc of sewage.
6). The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of Escherichia coli in the sewage to 200 or less per 100 cc of sewage.
7). The sewage treatment apparatus according to claim 1, wherein sewage sterilized by a disinfection facility and / or bromine sewage treatment apparatus is allowed to flow into a public water area.
8). The disinfection facility further includes an initial settling basin, wherein the introduction portion of the disinfection facility is connected to the first settling basin sewage introduction portion, and the first settling basin outlet is connected to the sterilization tank sewage introduction portion. Sewage treatment equipment as described.
9. The disinfection facility further has an initial settling basin, a flash tank, and a final settling basin. The sewage introduction section of the first sedimentation basin is connected to the introduction section of the disinfection facility, and the outlet of the first sedimentation basin is the sewage introduction section of the flash tank. The sewage treatment device according to claim 1, wherein the outlet of the final tank is connected to the sewage introduction part of the final sedimentation tank, and the outlet of the final sedimentation tank is connected to the sewage introduction part of the disinfection tank.
10. The disinfection facility
First settling basin,
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 When,
A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant,
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the inlet of the branching device, the outlet 1 of the branching device is connected to the sewage introduction part of the sterilization tank, The sewage treatment apparatus according to claim 1, wherein the outlet 2 is connected to a sewage introduction section of the bromine sewage treatment apparatus.
11. The disinfection facility
First settling basin,
The tank,
The final sedimentation basin,
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 When,
A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant,
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the tank. The outlet of the tank is connected to the sewage introduction part of the final sedimentation tank, the outlet of the final sedimentation tank is connected to the sewage introduction part of the disinfection tank, and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device. The sewage treatment apparatus according to claim 1.

