WO2006054373A1 - Sewage treatment plant and method - Google Patents

Sewage treatment plant and method Download PDF

Info

Publication number
WO2006054373A1
WO2006054373A1 PCT/JP2005/009959 JP2005009959W WO2006054373A1 WO 2006054373 A1 WO2006054373 A1 WO 2006054373A1 JP 2005009959 W JP2005009959 W JP 2005009959W WO 2006054373 A1 WO2006054373 A1 WO 2006054373A1
Authority
WO
WIPO (PCT)
Prior art keywords
sewage
disinfectant
water
amount
outlet
Prior art date
Application number
PCT/JP2005/009959
Other languages
French (fr)
Japanese (ja)
Inventor
Sakae Kosanda
Yuichi Fuchu
Norio Makita
Yoshiharu Yasuhara
Hideyuki Yoshida
Shojiro Watanabe
Original Assignee
Ebara Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corporation filed Critical Ebara Corporation
Priority to JP2006544781A priority Critical patent/JPWO2006054373A1/en
Publication of WO2006054373A1 publication Critical patent/WO2006054373A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F5/00Sewerage structures
    • E03F5/12Emergency outlets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/001Runoff or storm water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection

Definitions

  • the present invention relates to a method and apparatus for disinfecting drainage, in particular, sewage diluted with rainwater, specifically combined sewer stormwater overflow, diverted sewer stormwater overflow.
  • the present invention relates to a method and apparatus for disinfecting running water or diversion sewer sewage overflow water, and a sewer system equipped with a powerful disinfection apparatus.
  • disinfection is generally performed using chlorine gas or a chlorine-based disinfectant. Sewage, human waste, industrial wastewater, etc., may contain pathogens that can cause infections.
  • chlorine-based disinfectants are added to keep the number of coliforms per lm (the number of E. coli) below 3000 (CFU / mL).
  • ultraviolet irradiation or ozone addition may be performed without adding a chlorine-based disinfectant, but the use is limited due to the huge amount of equipment.
  • the present invention relates to rainwater-mixed sewage or pollutant-mixed stormwater that is discharged without passing through a sewage treatment plant during a large amount of rain, or is not subjected to biological treatment and disinfection treatment in a sewage treatment plant! Quickly discharge simple discharged water mixed with discharged rainwater before it is discharged into public water bodies.
  • a sewer system provided with means for poisoning, and a method and apparatus for disinfecting sewage mixed with rainwater or rainwater mixed with pollutants.
  • FIG. 1 is a flowchart showing a typical configuration example of a combined sewer.
  • FIG. 2 is a flowchart showing a typical configuration example of a shunt sewer.
  • FIG. 3 is a flowchart showing a typical configuration example of a sewage treatment plant.
  • FIG. 4 is a diagram showing a configuration example of a sewage treatment apparatus that works on one embodiment of the present invention.
  • FIG. 5 is a diagram showing a configuration example of a sewage treatment apparatus according to one embodiment of the present invention.
  • FIG. 6 is a diagram showing a configuration example of a sewage treatment apparatus according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing a configuration example of a sewage treatment apparatus according to one embodiment of the present invention.
  • FIG. 8 is a diagram showing an example of the configuration of a sewage treatment apparatus according to one embodiment of the present invention.
  • FIG. 9 is a schematic explanatory diagram illustrating a disinfection device according to an embodiment of the present invention.
  • FIG. 10 is a schematic explanatory view illustrating one embodiment of the present invention in which a disinfectant is introduced into a sand basin.
  • FIG. 11 is a schematic explanatory view showing another embodiment of the present invention.
  • FIG. 12 is a schematic explanatory view showing one embodiment of an adding device for adding disinfecting water to sewer overflow water in rainy weather.
  • FIG. 13 is a schematic explanatory diagram showing another embodiment that can be adopted as a disinfectant storage / supply device.
  • FIG. 14 is a diagram showing a specific configuration example of a solid disinfectant storage unit.
  • FIG. 15 is a view showing an embodiment of a solid disinfectant storage tank.
  • FIG. 16 is a diagram showing an embodiment of a solid disinfectant storage tank.
  • FIG. 17 is a diagram showing an embodiment of a metering feeder.
  • FIG. 18 is a view showing an embodiment of a metering feeder.
  • FIG. 19 is a view showing a form in which a container is connected to a solid disinfectant storage tank.
  • FIG. 20 is a diagram illustrating a configuration example of a solid disinfectant container.
  • FIG. 21 is a diagram illustrating an example of an installation form of a solid disinfectant supply facility.
  • FIG. 22 is a diagram for explaining another form of a container containing a solid disinfectant.
  • FIG. 23 is a diagram showing another configuration example of a dissolving unit that dissolves a solid disinfectant in water to form disinfecting water. It is.
  • FIG. 24 is a diagram showing another form of solid bromine-based disinfectant storage / supply device that can be used in the present invention.
  • FIG. 25 is a diagram showing another form of solid bromine-based disinfectant storage and supply device that can be used in the present invention.
  • FIG. 26 is a diagram showing another example of a solid bromine-based disinfectant storage / supply device using a single screw screw pump for fluid / powder transfer.
  • FIG. 27 is a diagram showing a specific example of a disinfecting apparatus according to one aspect of the present invention in which solid bromine-based disinfectant is put into a sewer stormwater overflow to be treated in a solid state.
  • FIG. 29 is a view showing another embodiment of the disinfectant injection device.
  • FIG. 30 is a view showing another embodiment of the disinfectant injection device.
  • FIG. 32 is a view showing a concept of a disinfection device for sewer overflow water in rainy weather according to another embodiment of the present invention.
  • FIG. 33 is a diagram showing a form in which the shape of the flow path of sewer stormwater overflow after the addition of the disinfectant is changed.
  • FIG. 34 is a view showing another embodiment in which the shape of the channel 507 of sewer stormwater overflow after the addition of the disinfectant is changed.
  • FIG. 35 is a view showing another embodiment in which the shape of the channel 507 of sewer stormwater overflow after the addition of the disinfectant is changed.
  • FIG. 36 is a diagram showing a concept of one embodiment of a disinfecting apparatus for injecting a solid disinfectant into sewer stormwater overflow to be treated.
  • FIG. 37 is a diagram showing another configuration example of a disinfecting apparatus that disinfects a solid bromine-based disinfectant as it is in a solid wastewater sewer stormwater overflow.
  • FIG. 38 is a diagram showing another configuration example of a disinfecting apparatus that disinfects solid bromine-based disinfectant as it is into solid sewer overflow water to be treated.
  • FIG. 39 is a graph showing the relationship between the elapsed time after rainfall and the number of coliform bacteria after disinfection when a predetermined amount of halogen-based disinfectant was added to rainwater overflow in a sewage treatment facility.
  • FIG.41 A graph showing the number of coliforms after disinfection when various concentrations of a halogen-based disinfectant are added to sewage during rainy weather after 45 minutes (point B in Fig. 39). is there.
  • FIG.42 A graph showing the number of coliform bacteria after disinfection when various concentrations of halogenated disinfectant are added to sewage in the rain after 5 hours (point C in Fig. 39) after rain It is.
  • FIG. 43 is a graph showing the relationship between the elapsed time after adding a disinfectant and the residual halogen concentration in the liquid to be treated when a halogen-based disinfectant is added to rainwater overflow at various elapsed times after rainfall. It is.
  • FIG. 44 A diagram showing an example of the configuration of a disinfection device for sewer stormwater overflow according to one embodiment of the present invention.
  • FIG. 45 is a diagram illustrating an embodiment of the present invention in which a reducing agent is added to sewer stormwater overflow to which a disinfectant is added.
  • ⁇ 46 It is a diagram showing the sewer network that collects the wastewater disinfected by the disinfection device and the treatment area.
  • ⁇ 47 It is a diagram showing the sewer network that collects the wastewater to be disinfected by the disinfection device, the treatment area and the adjacent treatment area.
  • FIG. 48 A diagram showing a configuration example of a control device of a sewer stormwater overflow disinfecting device according to the present invention.
  • FIG. 49 This figure shows the mapping process used in the control method of the sewer stormwater overflow disinfection device according to the present invention, where (a) is measured in each treatment area A, B, C, D, E, X This is a schematic diagram mapping the rainfall information.
  • Fig. (B) is a schematic diagram after time t in Fig. (A).
  • FIG. 50 is a diagram showing another configuration example of the control device of the sewer overflow water disinfection device in the rain according to the present invention.
  • FIG. 51 is a diagram showing another configuration example of the control device for the sewer stormwater overflow disinfecting device according to the present invention.
  • FIG. 52 is a system diagram showing a state in which disinfection is executed by an embodiment of a wastewater disinfection apparatus having an abnormality detection mechanism according to the present invention.
  • FIG. 53 is a diagram showing a processing procedure for detecting an excess and an excess of the amount of drug added.
  • FIG. 54 is a diagram showing a processing procedure for detecting an excess or an excess of a drug addition amount.
  • FIG. 55 is a diagram showing a processing procedure for detecting an excessive amount of drug addition.
  • FIG. 56 is a diagram showing a concept of a control device that detects an abnormal supply of a solid disinfectant and stops the supply.
  • FIG. 57 is a diagram for explaining an embodiment of a method of operating an apparatus for disinfecting sewer stormwater overflow with a solid bromine-based disinfectant according to the present invention.
  • FIG. 58 is a conceptual diagram showing an example of a control system of a sewage overflow water disinfection system that is useful in the present invention.
  • FIG. 59 is a diagram showing a configuration of a disinfection device for sewer stormwater overflow used in Example 4.
  • FIG. 60 is a graph showing the results of Example 5.
  • 710 is a treatment plant
  • 711 is a sewer pipe
  • PI, P2, and P3 are relay pumps.
  • 710 is a treatment plant
  • 720 is rainfall information measuring means
  • 721a is rainfall information of processing area A
  • 722a is rainfall information of processing area A
  • 730 is a control device
  • 731 is rainfall information mapping processing means.
  • 733 Expected rainfall
  • 734 Expected rainfall intensity
  • 735 Expected inflow
  • 736 E.
  • coli group number estimation processing means 737: Predicted value Z Actual value correction processing means, 741: Drug Addition amount, 742 is chemical consumption, 743 is drainage disinfection start time, 750 is turbidity measurement means, 751 is influent turbidity, 752 is actual value measurement method, 753 is rainfall, 754 is rainfall intensity 755 is the influent water volume, 756 is the chemical supply volume, and 757 is the residual chemical concentration in the discharged water.
  • 710 is a treatment plant
  • 720 is rainfall information measuring means
  • 721x is rainfall information of processing area X
  • 722x is rainfall information of processing area X
  • 730 is a control device
  • 731 is rainfall information mapping processing means.
  • 732 is the rainfall information estimation processing means
  • 733 is the predicted rainfall
  • 734 is the predicted rainfall intensity
  • 735 is the expected inflow
  • 736 is the coliform group number estimation processing means
  • 737 is the predicted value Z actual value correction processing means
  • 741 is the amount of chemical added
  • 742 is the amount of chemical consumption
  • 743 is the start time of the drainage disinfection device
  • 750 is the turbidity measuring means
  • 75 1 is influent water turbidity
  • 752 is measured value measurement means
  • 753 is rainfall
  • 754 is rainfall intensity
  • 755 is inflow water quantity
  • 756 is chemical supply quantity
  • 757 is residual water residual chemical concentration
  • 710 is a treatment plant
  • 720 is rainfall information measuring means
  • 721x is rainfall information of processing region X
  • 722x is rainfall information of processing region X
  • 730 is a control device
  • 737 is a predicted value Z actual value correction.
  • Processing means, 737a and 737b are correction value addition processing means
  • 738 is a medicine addition amount calculation processing means
  • 739 is a medicine addition rate setting means
  • 741 is a medicine addition amount
  • 742 is a medicine consumption amount
  • 752 is a measured value measurement means 753, rainfall, 754, rainfall intensity, 755, inflow, 756, drug supply, 757, residual chemical concentration, 760, regional characteristics simulation means, 761, expected inflow, 762, expected inflow It is a pollution load.
  • Fig. 52 [Koo! /, 810 ⁇ or 810ai or 810ai or 810ai or 810ai or 810bi or 810bi or 811 or 812, a river, 813 or 814 Mouth monitoring camera, 820 screen, 821 raw water flow meter, 830 disinfectant addition device, 831 hocno 832 disinfectant, 833 feeder, 834 ejector, 835 hopper weight, 836 rotation speed 840 is a dissolution apparatus, 841 is a dissolution tank, 842 is a stirrer, 843 is a dissolution tank residual halogen concentration meter, and XI is a hopper weigh scale.
  • Fig. 53 813 is a residual halogen concentration meter for discharged water
  • 843 is a residual halogen concentration meter for dissolution tank
  • 870 is a high-level residual halogen determination output
  • 871 is a low-level residual halogen output
  • 901 is a residual water residual halogen.
  • Concentration high level threshold 902 is dissolution tank residual halogen concentration low level threshold
  • 903 is dissolution tank residual halogen concentration high level threshold
  • 904 is residual halogen concentration difference (disinfectant consumption) low threshold! , Value.
  • 835 is a hopper weigh scale
  • 836 is the number of revolutions of the feeder
  • 881 is an output of excessive determination of the amount of added drug
  • 883 is an output of excess determination of the amount of added drug
  • 910 is the number of revolutions of the supply machine ⁇ discharge amount
  • the conversion coefficient 911 is a medicine discharge amount addition amount low level threshold
  • 912 is a medicine discharge amount addition amount high level threshold
  • 913 is a medicine discharge amount determination processing sampling period.
  • 814 is a discharge port monitoring camera
  • 890 is a fish abnormality judgment output
  • 921 is a fish judgment pattern
  • 922 is a fish drift judgment movement range coordinate 1
  • 923 is a fish drift judgment movement range coordinate 2
  • 924 is the fish drift detection time
  • 925 is the drift fish population high level threshold It is.
  • 551 is a disinfectant storage tank
  • 552 is a disinfectant metering means
  • 553 is a disinfectant transfer pipe
  • 554 is a disinfectant mixing means
  • 555 is a dry air supply means
  • 556 is a dust removing means
  • 55 7 Is water to be disinfected
  • 559 is a solid bromine-based disinfectant
  • 560 is a pressure adjusting means.
  • Combined sewer is a system that collects domestic sewage and industrial wastewater and rainwater in the same pipe and sends them to the sewage treatment plant. Each treatment includes removal of suspended solids in the first sedimentation basin, biological treatment in the aeration tank, sludge removal in the final sedimentation basin, and disinfection with a chlorinated disinfectant.
  • Figure 1 shows a typical configuration example of a combined sewer system. Sewage discharged from sewage discharge sources such as general households and factories is collected in sewer pipes. Rainwater is also collected in the same sewer pipe via the rainwater ditch.
  • the sewage and rainwater collected in the sewer pipes in this way are sent to a sewage treatment plant, where they are subjected to precipitation treatment, aeration (biological reaction) treatment, final precipitation treatment, disinfection treatment, and other public water areas.
  • precipitation treatment aeration (biological reaction) treatment
  • final precipitation treatment disinfection treatment
  • other public water areas Public waters include rivers, lakes, harbors, coastal waters, and so on.
  • facilities for draining sewage mixed with rainwater such as a rainwater discharge chamber and a pumping station (drainage station), are installed in the middle of the sewer pipe.
  • a filtration screen is installed to remove foreign substances, and then overflow water is discharged.
  • a sedimentation basin is usually installed at the pumping station, and the drained sewage mixed with stormwater is discharged after being simply treated by the sedimentation basin.
  • Such sewage sewage discharge in rainy weather is generally called combined sewer overflow (CSO).
  • “separated sewer” means collecting domestic sewage and industrial wastewater and rainwater in separate pipes, sending domestic sewage and industrial wastewater to sewage treatment plants, and making rainwater public. It is a method of discharging into the water area.
  • Figure 2 shows a typical configuration example of a diversion sewer system. Sewage discharged from sewage discharge sources such as general households and factories is collected in sewage pipes of the sewerage sewer system, sent to the sewage treatment plant, and discharged into public water bodies through the prescribed treatment. On the other hand, rainwater is collected in the sewer pipe of the sewerage sewer through the rainwater ditch, etc. Pump station (drainage station) force installed at multiple locations Discharged to public water areas.
  • the sewer stormwater overflow that is discharged from the pumping station of the storm water pipeline should originally contain only rainwater.
  • a large amount of rainwater flows through the sewer.
  • contaminants present on the ground surface such as roads and sludge accumulated in the sewer are also present. Will be washed away. Therefore, stormwater overflows in diverted sewers may contain E. coli caused by contaminants and sludge on the ground surface.
  • CFU colony forming unit
  • FIG. 3 shows a typical configuration example of a sewage treatment plant.
  • the sewage sent from the sewer pipe is introduced into the sewage treatment plant by the pump, and treated in the first sedimentation basin (primary sedimentation basin), and impurities and suspended solids are removed by sedimentation.
  • sedimentation is performed in the final sedimentation tank to separate the sludge, and the treated water is then disinfected in the disinfection tank (chlorine mixing tank).
  • the treated water may be disinfected by UV irradiation instead of or in combination with a chlorine mixing tank. After this series of treatments, it is discharged into public water as treated sewage.
  • the sewage pipe of the sewerage sewer system should originally flow only sewage, and the amount of sewage flowing through the sewage pipe does not increase even during heavy rainfall.
  • a considerable amount of unknown water has entered the sewer pipes of the diversion sewer, and there is sewage that overflows from the sewer pipes and is discharged into the public water area. This is called sanitary sewer overflow (SSO) in a sewer system, and its disinfection is an important issue.
  • SSO sanitary sewer overflow
  • One aspect of the present invention is a means for quickly disinfecting these combined sewer sewage overflow, split sewer stormwater overflow, and split sewer sewage overflow (disinfection according to the present invention shown in FIGS. 1 to 3).
  • a sewer system provided with a device).
  • the sewage when the amount of sewage that does not exceed the treatment capacity of the sewage treatment plant flows into the sewage treatment plant in fine weather or a small amount of rain, the sewage is passed to the sewage treatment plant.
  • the prescribed treatment of the first sedimentation basin, aeration tank, final sedimentation basin, etc. sterilization by chlorinated disinfectant and sterilization treatment by Z or UV irradiation, and then discharge to public water area due to heavy rainfall
  • the prescribed treatment of the first sedimentation basin, aeration tank, final sedimentation basin, etc. sterilization by chlorinated disinfectant and sterilization treatment by Z or UV irradiation, and then discharge to public water area due to heavy rainfall
  • the sewage that flows through the sewer pipe of the sewer system is treated in the sewerage treatment plant.
  • a sewer pipe of the sewer system such as a first sedimentation basin, an aeration tank, and a final sedimentation basin
  • the sewerage treatment plant For storm water that flows through public sewers and drains through sewer pipes after sterilization with chlorinated disinfectant and Z or UV irradiation after prescribed treatment.
  • a rainwater drainage facility such as a pumping station (drainage station)
  • a sewage system is provided, which is characterized by being discharged into public water after being disinfected with bromine-based disinfectant at the exclusion facility.
  • the amount of sewage flows into the sewage treatment plant in a fine weather or a small amount of rain
  • the amount of sewage does not exceed the treatment capacity of the aeration tank of the sewage treatment plant.
  • Sewage is discharged into the public water area after sewage treatment at the sewage treatment plant, after the prescribed treatment such as the first settling basin, aeration tank, and final settling basin, and then disinfecting with chlorinated disinfectant and Z or UV irradiation. If there is a possibility that sewage containing the amount of rainwater exceeding the treatment capacity of the aeration tank will flow into or may flow into the sewage treatment plant due to a large amount of rainfall.
  • sewage mixed with rainwater that exceeds the treatment capacity of the aeration tank it is branched after treatment in the first sedimentation basin at the sewage treatment plant, disinfected with a bromine-based disinfectant, and then discharged into public water areas.
  • Rainwater mixed within the processing capacity of For incoming sewage following the treatment in the first sedimentation basin at the sewage treatment plant, prescribed treatments such as an aeration tank and final sedimentation basin are performed, followed by sterilization treatment by chlorinated disinfectant and Z or UV irradiation. After that, a sewer system is provided, which is characterized by being discharged into public water areas.
  • an apparatus for disinfecting the above-mentioned combined sewer overflow, split sewer stormwater overflow or split sewer sewage overflow water includes a storage / supply device for a solid bromine-based disinfectant, and a storage / supply device power for the solid bromine-based disinfectant. It is equipped with a disinfectant addition / mixing device that is added to and mixed with sewer stormwater overflow and sewer sewage overflow.
  • the treated water targeted by the present invention is discharged into a public water area without proper treatment in a sewage treatment plant when a large amount of rain occurs in a combined sewer.
  • sewage mixed with rainwater that is, combined sewer stormwater overflow (CSO) and diversion sewers
  • CSO combined sewer stormwater overflow
  • SSO sewer sewer sewage overflow
  • these combined sewer overflow, split sewer stormwater overflow or split sewer sewage overflow is collectively referred to as sewer stormwater overflow.
  • the water to be disinfected by the present invention is sometimes referred to as sewer stormwater overflow, but this description does not limit the present invention.
  • sewage flows into the branching device. If the inflow sewage is less than the specified value, the inflow sewage flows out from the outlet 1, and the sewage outflow from the outlet 1 is sent to a disinfection facility having a disinfection tank that is disinfected with chlorine or UV for disinfection. Disinfected sewage can be discharged into public water areas. In addition, when the amount of inflow sewage is greater than or equal to a predetermined value, the amount of inflow sewage less than or equal to the predetermined value flows out from the outlet 1 and is treated in the same manner as described above.
  • Inflow Sewage capacity The amount of sewage, excluding the specified amount of sewage, flows out of the outlet 2 and is sent to a bromine sewage disinfection device that disinfects the sewage with a bromine-based disinfectant. Sewage that has been disinfected by bromine sewage disinfection equipment can also be discharged into public waters.
  • the predetermined value here is, for example, the treatment capacity of the sewage treatment plant, or the treatment capacity of the aeration tub when it is branched between the first sedimentation basin and the aeration tub in the sewage treatment plant as shown in FIG. Point to.
  • a bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant
  • a branching device that has an inlet, outlet 1 and outlet 2 and divides the sewage flowing into the inlet into outlet 1 and outlet 2. If the amount of sewage flowing into the inlet is below a predetermined value, the total amount of sewage flowing in When the inflow sewage amount is greater than or equal to the predetermined value, the sewage amount is discharged to the outlet 1, and the sewage amount obtained by removing the predetermined amount of sewage from the inflow sewage amount is discharged to the outlet 2. And consisting of
  • the outlet 1 of the branch device is connected to the sewage introduction section of the disinfection facility, and the branch device
  • the sewage treatment equipment is connected to the sewage introduction section of the bromine sewage treatment equipment.
  • the sewage amount obtained by subtracting the sewage amount of the predetermined value from the inflow sewage amount (the sewage amount flowing out from the outlet 2 of the branching device) is described above. It can be thought of as the concept of sewer stormwater overflow.
  • the disinfection facility for example, a sewage treatment plant can be exemplified.
  • the disinfection facility further has an initial settling basin, the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank. Can be done.
  • the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility
  • the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank.
  • the disinfection facility further has an initial settling basin, a batting tank, and a final settling basin, and the sewage introduction section of the first settling basin is connected to the introduction section of the disinfection facility, and the first settling basin
  • the outlet of the basin tank is connected to the sewage introduction part of the basin tank
  • the outlet of the basin tank is connected to the sewage introduction part of the final sedimentation tank
  • the exit of the final sedimentation tank is connected to the sewage introduction part of the disinfection tank Say it with a word.
  • a branching device and a bromine disinfection device are also arranged in the disinfection facility, and when inflow water exceeding a predetermined value flows, the excess is branched and disinfected by the bromine disinfection device. it can. That is, according to another aspect of the present invention, the disinfection facility further includes an initial settling basin, an inlet and an outlet 1 and an outlet 2, and receives the effluent water from the first settling basin at the inlet to the outlet 1 and the outlet 2. When the amount of water flowing into the branching device is less than the predetermined value, the entire amount of the inflowing water flows to the outlet 1, and when the amount of inflowing water is greater than the predetermined value, the predetermined amount of water is discharged to the outlet 1.
  • a branching device that flows the amount of water excluding the specified amount of water to the outlet 2 and a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant, and first settles at the introduction part of the disinfection facility.
  • the sewage inlet of the pond is connected, the outlet of the first sedimentation basin is connected to the inlet of the branching device, the outlet 1 of the branching device is connected to the sewage inlet of the disinfection tank, and the outlet 2 of the branching device is connected to the bromine sewage treatment device.
  • the present invention relates to the sewage treatment apparatus described above connected to the sewage introduction section.
  • Fig. 7 shows an example of a configuration that can be used.
  • the disinfection facility further includes an initial settling basin, a flaking tank, a final settling basin, an inlet and an outlet 1 and an outlet 2, and the effluent from the first basin.
  • a branching device that flows the entire amount of water to outlet 1 and flows the predetermined amount of water to outlet 1 when the amount of influent water is greater than or equal to the predetermined value, and flows the amount of water excluding the predetermined amount of water to outlet 2
  • a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant, the sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, and the outlet of the first sedimentation basin is connected to the branch device Connected to the inlet, outlet 1 of the branching device is connected to the sewage introduction section of the batting tank, the outlet of the batting tank is connected to the sewage introduction section of the final sedimentation tank, and the outlet of the final sedimentation tank is introduced to the sewage of the disinfection tank
  • Fig. 8 shows a configuration example of a powerful form
  • FIG. 7 or FIG. 8 a configuration in which the apparatus including the branch device and the bromine sewage disinfection device shown in FIG. 7 or FIG. 8 is disposed only in the disinfection facility is also included in one aspect of the present invention. That is, another aspect of the present invention is a sewage treatment apparatus in a sewage treatment plant,
  • a disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
  • a bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant
  • a branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value.
  • the total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2.
  • the present invention relates to a sewage treatment apparatus characterized in that outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility, and outlet 2 of the branching apparatus is connected to the sewage introduction part of the sewage treatment apparatus.
  • Still another aspect of the present invention is a sewage treatment apparatus in a sewage treatment plant
  • a disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
  • a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant;
  • a branching device that has an inlet, an outlet 1 and an outlet 2 and receives the effluent from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2 If the inflow water volume is less than or equal to the predetermined value, the entire inflow water volume flows to the outlet 1, and if the inflow water volume is greater than or equal to the predetermined value, the predetermined amount of water flows to the outlet 1, and the inflow water volume force
  • a branching device that drains the amount of water to outlet 2;
  • the sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flapping tank.
  • the outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is the sewage introduction part of the bromine sewage treatment device. It is related with the sewage treatment apparatus characterized by being connected to.
  • the number of coliforms in sewage can be reduced to 3000 or less per lcc of sewage by disinfection facilities.
  • disinfection facilities can reduce the number of E. coli in sewage to 200 or less per sewage lOOcc.
  • the entrance of the branching device can be connected to a combined sewer.
  • Bromine sewage treatment equipment can reduce the number of coliforms in sewage to 3000 or less per lcc of sewage.
  • the bromine sewage treatment equipment can reduce the number of E. coli in sewage to 200 or less per sewage lOOcc. Sewage sterilized by disinfection facilities and Z or bromine sewage treatment equipment can be discharged into public water bodies.
  • the bromine sewage treatment apparatus includes a solid bromine-based disinfectant storage and supply device and a solid bromine-based disinfectant storage and supply device.
  • a disinfectant addition “mixing device” for adding and mixing the system disinfectant to the water to be treated can be provided.
  • the storage and supply device for the solid bromine-based disinfectant includes a storage tank for the solid bromine-based disinfectant and a metering feeder for measuring and discharging a predetermined amount of the solid bromine-based disinfectant in the storage tank.
  • the storage tank and the metering feeder can be equipped with a solid bromine-based disinfectant stirring means composed of a plurality of injection ports for injecting compressed air into the inside thereof.
  • the fixed quantity feeder can be provided with a rotary table having a weighing means.
  • the disinfectant addition 'mixing device is equipped with a disinfecting water preparation device that accepts a part of the treated water and mixes and dissolves the solid bromine-based disinfectant; and means for introducing the disinfecting water into the treated water.
  • the disinfectant addition / mixing device can be installed in a flow path through which water to be treated flows.
  • the solid bromine-based disinfectant storage / mixing device and addition / mixing device are connected to the storage tank for storing the solid bromine-based disinfectant and the storage tank, and the disinfectant is transferred to the injection point in the solid state.
  • Disinfectant transfer piping, and disinfectant transfer piping, and the disinfectant injection device that adds the solid bromine-based disinfectant transferred through the piping to the water to be disinfected can be configured.
  • the apparatus can be configured so that the disinfectant completely dissolves before it reaches the discharge position of the water to be treated.
  • an effective halogen concentration measuring device that measures the effective halogen concentration of the water to be disinfected according to the degree of decrease in the effective halogen concentration in the water sample to be treated after the addition of the disinfectant measured by the effective halogen concentration measuring device.
  • the sewage treatment device can be configured to include a disinfectant addition amount control means for controlling the addition amount of the disinfectant added to the treated water by the agent addition / mixing device.
  • a reducing agent supply device for adding a reducing agent to the water to be treated after adding the disinfectant
  • an effective halogen concentration measuring device for measuring the effective halogen concentration in the water to be treated after adding the disinfectant
  • a reducing agent-added calorie amount control device that controls the amount of reducing agent added according to the measured effective halogen concentration in the treated water after addition of the disinfectant can be further provided.
  • Another aspect of the present invention is a method for disinfecting sewage
  • Inflow sewage is disinfected with chlorine or UV when the inflow sewage is below the specified value, and when the inflow sewage is over the predetermined value, the sewage with the specified value is supplied with chlorine or UV.
  • the present invention relates to a sewage treatment method characterized by disinfecting and simultaneously removing a predetermined amount of sewage from the inflow sewage and disinfecting the sewage with a bromine-based disinfectant.
  • the number of coliforms in the sewage is preferably 3000 or less per lcc of sewage by disinfection with chlorine or UV.
  • disinfection with chlorine or UV can reduce the number of E. coli in sewage to 200 or less per lOOcc of sewage.
  • sewage from the combined sewer can be treated as sewage to be treated by the above method.
  • the number of coliforms in the sewage by disinfection with a bromine-based disinfectant Can be reduced to 3000 or less per lcc of sewage.
  • disinfection with bromine-based disinfectants can reduce the number of E. coli in sewage to 200 or less per sewage lOOcc.
  • sewage sterilized by chlorine or UV and sewage sterilized by Z or bromine-based disinfectants can be run into public waters.
  • disinfection time with bromine disinfectant can be within 3 minutes.
  • a solid bromine-based disinfectant can be added to and mixed with water to be treated for disinfection.
  • a solid bromine-based disinfectant is mixed and dissolved in a part of the water to be treated to prepare disinfecting water, and the prepared disinfecting water is added to the water to be disinfected. It can be carried out.
  • the disinfectant can be completely dissolved before it reaches the location where the treated water is discharged.
  • the method may further include controlling the amount of the bromine-based disinfectant added to the water to be treated according to the degree of decrease in the effective halogen concentration in the water to be treated after the addition of the bromine-based disinfectant.
  • the effective halogen concentration in the treated water after the addition of the bromine-based disinfectant is measured, and the bromine-based disinfection is determined according to the measured effective halogen concentration in the treated water after the addition of the disinfectant.
  • a reducing agent can be added to the water to be treated after the agent is added.
  • bromine disinfection devices that can be used in the present invention, disinfection control methods using the bromine disinfection devices, and the like will be described in detail.
  • the water to be treated which is guided to the outlet 2 by the branching device according to the present invention and is sterilized by the bromine-based disinfectant, is sometimes referred to as sewer stormwater overflow.
  • the bromine disinfection device is sometimes simply referred to as a disinfection device.
  • Disinfection of sewage such as sewage and drainage is usually carried out using ultraviolet irradiation, ozone sterilization, and chlorine-based disinfectants such as sodium hypochlorite.
  • chlorine-based disinfectants have many advantages compared to ultraviolet irradiation and ozone sterilization, such as simple equipment and high applicability to soil conditions.
  • a solid bromine-based disinfectant is used for disinfecting sewer stormwater overflow.
  • the solid bromine-based disinfectant that can be used in the present invention include 1-bromo 3 black mouth 5,5 dimethylhydantoin (BCDMH), 1,3 dib mouth mouth 5,5-dimethylhydantoin (DBDMH), and the like. Can be mentioned.
  • a device for storing a solid bromine-based disinfectant a disinfecting water preparation device for obtaining disinfecting water by mixing the solid disinfectant with water, the disinfecting water, an organic substance, ammonia
  • a disinfection device for sewer stormwater overflow which includes a disinfecting water addition device for disinfection by adding to rainwater sewer stormwater overflow containing ammonia ions.
  • the total organic carbon in the sewer stormwater overflow is preferably 5 mg / L or more. It is preferable that the concentration of ammonia ions in the sewer stormwater overflow is 1 mg / L or more.
  • the concentration of the disinfectant in the disinfecting water is preferably 100 mg / L as Cl to l Og / L as CI in terms of active chlorine concentration.
  • the addition concentration of the disinfectant in the sewer stormwater overflow is preferably 0.5 mg / L as Cl to 25 mg / L as CI in terms of active chlorine concentration.
  • the disinfecting water is introduced under the surface of the sewer stormwater overflow. It is preferable to include a process. Furthermore, it is preferable to further include a step of discharging the sterilized sewer stormwater overflow into the public water area.
  • an apparatus for producing disinfecting water from a disinfectant and a part of sewer stormwater overflow comprising
  • sewer stormwater overflow There is provided an apparatus for disinfecting sewer stormwater overflow, wherein the sewer stormwater overflow is disinfected while staying in the sand basin.