12.下水処理場における下水処理装置であって、
最初沈殿池と;
下水を塩素又はUVで消毒する消毒槽を有する消毒設備と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置;とからなり、
分岐装置の出口1が消毒設備の下水導入部に接続され、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置。
13.下水処理場における下水処理装置であって、
最初沈殿池と;
ばっき槽と;
最終沈殿池と;
下水を塩素又はUVで消毒する消毒槽を有する消毒設備と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と;からなり、
下水処理装置の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒設備の下水導入部に接続されて、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置。
14.臭素下水処理装置が、固体臭素系消毒剤の貯留・供給装置と、該固体臭素系消毒剤の貯留・供給装置から供給される固体臭素系消毒剤を、被処理水に添加・混合する消毒剤添加・混合装置とを具備することを特徴とする請求項1〜13のいずれかに記載の下水処理装置。
15.固体臭素系消毒剤の貯留・供給装置が、固体臭素系消毒剤の貯槽と、貯槽内の固体臭素系消毒剤を所定の量計量して排出する定量供給機とを備え、該貯槽及び定量供給機は、圧縮空気をその内部に噴射する複数個の噴射口で構成された固体臭素系消毒剤の撹拌手段を備えている請求項14に記載の下水処理装置。
16.定量供給機が、計量手段を有する回転テーブルを備えた請求項15に記載の下水処理装置。
17.消毒剤添加・混合装置が、被処理水の一部を受容して固体臭素系消毒剤を混合・溶解する消毒水調製装置と、消毒水を被処理水に投入する手段とを備えた請求項14に記載の下水処理装置。
18.消毒剤添加・混合装置が、被処理水が流れる流路内に設置されている請求項17に記載の消毒装置。
19.固体臭素系消毒剤の貯留・混合装置及び添加・混合装置が、固体臭素系消毒剤を貯留する貯留槽、貯留槽に接続されており、消毒剤を固体のままで注入点まで移送するための消毒剤移送配管、消毒剤移送配管に接続されており、配管内を移送されてきた固体臭素系消毒剤を消毒対象の被処理水に加える消毒剤注入装置、から構成される請求項14に記載の消毒装置。
20.消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解する請求項14に記載の消毒装置。
21.更に、被処理水のサンプルを採取するための分取ラインと、サンプリングされた被処理水サンプルに消毒剤を添加するための消毒剤供給手段と、消毒剤が添加された被処理水サンプルの有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、を備え、有効ハロゲン濃度測定装置によって測定された消毒剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて消毒剤添加・混合装置によって被処理水中に加えられる消毒剤の添加量を制御する消毒剤添加量制御手段を備えた請求項14に記載の下水処理装置。
22.更に、消毒剤を添加した後の被処理水中に還元剤を添加する還元剤供給装置と、消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて還元剤の添加量を制御する還元剤添加量制御装置を備えた請求項14に記載の下水処理装置。
23.下水を消毒処理する方法であって、
流入下水を、流入下水量が所定値以下の場合には流入下水量の全量を塩素又はUVによって消毒し、流入下水量が所定値以上の場合には、所定値の下水量を塩素又はUVによって消毒し、同時に流入下水量から所定値の下水量を除いた下水量を臭素系消毒剤によって消毒することを特徴とする下水処理方法。
24.塩素又はUVによる消毒によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項23に記載の方法。
25.塩素又はUVによる消毒によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項23に記載の方法。
26.処理対象の下水が合流式下水道の下水である請求項23に記載の方法。
27.臭素系消毒剤による消毒によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項23に記載の方法。
28.臭素系消毒剤による消毒によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項23に記載の方法。
29.塩素又はUVによって消毒された下水及び/又は臭素系消毒剤によって消毒された下水を公共水域に流す請求項23に記載の方法。
30.臭素系消毒剤による消毒処理の時間が3分以内である請求項23に記載の方法。
31.臭素系消毒剤として固体の臭素系消毒剤を被処理水に添加・混合して消毒を行う請求項23に記載の方法。
32.臭素系消毒剤として、固体の臭素系系消毒剤を被処理水の一部に混合・溶解して消毒水を調製し、調製された消毒水を被処理水に投入することによって消毒を行う請求項23に記載の方法。
33.消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解する請求項23に記載の方法。
34.被処理水の一部をサンプリングして臭素系消毒剤を添加し、臭素系消毒剤が添加された被処理水サンプルの有効ハロゲン濃度を測定して、測定された臭素系消毒剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて被処理水に加える臭素系消毒剤の添加量を制御することを更に含む請求項23に記載の方法。
35.臭素系消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定し、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて、臭素系消毒剤を添加した後の被処理水中に還元剤を添加する請求項23に記載の方法。
36.下水道システムであって、下水処理場の処理容量を超えない量の下水が下水処理場に流れ込む場合には、下水を、下水処理場において所定の処理を行った後に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流し、大量の降雨によって下水処理場の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ込むか若しくは流れ込むおそれのある場合には、下水処理場の処理容量を超える量の雨水混入下水については、下水道の雨天時下水道越流水排除施設において分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、下水処理場の処理容量内の雨水混入下水については、下水処理場において所定の処理を行った後に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流することを特徴とする下水道システム。
37.分流式下水道システムであって、下水道の汚水管渠を流れる汚水について、下水処理場において所定の処理を行った後に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流し、下水道の雨水管渠を流れる雨水については、雨水排除施設、例えばポンプ場(排水機場)から公共水域に放流し、大量の降雨があった場合には、雨水排除施設において臭素系消毒剤による消毒処理を行った後に公共水域に放流することを特徴とする下水道システム。
38.下水道システムであって、下水処理場の曝気槽の処理容量を超えない量の下水が下水処理場に流れ込む場合には、下水を、下水処理場において、最初沈殿池、曝気槽、最終沈殿池による処理を行った後に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流し、大量の降雨によって下水処理場の最初沈殿池の処理容量は超えないが曝気槽の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ込むか若しくは流れ込むおそれのある場合には、曝気槽の処理容量を超える量の雨水混入下水については、下水処理場での最初沈殿池における処理の後に分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、曝気槽の処理容量内の雨水混入下水については、下水処理場での最初沈殿池における処理に続いて、曝気槽、最終沈殿池による処理を行い、続いて塩素系消毒剤によって消毒処理を行った後に公共水域に放流することを特徴とする下水道システム。
12 A sewage treatment device in a sewage treatment plant,
First sedimentation basin;
A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 And consist of
A sewage treatment apparatus, characterized in that an outlet 1 of the branching apparatus is connected to a sewage introduction part of the disinfection facility, and an outlet 2 of the branching apparatus is connected to a sewage introduction part of the bromine sewage treatment apparatus.
13. A sewage treatment device in a sewage treatment plant,
First sedimentation basin;
With a tank;
The final sedimentation basin;
A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
A branching device having an inlet, an outlet 1 and an outlet 2 that receives the effluent water from the first sedimentation basin and separates it into the outlet 1 and the outlet 2. A diverter that causes the entire amount to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and removes the predetermined amount of water from the inflow water amount to the outlet 2; ,
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the inlet of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flash tank. The outlet of the tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device A sewage treatment apparatus characterized by that.
14 Bromine sewage treatment equipment is a storage / supply device for solid bromine-based disinfectant and a disinfectant for adding / mixing solid bromine-based disinfectant supplied from the storage / supply device for solid bromine-based disinfectant to the water to be treated The sewage treatment apparatus according to any one of claims 1 to 13, further comprising an addition / mixing apparatus.
15. A solid bromine-based disinfectant storage / supply device includes a solid bromine-based disinfectant storage tank and a quantitative feeder for measuring and discharging a predetermined amount of solid bromine-based disinfectant in the storage tank. The sewage treatment apparatus according to claim 14, wherein the machine includes a solid bromine-based disinfectant agitation unit configured with a plurality of injection ports for injecting compressed air therein.
16. The sewage treatment apparatus according to claim 15, wherein the fixed amount feeder includes a rotary table having a weighing unit.
17. The disinfectant addition / mixing device is provided with a disinfecting water preparation device that receives a part of the water to be treated and mixes / dissolves the solid bromine-based disinfectant, and means for introducing the disinfecting water into the water to be treated. 14. A sewage treatment apparatus according to 14.
18. The disinfection apparatus according to claim 17, wherein the disinfectant addition / mixing apparatus is installed in a flow path through which water to be treated flows.
19. Solid bromine-based disinfectant storage / mixing device and addition / mixing device are connected to the storage tank for storing the solid bromine-based disinfectant, and the storage tank for transferring the disinfectant as solid to the injection point The disinfectant transfer pipe connected to the disinfectant transfer pipe and the disinfectant transfer pipe, and comprising a disinfectant injection device that adds the solid bromine-based disinfectant transferred through the pipe to the water to be disinfected. Disinfection equipment.
20. The disinfecting apparatus according to claim 14, wherein the disinfectant completely dissolves from the addition position until the disinfectant reaches the discharge point of the water to be treated.
21. In addition, a preparative line for collecting a sample of the water to be treated, a disinfectant supply means for adding a disinfectant to the sampled water sample to be treated, and the effectiveness of the water sample to which the disinfectant is added. An effective halogen concentration measuring device for measuring the halogen concentration, and a disinfectant addition / mixing device according to the degree of decrease in the effective halogen concentration in the treated water sample after the addition of the disinfectant measured by the effective halogen concentration measuring device. The sewage treatment apparatus according to claim 14, further comprising a disinfectant addition amount control means for controlling an addition amount of the disinfectant added to the water to be treated.
22. Furthermore, a reducing agent supply device for adding a reducing agent to the water to be treated after adding the disinfectant, and an effective halogen concentration measuring device for measuring the effective halogen concentration in the water to be treated after adding the disinfectant are measured. The sewage treatment apparatus of Claim 14 provided with the reducing agent addition amount control apparatus which controls the addition amount of a reducing agent according to the effective halogen density | concentration in the to-be-processed water after addition of the disinfectant.
23. A method for disinfecting sewage,
Inflow sewage is sterilized by chlorine or UV when the inflow sewage amount is below a predetermined value, and when the inflow sewage amount is greater than or equal to a predetermined value, the sewage amount at a predetermined value is chlorine or UV. A sewage treatment method comprising disinfecting and simultaneously disinfecting a sewage amount obtained by subtracting a predetermined amount of sewage from an inflow sewage amount with a bromine-based disinfectant
24. The method according to claim 23, wherein the number of coliform bacteria in sewage is reduced to 3000 or less per 1 cc of sewage by disinfection with chlorine or UV.
25. The method according to claim 23, wherein the number of E. coli in sewage is reduced to 200 or less per 100 cc of sewage by disinfection with chlorine or UV.
26. The method according to claim 23, wherein the sewage to be treated is sewage from a combined sewer.
27. The method according to claim 23, wherein the number of coliforms in the sewage is reduced to 3000 or less per 1 cc of sewage by disinfection with a bromine-based disinfectant.
28. The method according to claim 23, wherein the number of Escherichia coli in sewage is reduced to 200 or less per 100 cc of sewage by disinfection with a bromine-based disinfectant.
29. The method according to claim 23, wherein sewage sterilized by chlorine or UV and / or sewage sterilized by a bromine-based disinfectant is passed to a public water area.
30. The method according to claim 23, wherein the time for disinfection treatment with a bromine-based disinfectant is 3 minutes or less.
31. The method according to claim 23, wherein the disinfection is performed by adding and mixing a solid bromine-based disinfectant to the water to be treated as a bromine-based disinfectant.
32. A request to prepare disinfecting water by mixing and dissolving a solid bromine-based disinfectant into a part of the water to be treated as a bromine-based disinfectant, and then disinfecting the prepared disinfecting water into the water to be treated Item 24. The method according to Item 23.
33. The method according to claim 23, wherein the disinfectant completely dissolves from the addition position until it reaches the discharge point of the water to be treated.
34. A portion of the water to be treated is sampled, a bromine-based disinfectant is added, and the effective halogen concentration of the sample to be treated to which the bromine-based disinfectant is added is measured. The method according to claim 23, further comprising controlling the amount of bromine-based disinfectant added to the water to be treated in accordance with the degree of reduction in the effective halogen concentration in the treated water sample.
35. Measure the effective halogen concentration in the treated water after adding the bromine-based disinfectant, and treat it after adding the bromine-based disinfectant according to the measured effective halogen concentration in the treated water after adding the disinfectant. 24. The method of claim 23, wherein a reducing agent is added to the water.
36. If the sewage system is a sewer system and does not exceed the treatment capacity of the sewage treatment plant, the sewage is treated at the sewage treatment plant and then sterilized with a chlorine-based disinfectant. If the sewage containing the amount of rainwater exceeding the capacity of the sewage treatment plant flows into the sewage treatment plant or there is a possibility that it will flow into the sewage treatment plant after a large amount of rainfall, the treatment at the sewage treatment plant For sewage mixed with rainwater exceeding the capacity, it is branched at the sewer stormwater overflow facility, disinfected with bromine-based disinfectant, discharged to public water, and rainwater within the treatment capacity of the sewage treatment plant. Contaminated sewage is treated by a sewage treatment plant, sterilized with a chlorinated disinfectant, and then discharged into public water areas. .
37. This is a sewerage sewer system, and the sewage flowing through the sewer sewage pipe is treated at the sewage treatment plant, sterilized with a chlorinated disinfectant, and then discharged into public water areas. The rainwater flowing through the dredging is discharged from a rainwater drainage facility, such as a pumping station (drainage station), into a public water area. If there is a large amount of rainfall, the rainwater drainage facility will disinfect it with a bromine-based disinfectant. A sewerage system characterized by discharge into public water areas.
38. When the amount of sewage that does not exceed the treatment capacity of the aeration tank at the sewage treatment plant flows into the sewage treatment plant, the sewage is treated by the first sedimentation tank, the aeration tank, and the final sedimentation tank. After treatment, disinfect with a chlorinated disinfectant and then release it to public waters. A large amount of rainfall will not exceed the treatment capacity of the first sedimentation basin of the sewage treatment plant, but will exceed the treatment capacity of the aeration tank. When sewage containing rainwater flows into or may flow into the sewage treatment plant, sewage mixed with rainwater exceeding the treatment capacity of the aeration tank is branched after treatment in the first sedimentation basin at the sewage treatment plant. After being disinfected with bromine-based disinfectant, it is discharged into public water areas. For sewage mixed with rainwater in the treatment capacity of the aeration tank, the treatment in the aeration tank, Performs processing by sedimentation, followed by sewer systems, characterized in that the discharged into public waters after the disinfection treatment by chlorine disinfectant.