  • the disinfecting water production apparatus mixes a disinfectant storage device, an apparatus for adding the disinfectant to the sewer stormwater overflow, and the disinfectant and the sewer stormwater overflow. It is preferable to have a device for Moreover, it is preferable that the said sand basin has two or more sand settling parts, and the said 1st flow path has a distribution tank for introduce
  • the first flow path is connected to an addition device for introducing the disinfecting water below the surface of the sewer stormwater overflow!
  • the storage pond or the discharge channel is provided with a measuring instrument for inspecting the quality of the sterilized sewer stormwater overflow.
  • sewer stormwater overflow containing organic matter and ammonia or ammonia ions is sterilized.
  • sewage such as sewage and drainage and rainwater mix and flow through a sewer pipe.
  • sewage mixed with both in this way, in particular, sewer stormwater overflow discharged without being treated at the sewage treatment plant is disinfected by the present invention.
  • the sewer (raw water pipe) of raw sewage is separated from the sewer (rain pipe) of rainwater. Hydropower Disinfected by the present invention.
  • the content of organic matter in the sewer stormwater overflow is, for example, 10 mg of total organic carbon in the sewer stormwater overflow, even if the total organic carbon is 5 mg / L or more. It may be 30 mg / L or more, or 50 mg / L or more. In both combined and separated sewage, the total organic carbon is generally 5 mg / L or more.
  • the concentration of ammonia ions in the sewer stormwater overflow to be treated may be 1 mg / L or more, or 10 mg / L or more.
  • the active bromine changes to bromamine (NH Br, NHBr, etc.). Shi
  • bromamine can be effectively disinfected because it maintains the same level of disinfection as hypobromite.
  • the ammonia ion concentration is generally 1 mg / L or more.
  • the ammonia ion concentration is often 1 mg / L or more in overflow water called first flush after rain.
  • sewage diluted with rainwater is mainly targeted, but rainwater by a shunt sewer may be targeted. Further, water containing organic matter and ammonia or amine, such as sewage, human waste, industrial wastewater, or treated water, may be treated by the method of the present invention.
  • the water to be treated contains E. coli. This is because it is particularly necessary to disinfect such water.
  • the combined sewage generally contains E. coli.
  • diversion rainwater often contains E. coli.
  • a solid bromine-based disinfectant is used. Compared to chlorine-based disinfectants, bromine-based disinfectants are characterized by a shorter disinfection time. Bromine-based disinfectants can be disinfected in several tens of seconds to several minutes, such as 30 seconds to 15 minutes, preferably 40 seconds to 10 minutes, more preferably 45 seconds to 5 minutes, and even more preferably 50 seconds to 3 minutes. .
  • hypobromite HOBr
  • chlorine-based disinfectants active chlorine reacts with ammonia in sewage to form kulamin and reduce sterilizing power. It is difficult to disinfect.
  • chloramine has high persistence, so it decomposes It is necessary to provide an apparatus for processing.
  • Examples of the solid bromine-based disinfectant suitably used in the present invention include 1-bromo 3 black mouth 5, 5 dimethyl hydantoin (BCDMH), 1, 3 dib mouth water 5, 5 dimethyl hydantoin (DBDMH) and the like. Can be mentioned.
  • One aspect of the present invention includes a step of mixing a predetermined disinfectant with water.
  • a disinfectant may be added to sewer stormwater overflow at a facility for removing sewer stormwater overflow.
  • drainage facilities for sewer overflow in rainy weather include stormwater discharge rooms for combined sewers, pumping stations (drainage station), sewerage pumping stations (drainage station), pumping pumps for sewage treatment plants, and sewage A facility that branches from the flow path from the first sedimentation basin of the treatment plant to the aeration tank and discharges the sewer stormwater overflow into the public water area.
  • the disinfectant of the present invention may be added at a sewer pipe that flows into these sewer overflow drainage facilities during rainy weather, may be added at a rainwater drainage pump well, or added within a rainwater drainage pump inlet pipe. May be.
  • these sewer overflow facilities for drainage often have sand basins.
  • a disinfectant may be added in the sedimentation basin or at the inflow part of the sedimentation basin.
  • the place of disinfectant addition is not limited to the above one, but can be added in several places.
  • a main channel through which sewer stormwater overflow flows and a bypass channel that also divides the main channel are provided, and a disinfection tank is installed in the bypass channel May be.
  • a disinfection tank disinfectant can be added to sewer stormwater overflow, and disinfectant can be dissolved in sewer stormwater overflow.
  • the place where the disinfectant is added is the inflow side of the rainwater draining pump, it is preferable because the disinfectant and the sewer stormwater overflow are sufficiently mixed by the stirring force in the pump.
  • the residence time in the sand basin can be used for the reaction time.
  • the disinfectant used in the present invention is solid at room temperature, the disinfectant can be dissolved in water to form disinfecting water, which can be added to sewer stormwater overflow.
  • the dissolution method is not particularly limited, and any of a water flow stirring by an ejector, a flow path stirring, and a dissolution tank provided with a mixing device may be used.
  • 1% by weight or more preferably 10% by weight or less with respect to the saturated dissolution concentration of the disinfectant.
  • more preferably, 20% by weight or more of the disinfectant can be dissolved, and disinfecting water may be used! However, it is not necessary to dissolve all of the added disinfectant in water, and solid disinfectant may remain in the disinfecting water.
  • the concentration of disinfecting water in terms of active chlorine concentration is preferably 100 mg / L as CI to: LOg / L as CI, preferably 200 mg / L as Cl to 2 g / L as CI. Is more preferable. If the concentration of disinfecting water is less than 100 mg / L as CU, the disinfectant may be consumed by diluting water without force if the amount of water added to the disinfecting water is large. May not be sufficient. On the other hand, when the concentration of disinfecting water is 10g / L as C, mixing of disinfectant and sewer stormwater overflow will be insufficient, and the disinfecting effect will be reduced.
  • the amount of disinfecting water depends on the concentration of the disinfectant in the disinfecting water, the amount of rainfall, the quality of the sewer stormwater overflow, etc., and in general, the amount of rainfall, that is, the amount of sewer stormwater overflow and water quality Corresponding to this increase, the amount of disinfecting water added will increase. However, in one embodiment of the present invention, increasing the amount of rainwater reduces the pollution of the incoming water quality. Therefore, in one embodiment of the present invention, even if the amount of rainwater increases and the amount of inflow water triples, it is not necessary to triple the amount of disinfecting water or disinfectant added. Therefore, it is reasonable to find the optimum amount of influent water by brute force beaker test etc. and multiply the value by the amount of influent water to determine the amount of disinfectant water or disinfectant added.
  • inflow water quality it is possible to grasp the state of rainwater contamination by measuring turbidity or electrical conductivity. With this index, on-time detection is possible.
  • rainfall patterns, particle properties in sewer stormwater overflow, SS content, chemical oxygen demand (COD), biological oxygen demand (BOD, Biological Oxygen Demand) ) Etc. and these indicators may be combined arbitrarily.
  • various flowmeters may be used as for the inflow water volume.
  • the disinfecting water is added to a predetermined sewer stormwater overflow to disinfect.
  • the disinfecting water in the disinfecting water tank is introduced into the main channel through the bypass channel.
  • the concentration of the disinfectant in the sewer stormwater overflow is usually converted to the active chlorine concentration. 0.5 to 25 mg / L as CI is more preferable, and 1 to 15 mg / L as CI is more preferable.
  • the concentration of the disinfectant can be calculated from the concentration and amount of the disinfectant in the disinfecting water, and the amount of sewer stormwater overflow. The concentration of the disinfectant is the value before the disinfectant is consumed in the sewer stormwater overflow.
  • treated water When treated water is sewage mixed with rainwater, urine, industrial wastewater, etc., these treated waters generally contain coliforms in the range of 10 4 to: L0 7 CFU / mL.
  • force disinfectant By adding the above-mentioned amount of force disinfectant, it is possible to sterilize the water to be treated quickly and surely in about 1 minute.
  • FIG. 9 is a schematic explanatory diagram illustrating an embodiment of the present invention.
  • Sewer stormwater overflow flows into the discharge channel 12 as well as the main sewer pipe.
  • the sewer stormwater overflow in the channel 12 moves to the discharge channel 17 through the discharge gate 11 and is discharged to the public water area 19.
  • the sewer stormwater overflow in discharge channel 17 is measured with measuring instrument 18 such as residual halogen detector, turbidity meter, and conductivity meter. Residual halogen detector measures the residual concentration of active halogens such as hypobromous acid.
  • the residual / logen detector is disposed between the discharge gate and the front of the discharge port.
  • the measured value is discharged into a public water area 19 such as a river.
  • Public water includes rivers, lakes, harbors, coastal waters, public trenches, irrigation canals, and other public water bodies or channels.
  • a bypass channel 20 is connected to the channel 12. A part of the sewer stormwater overflow that flows into the channel 12 is introduced into the bypass channel 20. And in this sewer stormwater overflow, bromine-based disinfectant is added and converted into disinfecting water. Returned to channel 12.
  • a pumping pump 13 is disposed in the flow path 12. Part of the sewer stormwater overflow in the channel 12 is pumped to the bypass channel 20 by the pump 13.
  • an automatic screen 22 In the bypass channel 20, an automatic screen 22, a flow meter 23, a disinfectant addition device 30, a dissolution device 40, and a pump 46 are arranged in this order.
  • the disinfectant addition device 30 includes a hopper 32 for storing the solid bromine-based disinfectant 39, a feeder 34 for supplying the solid bromine-based disinfectant 39, and discharging the disinfectant to the bypass channel. It has an ejector 36 for use.
  • the sewer stormwater overflow in the bypass channel 20 to which the solid bromine-based disinfectant is added is guided to the dissolving device 40.
  • the dissolution apparatus 40 dissolves a solid bromine-based disinfectant in sewage during rainy weather. When the disinfectant is liquid, the disinfectant is mixed with sewage in rainy weather.
  • the apparatus 40 has a dissolution tank divided into a stirring tank 41a and a storage tank 41b. However, it is not necessary to divide the dissolution tank into two tanks in this way.
  • the stirring tank 41a is provided with a water level gauge 42 and a stirrer 44 for stirring the waste water.
  • the sewer stormwater overflow in the agitation tank 41a is stirred by the agitator 44, and the disinfectant water can be formed by dissolving the solid disinfectant in the sewer stormwater overflow.
  • the disinfecting water overflowed in the storage tank 41a is transferred to the storage tank 41b.
  • the disinfecting water obtained by the device 40 is preferably guided by the pump 46 to the flow path 12 of the sewer stormwater overflow through the flow path 47.
  • a reservoir portion is formed in the flow path 12 or the discharge flow path 17 of the sewer stormwater overflow.
  • stirrer or baffle can be placed to promote mixing of disinfecting water with sewer stormwater overflow.
  • FIG. 10 shows a typical sand basin configuration.
  • the sand basin 10 is divided into an inflow part 11 and a sand settling part 14a, b, c.
  • a pumping pump 13 is disposed at the inflow portion 11 of the sand basin 10.
  • the rainwater sewer stormwater overflow 12 is pumped into the bypass basin 20 by the pumping pump 13, which is part of the sewer stormwater overflow introduced into the inflow 11 of the sand basin.
  • the other part of the sewer stormwater overflow in the inflow part 11 flows into the sand settling parts 14a, 14b, 14c.
  • a part of the sewer stormwater overflow introduced into the bypass channel 20 is dissolved by the disinfectant supply device and dissolution device shown in Fig. 9 to form disinfectant water. It is guided to the sedimentation basin 10 through the channel 47.
  • the disinfecting water may be guided directly to the sand basin 10 or may be guided to the sand basin 10 via a distribution tank 48 as shown in FIG.
  • the distribution tank 48 is provided in the flow path 47.
  • the sand settling portions 14a, 14b, and 14c of the sand settling basin 10 are illustrated, and the inflow portion 11 is omitted.
  • the disinfecting water may be guided to the inflow portion 11 of the sand basin 10 or may be introduced upstream of each of the sand settling portions 14a, 14b, 14c of the sand basin 10 as shown in FIG. Also good.
  • the sand contained in the sewer stormwater overflow settles and is removed.
  • sewer stormwater overflow and disinfecting water are mixed to disinfect the sewer stormwater overflow.
  • the sterilized sewer stormwater overflow is guided to the discharge channel 17 by the pump 16 and discharged to the public water area 19.
  • the sewage overflow water and disinfecting water during rain preferably stay for 1 to 30 minutes, more preferably 1 to 15 minutes, and still more preferably 1 second. Stay for ⁇ 10 minutes.
  • Fig. 12 shows an embodiment of an addition device for adding disinfecting water to sewer stormwater overflow.
  • the adding device 50 has a pipe 52 extending in the horizontal direction and an introduction section that communicates with the pipe 52 and introduces disinfecting water into sewer stormwater overflow.
  • the pipe 52 communicates with the disinfecting water supply flow path and is supported by a support (not shown).
  • One embodiment of the introducer is, for example, a plurality of hoses 54 suspended from the tube 52.
  • the open end 56 of the hose is preferably located below the surface of the sewer stormwater overflow. Disinfecting water distributed from the distribution tank 48 flows in this order through the disinfecting water supply channel, pipe 52 and hose 54, and is added to the sewer overflow 15 in rainy weather. Added.
  • the open end 56 of the hose 54 When the open end 56 of the hose 54 is located on the surface of the sewer stormwater overflow 15, the mist of the disinfecting water forms a mist from the open end 56 of the hose due to wind, etc. In particular, there is a risk of corroding electrical equipment.
  • the open end 56 of the hose is preferably located below the surface of the sewer overflow 15 in rainy weather.
  • the tube 52 is preferably made of a material that is not corroded by disinfecting water.
  • a metal material such as Inconel, or a plastic material such as polytetrafluoroethylene or polysalt polybule can be used.
  • the tube 52 preferably has sufficient mechanical strength to support the hose. It is preferably rigid, but may be flexible.
  • hoses may be hung on each pipe 52.
  • the distance between two adjacent hoses is preferably constant. This is because disinfecting water can be efficiently mixed with waste water. However, the distance between two adjacent hoses may be different.
  • the hose 54 is preferably flexible but may be rigid.
  • FIG. 13 shows another embodiment that can be employed as a disinfectant storage / supply device in the present invention.
  • the solid bromine-based disinfectant storage / supply tank 100 is divided into a cylindrical storage unit 101 and a supply unit 102, for example, a cylindrical type.
  • a stirrer such as a stirring blade for stirring the solid disinfectant in the tank is provided at the bottom of the storage unit 101 and is connected to a motor 104 to rotate.
  • air is supplied to the storage unit 101 from the air source facility 105.
  • a predetermined amount of the solid disinfectant is discharged from the supply unit 102, passes through the guide tube 107, and falls onto the dissolution cone 108 of the chemical dissolution unit 109.
  • the shape of the storage part is cylindrical, for example, cylindrical, and the compaction of the powder and the bridge are performed by mechanical stirring by a stirring blade and stirring by air. Prevents formation.
  • the reservoir is an inverted conical shape like a conventional hopper, a bridge is formed by the solid disinfectant, which tends to cause poor supply.
  • the purpose is to disinfect sewer stormwater overflow during heavy rains, so a solid bromine-based disinfectant is stored for a long period of time. It must be disinfected by adding it to the sewer overflow water during rainy weather.
  • disinfectant addition devices are installed in, for example, sewer storm drains and pump stations, and are operated by remote operation in an unattended state. Must be able to supply.
  • solid bromine-based disinfectants are more susceptible to compaction and bridging than other solid powders! / And! / ⁇ ⁇ characteristics, and preventing solidification and bridging It is essential for the smooth supply of disinfectants.
  • the solid disinfectant is mechanically agitated by the agitating blade 103, and the air from the air source 105 is ejected from air holes provided at a plurality of locations at the bottom of the tank 100. To stir.
  • the dew point at a pressure of 0.5 MPa is preferably 5 ° C or less.
  • the supply of the stirring air can be performed intermittently.
  • the supply amount of stirring air is preferably about 80 NL / min with respect to the reservoir lm 3 .
  • the air source 105 it is preferable to use a device that can always secure a pressure of 0.5 MPa or more.
  • the solid disinfectant can be smoothly discharged from the supply unit 102 without being obscure.
  • the air in the storage unit 101 is exhausted through the dust collector 106.
  • the dust collector 106 a bag filter, a water washing tower, a cyclone, or the like can be used.
  • the shape of the solid disinfectant reservoir 101 is preferably a cylindrical shape, but a conical or square shape can also be used if a powder flow mechanism by a stirrer or air purge is provided.
  • a means for stirring the solid disinfectant in the storage section a method of vibrating the container itself can be adopted in addition to the mechanical stirring and stirring by air blow.
  • the solid disinfectant reservoir includes a solid disinfectant storage tank 100, A fixed quantity feeder 102 that measures a predetermined amount of the powder in the storage tank 100 and discharges it to a supply destination is provided.
  • the storage tank 100 is attached to the support frame 112, and the metering feeder 102 is attached to the lower surface of the storage tank 100.
  • the storage tank 100 will be described with reference to Figs.
  • the storage tank 100 is formed in a cylindrical container shape, and includes a bottom plate 100a in which a discharge port 124 is formed, a ceiling plate 100b in which a solid disinfectant input port 126 is provided, and a cylindrical container body 100c. Solid disinfectant is introduced into the container through the inlet 126. Further, on the bottom plate 100a, there is provided a stirring blade 130 which is a powder stirring means having a drive shaft 128 penetrating the bottom plate 100a and rotating in a predetermined direction R around an axis 115 extending in the vertical direction.
  • the container main body 100c is provided with eight injection nozzles 132 that are compressed air injection ports that are opened in the vicinity of the stirring blades 130 at eight equal intervals in the circumferential direction of the peripheral edge thereof.
  • the bottom plate 100a is provided with injection nozzles 132 that open toward the four stirring blades 130 at equal intervals around the axis 115.
  • Each of the injection nozzles 132 is supplied via a dry compressed air force check valve 164 of a compressed air source 162.
  • the compressed air is supplied with its injection amount, injection interval, etc. freely controlled.
  • the check valve 164 may be a well-known valve, for example, a poppet valve in which the valve element moves vertically with respect to the valve seat, or a swing in which the valve plate swings around the hinge with respect to the valve seat.
  • a catch valve can be used.
  • the valve body or the valve plate is pressed by a well-known means such as a spring 165, and is opened only when compressed air is flowed. I'll try to speak.
  • the solid disinfectant inlet 126 is attached with a lid member or an openable butterfly valve that closes the opening.
  • the ceiling plate 100b is provided with a dust collection port 100d connected to a dust collection facility.
  • Four brackets 100e for mounting the storage tank 100 on the support frame 12 (FIG. 14) are provided on the outer periphery of the container body 100c.
  • the agitating blade 130 includes a pair of radiating blades 131 and 131 extending radially in the opposite direction from the axis 115 to the inner peripheral portion of the container body 100c.
  • Each of the radiating blades 131 has an upwardly projecting hollow triangular cross section communicating therewith, and the radial tip portion is bent toward the direction of rotation R and protrudes upward.
  • the radiating blade 131 passes through the inside of the drive shaft 128 through the hollow portion. Then, pressurized air is supplied from the compressed air source 162 through the check valve 164 described above, and a plurality of injection ports 133 are formed on the ridgeline at the upper end of the triangular section and on the surface in the rotation direction R side. Yes.
  • the quantitative feeder 102 will be described with reference to Figs.
  • the metering feeder 102 has a cylindrical container body 134, a drive shaft 138 disposed on the bottom plate 136 of the container body 134 and penetrating through the bottom plate 136, and a predetermined rotational direction RR about an axis 115 extending in the vertical direction.
  • a stirring blade 142 which is a stirring means integrally provided on the rotary table 140.
  • the quantitative feeder 102 includes a drive source 144 that rotates the drive shaft 138.
  • the container body 134 has a cylindrical shape having an inner diameter substantially the same size as the discharge port 124 of the storage tank 100, the supply port 146 is formed on the bottom plate 136, and the upper end of the cylinder is a mounting flange. 147 is open and attached to the outlet 124 of the bottom plate 100a of the storage tank 100.
  • the turntable 140 is provided with a plurality of measuring chambers 140a, which are opened at the top and bottom and in the radial direction, as measuring means, in the circumferential direction of the outer periphery.
  • the outer and lower openings of the measuring chamber 140a are substantially closed by the peripheral wall of the container body 134 and the bottom plate 136.
  • the upper opening force is sequentially introduced into the measuring chamber 140a, and the upper opening is also closed at the part of the scraping plate 140b.
  • Contained in weighing chamber 140a In the center of the cutting plate 140b in the rotation direction RR, the lower opening is opened at the supply port 146, and the powder in the measuring chamber 140a is discharged. Therefore, by defining the volume of the measuring chamber 140a and the rotational speed of the rotary table 40, a predetermined amount of powder is weighed and discharged to the supply port 146.
  • the cylindrical container body 134 is provided with injection nozzles 148 that are compressed air injection ports that are opened at three locations on the periphery of the container body 134 and in the lower part in the vicinity of the stirring blades 142.
  • the injection nozzle 148 is supplied through the check valve 164 by controlling the dry compressed air force injection amount, the injection interval, etc. of the compressed air source 162 in the same manner as the injection nozzle 132 provided in the storage tank 100 described above. .
  • the stirring blade 142 includes a pair of radiating blades 143 and 143 extending radially in the opposite direction from the axis 115 to the inner peripheral portion of the container main body 134.
  • Each of the radiating wings 143 communicates upward Has a convex hollow triangular cross section, and the tip end in the radial direction protrudes upward.
  • the compressed air is supplied from the compressed air source 162 to the radiating blade 14 3 through the check shaft 164 through the drive shaft 138 into the hollow portion thereof, and is on the ridge line at the upper end of the triangular section and on the rotation direction RR side.
  • a plurality of injection ports 150 are formed on the surface.
  • a pipe member 107 is connected to the supply port 146 of the fixed amount feeder 102.
  • the solid disinfectant supplied from the metering feeder 102 falls to a dissolution cone 108 disposed below the pipe member 107, which is a dissolution means for dissolving the discharged powder in water.
  • Dissolved water from the melting cone 108 flows into the ejector 109 of the conduit 20 to which the flowing water is pumped, sucked by the suction action of the ejector 109, and sent to the target location through the transport conduit 47.
  • a plurality of nozzle force water is discharged at the periphery of the upper end of the funnel-shaped body that spreads upward, and the discharged water forms a spiral along the inner surface of the funnel-shaped body. Washed away. The powder is melted by introducing the powder from the tube member 107 into this flow. However, it is not necessary to dissolve all of the powder in water. There is a solid disinfectant remaining in the disinfecting water!
  • a dissolution cone is provided between the drug supply unit and the chemical dissolution unit, and the chemical cut out by the supply unit falls to the dissolution cone. It was. With this structure, the chemical dissolution part and the supply part can be separated, and the disinfecting water can be prevented from flowing back to the solid drug storage part.
  • the chemical dissolving section includes a circular or square slide water supply system, a combination of a simple tank and a stirrer, a line mixer, etc. A form can be adopted.
  • a solid disinfectant container can be connected to the disinfectant inlet 126 of the storage unit 101.
  • the solid disinfectant storage tank 101 has a container 186 (one in the figure) as a plurality of containers having an openable / closable outlet 184 containing a solid disinfectant at the disinfectant inlet 126.
  • the discharge port 184 (state of FIG. 19).
  • the container 186 will be described with reference to FIG.
  • the container 186 has a container body 114 having a discharge port 184 formed at the lower end, a cone 116 that is provided at the discharge port 184 and is normally closed by closing the discharge port 184, and one end connected to the cone 116.
  • a cone rod 118 which is a shaft member extending upward in the container main body 114 and projecting the other end outward.
  • the discharge port 184 is opened and closed by gripping the protruding end of the cone rod 118 and operating the cone 116.
  • the cone rod 118 is biased in a direction to close the discharge port 184 by biasing means 120 having a spring disposed in the container body 114.
  • the container main body 114 includes a cylindrical vertical main body 114a, an upper lid 114c having a powder inlet 114b, a funnel-shaped bottom 114d in which a cone 116 contacts and a discharge outlet 184 is formed, and A cylindrical guide portion 114e is formed at the tip of the bottom portion 114d and is detachably connected to the storage tank 101.
  • a frame 14f for storage, movement, placement on the storage tank 101, and the like is provided on the outer periphery of the lower portion of the main body 114a.
  • the cone 116 has a hollow cone shape, and a cone seal 117, which is a seal material that comes into contact with the discharge port 184, is attached to the outer peripheral edge of the bottom surface, and the top portion is connected to the cone rod 118. Yes.
  • the cone rod 118 is slidably guided up and down by a shaft guide 114g attached to the upper lid portion 114c.
  • the biasing means 120 includes a compression coil spring 121 between the shaft guide 114g and the pin 119 of the cone rod 118.
  • a cone rod 118 is passed through the compression coil spring 121.
  • the protruding upper end of the cone rod 118 is provided with a disc-shaped flange portion 122 that is releasably gripped by a valve opening / closing means (the valve opening / closing means will be described later).
  • FIG. 21 an example of the installation form of the solid disinfectant supply facility configured as described above will be described.
  • the solid disinfectant storage tank 101 and metering dispenser 102 there are a plurality of containers 186 containing solid disinfectants at intervals, in a three-tier shelf 156, in a direction perpendicular to the paper surface of FIG. Column, stored.
  • a stagger crane 158 is provided between the storage tank 101 and the fixed quantity feeder 102 and the shelf 1 56, and the container 186 on the shelf 15 6 is appropriately taken in and out as needed by the stagger crane 158.
  • 186 is placed on storage tank 101 by inserting guide part 114e of discharge port 184 into storage tank input port 126. It is.
  • a valve opening / closing means 160 is provided above the placed container 186.
  • the valve opening / closing means 160 is equipped with a pneumatic cylinder that is opened and closed horizontally by a pneumatic cylinder and detachably holds the flange 122 of the cone rod 118 of the container 186 and moves in the vertical direction. Open and close the cone 116, which is the valve body of the container 186.
  • the flexible container bag 180 is a well-known bag that is formed of a flexible bag and is used to store powder or the like.
  • the flexible container bag 180 has a discharge port 180a that can be freely opened and closed by a tape, a rope or the like at the bottom of the bag and a rope 180b for suspension at the top.
  • the flexible container bag 180 containing the powder is suspended and moved by the hanging bracket 182 using the electric chain block 184 at the storage location, and the discharge port 180a is inserted into the solid disinfectant input port 126 on the storage tank 101.
  • the discharge port 180a is opened by opening a tape, a rope, or the like that closes the discharge port 180a, and the storage tank 101 is filled with the solid disinfectant.
  • the solid disinfectant is stored in multiple containers, such as container 186 or flexible container bag 180, and the containers are sequentially connected to storage tank 101 according to the required amount of the supply destination, and the storage tank 101 is filled with powder.
  • the filled powder is weighed in a predetermined amount by the quantitative feeder 102 and supplied to the supply destination. Therefore, the amount of powder stored in the container and the storage tank can be reduced, and solidification of the powder due to compaction can be prevented.
  • the storage tank 101 is equipped with the stirring means 130, the fixed quantity feeder 102 is provided with the stirring means 142, and the compressed air is periodically injected into the storage tank 101 and Z or the fixed quantity feeder 102 from the peripheral wall, the stirring means, etc. Further, solidification of the powder can be prevented. Therefore, a necessary amount of powder can be supplied when necessary.
  • Container 186 or flexible container bag 180 which is a container containing solid disinfectant, is placed on storage tank 101 with its discharge port connected via input port 126 to store solid disinfectant 10 1 is filled, it is not necessary to open the bag in which the powder is sealed and fill the storage tank 101 with the powder, and the operator can be prevented from touching the powder.
  • the compressed air is injected into the storage tank 101 and the metering feeder 102 via the check valve 164, the inside of the tank 101 and the metering feeder 102 can be maintained in a pressurized state, and the powder from the supply port 146 can be maintained. You can get out of your body more smoothly.
  • the tube member 107 connected to the powder supply port 146 of the quantitative feeder 102 is made of a synthetic resin such as flexible vinyl chloride, so that the rotary table 140 in the pressurized quantitative feeder 102 is measured in the measuring chamber 140
  • 140a intermittently communicates with the solid disinfectant supply port 146 by the rotation of the rotary table 140
  • the solid disinfectant in a pressurized state is intermittently discharged to the tube member 107, and the tube member 107 expands and contracts by its action. Therefore, the solid disinfectant is prevented from being blocked in the pipe member 107. It is not necessary to hit the outside from the outside in order to prevent the blockage that occurs when a steel pipe or the like is used as the pipe member 107. If the tube member 107 is made transparent, the state of the powder in the tube member 107 can be confirmed conveniently.
  • the solid disinfectant weighed and discharged by the quantitative feeder 102 is transported as dissolved water through the dissolution cone 108, which is a dissolution means, the powder is simply transferred to the transport line that is pumped with running water. It can be sent efficiently and effectively compared to sending the body to the supplier.
  • the fixed amount feeder 102 is attached to the outside of the storage tank 101.
  • the fixed amount feeder 102 is installed in the storage tank 101 so as to be driven on the same axis 115 as the stirring means 130, for example. You can do it.
  • the compressed air from the compressed air source 162 is supplied to the storage tank 101 and the fixed amount. It was supplied to a plurality of injection nozzles 132, 148, injection ports 133, 150, etc. of the machine 102 through a common check valve 164, but the storage tank 101, fixed quantity supply machine 102, stirring blade 130, stirring blade 142, etc. Depending on the size, shape, type of solid disinfectant to be handled, supply interval of compressed air, etc., check valve should be connected to the injection nozzle and Z or so that the solid disinfectant will not clog the injection nozzle and injection port. Prepare for each part of the injection port.
  • Fig. 23 shows another configuration example of the dissolving portion that dissolves the solid disinfectant in water to form disinfecting water.
  • the solid disinfectant storage tank 101 described in FIG. 13 and the like is installed on a pit 210 provided in the flow path 12 of sewer stormwater overflow.
  • a disinfectant guide pipe 107 connected to the metering feeder 102 is disposed in the pit 210 in a counter-force.
  • An underwater ejector 201 to which an underwater mixer 202 is attached is installed in the flow path 12.
  • a part of the sewer stormwater overflow in the flow path 12 is pumped up by the pump 203, and after removing impurities by the strainer 205, it is supplied to the underwater mixer 202 and the underwater ejector 201 through the pipes 207 and 208.
  • FIG. 23b is a view of the AA line in FIG. 23a viewed from the top, and thus the discharge port 204 is branched and arranged.
  • the height of the apparatus can be reduced.
  • the mixer is disposed below the feeding device, so the height force S of the device is inevitably high.
  • the mixer is disposed in the sewage flow path, so that the height of the apparatus is reduced.
  • the conventional solid disinfectant storage and supply device was about 5.5 m high, but in the configuration shown in FIG. 23, the device height can be about 2 to 3 m.
  • the feed water head to the mixer becomes small, the power for water supply can be reduced.
  • the disinfectant mixer and the disinfecting water injection device are disposed on the ground above the sewer stormwater overflow channel. If the disinfecting water overflows, the disinfecting water will be scattered around. However, in the configuration shown in Fig. 23, the disinfectant mixer is placed in the sewer stormwater overflow. Even if the mixer disinfecting water overflows due to clogging, etc., it will only enter the sewer sewage overflow during treatment rain and will not contaminate the surroundings.
  • Fig. 24 shows another form of the solid bromine-based disinfectant storage and supply device that can be used in the present invention.
  • the storage and supply device for solid bromine-based disinfectant shown in Fig. 24 has a storage tank 250 having a solid bromine-based disinfectant inlet 252 at the top and an opening at the bottom of the storage tank 250 (solid bromine-based disinfectant discharge port). It consists of a solid bromine-based disinfectant quantitative supply device 251 attached.
  • the storage tank 250 has, for example, a barrel shape with a wide central portion, is installed by a frame 257 so that the central shaft 260 is inclined, and is configured to rotate around the shaft 260 by a motor 253. Yes.
  • baffle plates 256 for stirring on the inner wall of the storage tank 250.
  • a screw feeder 255 is attached to the lower opening (solid bromine-based disinfectant discharge port) of the storage tank 250, and the solid bromine-based disinfectant contained in the storage tank 250 is fed to the feeder by the motor 254. By rotating 255, a predetermined amount is supplied through the induction tube 107.
  • a solid disinfectant dissolving device such as a dissolving cone 108 shown in FIG. 13 or an underwater mixer 202 shown in FIG. 23 can be arranged below the induction tube. According to this type of storage tank, bridging can be prevented by mixing a compacted powder such as a solid bromine-based disinfectant by rotating the storage tank. In addition, there is an advantage that the height of the storage tank can be lowered and that air for stirring the solid disinfectant is unnecessary.
  • Fig. 25 is a diagram showing another form of a solid bromine-based disinfectant storage and supply device that can be used in the present invention.
  • a fluid single-screw pump 312 for transferring powder is connected to the discharge port at the bottom of the solid bromine-based disinfectant storage tank 310.
  • a solid bromine-based disinfectant induction tube 107 is connected to the end of the single screw pump 312.
  • a solid disinfectant dissolving device such as the dissolving cone 108 shown in FIG. 13 or the water mixer 202 shown in FIG.
  • the solid bromine-based disinfectant storage tank 310 shown in FIG. 25 is a so-called hopper type, but is provided with a consolidation preventing mechanism 311 such as a mechanical stirrer or air purge on the bottom surface. Prevents formation.
  • a consolidation preventing mechanism 311 such as a mechanical stirrer or air purge on the bottom surface. Prevents formation.
  • the storage tank shown in FIGS. 13, 15, 24, etc. can be used.
  • Fig. 26 shows another example of a fluid 'solid bromine-based disinfectant storage' supply device using a single screw pump for powder transfer.