以下、本発明の実施例を説明するが、本発明はこれに限定されるものではない。実施例1〜3では、図4〜6で示されるシステムで、排水の処理をした。   Examples of the present invention will be described below, but the present invention is not limited thereto. In Examples 1 to 3, wastewater was treated by the systems shown in FIGS.

実施例1
大腸菌群を含む下水処理水を被処理水として、殺菌試験を行った。消毒剤としては、1−ブロモ−3−クロロ−5,5−ジメチルヒダントイン(BCDMH)(実施例l)及び次亜塩素酸ソーダ(比較例1)を用いた。消毒剤の濃度を変えて、大腸菌群に対する殺菌試験を行った。被処理水の水質を表1に、試験結果を表2に示す。
Example 1
A sterilization test was conducted using treated sewage water containing coliforms as treated water. As disinfectants, 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) (Example 1) and sodium hypochlorite (Comparative Example 1) were used. Bactericidal tests against coliforms were performed with varying concentrations of disinfectant. Table 1 shows the quality of water to be treated and Table 2 shows the test results.

Figure 2006054373
Figure 2006054373

Figure 2006054373
Figure 2006054373

BCDMHは次亜塩素酸ソーダに比べ、1/2以下の濃度で殺菌効果を発揮し、1mg/L as Clの添加濃度で大腸菌群数を3000CFU/mL以下にすることができた。   BCDMH exhibited a bactericidal effect at a concentration of 1/2 or less compared with sodium hypochlorite, and the number of coliforms could be reduced to 3000 CFU / mL or less at an addition concentration of 1 mg / L as Cl.

BCDMHを1mg/L as Clで添加した条件でトリハロメタンは0.1mg/L以下であった。   Under the condition that BCDMH was added at 1 mg / L as Cl, trihalomethane was 0.1 mg / L or less.

なお、消毒剤の添加率の表示は、臭素系消毒剤、塩素系消毒剤ともに活性塩素表示とし、活性塩素濃度に換算して「mg/L as Cl」と表示する。例えば、1gのBCDMHを1Lの排水に添加したときには、540mg/L as Clになる。   In addition, as for the addition rate of the disinfectant, the bromine-based disinfectant and the chlorine-based disinfectant are expressed as active chlorine, and converted to the active chlorine concentration and displayed as “mg / L as Cl”. For example, when 1 g of BCDMH is added to 1 L of waste water, it becomes 540 mg / L as Cl.

反応時間についても、BCDMHでは1分で十分な効果が認められたのに対し、次亜塩素酸ソーダでは5分以上の時間が必要であった。   As for the reaction time, a sufficient effect was recognized in 1 minute with BCDMH, whereas a time of 5 minutes or more was required with sodium hypochlorite.