  • the configuration of the solid bromine-based disinfectant storage tank 310 and the single screw pump 312 is the same as the configuration shown in FIG.
  • another single screw pump 320 is further arranged, and water for dissolving the solid bromine-based disinfectant is introduced into the inlet 322.
  • Single screw screw pump 312 is rotated by the motor 321 and the dissolution water is transferred through the pipe 324 and the solid bromine-based disinfectant is transferred from the inlet 325. Introduced in 312.
  • the dissolving water and the solid bromine-based disinfectant mixed in the single screw pump 312 are then introduced into the emulsifying disperser 326, and the emulsifying disperser 326 is operated by the motor 327, so that the solid A bromine-based disinfectant slurry is formed and transferred through induction tube 328.
  • the solid bromine-based disinfectant slurry transported in the induction tube 328 can be directly put into the sewer stormwater overflow to be treated.
  • the emulsification disperser 326 for example, an emulsification pump having a grinder-like shape can be used.
  • a solid bromine-based disinfectant that is difficult to dissolve in water can be obtained at a certain concentration by dispersing a solid odor-based disinfectant in water and throwing it into the sewer stormwater overflow to be treated. As a slurry, it is transferred to the entry point and quickly separated into the sewer stormwater overflow. It is possible to dissolve and dissolve.
  • the single screw pump 312 for transferring a solid bromine-based disinfectant is made larger than the single screw pump 320 for supplying water.
  • the chemical in the storage tank 310 can be forcibly sucked into the single screw pump 312. Therefore, by appropriately adjusting the capacities of the single screw pump for transferring the solid bromine-based disinfectant and the single screw pump for water supply, the supply amount of the drug can be finely adjusted.
  • a solid bromine-based disinfectant is first mixed and dissolved in water, for example, a portion of the rainwater sewer overflow water to be treated. Disinfecting water is formed and this is thrown into sewer stormwater overflow for disinfection.
  • the solid bromine-based disinfectant can be infused and dissolved in the sewer stormwater overflow to be treated in the solid state for disinfection.
  • FIG. 27 shows a specific example of a disinfecting apparatus according to one aspect of the present invention in which a solid bromine-based disinfectant is put into a sewer stormwater overflow to be treated as a solid.
  • a powdery or granular solid bromine-based disinfectant 408 is accommodated in the disinfectant storage tank 401.
  • the disinfectant 408 is sent to the disinfectant transfer pipe 405 via the disinfectant cutting device 402 and the metering device 403 by opening the valve 404.
  • the end of the disinfectant transfer pipe 405 is connected to a disinfectant injection device 409, where the disinfectant 408 is added to the sewer stormwater overflow 412 to be disinfected.
  • the disinfectant injecting apparatus 409 is equipped with a stirring blade 407 connected to a motor 406, and by the action of this stirring blade 407, a powdery or granular solid bromine-based disinfectant 408 is dissolved in the water to be treated.
  • the disinfectant injection device 409 preferably has a means for generating a jet of water to be disinfected, and the disinfectant injection device is in a reduced pressure state by the action of the generated jet.
  • the disinfectant injection device is in a reduced pressure state by the action of the generated jet.
  • the disinfectant injection device 409 shown in Fig. 28 includes a narrow tube 424 surrounding the shaft connecting the motor 406 and the stirring blade 407, and a cover 421 surrounding the vicinity of the end of the thin tube 424. ing.
  • the terminal portion of the thin tube 424 is disposed in the water to be treated 412, and a disinfectant transfer pipe 405 is connected to the upper portion of the thin tube.
  • a water flow is generated in the cover, and a jet 422 is generated in the vicinity of the end of the narrow tube.
  • the inside of the narrow tube 424 is depressurized, and the powdery or granular solid bromine-based disinfectant 423 is urged toward the terminal portion of the thin tube 424 by air due to the suction force generated thereby.
  • the transferred disinfectant 423 is added to the water stream 422 and mixed with the water to be disinfected by the stirring blade 407.
  • a plate-like member 431 that forms an orifice is disposed in a flow path for flowing sewer stormwater overflow.
  • the disinfectant transfer pipe 405 is connected near the outlet of the orifice.
  • a jet 432 is generated by the flow of the waste water passing through the orifice, and this jet reduces the vicinity of the end of the disinfectant transfer pipe 405, and the suction force generated thereby causes the powdery or granular disinfectant 433 to form. It is transferred to the jet and is mixed with waste water by the stirring action of the jet.
  • a pump 441 is arranged in the water flow 412 of sewer stormwater overflow, and this power drainage is introduced into the pipe 443, and again through the ejector 442. Returned to 412.
  • a disinfectant transfer pipe 405 is connected to the ejector 442.
  • a jet is generated by the ejector 442, and the vicinity of the end of the disinfectant transfer pipe 405 is depressurized, and the powdery or granular disinfectant is transferred to the pipe 443 by the suction force generated by this, It is mixed with waste water by the stirring action of the jet.
  • a suction machine can be installed in the vicinity of the disinfectant injecting apparatus 409 in addition to the above configuration.
  • a facility for dissolving a disinfectant required by a method of injecting the disinfectant into water to be disinfected after dissolving or suspending the disinfectant in advance that is, a dissolution tank, a stirring device, an ejector, and the like are unnecessary. Equipment costs are reduced. Furthermore, equipment for pumping disinfecting water after dissolving or suspending in water to the point of injection into the water to be disinfected, that is, a transfer pump, an ejector, etc., is unnecessary. In addition, when a slurry-like disinfectant is injected into the water to be disinfected, the disinfectant is unevenly distributed in the dissolution tank.
  • solid bromine-based disinfectant is put into the sewer stormwater overflow that is to be treated as a solid * mixed to disinfect sewer stormwater overflow.
  • the first purpose of the mixing operation is to dissolve a solid disinfectant in the water to be treated. If the disinfectant is in a solid state, the contact efficiency between the disinfectant and the water to be treated is low, and the disinfection rate is reduced. Dissolving the disinfectant improves the contact efficiency between the disinfectant and the water to be treated. Increases poison speed. If there is a restriction on the time it takes for sewer stormwater overflow to be discharged into public waters, it is important to increase the speed of disinfection in order to obtain a sufficient disinfection effect.
  • the second purpose of the mixing operation is to uniformly disperse the disinfectant in the water to be treated.
  • the disinfectant If the disinfectant is not evenly distributed throughout the treated water to be disinfected, it will be added excessively in areas where the disinfectant concentration is high, and if the disinfectant is wasted, high concentration will be generated in public water areas where it will be used by force. Residual halogen may be released. On the other hand, at locations where the concentration of the disinfectant is low, insufficient addition will result in insufficient disinfection. By dispersing the disinfectant uniformly in the water to be treated and making the disinfectant concentration uniform, it is possible to add disinfectant without excess or deficiency.
  • the third purpose of the mixing operation is to dissolve the disinfectant in the treated water and diffuse it so that the residual halogen concentration is below a certain level until the sewer stormwater overflow reaches the public water area. Is to reduce the degree. If the disinfectant remains solid or the dissolved disinfectant flows out into public waters with uneven and high concentrations, it will release high concentrations of residual halogen locally, which will affect the destination ecosystem. May have adverse effects. In order to prevent this, it takes time for the disinfectant to completely dissolve before the sewer stormwater overflow reaches the public water area, and to reduce the residual halogen after dissolution. For this reason, it is important to dissolve and diffuse by mixing disinfectants.
  • the time required for the halogen-based disinfectant to disinfect by its disinfecting ability (oxidation power) and the disappearance of the acidity by the completion of the acidification reaction is compared to the time required for dissolution. Short enough.
  • BCDMH 1-bromo-3-chloro-5,5-dimethylhydantoin
  • the disinfection treatment is performed at an effective halogen concentration of about 2 mg / L as CI
  • the disinfectant's oxidizing power disappears. It can be used as an index that the effective halogen concentration is reduced to 0.5 mg / L as CI or less.
  • the time required for the disinfectant to dissolve in the water to be treated is about 1 minute, whereas the effective halogen concentration is 0 to 2 mg / L as CI.
  • the time required to decrease to 5 mg / L as CI is about 10 to 30 seconds. This time varies because it is affected by the concentration of organic substances in the treated water, that is, the sewer stormwater overflow. Therefore, a little disinfectant If it is dissolved and secured for about 30 seconds after it is completely dissolved, it is possible to achieve both a sufficient disinfection effect and a reduction in the residual halogen concentration of the discharged water.
  • FIG. Fig. 31 shows the residual rate of undissolved disinfectant, the residual halogen concentration, and the time course of the colon bacteria group when the solid disinfectant is put into the water to be treated as a solid.
  • the amount of undissolved disinfectant decreases and the residual halogen concentration increases.
  • the residual halogen concentration decreases due to the consumption of halogen accompanying acid and sour reactions such as disinfection reactions, so the increase due to dissolution of the disinfectant offsets the decrease due to consumption due to acid and soot reaction.
  • the undissolved disinfectant disappears, the residual halogen concentration decreases rapidly.
  • the coliform group is constantly exposed to the oxidative power supplied, so it continues to decrease until the residual halogens are depleted.
  • the solid bromine-based disinfectant is put into the sewer stormwater overflow to be treated in a solid state until the disinfectant reaches the public water area from the addition position. It is possible to disinfect the sewer stormwater overflow in such a way that it completely dissolves in the meantime.
  • Fig. 32 shows the concept of a sterilization device for sewer stormwater overflow that works on another aspect of the present invention based on the technical concept of Fig. 32.
  • reference numeral 501 denotes a disinfectant storage device in which a solid bromine-based disinfectant 502 is stored.
  • the solid bromine-based disinfectant is weighed by the injection amount control device 503, transferred via the disinfectant transfer pipe 504 to the disinfectant addition position 506 provided in the sewer stormwater overflow channel 505, and disinfected.
  • the sewer stormwater overflow with the disinfectant added flows through the channel 507 from the disinfectant addition position 506 to the sewer stormwater overflow outlet 508 for a certain period of time, and then flows from the outlet 508 to the river J 11 Discharged into public water areas 509.
  • the time to reach the discharge port 508 is at least 2 minutes after the disinfectant is added at the disinfectant-added caro position 506, and the disinfectant is completely dissolved and the force is at least It is preferable to secure 1 minute.
  • the disinfectant dissolves and diffuses in the sewer stormwater overflow by the water stream while flowing down the flow path 507.
  • the disinfectant develops disinfection ability (oxidation power) sequentially from the dissolved one, and performs disinfection reaction.
  • the disinfecting ability (acidity) disappears due to the reaction.
  • the solid bromine-based disinfectant dissolves in the sewer stormwater overflow by the water flow while flowing down the channel 507, so that the disinfecting power (oxidizing power) continues to be supplied little by little for a certain period of time. Since the supplied disinfecting capacity is consumed and disappears by successive acid-oxidation reactions, residual halogen does not remain at a high concentration at the outlet 508.
  • Fig. 33 shows a form in which the shape of the flow path 507 of the sewer stormwater overflow after the addition of the disinfectant is changed.
  • the channel 507 is a bypass channel 507a. It is also possible to make the bypass channel 507a a tank of the same capacity.In that case, in order to prevent a short circuit flow in the tank and bring the flow close to the extruding flow, a partition is formed in the tank. It is preferable to arrange a plate.
  • the bypass channel can be either a horizontal bypass type or a vertical bypass type.
  • FIG. 34 shows another example.
  • a dehalogenating agent addition apparatus 510 is installed in the middle of the flow path. If an excessive amount of disinfectant is added, the residual amount and logogen may not be sufficiently reduced until the outlet 508 is reached.
  • a reducing agent such as sodium sulfite is added from the dehalogenating agent addition apparatus 510 to neutralize residual halogen.
  • the position of addition of the reducing agent from the denoising / logging agent addition device 509 may be in the middle of the bypass channel 507a or downstream of the bypass channel 7a.
  • FIG. 35 shows still another embodiment.
  • the flow channel of the sewage overflow water after the addition of the disinfectant was constituted by the static mixer 507b. If the time to the outlet 508 can be secured without lengthening the flow path, the disinfection effect can be further enhanced by promoting the dissolution / mixing by the water flow with the static mixer 507b.
  • FIG. 36 shows still another embodiment.
  • the sewer stormwater overflow facility 511 such as a rainwater spout chamber or a pumping station of the combined sewer
  • the outlet 508 Time may not be secured.
  • an injection point 514 is provided in the sewer pipe 513 upstream of the sewer stormwater overflow drainage facility 511, and a solid bromine-based disinfectant is added thereto, so that the disinfectant is added to the treated water. Secure the time to reach the outlet.
  • a part of the sewage to which the disinfectant is added flows into the sewage treatment plant 512.
  • a dehalogenating agent adding device 510 is installed in the middle of the sewage treatment plant 512, and a reducing agent such as sodium sulfite.
  • the residual halogen can be neutralized by adding.
  • Fig. 37 shows another configuration example of a disinfecting apparatus that disinfects solid bromine-based disinfectant as it is in the solid wastewater sewer stormwater overflow.
  • the disinfectant storage tank 551 contains a bromine-based disinfectant 559 in the form of a powder or granules.
  • the disinfectant 559 is weighed by the injection device 552 to which the injection amount control device 558 is connected, and is put into the sewer stormwater overflow in the channel 557 via the disinfectant transfer pipe 553, and then disinfected. It is discharged into the public water area from the outlet 508.
  • FIG. 38 shows another configuration example.
  • the disinfectant storage tank 551 contains a bromine-based disinfectant 559 in the form of powder or granules.
  • the disinfectant 559 is measured by the injection device 552 to which the injection amount control device 558 is connected, and is sent to the disinfectant transfer pipe 553.
  • the end of the disinfectant transfer pipe 5 53 is connected to the disinfectant mixing device 554, and the disinfectant 559 supplied to the disinfectant mixing device 554 is passed over the sewer in rainy weather flowing through the channel 557 in the mixing device 554. It is poured into running water and mixed. Further, dry air is injected into the storage tank 551 and the injection amount control device 552 from the dry air supply device 555.
  • the inside of the storage tank 551 and the injection amount control device 552 can always be kept in a dry state and a pressurized state. Further, in order to keep the pressure inside the storage tank 551 and the injection amount control device 552 in a constant pressure state, the pressure adjustment device 560 is provided between the dry air supply device 555 and the storage tank 551 and the injection amount control device 552. Can be arranged. The exhaust from the storage tank 551 and the injection volume control device 552 is discharged into the atmosphere after the disinfectant in the exhaust gas is removed by the dust removal device 556.
  • Disinfectant water discharged from the disinfectant mixing device 554 is added with a reducing agent by the reducing agent addition mixing device 561 to neutralize residual halogen, and the power is also discharged from the outlet 508. You can also.
  • the disinfectant mixing device 554 may be any device having a function of mixing the disinfectant with the disinfecting target water until it can be disinfected. For example, a water channel, pipe or tank having a bypass wall, an air diffuser connected to a gas supply device, an ultrasonic generator, an agitator having a rotating blade, a reducer or a pump can be used.
  • the sewer stormwater overflow to be treated by the present invention has a drastic fluctuation in water quality in a very short time, so it is very difficult to determine an appropriate disinfectant concentration.
  • the quality of sewer stormwater overflow varies greatly depending on the rainfall conditions, and when the concentration of sewage is high and the concentration of reducing organic and Z or inorganic substances is high, dilution with rainwater proceeds.
  • the sewage concentration decreases and the reducing organic concentration and Z or inorganic concentration decrease, the required amount of disinfectant differs greatly, and an appropriate minimum amount of disinfectant may be added according to the water quality fluctuation. There is a problem that it is difficult.
  • an appropriate amount of the disinfectant that exhibits an appropriate disinfecting effect and does not generate residual halogen is obtained according to the water quality fluctuation of the waste water, and the minimum necessary amount of disinfectant is applied. It can be added to the treatment liquid.
  • the number of coliforms after disinfection is 9000 CFU / mL after 30 minutes after rain (A time point), and the number of coliform groups after disinfection is 4700 CFU / mL after 45 minutes after rain (time B).
  • the disinfection target value discharge standard value stipulated in the Water Pollution Control Law: 3000 CFU / mL or more
  • the number of coliform bacteria after disinfection was less than 10 CF U / mL, which is below the disinfection target value.
  • the number of coliforms after disinfection in the treated water is slightly higher than 3000 CFU / mL at the BCDMH addition rate ppm, and below 100 CFU / mL at the BCDMH addition rate rate ⁇ ppm, which is well below the disinfection target value. It was. Based on the above, it can be seen that sterilization of sewage overflow water at this point requires that BCDMH be supported at an addition rate of about 4.2 to 4.3 ppm.
  • the disinfection effect of the liquid to be treated is not sufficient when the BCDMH addition rate is 3 ppm.
  • the residual halogen concentration is about 0.1 mg / L as CI about 20 seconds after the addition of the disinfectant, and it is almost close to Omg / L as CI after 100 seconds.
  • the amount of 3 ppm disinfectant added at time B is still slightly less than the required amount.