実施例2
水産加工排水を、凝集加圧浮上分離した後、更に、活性汚泥処理して得られた排水を被処理水とした。この被処理水に対して消毒剤添加濃度を変更し殺菌試験を行った。被処理水の水質を表3に試験結果を表4に示す。
Example 2
After the aquatic processing wastewater was separated by flocculation, pressurization and floatation, wastewater obtained by activated sludge treatment was used as water to be treated. The disinfection agent addition density | concentration was changed with respect to this to-be-processed water, and the sterilization test was done. Table 3 shows the quality of water to be treated and Table 4 shows the test results.

Figure 2006054373
Figure 2006054373

有機性窒素とは、アミンに加え、蛋白質等の有機性窒素全体としての値をいう。例えば、タンパク質の場合には、タンパク質中の窒素原子のみの量をいい、タンパク質中の炭素原子又は水素原子の量は含まれない。有機性窒素には、アンモニア、アンモニウムイオンのような無機窒素は含まれない。   Organic nitrogen refers to the value of organic nitrogen as a whole, such as proteins, in addition to amines. For example, in the case of protein, it refers to the amount of only nitrogen atoms in the protein, and does not include the amount of carbon atoms or hydrogen atoms in the protein. Organic nitrogen does not include inorganic nitrogen such as ammonia and ammonium ions.

Figure 2006054373
Figure 2006054373

BCDMHは次亜塩素酸ソーダに比べ、1/3以下の濃度で殺菌効果を発撰し、2.5mg/L as Clの添加濃度で大腸菌群数を3000CFU/mL以下にすることができた。
実施例3
図4〜6で示されるシステムで、排水の処理をした。その結果を表5にまとめる。
BCDMH produced a bactericidal effect at a concentration of 1/3 or less compared to sodium hypochlorite, and was able to reduce the number of coliforms to 3000 CFU / mL or less at an addition concentration of 2.5 mg / L as Cl.
Example 3
Wastewater was treated with the system shown in FIGS. The results are summarized in Table 5.

Figure 2006054373
Figure 2006054373

RUN1(下水量120m3/hour)では、BCDMH添加量12mg/Lで、大腸菌群数を3000CFU/mL以下にすることができる。RUN2(下水量250m3/hour)では、BCDMH添加量10mg/Lでは消毒は十分であるが、残留ハロゲン濃度が0.72mg/Lであり、適切ではない。BCDMH添加量5mg/Lで、大腸菌群数を3000CFU/mL以下にすることができ、しかも残留ハロゲン濃度が0.03mg/Lであり、適切である。In RUN1 (sewage amount 120 m 3 / hour), the number of coliforms can be reduced to 3000 CFU / mL or less with a BCDMH addition amount of 12 mg / L. With RUN2 (sewage amount 250 m 3 / hour), a BCDMH addition amount of 10 mg / L is sufficient for disinfection, but the residual halogen concentration is 0.72 mg / L, which is not appropriate. A BCDMH addition amount of 5 mg / L can reduce the number of coliforms to 3000 CFU / mL or less, and the residual halogen concentration is 0.03 mg / L, which is appropriate.

RUN3(下水量530m3/hour)は、降雨量が多い場合であり、BCDMH添加量3〜4.5mg/Lで適正な消毒が可能であった。なお、この時のBCDMHが雨水排除下水と接触した時間を求めたところ、50秒程度であり、極めて短時間で消毒することができた。RUN3 (sewage amount 530 m 3 / hour) is a case where the amount of rainfall is large, and proper disinfection was possible with a BCDMH addition amount of 3 to 4.5 mg / L. In addition, when the time which BCDMH at this time contacted rainwater exclusion sewage was calculated | required, it was about 50 second and it was able to disinfect in a very short time.

RUN4(下水道250m3/hour)は塩素系消毒剤として次亜塩素酸ナトリウムを用いた比較例である。RUN4では、次亜塩素酸ナトリウム添加量を60mg/Lとしても、大腸菌群数を3000CFU/mL以下にすることができず、しかも残留ハロゲン濃度が1.53mg/LとLC50値(具体的には、塩素(Cl2)換算で、0.4mg/L)よりも高く、不適切である。RUN4 (sewer 250 m 3 / hour) is a comparative example using sodium hypochlorite as a chlorine disinfectant. In RUN4, even if the amount of sodium hypochlorite added is 60 mg / L, the number of coliforms cannot be reduced to 3000 CFU / mL or less, and the residual halogen concentration is 1.53 mg / L and LC 50 value (specifically, Is higher than 0.4 mg / L in terms of chlorine (Cl 2 ) and is inappropriate.

なお、RUN1〜RUN4のいずれの場合も、消毒剤添加量が0(ゼロ)の場合が、雨水排除処理場へ流入した雨天時下水の流入水質を示す。   In any case of RUN1 to RUN4, the case where the disinfectant addition amount is 0 (zero) indicates the quality of the inflowing sewage that has flowed into the rainwater removal treatment plant.

実施例4
図59に示す消毒装置を用いて雨天時下水道越流水の消毒を行った。装置の仕様を表6に示す。表7に消毒対象水の水質を示す。消毒剤として、粉末状の1−ブロモ−3−クロロ−5,5−ジメチルヒダントイン(BCDMH:荏原製作所製、商品名エバサニー4400)を用いた。消毒剤添加量と添加後の被処理水の大腸菌群数に対する殺菌効果を測定した結果を表8に示す。
Example 4
The disinfection apparatus shown in FIG. 59 was used to disinfect sewer stormwater overflow. Table 6 shows the specifications of the apparatus. Table 7 shows the quality of water to be disinfected. As a disinfectant, powdery 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH: manufactured by Ebara Seisakusho, trade name Eva Sunny 4400) was used. Table 8 shows the results of measuring the disinfectant addition amount and the bactericidal effect on the number of coliforms of the treated water after the addition.

この実験結果から、消毒剤を粉末のままで被処理水に直接添加することは、残存大腸菌群数を放流規制値である3.0×103CFU/mL以下にまで迅速に低減することに有効であることが分かった。From this experimental result, adding the disinfectant directly to the water to be treated in the form of powder quickly reduces the number of remaining coliforms to the release regulation value of 3.0 × 10 3 CFU / mL or less. It turns out to be effective.

Figure 2006054373
Figure 2006054373

Figure 2006054373
Figure 2006054373

Figure 2006054373
Figure 2006054373

実施例5
図39〜図43を作成した下水処理施設における雨天時越流水について、本発明方法による消毒処理を実施した。消毒装置は、図44に示す構成の装置を用いた。消毒剤としては、BCDMHを用いた。消毒剤導入手段604からの消毒剤の投入による消毒処理を行いながら、10分に1回の頻度でサンプリングライン612から被処理液のサンプルを採取してモニタリング槽613に導入し、所定濃度の消毒剤614を加えた。ここで加える消毒剤614の濃度は、その時点において消毒剤導入手段604から被処理液中に投入されている消毒剤濃度とした。なお、消毒処理開始時の消毒剤濃度は5mg/Lとした。モニタリング槽内の被処理液サンプルにBCDMHを添加した20秒後の時点での被処理液サンプル中の残留ハロゲン濃度を測定器615によって測定し、測定値が0.2 mg/L as Cl2よりも高い場合には消毒剤導入手段604から加える消毒剤の濃度を減少させ、測定値が0.2mg/L as Cl2よりも低い場合には消毒剤導入手段604から加える消毒剤の濃度を増加させた。このように10分毎に消毒剤投入濃度の調整を行いながら消毒処理を継続し、15分ごとに排出液中の大腸菌群数を計測した。結果を図60に示す。この結果から、消毒剤添加量が時間と共に変化し、一方、被処理後の排水中の大腸菌群数は消毒目標値(3000CFU/mL)以下で維持できていたことが分かる。

Example 5
The sterilization treatment according to the method of the present invention was carried out on the rainwater overflowing water in the sewage treatment facility that created FIGS. As the disinfecting apparatus, an apparatus having the configuration shown in FIG. 44 was used. BCDMH was used as a disinfectant. While performing the disinfection treatment by introducing the disinfectant from the disinfectant introduction means 604, a sample of the liquid to be treated is collected from the sampling line 612 at a frequency of once every 10 minutes and introduced into the monitoring tank 613 to disinfect a predetermined concentration. Agent 614 was added. The concentration of the disinfectant 614 added here was the disinfectant concentration that was put into the liquid to be treated from the disinfectant introduction means 604 at that time. The concentration of the disinfectant at the start of the disinfection treatment was 5 mg / L. The residual halogen concentration in the sample of the liquid to be treated was measured 20 seconds after adding BCDMH to the sample of the liquid to be treated in the monitoring tank, and the measured value was higher than 0.2 mg / L as Cl 2. In some cases, the concentration of the disinfectant added from the disinfectant introducing means 604 was decreased, and when the measured value was lower than 0.2 mg / L as Cl 2 , the concentration of the disinfectant added from the disinfectant introducing means 604 was increased. . Thus, disinfection treatment was continued while adjusting the disinfectant input concentration every 10 minutes, and the number of coliform bacteria in the effluent was measured every 15 minutes. The results are shown in FIG. From this result, it can be seen that the addition amount of the disinfectant changed with time, while the number of coliform bacteria in the wastewater after the treatment was maintained at the disinfection target value (3000 CFU / mL) or less.

Claims (35)