  • the residual halogen concentration was about 0.3 mg / L as CI, about 15 seconds, about 20 seconds after the addition of the disinfectant.
  • the residual halogen concentration after disinfectant treatment is considered to have some allowance to reliably achieve the disinfection target value. Therefore, it should be set at approximately the midpoint between lines B and C in Figure 43. That is, from FIG. 43, if the residual halogen concentration is set to 0.2 mg / L as CI 20 seconds after adding BCDMH,
  • the amount of disinfectant input to the wastewater is adjusted to a value lower than the concentration input to the wastewater sample.
  • the degree of decrease in residual halogen concentration is lower than the set value, disinfection Adjust the agent input to a higher value than the concentration in the drainage sample.
  • the concentration of the disinfectant to be added to the sample is preferably set to the concentration actually input into the waste water at that time. This is because a large variation in the concentration of the disinfectant can be prevented and more precise control can be performed.
  • how much the concentration actually put into the wastewater should be increased or decreased. This can be determined empirically by the vendor.
  • Fig. 44 shows a configuration example of a disinfection device for sewer stormwater overflow according to one embodiment of the present invention configured based on this technical idea.
  • the disinfection device shown in Fig. 44 includes an introduction line 602 of a liquid to be treated (sewer overflow in rainy weather) 601, a disinfection tank (sedimentation basin) 603, and a disinfectant for introducing a disinfectant into the liquid to be treated.
  • Introducing means 2004 is provided.
  • the disinfectant introduction means the disinfectant supply devices of various forms described above can be used.
  • the disinfectant introduction means 604 may be introduced into the line 602 upstream of the disinfection tank 603 or may be directly introduced into the disinfection tank 603. As described above, the disinfectant may be introduced into the sewer stormwater overflow channel without providing the disinfection tank (sedimentation basin) 603.
  • a preparative line 612 for collecting a test liquid sample to be tested is connected in the process liquid introduction line 602.
  • a pumping pump 616 is connected to the sorting line 612.
  • Disinfection of sewer stormwater overflow is performed by adding an appropriate amount of disinfectant from the disinfectant introduction means 604 and treating in the disinfection tank 603.
  • disinfectant is added.
  • the previous liquid to be processed is periodically sampled from line 612.
  • the sampled liquid to be treated is stored in the monitoring tank 613, where a predetermined amount of disinfectant 614 is stored. Is added and mixed and stirred by a stirrer (not shown).
  • the concentration of the disinfectant added to the monitoring tank is the concentration of the disinfectant actually supplied to the liquid to be treated by the disinfectant introduction means 604 at that time in order to enable precise concentration control. I like it.
  • the monitoring tank 613 is connected to a measuring device 615 for measuring the residual halogen concentration in the liquid to be treated, and continuously measures the value of the residual halogen concentration after adding the disinfectant.
  • Residual halogen concentration measuring instruments that can be used for this purpose include, for example, a polarographic free chlorine meter (for example, product name CL M-37 or CLM-22 manufactured by Toa DKKEI Co., Ltd.). Can do.
  • the measured residual halogen concentration value is recorded by a recorder 618.
  • the preset target value and the value measured in the monitoring tank 613 are compared. For example, if the graphs of Fig. 39 and Fig. 43 are obtained for the sewage treatment facility, the set value is 20 mg after adding the disinfectant and the residual halogen concentration is 0.2 mg / L as CI.
  • the value is 2%, the residual halogen concentration of the treated water sample to which the disinfectant is added in the monitoring tank 613 is measured 20 seconds after the disinfectant is added. If this value is higher than the set value of 0.2 mg / L as CI, the disinfectant to be introduced from the disinfectant introduction means 604 is used.
  • the disinfectant input concentration is controlled by inputting the measured value of the residual halogen concentration measuring device 615 through a communication line 604 to a computer (not shown) that has input a preset target value for decreasing the residual halogen concentration. This can be done automatically by using an automatic control device (not shown) that controls the amount of input disinfectant according to the comparison result between the set value and the measured value.
  • the treated water sample for which the measurement of the decrease in residual halogen concentration has been completed is returned to the treated liquid introduction line 602 via the return line 617 and introduced into the disinfection tank 603 together with the treated liquid.
  • the liquid to be treated with the disinfectant when the liquid to be treated with the disinfectant is short, it stays within 1 minute, and within 10 minutes when it is long, the reaction with the disinfectant proceeds.
  • the treated water that has been sterilized is pumped up by the pump 606 and discharged into the public water area 608 through the drainage channel 607.
  • the sample to be treated upstream from the disinfectant input position it is preferable to collect the sample to be treated upstream from the disinfectant input position. Take a sample downstream from the disinfectant input position, that is, disinfectant is added If the sample liquid is collected as a sample, the residual halogen concentration at a certain point during the disinfection will be measured, but as shown in Fig. 43, the residual halogen concentration is measured as the elapsed time after adding the disinfectant. This is a force that cannot be adequately controlled because it changes very sensitively.
  • the above monitoring operation is performed periodically, for example, every 1 to 60 minutes, preferably every 5 to 20 minutes, and the concentration of the disinfectant added is determined according to the result. adjust.
  • This makes it possible to provide adequate disinfection, especially in the case of disinfecting rainwater overflowing water, whose properties vary greatly over time, and at the same time appropriate disinfection without releasing residual halogen to public water areas. It becomes possible to maintain the agent addition concentration.
  • the amount of disinfectant added varies depending on the type of disinfectant and the nature of the overflow water. Generally, 1 to: LOmg / L (ppm), preferably Is 2 to 6 mg / L. In the present invention, it is preferable to control the addition amount of the disinfectant within this range.
  • the disinfection tank 603 can have a contact time required for disinfection with a solid bromine-based disinfectant, even if it is not a special reaction tank or a sewer stormwater overflow channel. It ’s good.
  • the contact time required for disinfection with a solid bromine-based disinfectant is set to the maximum overflow rate of the sewer stormwater overflow to be treated, and should be at least 20 seconds, preferably 30 seconds, and more preferably 60 seconds. That's fine.
  • Overflow water is generated in the sewerage system when there is a large amount of rain in the combined sewerage system or when a large amount of rainwater is mixed from unknown water or manholes in the diversion sewerage system.
  • the inflow of rainwater into the sewer varies greatly depending on the rainfall conditions. In other words, in the case of a typhoon or heavy rain, flooding may occur and rivers may overflow.
  • the present invention does not assume such an extremely heavy rainfall. This is because the quality of sewer stormwater overflow is almost the same as that of rainwater, and it is a force that does not require disinfection.
  • the residual halogen concentration of the treated water to which the disinfectant was added was measured by the rainwater sewer overflow water disinfection device shown in Fig. 44, and if the residual halogen concentration was high, a reducing agent was added to neutralize the treatment water. It is preferable to discharge after performing.
  • the system shown in Fig. 45 shows the treatment method for sewer stormwater overflow with the addition of the disinfectant downstream of the disinfection tank 603 in Fig. 44.
  • the sewer stormwater overflow with the disinfectant added is guided from the disinfection tank 603 to the drainage channel.
  • the residual halogen concentration of the treated water is measured by the residual halogen concentration detector 623.
  • the reducing agent 621 is added and the residual halogen is neutralized in the reduction tank 622. And discharged into public water area 608 via drainage channel 607.
  • the reducing agent 621 may be input directly into the drainage channel 620 as shown in FIG. 45 or may be input into the reducing tank 622. Further, neutralization may be performed in the drainage channel 607 without providing the reduction tank 622.
  • the amount of reducing agent added is sufficient if it is chemically equivalent to the set value of the residual halogen concentration (0.2 mg / L in the previous example). This is because the residual halogen concentration after the actual disinfection process is lower than the set value.
  • the halogen detector 623 is linked with the disinfectant introduction means shown in FIG.
  • the halogen detoxification can be achieved by minimizing the addition amount of the solid bromine-based disinfectant and making the addition amount of the reducing agent excessive.
  • the rainfall disclosure time, the total amount of rainfall, and the rainfall duration time are predicted from the rainfall information of the treatment area, and the disinfectant is based on the predicted values.
  • the amount of addition of can be controlled.
  • the inflow amount of wastewater, the inflow pollution load, the rainfall amount, and the rainfall intensity are measured by a measuring device provided in the treatment plant where the wastewater disinfection device is installed.
  • the measured value force was estimated and controlled by estimating the number of E. coli groups in the wastewater flowing into the wastewater disinfection device.
  • Fig. 46 is a diagram showing a sewage pipe network that collects sewage such as domestic wastewater and factory wastewater, and a treatment area. Wastewater such as sewage generated in treatment area X, sewage containing rainwater, and rainwater flowing down the ground surface flows into a sewage pipe 711 provided in treatment area X. Each sewer pipe 711 The wastewater that has flowed in joins, and the joined wastewater flows directly into the sewage disinfection device provided in the sewage treatment plant 710 or is sent to the sewage treatment plant by the relay pumps Pl, P2, and P3.
  • sewage in the treatment area sewage containing rainwater, drainage containing rainwater flowing down the surface, etc., particularly sewer stormwater overflow is disinfected with chemicals.
  • the measurement point provided in the treatment area or the measurement point force provided in the treatment area and the adjacent treatment area Rainfall information is collected and the rainfall start time, rainfall in the treatment area Predict the total amount and the duration of rainfall, and control the drainage disinfection device by predicting the amount of medicine added, the amount of medicine consumed, and the start time of the drainage disinfection device from the predicted rainfall start time, total precipitation amount, and rainfall duration.
  • the control device of the disinfection device that disinfects the sewage in the treatment area, the sewage including the rainwater, the drainage including the rainwater flowing down the surface of the ground, etc., in particular, the sewer sewage overflow water in the rain From the rainfall information measurement means that measures the rainfall information of the treatment area or the treatment area and the adjacent treatment area, and the rainfall information measured by the rainfall information measurement means, the rainfall start time and the total amount of rainfall in the treatment area And rainfall information prediction processing means for predicting the rainfall duration, and the amount of medicine added, the amount of medicine consumed, and the start of drainage disinfection from the rainfall start time, the total amount of rainfall and the rainfall duration predicted by the rainfall information prediction processing means.
  • An E. coli group number prediction processing means for predicting the time can be provided.
  • the control device of the wastewater disinfection device includes the rainfall information measuring means for measuring the rainfall information of the treatment area or the treatment area and the adjacent treatment area, the rain start time in the treatment area, the rainfall from the rain information. Prediction method of rainfall information to predict the total amount and the duration of rainfall, the rain start time, the total amount of rainfall and the duration of rainfall, the amount of drug added, the amount of drug consumed, and Since the E. coli group number prediction processing means for predicting the operation start time of the sterilizer is provided, it is possible to predict the amount of added drug, the amount of drug consumption, and the operation start time of the waste water sterilizer in real time.
  • the regional characteristics for predicting the inflow water amount and inflow pollution load of the wastewater flowing into the wastewater disinfection device from the rainfall information measured by the rain information measuring means It is possible to provide a prediction value correction processing means for correcting the amount of added medicine, the amount of medicine consumed, and the operation start time of the drainage disinfection device based on the inflow water amount and the inflow pollution load predicted by the simulation means and the regional characteristic simulation means. .
  • the predicted value correction processing means for correcting the drug addition amount, the drug consumption amount, and the disinfection device operation start time, the drug It is possible to predict the addition amount, chemical consumption, and drainage disinfection start time more accurately.
  • the control device of the disinfecting apparatus includes turbidity measuring means for measuring the inflow turbidity of the water to be treated flowing into the disinfecting apparatus, and the rain information prediction processing means From the predicted rainfall start time, total rainfall amount and duration of rainfall, and inflow water turbidity measured by the turbidity measuring means, it is possible to predict the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time.
  • the amount of drug added, the amount of drug consumed, and the disinfection device based on the rainfall start time, the total amount of rainfall, the duration of rainfall, and the inflow water turbidity measured by the turbidity measuring means predicted by the rainfall information prediction processing means. Since the operation start time is predicted, the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time can be predicted more accurately.
  • the present invention provides a control device for a disinfection device that disinfects wastewater including sewage in a treatment area, sewage including rainwater, rainwater flowing down the surface of the earth, etc., particularly sewer stormwater overflow with chemicals.
  • regional characteristic simulation means for predicting inflow pollution load
  • chemical addition rate setting means for setting the chemical addition rate for wastewater in advance
  • the amount of influent water predicted by the regional characteristic simulation means, the inflow pollution load, and the amount of drug addition set by the means for setting the drug addition rate, and the amount of drug added and the amount of drug consumed are predicted. Means can be provided.
  • the rainfall information measuring means for measuring the rainfall information of the treatment area or the treatment area and the adjacent treatment area, and the amount of influent water flowing into the waste water disinfection device and the inflow pollution load are predicted from the rain information. Predicting the amount of drug added and the amount of drug consumed from the inflow water amount, the inflow pollution load and the drug addition rate. Since the medicine addition amount calculation processing means is provided, it is possible to predict the medicine addition amount and the medicine consumption amount in real time with a simple configuration.
  • the amount of rainfall in the treatment facility where the disinfection apparatus is installed the rainfall intensity, the amount of inflow water to be treated flowing into the disinfection apparatus
  • Measured value measurement means is provided to measure the amount of drug supplied to the disinfection device and the concentration of residual drug discharged from the disinfection device. It comprises an actual value correction processing means for correcting the consumption amount and the prediction of the disinfection device operation start time.
  • the measurement value correction processing means for correcting the prediction of the drug addition amount, the drug consumption amount, and the disinfection device operation start time based on the measurement values measured by the actual value measurement means is provided, the drug addition amount In addition, the drug consumption and the disinfection device operation start time can be predicted more accurately.
  • FIG. 47 is a diagram showing a sewage pipeline network that collects waste water to be sterilized by the disinfecting apparatus of the embodiment described above, a treatment area, and an adjacent treatment area.
  • treatment areas A, B, C, D, and E with similar sewage treatment plants around treatment area X of 710 sewage treatment plant 710 where sewage overflow water disinfection equipment is installed. are adjacent to each other.
  • the basic configuration of the sewer network in this embodiment is the same as that of the sewer network shown in FIG.
  • FIG. 48 is a diagram showing a configuration example of the control device of the wastewater disinfection device according to the present invention.
  • a plurality of rainfall information measuring means 720, 720 a plurality of rainfall information measuring means 720, 720.
  • the rainfall information measuring means 720, 720,... Can measure the rainfall information 721a, 722a ⁇ in the processing area A.
  • Each rainfall information measuring means 720 is provided in a facility having a pump station, a drainage station, a treatment plant, and a measurement facility where a relay pump in 1S treatment area A is omitted.
  • rainfall information such as rainfall and rainfall intensity in each treatment area is measured using the same rainfall information measurement means.
  • the rainfall information measured in each processing area A, B, C, D, E, X is continuously or periodically sent to the control device 730 using a data transmission device or an AMeDAS system using a commercially available telephone line. To be transmitted.
  • Figure 49 shows the mapping process used in the control method for sewer overflow water disinfection equipment in rainy weather.
  • Figure (a) is measured in each treatment area A, B, C, D, E, X.
  • (B) is a schematic diagram after elapse of time t in FIG. (A).
  • the rain information from the processing areas A, B, C, D, E, and X input to the control device 730 is subjected to mapping processing by the rain information mapping processing means 731 into a schematic diagram as shown in FIG.
  • the rainfall information measured in each treatment area A, B, C, D, E, and X is transmitted to the control device 730 continuously or periodically. It will be a schematic diagram as shown in Fig. 49 (b) later. Note that the rainfall information that has been mapped is represented by the intensity of rainfall intensity as shown by A! /.
  • the rainfall information estimation processing means 73 2 calculates the predicted rainfall 733, the predicted rainfall intensity 734, and the amount of water flowing into the disinfection device from the predicted rainfall start time, total rainfall, and rainfall duration, at the treatment plant 710 in the processing area X. Calculate the estimated inflow 735 of treated water.
  • the calculated expected rainfall 733, expected rainfall intensity 734, and expected inflow 735 are input to known coliform group number estimation processing means 736.
  • the turbidity 751 of the influent water flowing into the disinfection apparatus measured by the turbidity measuring means 750 installed in the sewage treatment plant 710 is input to the coliform group number estimating means 736.
  • the coliform group number estimation processing means 736 estimates the number of coliform groups from the input predicted rainfall 733, predicted rainfall intensity 734, predicted inflow 735, and inflow turbidity 751 and Estimate the required amount of added medicine 736a, consumed amount 736b, and drainage disinfection start time 736c.
  • the rainfall amount 753, the rainfall intensity 754, the inflow amount of wastewater flowing into the wastewater disinfection device 755, the wastewater at the treatment plant 710 Measure the chemical supply amount 756 of halogenated chemicals supplied to the disinfection device and the concentration 757 of the residual chemicals in the discharged water discharged from the wastewater disinfection device.
  • the measured rainfall amount 753, rainfall intensity 754, influent water amount 755, chemical supply amount 756, and discharge water residual chemical concentration 757 are input to the predicted value Z actual measurement value correction processing means 737.