下水を塩素又はUVで消毒する消毒槽を有する消毒施設(facility)と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置(device)と;
入口と出口1及び出口2を有し、入口への流入下水を出口1及び出口2に分ける分岐装置であって、入口への流入下水量が所定値以下の場合には流入下水量の全量を出口1に流し、流入下水量が所定値以上の場合には、所定値の下水量を出口1に流し、流入下水量から所定値の下水量を除いた下水量を出口2に流す分岐装置(device)と;
から構成され、
上記分岐装置の出口1が上記消毒施設(facility)の下水導入部に接続され、上記分岐装置(device)の出口2が上記臭素下水処理装置(device)の下水導入部に接続されている下水処理装置(apparatus)。
A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with bromine disinfectants;
A branching device that has an inlet, an outlet 1 and an outlet 2 and divides the inflowing sewage into the outlet 1 and the outlet 2, and when the inflowing sewage amount to the inlet is less than a predetermined value, When the amount of sewage flowing into the outlet 1 is greater than or equal to a predetermined value, a branching device that causes the amount of sewage with a predetermined value to flow into the outlet 1 and the amount of sewage obtained by removing the amount of sewage with a predetermined value from the amount of sewage into device);
Consisting of
The sewage treatment system in which the outlet 1 of the branching device is connected to the sewage introduction part of the sterilization facility and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device (device). Device (apparatus).
消毒施設によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項1に記載の下水処理装置。 The sewage treatment apparatus according to claim 1, wherein the number of coliforms in the sewage is set to 3000 or less per 1 cc of sewage by a disinfection facility. 消毒施設によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項1に記載の下水処理装置。 The sewage treatment apparatus according to claim 1, wherein the number of Escherichia coli in the sewage is reduced to 200 or less per 100 cc of sewage by a disinfection facility. 分岐装置の入口は合流式下水道に接続されている請求項1に記載の下水処理装置。 The sewage treatment apparatus according to claim 1, wherein an inlet of the branching device is connected to a combined sewer. 臭素下水処理装置によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項1に記載の下水処理装置。 The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of coliform bacteria in the sewage to 3000 or less per 1 cc of sewage. 臭素下水処理装置によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項1に記載の下水処理装置。 The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of Escherichia coli in the sewage to 200 or less per 100 cc of sewage. 消毒施設及び/又は臭素下水処理装置によって消毒された下水を公共水域に流す請求項1に記載の下水処理装置。 The sewage treatment apparatus according to claim 1, wherein sewage sterilized by a disinfection facility and / or bromine sewage treatment apparatus is allowed to flow into a public water area. 消毒施設(facility)は、最初沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が消毒槽の下水導入部に接続されている請求項1に記載の下水処理装置。 The disinfection facility further comprises an initial settling basin, the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank Item 2. A sewage treatment apparatus according to item 1. 消毒施設(facility)は、最初沈殿池、ばっき槽及び最終沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続されている請求項1に記載の下水処理装置。 The disinfection facility further comprises an initial settling basin, a basin and a final basin, and the sewage introduction section of the first basin is connected to the introduction section of the sterilization facility, and the outlet of the first basin is connected to the basin tank. The sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus is connected to the sewage introduction section, the outlet of the tank is connected to the sewage introduction section of the final sedimentation tank, and the outlet of the final sedimentation tank is connected to the sewage introduction section of the disinfection tank. . 消毒施設(facility)は、更に、
最初沈殿池と、
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と、
下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1が消毒槽の下水導入部に接続され、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されている請求項1に記載の下水処理装置。
Disinfection facilities
First settling basin,
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 When,
A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant,
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the inlet of the branching device, the outlet 1 of the branching device is connected to the sewage introduction part of the sterilization tank, The sewage treatment apparatus according to claim 1, wherein the outlet 2 is connected to a sewage introduction section of the bromine sewage treatment apparatus.
消毒施設は、更に、
最初沈殿池と、
ばっき槽と、
最終沈殿池と、
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置と、
下水を臭素系消毒剤によって消毒する臭素下水処理装置(device)とを有し、
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続されて、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されている請求項1に記載の下水処理装置。
The disinfection facility
First settling basin,
The tank,
The final sedimentation basin,
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 When,
A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant,
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the tank. The outlet of the tank is connected to the sewage introduction part of the final sedimentation tank, the outlet of the final sedimentation tank is connected to the sewage introduction part of the disinfection tank, and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device. The sewage treatment apparatus according to claim 1.
下水処理場における下水処理装置(apparatus)であって、
最初沈殿池と;
下水を塩素又はUVで消毒する消毒槽を有する消毒設備(equipment)と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置(device)と;
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置(device);とからなり、
分岐装置の出口1が消毒設備の下水導入部に接続され、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置(apparatus)。
A sewage treatment device (apparatus) in a sewage treatment plant,
First sedimentation basin;
A disinfection equipment having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with bromine disinfectants;
A branching device that has an inlet, an outlet 1 and an outlet 2 and receives the outflow water from the first sedimentation basin at the inlet and divides it into the outlet 1 and the outlet 2, and the amount of inflow water to the branching device is below a predetermined value Is a branching device that causes the entire amount of inflow water to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, causes the predetermined amount of water to flow to the outlet 1, and flows the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 (device);
A sewage treatment device (apparatus) characterized in that the outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device.
下水処理場における下水処理装置(apparatus)であって、
最初沈殿池と;
ばっき槽と;
最終沈殿池と;
下水を塩素又はUVで消毒する消毒槽を有する消毒設備(equipment)と;
下水を臭素系消毒剤によって消毒する臭素下水処理装置(device)と;
入口と出口1及び出口2を有し、最初沈殿池からの流出水を入口に受容して出口1及び出口2に分ける分岐装置であって、流入水量が所定値以下の場合には流入水量の全量を出口1に流し、流入水量が所定値以上の場合には、所定値の水量を出口1に流し、流入水量から所定値の水量を除いた水量を出口2に流す分岐装置(device)と;からなり、
下水処理装置の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装置の入口に接続され、分岐装置の出口1がばっき槽の下水導入部に接続され、ばっき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒設備の下水導入部に接続されて、分岐装置の出口2が臭素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置。
A sewage treatment device (apparatus) in a sewage treatment plant,
First sedimentation basin;
With a tank;
The final sedimentation basin;
A disinfection equipment having a disinfection tank for disinfecting sewage with chlorine or UV;
A bromine sewage treatment device for disinfecting sewage with bromine disinfectants;
A branching device having an inlet, an outlet 1 and an outlet 2 that receives the effluent water from the first sedimentation basin and separates it into the outlet 1 and the outlet 2. A branch device that allows the entire amount to flow to the outlet 1, and if the inflow water amount is greater than or equal to a predetermined value, the predetermined amount of water flows to the outlet 1, and the water amount obtained by removing the predetermined amount of water from the inflow water amount to the outlet 2 Consisting of
The sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the inlet of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flash tank. The outlet of the tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device A sewage treatment apparatus characterized by that.
臭素下水処理装置が、固体臭素系消毒剤の貯留・供給装置と、該固体臭素系消毒剤の貯留・供給装置から供給される固体臭素系消毒剤を、被処理水に添加・混合する消毒剤添加・混合装置とを具備することを特徴とする請求項1〜13のいずれかに記載の下水処理装置。 Bromine sewage treatment equipment is a storage / supply device for solid bromine-based disinfectant and a disinfectant for adding / mixing solid bromine-based disinfectant supplied from the storage / supply device for solid bromine-based disinfectant to the water to be treated The sewage treatment apparatus according to any one of claims 1 to 13, further comprising an addition / mixing apparatus. 固体臭素系消毒剤の貯留・供給装置が、固体臭素系消毒剤の貯槽と、貯槽内の固体臭素系消毒剤を所定の量計量して排出する定量供給機とを備え、該貯槽及び定量供給機は、圧縮空気をその内部に噴射する複数個の噴射口で構成された固体臭素系消毒剤の撹拌手段を備えている請求項14に記載の下水処理装置。 A solid bromine-based disinfectant storage / supply device includes a solid bromine-based disinfectant storage tank and a quantitative feeder for measuring and discharging a predetermined amount of solid bromine-based disinfectant in the storage tank. The sewage treatment apparatus according to claim 14, wherein the machine includes a solid bromine-based disinfectant agitation unit configured with a plurality of injection ports for injecting compressed air therein. 定量供給機が、計量手段を有する回転テーブルを備えた請求項15に記載の下水処理装置。 The sewage treatment apparatus according to claim 15, wherein the fixed amount feeder includes a rotary table having a weighing unit. 消毒剤添加・混合装置が、被処理水の一部を受容して固体臭素系消毒剤を混合・溶解する消毒水調製装置と、消毒水を被処理水に投入する手段とを備えた請求項14に記載の下水処理装置。 The disinfectant addition / mixing device is provided with a disinfecting water preparation device that receives a part of the water to be treated and mixes / dissolves the solid bromine-based disinfectant, and means for introducing the disinfecting water into the water to be treated. 14. A sewage treatment apparatus according to 14. 消毒剤添加・混合装置が、被処理水が流れる流路内に設置されている請求項17に記載の消毒装置。 The disinfection apparatus according to claim 17, wherein the disinfectant addition / mixing apparatus is installed in a flow path through which water to be treated flows. 固体臭素系消毒剤の貯留・混合装置及び添加・混合装置が、固体臭素系消毒剤を貯留する貯留槽、貯留槽に接続されており、消毒剤を固体のままで注入点まで移送するための消毒剤移送配管、消毒剤移送配管に接続されており、配管内を移送されてきた固体臭素系消毒剤を消毒対象の被処理水に加える消毒剤注入装置、から構成される請求項14に記載の消毒装置。 Solid bromine-based disinfectant storage / mixing device and addition / mixing device are connected to the storage tank for storing the solid bromine-based disinfectant, and the storage tank for transferring the disinfectant as solid to the injection point The disinfectant transfer pipe connected to the disinfectant transfer pipe and the disinfectant transfer pipe, and comprising a disinfectant injection device that adds the solid bromine-based disinfectant transferred through the pipe to the water to be disinfected. Disinfection equipment. 消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解する請求項14に記載の消毒装置。 The disinfecting apparatus according to claim 14, wherein the disinfectant completely dissolves from the addition position until the disinfectant reaches the discharge point of the water to be treated. 更に、被処理水のサンプルを採取するための分取ラインと、サンプリングされた被処理水サンプルに消毒剤を添加するための消毒剤供給手段と、消毒剤が添加された被処理水サンプルの有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、を備え、有効ハロゲン濃度測定装置によって測定された消毒剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて消毒剤添加・混合装置によって被処理水中に加えられる消毒剤の添加量を制御する消毒剤添加量制御手段を備えた請求項14に記載の下水処理装置。 In addition, a preparative line for collecting a sample of the water to be treated, a disinfectant supply means for adding a disinfectant to the sampled water sample to be treated, and the effectiveness of the water sample to which the disinfectant is added. An effective halogen concentration measuring device for measuring the halogen concentration, and a disinfectant addition / mixing device according to the degree of decrease in the effective halogen concentration in the treated water sample after the addition of the disinfectant measured by the effective halogen concentration measuring device. The sewage treatment apparatus according to claim 14, further comprising a disinfectant addition amount control means for controlling an addition amount of the disinfectant added to the water to be treated. 更に、消毒剤を添加した後の被処理水中に還元剤を添加する還元剤供給装置と、消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて還元剤の添加量を制御する還元剤添加量制御装置を備えた請求項14に記載の下水処理装置。 Furthermore, a reducing agent supply device for adding a reducing agent to the water to be treated after adding the disinfectant, and an effective halogen concentration measuring device for measuring the effective halogen concentration in the water to be treated after adding the disinfectant are measured. The sewage treatment apparatus of Claim 14 provided with the reducing agent addition amount control apparatus which controls the addition amount of a reducing agent according to the effective halogen density | concentration in the to-be-processed water after addition of the disinfectant. 下水を消毒処理する方法であって、
流入下水を、流入下水量が所定値以下の場合には流入下水量の全量を塩素又はUVによって消毒し、流入下水量が所定値以上の場合には、所定値の下水量を塩素又はUVによって消毒し、同時に流入下水量から所定値の下水量を除いた下水量を臭素系消毒剤によって消毒することを特徴とする下水処理方法。
A method for disinfecting sewage,
Inflow sewage is sterilized by chlorine or UV when the inflow sewage amount is below a predetermined value, and when the inflow sewage amount is greater than or equal to a predetermined value, the sewage amount at a predetermined value is chlorine or UV. A sewage treatment method comprising disinfecting and simultaneously disinfecting a sewage amount obtained by subtracting a predetermined amount of sewage from an inflow sewage amount with a bromine-based disinfectant
塩素又はUVによる消毒によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項23に記載の方法。 The method according to claim 23, wherein the number of coliform bacteria in sewage is reduced to 3000 or less per 1 cc of sewage by disinfection with chlorine or UV. 塩素又はUVによる消毒によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項23に記載の方法。 The method according to claim 23, wherein the number of E. coli in sewage is reduced to 200 or less per 100 cc of sewage by disinfection with chlorine or UV. 処理対象の下水が合流式下水道の下水である請求項23に記載の方法。 The method according to claim 23, wherein the sewage to be treated is sewage from a combined sewer. 臭素系消毒剤による消毒によって下水中の大腸菌群数を下水1ccあたり3000個以下にする請求項23に記載の方法。 The method according to claim 23, wherein the number of coliforms in the sewage is reduced to 3000 or less per 1 cc of sewage by disinfection with a bromine-based disinfectant. 臭素系消毒剤による消毒によって下水中の大腸菌数を下水100ccあたり200個以下にする請求項23に記載の方法。 The method according to claim 23, wherein the number of Escherichia coli in sewage is reduced to 200 or less per 100 cc of sewage by disinfection with a bromine-based disinfectant. 塩素又はUVによって消毒された下水及び/又は臭素系消毒剤によって消毒された下水を公共水域に流す請求項23に記載の方法。 The method according to claim 23, wherein sewage sterilized by chlorine or UV and / or sewage sterilized by a bromine-based disinfectant is passed to a public water area. 臭素系消毒剤による消毒処理の時間が3分以内である請求項23に記載の方法。 The method according to claim 23, wherein the time for disinfection treatment with a bromine-based disinfectant is 3 minutes or less. 臭素系消毒剤として固体の臭素系消毒剤を被処理水に添加・混合して消毒を行う請求項23に記載の方法。 The method according to claim 23, wherein the disinfection is performed by adding and mixing a solid bromine-based disinfectant to the water to be treated as a bromine-based disinfectant. 臭素系消毒剤として、固体の臭素系系消毒剤を被処理水の一部に混合・溶解して消毒水を調製し、調製された消毒水を被処理水に投入することによって消毒を行う請求項23に記載の方法。 A request to prepare disinfecting water by mixing and dissolving a solid bromine-based disinfectant into a part of the water to be treated as a bromine-based disinfectant, and then disinfecting the prepared disinfecting water into the water to be treated Item 24. The method according to Item 23. 消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解する請求項23に記載の方法。 The method according to claim 23, wherein the disinfectant completely dissolves from the addition position until it reaches the discharge point of the water to be treated. 被処理水の一部をサンプリングして臭素系消毒剤を添加し、臭素系消毒剤が添加された被処理水サンプルの有効ハロゲン濃度を測定して、測定された臭素系消毒剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて被処理水に加える臭素系消毒剤の添加量を制御することを更に含む請求項23に記載の方法。 A portion of the water to be treated is sampled, a bromine-based disinfectant is added, and the effective halogen concentration of the sample to be treated to which the bromine-based disinfectant is added is measured. The method according to claim 23, further comprising controlling the amount of bromine-based disinfectant added to the water to be treated in accordance with the degree of reduction in the effective halogen concentration in the treated water sample. 臭素系消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定し、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて、臭素系消毒剤を添加した後の被処理水中に還元剤を添加する請求項23に記載の方法。