  • Predicted value Z actual measurement value correction processing means 737 includes the above input rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, discharge water residual drug concentration 757 to drug addition amount 736a, drug Find the correction value to correct each predicted value of consumption 736b and drainage disinfection start time 736c.
  • Each of the obtained correction values is added to the correction value addition processing means 737a, 737b, 737c, and the addition amount 736a, the consumption amount 736b of the medicine and the start time 736c of the waste water disinfection device are added, and the addition amount 741 of the addition medicine, Consumption 742 and drainage disinfection start time 743 are required.
  • the control device 730 operates the drainage disinfection device based on the predicted values of the drug addition amount 741, the chemical consumption amount 742, and the drainage disinfection device operation start time 743 obtained by adding the correction values. Control the amount of drug added and the amount of drug consumed.
  • the drug addition amount 741 is used for real-time control of drug addition as the actual drug addition amount setting value of the waste water disinfection device.
  • the chemical consumption 742 is compared with the amount of chemicals stored in the treatment plant 710, and if there is a shortage of chemicals to be added to the wastewater disinfection device, an alarm is issued to the operator. Used to seek drug replacement.
  • the drainage disinfection operation start time 743 is used to inform the operator of the drainage disinfection operation start time and as an automatic operation start command for the drainage disinfection apparatus.
  • the rainfall information estimation processing means 732 is based on the rainfall information measured by the rainfall information measuring means 20 in each processing area A, B, C, D, E, and X. Prediction of rainfall start time, total amount of rainfall, and duration of rainfall in X, as well as calculating expected rainfall 733, expected rainfall intensity 734, and expected inflow 735 at treatment plant 71 0 in treatment area X. E.
  • coli group number estimation processing means 73 6 estimates the number of coliforms from rainfall 733, expected rainfall intensity 734, expected inflow 735, and the amount of drug added necessary for controlling the drainage disinfection device 7 36a, drug consumption 736b And by predicting the start time 736c of the drainage disinfection device, each predicted value can be predicted in real time.
  • E. coli group number estimation processing means 736 has an estimated rainfall of 733, an estimated rainfall intensity of 734, an estimated inflow of 735, and an influent water turbidity of 751. Therefore, it is possible to predict each predicted value more accurately.
  • the predicted value Z actual value correction processing means 737 obtains a correction value from the rainfall amount 753, the rainfall intensity 754, the inflow water amount 755, the chemical supply amount 756, and the residual chemical concentration 757 of the discharge water, and the correction value calorie calculation processing means
  • the respective correction values are added to the drug addition amount 736a, the drug consumption amount 73 6b, and the disinfection device operation start time 736c to obtain the drug addition amount 741, the drug consumption amount 742, and the disinfection device operation start time 743. Therefore, each predicted value can be predicted more accurately.
  • FIG. 50 is a diagram showing another configuration example of the control device of the disinfection device.
  • the basic configuration of the control device for the disinfection device shown in FIG. 50 is substantially the same as that of the drainage disinfection device shown in FIG.
  • the control device of the present disinfection device is different from the control device of the disinfection device shown in FIG.
  • Rainfall information 721 ⁇ , 722 ⁇ ⁇ such as rainfall amount and rainfall intensity measured by each rainfall information measuring means 720 in the processing area X are input to the rainfall information mapping processing means 731 of the control device 730 Are input to the regional characteristic simulation means 760.
  • the regional characteristic simulation means 760 is a commercially available regional characteristic simulation software, which inputs pre-registered landform information, rainwater collection route, sewage pipe network, sewage discharge population, and sewage discharge type as set initial conditions. Then, by inputting the above rainfall information 721 ⁇ , 722 ⁇ ⁇ , hydraulic 'water quality analysis is performed.
  • the regional characteristic simulation means 760 obtains the expected inflow amount 761 of the wastewater flowing into the wastewater disinfection device and the expected inflow pollution load 762 in the rainfall information power in the treatment area X.
  • the calculated expected inflow water volume 761 and expected inflow pollution load 762 are stored in the measured value measuring means 752.
  • inflow water amount 755, drug supply amount 756, and discharge water residual drug concentration 757 it is input to the predicted value Z actual value correction processing means 737.
  • Predicted value Z measured value correction processing means 737 is the input rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, effluent water residual drug concentration 757, expected inflow amount 761 and forecast inflow From the pollutant load 762, find correction values to correct the drug addition amount 736a, drug consumption amount 736b, and disinfection device operation start time 736c.
  • the correction values are added to the predicted values of the added amount of medicine 736a, the amount of medicine consumed 736b and the operation start time 736c of the waste water disinfection device from the Escherichia coli group number estimation processing means 736 in the correction value addition processing means 7 37a, 737b, 737c.
  • the control device 730 controls the operation of the drainage disinfection device, the amount of added medicine, and the amount of consumed medicine according to each predicted value.
  • the predicted value Z actual value correction processing means 737 uses the regional characteristic simulation means 760, the expected inflow water amount 761 and the expected inflow pollution load 762 from the added amount of medicine 736a, the chemical consumption amount 736b, and the drainage disinfection device.
  • a correction value for correcting the operation start time 736c is obtained, and each correction value is added to the correction value addition processing means 737a, 737b, 737c from the E. coli group number estimation means 736, the drug addition amount 736a, the drug consumption amount 736b, and the disinfection device operation start.
  • the drug addition amount 741, the drug consumption amount 742, and the disinfection device operation start time 743 are obtained, so that each predicted value can be predicted more accurately.
  • FIG. 51 is a diagram showing another configuration example of the control device of the disinfection device.
  • the rainfall information 72 1 ⁇ , 722 ⁇ ... Such as rainfall amount and rainfall intensity measured by each rainfall information measuring means 720 in the processing area X is input to the regional characteristic simulation means 760.
  • the regional characteristic simulation means 760 obtains the estimated inflow amount 761 of the treated water flowing into the disinfection device and the expected inflow pollution load 762 from the rainfall information in the treatment area X.
  • the calculated expected inflow water volume 761 and expected inflow pollution load 762 Input to means 738.
  • the medicine addition amount calculation processing means 738 is inputted with the medicine addition rate 739a set in advance by the medicine addition rate setting means 739 for setting the medicine addition rate for the waste water flowing into the sterilizer. ing.
  • the medicine addition amount calculation processing means 738 predicts the medicine addition amount 736a and the medicine consumption amount 736b from the inputted medicine addition rate 739a, expected inflow water amount 761, and expected inflow pollution load 762.
  • the amount of rainfall 753, the rainfall intensity 754, the amount of incoming water 755, the amount of chemical supply 756, the concentration of residual chemical in the effluent 757 Measure.
  • the measured rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, and discharged water residual drug concentration 757 are input to the predicted value Z actual value correction processing means 737 of the control device 730.
  • Predicted value Z actual measurement value correction processing means 737 receives the correction values for correcting predicted values of the drug addition amount 736a and the drug consumption amount 736b from the drug addition amount calculation processing means 738. Calculated from rainfall intensity 754, influent water volume 755, chemical supply volume 756, and residual water chemical concentration 757. The respective correction values are added to the respective predicted values of the drug addition amount 736a and the drug consumption amount 736b from the drug addition calorie amount calculation processing means 738 by the correction value addition processing means 737a and 737b, and the drug addition amount 741 and the drug consumption are calculated. Find the amount 742. The control device 730 controls the waste water disinfection device based on the drug addition amount 741 and the drug consumption amount 742.
  • the rainfall information 721x, 722x ... force measured by each rainfall information measuring means 720 in the treatment area X is calculated by the regional characteristic simulation means 760 to obtain the expected inflow water quantity 761 and the expected inflow pollution load 762,
  • the drug addition amount calculation means 738 predicts the drug addition amount 741 and the drug consumption amount 742 from the predicted inflow water amount 761, the expected inflow pollution load 762, and the drug addition rate 73 9a set by the drug addition rate setting means 739. Predicted values can be predicted in real time.
  • the rainwater sewer overflow water disinfecting apparatus has an abnormality detection mechanism (solid bromine-based disinfectant addition amount detection means) capable of detecting an excess or an excess of the solid bromine-based disinfectant addition amount. You can get rid of it.
  • an abnormality detection mechanism solid bromine-based disinfectant addition amount detection means
  • the solid bromine-based disinfectant addition amount detection means that can be used in the present invention includes the residual halogen concentration measured in the water to be treated immediately after the addition of the solid bromine-based disinfectant, and the treatment to which the disinfectant is added. Excessive and Z or under-detection of halogenated chemicals is detected by comparing the residual halogen concentration measured in the discharge channel where water is discharged with a predetermined threshold V ⁇ value and / or comparing both residual halogen concentrations. It is means to do.
  • the amount of addition of the halogen-based chemical is excessive or too small.
  • Detect. compare the residual halogen concentration measured in the treated water immediately after the addition of the halogen-based chemical with the residual halogen concentration measured in the discharge channel, and set the disinfectant consumption in advance using the concentration difference as the disinfectant consumption. The disinfectant consumption is low, if it is lower than the value, and if it is less than the value, it is consumed! Therefore, it is detected as an excessive amount of halogenated chemical additive.
  • the solid bromine-based disinfectant addition amount detection means detects the excess of the solid bromine-based disinfectant addition amount by comparing the solid bromine-based disinfectant possession amount (consumption amount determined consumption amount) with the discharge amount. And a means to detect Z or under.
  • the ratio of the error between the actual consumption obtained from the difference in the amount of solid bromine-based disinfectant possessed and the discharge rate measured with a measuring device such as the rotation speed or flow meter is set in advance! High and low level of the amount of added medicine discharge! When the threshold (ratio) is exceeded, it is detected as an excessive or too small amount of drug added.
  • the solid bromine-based disinfectant addition amount detection means is a means for detecting an excess of the solid bromine-based disinfectant addition amount by monitoring images of fish inhabiting the discharge channel. That is, the image supervisor The number of individuals that are determined to be drifting due to the death or weakness of the fish is set in advance! Judge as excessive and detect.
  • FIG. 52 is a system diagram showing a state in which disinfection of treated water is performed by an embodiment of a disinfection apparatus having an abnormality detection mechanism that can be used in the present invention.
  • a powder state This method uses a solid bromine-based disinfectant, dissolves in water to form disinfecting water, and adds it to the water to be treated.
  • the following apparatus configuration can also be applied to the disinfectant storage and supply apparatus of the various forms described above and the disinfection apparatus of the type in which the solid bromine-based disinfectant is fed into the treated water in the solid state. .
  • the form of disinfection of sewer stormwater overflow in a sand basin is explained, but various forms of disinfection in the flow path of sewer stormwater overflow as described above are also described. It can be applied.
  • reference numeral 810 denotes a sand basin into which the sewer stormwater overflow flows and flows out, which is sterilized by the disinfection device.
  • a part of the sewer stormwater overflow that flows into the inflow 810a of the sand basin 810 is pumped up by the pump P1, foreign matter is removed by the screen 820, the flow rate is measured by the raw water flow meter 821, and then the disinfectant is added. 830 pieces of equipment are sent.
  • the solid bromine-based disinfectant 832 charged in the hopper 831 is supplied to the ejector 834 from the supply unit 833 to the ejector 834 by driving the motor Ml and added to the waste water. .
  • the water to which the disinfectant is added is sent into the dissolution tank 841 of the dissolution apparatus 840, and is stirred by the stirrer 842 driven by the motor M2, so that the disinfectant is reliably dissolved, and then the water in the sand basin 810 is pumped by the pump P2.
  • the inflow section 810a the water to be treated is sterilized, and is discharged from the discharge channel 811 to the public water area 812 such as a river through the sand settling section 810b.
  • abnormality detection means are installed in order to quickly and surely prevent excessive sterilization or disinfection failure of treated water when performing the above-mentioned disinfection. .
  • means for detecting whether the amount of drug addition is excessive or too small means for monitoring whether the drug addition has been executed reliably, and means for complementing the determination of excess drug addition. ing. This will be described below.
  • the residual halogen concentration meters 813 and 843 are installed in the discharge channel 811 and the dissolution apparatus 840, respectively, and the measured values of both are input to a computer (or an electric circuit) (not shown), and the chemical procedure with chemicals is performed according to the processing procedure shown in FIG. Detect excess or underdose.
  • the residual halogen concentration in the discharge water channel 81 1 measured by the residual halogen concentration meter 813 and the residual halogen concentration in the dissolving device 840 measured by the residual halogen concentration meter 843 are input. Then, in the residual halogen concentration determination process flow of FIG. 53, first, the residual halogen concentration in the discharge water channel 811 measured by the residual halogen concentration meter 813 is set in advance, and then the residual halogen concentration in the discharged water reaches a high level. If it exceeds the value 901 and exceeds this value, it is determined that the chemical is excessively added, and a high residual halogen level determination output 870 is output.
  • the residual halogen concentration in the dissolution apparatus 840 measured by the residual halogen concentration meter 843 is set in advance, and the dissolution tank residual halogen concentration threshold is lower than the value 902. If it is less than 902, it is judged that the chemical has been added too little, and the residual halogen low level judgment output 871 is output.
  • the residual halogen concentration in the dissolution apparatus 840 is set in advance, and the dissolution tank residual halogen concentration is set to a high level compared to the value 903.
  • the residual halogen high level judgment output 870 is output.
  • the difference between the residual halogen concentration in the dissolution apparatus 840 measured by the residual halogen concentration meter 843 and the residual halogen concentration in the discharge channel 811 measured by the residual halogen concentration meter 813 is regarded as the disinfectant consumption. If the disinfectant consumption is set in advance and the residual halogen concentration difference (disinfectant consumption) is low, the threshold is low compared to the value 904. Judgment is made and the residual halogen high level judgment output 870 is output. In other words, the amount of disinfectant to be sterilized increases its consumption, so the amount of disinfectant consumption is low. However, you are adding more disinfectant than necessary. Thus, even if the melting device 8 Even if the residual halogen concentration at 40 and the residual halogen concentration in the discharge channel 811 are individually within the prescribed allowable values, it is determined that more disinfectant than necessary is added.
  • the residual halogen concentration measured in the dissolution tank 841 that is, the residual halogen concentration measured in the wastewater immediately after the addition of the halogen-based chemical agent
  • the residual halogen concentration measured in the discharge channel 8 11 downstream thereof By comparing the concentration with a preset threshold value of residual halogen concentration, etc., it is possible to determine whether or not the drug is added excessively or too little. There is no time delay to the point, and it is possible to quickly and surely determine whether the drug is excessive or too small.
  • the residual halogen concentration measured at two points is compared and the concentration difference is used as the disinfectant consumption amount to determine the excessive drug addition, the excessive drug addition can also be determined from this point.
  • the hopper weight meter XI provided in the hopper 831 of the disinfectant addition device 830 is used to measure the weight 35 of the hot bar and the rotation speed 36 of the motor Ml.
  • the drug addition has been executed reliably according to the procedure shown in Fig. 54.
  • the time is set in advance for the supply number of rotations 836 sampled k + 1 times in the medicine discharge amount determination processing sampling period 913 set in advance [ Number-Discharge rate conversion factor]
  • the ratio between the powder drug discharge amount obtained by counting 910 and the powder drug consumption amount for which the differential force of hopper weight 835 at time t and time t + k is also set in advance. If the drug discharge amount addition level is low, and the value is less than 911, it is determined that the drug addition amount is too low, and the drug addition amount underdetermination output 881 is output.
  • the amount of powder medicine consumed which also obtained the difference force of the hot weight 835, should be the same as the amount of powder medicine discharged from the rotating speed 836 of the feeder, but the powder medicine obtained from the difference of the hopper weight 835
  • the fact that the amount of powdered drug discharge determined from the feeder rotation speed 836 is larger than the amount of consumption means that the amount of powdered drug discharge determined from the supply machine rotation speed 836 is greater than the discharge volume actually discharged.
  • the amount of powder medicine discharge can be obtained depending on the rotational speed of the feeder 836 determined to obtain the predetermined amount of powder medicine discharge. This means that it is necessary to increase the number of revolutions further, or that the prescribed powder medicine discharge amount cannot be obtained due to a mechanical failure of the feeder 833, that is, the medicine addition amount is too small. become.
  • the outlet monitoring camera 814 is installed at the outlet of the outlet channel 811.
  • the video data of the outlet monitoring camera 814 and the preset fish judgment are set.
  • Pattern comparison with pattern 921 is performed, and similar video patterns are determined to be fish inhabiting discharge channel 811.
  • two fish drift detection movement range coordinates 922 and 923 indicating the movement range of the fish are determined from the first detected coordinates, and judged as fish. If the image pattern exists within the coordinate range (the range enclosed by the dotted line) for a time exceeding the time set in the fish drift determination time 924, the fish drifts by dying or weakening V, It is judged as a fish.
  • the above determination process is performed for all video patterns that have been determined to be fish ⁇ , drifted! / Pre-set number of fish to be struck! If it exceeds 925, it is determined that the drug has been added excessively, and a fish abnormality determination output 890 is output.