Measure the effective halogen concentration in the treated water after adding the bromine-based disinfectant, and treat it after adding the bromine-based disinfectant according to the measured effective halogen concentration in the treated water after adding the disinfectant. 24. The method of claim 23, wherein a reducing agent is added to the water.

JP2006544781A 2004-11-19 2005-05-31 Sewage treatment apparatus and method Pending JPWO2006054373A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPPCT/JP2004/017232 2004-11-19
PCT/JP2004/017232 WO2006054351A1 (en) 2004-11-19 2004-11-19 Sewerage system
PCT/JP2005/009959 WO2006054373A1 (en) 2004-11-19 2005-05-31 Sewage treatment plant and method

Publications (1)

Publication Number Publication Date
JPWO2006054373A1 true JPWO2006054373A1 (en) 2008-05-29

Family

ID=36406899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006544781A Pending JPWO2006054373A1 (en) 2004-11-19 2005-05-31 Sewage treatment apparatus and method

Country Status (2)

Country Link
JP (1) JPWO2006054373A1 (en)
WO (2) WO2006054351A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110531A (en) 2009-11-30 2011-06-09 Mitsubishi Heavy Ind Ltd Desalination apparatus and desalination method
JP6970698B2 (en) * 2017-08-10 2021-11-24 水ing株式会社 Disinfection method for ammonia-containing nitrogen-containing wastewater
CN108967126A (en) * 2018-09-05 2018-12-11 上海市绿化管理指导站 Rainwater irrigation system and method under overpass
JP6622432B1 (en) * 2019-02-13 2019-12-18 水ing株式会社 Disinfecting apparatus and disinfecting method for waste water containing ammonia nitrogen
CN115806345B (en) * 2022-12-14 2023-09-12 中国长江三峡集团有限公司 Composite microorganism system and method for runoff sewage in-situ treatment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623374A (en) * 1992-02-27 1994-02-01 Ebara Infilco Co Ltd Method and apparatus for reductive treatment of oxidizing agent-containing waste water
JP2000167563A (en) * 1998-09-28 2000-06-20 Ebara Corp Method and apparatus for disinfecting waste water
JP2002346571A (en) * 2001-05-21 2002-12-03 Ebara Corp Method and apparatus for disinfecting wastewater
JP2003128506A (en) * 2001-10-19 2003-05-08 Tokyo Metropolis Antiseptic solution, and method and apparatus for disinfecting wastewater by using the same
JP2004018013A (en) * 2002-06-14 2004-01-22 Akatake Engineering Kk Powder feeding equipment

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003012425A (en) * 2001-06-28 2003-01-15 Ebara Corp Disinfectant solution for wastewater and method and apparatus for disinfecting wastewater using the same
JP2003033771A (en) * 2001-07-24 2003-02-04 Ebara Corp Drainage disinfection apparatus having abnormarity detection mechanism
JP3922684B2 (en) * 2001-08-31 2007-05-30 株式会社荏原製作所 Disinfection equipment in the combined sewer drainage station in rainy weather
JP2003116971A (en) * 2001-10-16 2003-04-22 Ebara Corp Disinfection method and disinfection device for waste water
JP3884638B2 (en) * 2001-10-19 2007-02-21 東京都 Method and apparatus for disinfecting sewage in rainy weather in combined sewers
JP3830807B2 (en) * 2001-11-13 2006-10-11 株式会社荏原製作所 Wastewater disinfection method
JP4331457B2 (en) * 2002-10-18 2009-09-16 株式会社荏原製作所 Waste water disinfectant supply management center and waste water disinfectant supply management system equipped with the center

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623374A (en) * 1992-02-27 1994-02-01 Ebara Infilco Co Ltd Method and apparatus for reductive treatment of oxidizing agent-containing waste water
JP2000167563A (en) * 1998-09-28 2000-06-20 Ebara Corp Method and apparatus for disinfecting waste water
JP2002346571A (en) * 2001-05-21 2002-12-03 Ebara Corp Method and apparatus for disinfecting wastewater
JP2003128506A (en) * 2001-10-19 2003-05-08 Tokyo Metropolis Antiseptic solution, and method and apparatus for disinfecting wastewater by using the same
JP2004018013A (en) * 2002-06-14 2004-01-22 Akatake Engineering Kk Powder feeding equipment

Also Published As

Publication number Publication date
WO2006054373A1 (en) 2006-05-26
WO2006054351A1 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
US20060108270A1 (en) Sewage treatment apparatus and method thereof
US20050249631A1 (en) Method and apparatus for ozone disinfection of water supply pipelines
KR102172981B1 (en) Smart sewage treatment Operation System
KR100950100B1 (en) Malodor reducing system for drain pipe
EP2258663A1 (en) Grey water regeneration system
JPWO2006054373A1 (en) Sewage treatment apparatus and method
JPH06304546A (en) Operation controller for waterwork plant
JP2003305454A (en) Intake water quality controller
CN108474202A (en) Sewage-treatment plant
JP5129463B2 (en) Water quality abnormality detection method
US20060108294A1 (en) Sewer system
JP3668071B2 (en) Method and apparatus for disinfecting waste water
KR101700890B1 (en) System for embodying wastewater treatment diagnosing method for step by step
JP6622432B1 (en) Disinfecting apparatus and disinfecting method for waste water containing ammonia nitrogen
JP4628132B2 (en) Method and apparatus for disinfecting waste water
US20040050798A1 (en) Method and apparatus for ozone disinfection of liquid-carrying conduits
JP4005848B2 (en) Disinfection system for discharged water in combined sewers.
KR100659252B1 (en) Method and apparatus for disinfecting drainage
JP4029719B2 (en) Waste water disinfection method and apparatus
JP3908927B2 (en) Sewage disinfection method
KR101833173B1 (en) Chlorine feeding apparatus
JP6949922B2 (en) Disinfection equipment and disinfection methods to reduce E. coli or coliforms from ammonia nitrogen-containing wastewater
JP3884638B2 (en) Method and apparatus for disinfecting sewage in rainy weather in combined sewers
JP2019072718A (en) Disinfection method of ammoniacal nitrogen-containing discharge water
CN209428348U (en) Based on cloud service intelligent control sewage disposal system and sewage disposal device used

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110107

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111005