  • the output 870, 871, 881, 88 2, 890 regarding the excess or under-determined amount of the drug determined as described above can be used for the purpose of notifying the operator of the disinfection device as an alarm, or It is used for the purpose of executing automatic control to increase or decrease the amount of drug input according to the excessive or too small amount of drug added, or when the drug is excessively added, It can be used for the purpose of suspending movement or automatically injecting a neutralizing agent.
  • Examples of the operation method of the apparatus for disinfecting sewer stormwater overflow with a solid bromine-based disinfectant according to the present invention include the following methods. Sewer overflow in the rainy target to be treated Hydropower
  • the pumping station has a sand basin or rainwater storage facility.
  • Fig. 57 when rainwater enters the sewage pipe 961 and the amount increases, the movable gate 962 is opened and the sewage mixed with stormwater overflows (sewage overflow in rainy weather).
  • Overflow water is stored in a sand basin or rainwater storage facility 963 and flows into the pump well 972 through a screen 971.
  • a rainwater pump is installed in the pump well 972, and the rainwater pump 964 is activated after the movable gate 962 is opened and the force has been applied for a predetermined time, and the sewer stormwater overflow in the sand basin or rainwater storage facility 963 is discharged. It is guided to the discharge channel 965 and discharged from the discharge channel 965 to a public water area 966 such as a river.
  • a plurality of rainwater pumps 964 are usually installed, and the number of operating rainwater pumps 964 is controlled by the water level in the pump well 972.
  • the operation of the movable gate 962 is usually performed by workers in the central monitoring room based on various types of weather information, such as rainfall probability, rainfall information, and rainfall.
  • the pump 967 is moved to remove some of the sewer stormwater overflow. It can be taken out and mixed with the solid odor disinfectant 968 in the mixing device 969 to adjust the disinfecting water, which can be put into a sand basin or rainwater storage facility 963.
  • a predetermined amount of solid bromine-based disinfectant calculated from the capacity of the settling basin or rainwater storage facility 963 can be added in advance to disinfect sewer stormwater overflow that accumulates in the settling basin or rainwater storage facility 963. .
  • the disinfectant supply amount is controlled so that an appropriate amount of solid bromine-based disinfectant is introduced in accordance with the overflow water flow rate. can do.
  • a force showing a method of dissolving solid bromine-based disinfectant in water to form disinfecting water and throwing it into sewer overflow water during rainy weather Solid bromine-based disinfectant remains solid It is also possible to use a method of throwing it into the sewer stormwater overflow in the sand basin.
  • Such control includes the amount of water, residual halogen concentration, discharge gate (movable gate) open signal, rainwater pump operation signal, etc.
  • FIG. 58 shows the concept of such a control system.
  • control unit such as a sequencer built in 02.
  • the chemical feeder 1003 is a powder fluidizer (including a load cell), a powder fluidizer, and a chemical feeder.
  • Raw water turbidity meter 1004 always outputs the turbidity of incoming raw water.
  • Dissolved water flow meter 1005 always outputs the amount of water supply for chemical dissolution.
  • Residual halogen meter 1007 always outputs the residual halogen concentration of the discharged water.
  • Injection volume control Takes the data of “discharged water” from the central operation room 1001 and the “rotation speed” data from the feeder attached to the chemical feeder 1003, converts this into “powder feed”, and converts the water volume Control is performed so that the injection rate is kept constant with respect to the change and the injection is performed appropriately.
  • Injection rate control By taking the data of “operator operating time” and “discharged water” and reducing the chemical injection rate step by step, assuming that the number of coliforms decreases with time, excessive injection Control to prevent this.
  • Injection rate calculation control The turbidity data from raw water turbidity meter 1004 and the data of “discharge flow rate”, “rainfall intensity” and “rainfall” are taken from central operation room 1001, and coliform bacteria contained in raw water Calculate the number, determine the dose (rate), and perform injection control.
  • Operation sequence management For auxiliaries 1006, for example, “Synchronized operation” command for dust collector, “Opening / closing” of gate for CS O discharge facility 1008, etc.
  • the amount of powder supplied to the chemical feeder 1003 is calculated from the number of revolutions of the feeder, but this alone cannot detect idle operation due to a bridge. Therefore, the powder fluctuation weight is measured with the load cell of the powder flow section where chemicals are stored, and the consistency is determined by comparing with the calculated value from the rotation speed.
  • the operation mode, status display, and various data are sent to the central operation room 1001 so that the operation can be monitored from the central operation room.
  • the injection amount of the disinfectant after the start of discharge is gradually reduced in several stages by a timer.
  • the injection rate of the disinfectant is divided into 4 stages of 0 to 1 hour, 1 to 3 hours, 3 to 5 hours and 5 hours to 10 mg / L, 7 mg / L, 5 mg / L and 3 mg, respectively. It can be gradually reduced like / L.
  • the number of additional stages, the length of each stage, the disinfectant injection rate at each stage, etc. can be changed as appropriate based on information such as rainfall, rainfall type, and rainfall forecast.
  • an addition program of several patterns can be set in advance, and the selection can be made based on information such as rainfall amount and rainfall type. Even in such a case, a halogen concentration meter is installed in the sewer stormwater overflow downstream of the disinfectant injection point, and if the residual halogen concentration is abnormally high, the injection is stopped or an alarm is issued. It is preferable to perform control.
  • a disinfectant over-injection detection mechanism is provided by a residual halogen meter installed on the discharge side, and when over-injection is detected, the supply is stopped or the disinfectant Assuming a case where the supply device is stagnant due to a bridge, etc., if the weight of the disinfectant storage tank does not change for a certain period of time, an alarm is issued, or the disinfectant-dissolved water is dissolved in the dissolution cone at the top of the ejector.
  • a disinfection facility with a disinfection tank that disinfects sewage with chlorine or UV;
  • a bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant
  • a branching device that has an inlet, outlet 1 and outlet 2 and divides the sewage flowing into the inlet into outlet 1 and outlet 2. If the amount of sewage flowing into the inlet is below a predetermined value, the total amount of sewage flowing in When the inflow sewage amount is greater than or equal to the predetermined value, the sewage amount is discharged to the outlet 1, and the sewage amount obtained by removing the predetermined amount of sewage from the inflow sewage amount is discharged to the outlet 2. And consisting of
  • a sewage treatment apparatus wherein an outlet 1 of the branch device is connected to a sewage introduction section of the disinfection facility, and an outlet 2 of the branch apparatus is connected to a sewage introduction section of the bromine sewage treatment apparatus.
  • the disinfection facility has an initial settling basin, the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank.
  • Item 1 A sewage treatment apparatus according to item 1.
  • the disinfection facility further has a first settling basin, a flapping tank, and a final settling basin, and the sewage introduction section of the first sedimentation basin is connected to the introduction part of the disinfection facility, and the outlet of the first sedimentation basin is the sewage of the batting tank. It is connected to the introduction part, and the outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin.
  • a branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value.
  • the total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2.
  • a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant
  • the sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, the outlet 1 of the branching device is connected to the sewage introduction part of the disinfection tank, and
  • a branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value.
  • the total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2.
  • a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant
  • the sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flapping tank.
  • the outlet of the attached tank is connected to the sewage introduction section of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction section of the disinfection tank, and the outlet 2 of the branch device is the sewage of the bromine sewage treatment system.
  • the sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus is connected to the introduction section.
  • a sewage treatment device in a sewage treatment plant 12.
  • a disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
  • a bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant
  • a branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value.
  • the total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2.
  • a sewage treatment apparatus characterized in that outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility, and outlet 2 of the branching apparatus is connected to the sewage introduction part of the sewage treatment apparatus. 13.
  • a disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
  • a bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant
  • a branch device that has an inlet, outlet 1 and outlet 2 and receives the effluent from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2.
  • a diverter that flows a predetermined amount of water to outlet 1 and flows the predetermined amount of water to outlet 1 when the amount of inflow water is greater than or equal to the predetermined value. Consisting of
  • the sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flapping tank.
  • the outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is the sewage introduction part of the bromine sewage treatment device.
  • a sewage treatment apparatus characterized by being connected to the sewage treatment apparatus. 14.
  • the bromine sewage treatment equipment adds the solid bromine-based disinfectant storage / supply device and the solid bromine-based disinfectant storage / supply device to the treated water.
  • the sewage treatment apparatus according to any one of claims 1 to 13, further comprising a disinfectant addition 'mixing apparatus for mixing.
  • the solid bromine-based disinfectant storage and supply device includes a solid bromine-based disinfectant storage tank and a quantitative feeder for measuring and discharging a predetermined amount of the solid bromine-based disinfectant in the storage tank.
  • the quantitative feeder includes a solid bromine-based disinfectant agitation unit configured with a plurality of injection ports for injecting compressed air therein.
  • the sewage treatment apparatus includes a rotary table having a weighing means.
  • Solid bromine-based disinfectant storage / mixing device and addition / mixing device is connected to the storage tank for storing the solid bromine-based disinfectant and the storage tank to transfer the disinfectant as solid to the injection point.
  • a disinfectant transfer pipe connected to the disinfectant transfer pipe, and a disinfectant injection device for adding the solid bromine-based disinfectant transferred through the pipe to the water to be disinfected. 14. Disinfection device according to 14.
  • a preparative line for collecting a sample of water to be treated a disinfectant supply means for adding a disinfectant to the sampled sample of water to be treated, and water to be treated with a disinfectant added
  • An effective halogen concentration measuring device for measuring the effective halogen concentration of a sample, and adding a disinfectant according to the degree of decrease in the effective halogen concentration in the water sample to be treated after adding the disinfectant measured by the effective halogen concentration measuring device.
  • 'A disinfectant addition amount control means is provided to control the amount of disinfectant added to the water to be treated by the mixing device.
  • a sewage treatment apparatus according to claim 14.
  • a reducing agent supply device for adding a reducing agent to the treated water after adding the disinfectant
  • an effective halogen concentration measuring device for measuring the effective halogen concentration in the treated water after adding the disinfectant
  • Inflow sewage is disinfected with chlorine or UV when the inflow sewage is below the specified value, and when the inflow sewage is over the predetermined value, the sewage with the specified value is supplied with chlorine or UV.
  • a sewage treatment method comprising disinfecting and simultaneously removing a predetermined amount of sewage from the inflow sewage, and disinfecting the sewage with a bromine-based disinfectant.
  • a bromine-based disinfectant As a bromine-based disinfectant, a solid bromine-based disinfectant is mixed and dissolved in a part of the water to be treated to prepare disinfecting water, and the prepared disinfecting water is poured into the water to be treated. Do 24. The method of claim 23.
  • the sewage system is a sewer system and does not exceed the treatment capacity of the sewage treatment plant, it will flow into the sewage treatment plant. If the sewage containing the amount of rainwater exceeding the treatment capacity of the sewage treatment plant flows into the sewage treatment plant or may flow into it, The amount of sewage mixed with the amount of rainwater exceeding the capacity of the sewage treatment plant is branched off at the sewer stormwater sewer stormwater drainage facility, disinfected with a bromine-based disinfectant, and then discharged into a public water area. As for sewage mixed with rainwater within the treatment capacity of sewage, sewage is characterized by being discharged into a public water area after being sterilized with a chlorinated disinfectant after the prescribed treatment at a sewage treatment plant. System.
  • a sewerage sewerage system in which sewage flowing through sewer pipes in the sewer system is treated at the sewage treatment plant, sterilized with a chlorinated disinfectant, and then released into public water areas.
  • Rainwater flowing through sewer storm sewers is discharged from rainwater drainage facilities, for example, pumping stations (drainage station) to public water areas, and if there is a large amount of rainfall, disinfection with bromine-based disinfectant at the rainwater drainage facility.
  • a sewer system characterized by being discharged into public water after treatment.
  • the sewerage system should not exceed the treatment capacity of the aeration tank at the sewage treatment plant.
  • the sewage is first treated in the sewage treatment plant by the first settling basin, aeration tank, and final settling basin, and then sterilized by a chlorine-based disinfectant before entering the public water area.
  • sewage containing the amount of rainwater that does not exceed the treatment capacity of the first sedimentation basin of the sewage treatment plant but exceeds the treatment capacity of the aeration tank flows into or may flow into the sewage treatment plant due to a large amount of rainfall
  • sewage mixed with rainwater that exceeds the treatment capacity of the aeration tank it is branched after treatment in the first sedimentation basin at the sewage treatment plant, disinfected with a bromine-based disinfectant, and then discharged into public water bodies.
  • treatment in the aeration tank and final sedimentation basin is followed by treatment in the first sedimentation basin at the sewage treatment plant, followed by disinfection treatment with a chlorine-based disinfectant.
  • Sewer system characterized in that the discharged into public waters after Tsu.
  • a sterilization test was conducted using treated sewage water containing coliforms as treated water.
  • As the disinfectant 1-bromo-3-chloro mouth-5,5-dimethylhydantoin (BCDMH) (Example 1) and sodium hypochlorite (Comparative Example 1) were used. Bactericidal tests against coliforms were performed with varying concentrations of disinfectant. Table 1 shows the quality of treated water and Table 2 shows the test results.
  • BCDMH exhibited a bactericidal effect at a concentration of 1Z2 or less compared to sodium hypochlorite, and the addition of lm g / L as CI was able to reduce the number of coliforms to 3000 CFU / mL or less.
  • Trihalomethane was less than 0.1 mg / L under the condition that BCDMH was added with lmg / L as CI.
  • the disinfectant addition rate shall be indicated as active chlorine for both bromine and chlorine disinfectants, and expressed as "mg / L as Cl" in terms of active chlorine concentration. For example, when lg BCDMH is added to 1L of wastewater, it becomes 540mg / L as CI.
  • BCDMH showed a sufficient effect in 1 minute, while sodium hypochlorite required more than 5 minutes.
  • the wastewater obtained by the activated sludge treatment was used as the treated water.
  • the disinfection additive concentration was changed for this treated water and sterilization test was conducted.
  • Table 3 shows the quality of treated water and Table 4 shows the test results.
  • Organic nitrogen refers to the value of organic nitrogen as a whole in addition to ammine.
  • it means only the amount of nitrogen atoms in the protein, and does not include the amount of carbon atoms or hydrogen atoms in the protein.
  • Organic nitrogen does not include inorganic nitrogen, such as ammonia and ammonia ions.
  • BCDMH has a bactericidal effect at a concentration of 1/3 or less compared to sodium hypochlorite, 2.
  • the number of coliforms could be reduced to 3000 CFU / mL or less with the addition concentration of 5 mg / L as CI.
  • RUN1 sewage volume 120m 3 / hour
  • the amount of coliforms can be reduced to 3 OOOCFU / mL or less with a BCDMH supplemented amount of 12mg / L.
  • BCDM H addition amount 10mg / L is sufficient for disinfection Residual halogen concentration is 0.72mg / L, which is not appropriate.
  • the amount of coliform bacteria can be reduced to 3000 CFU / mL or less with a BCDMH supplemented amount of 5 mg / L, and the residual halogen concentration is 0.03 mg / L, which is appropriate.
  • RUN3 sewage volume 530m 3 / hour
  • BCDMH sewage volume 530m 3 / hour
  • the time when BCDMH was in contact with the sewage drainage sewage at this time was found to be about 50 seconds and could be disinfected in an extremely short time.
  • RUN4 (sewer 250m 3 / hour) is a comparative example using sodium hypochlorite as a chlorinated disinfectant. In RUN4, even if the sodium hypochlorite supplementation dose is 60 mg / L, the number of colon bacteria cannot be reduced to 3000 CFU / mL or less, and the residual halogen concentration is 1.53 mg / L, LC value. (Specifically, it is more inappropriate than chlorine (C1) 0.4 mg / L).
  • the disinfection device shown in Fig. 59 was used to disinfect sewer stormwater overflow.
  • Table 6 shows the specifications of the equipment.
  • Table 7 shows the quality of water to be disinfected.
  • a disinfectant powdery 1 bromo 3-chloro-5,5-dimethylhydantoin (BCDMH: manufactured by Ebara Seisakusho, trade name Eva Sunny 4400) was used.
  • Table 8 shows the results of measuring the bactericidal effect of the amount of disinfectant added and the number of coliforms in the treated water after the addition.
  • Disinfection treatment by the method of the present invention was performed on rainwater overflowing water in the sewage treatment facility that created Figures 39 to 43.
  • an apparatus having the configuration shown in FIG. 44 was used as the disinfectant.
  • Disinfectant introduction means Samples of the liquid to be treated were sampled from the sampling line 612 at a frequency of once every 10 minutes and introduced into the monitoring tank 613 at a frequency of once every 10 minutes while disinfecting the disinfectant from the disinfectant introduction means 604.
  • Disinfectant 614 was added.
  • the concentration of the disinfectant 614 added here was the disinfectant concentration that was introduced into the liquid to be treated from the disinfectant introduction means 604 at that time.
  • the concentration of disinfectant at the start of disinfection treatment was 5 mg / L.
  • the concentration of the added disinfectant was increased.
  • the disinfection treatment was continued while adjusting the disinfectant input concentration every 10 minutes, and the number of coliforms in the effluent was measured every 15 minutes.
  • the results are shown in Figure 60. From this result, it can be seen that the amount of disinfectant added changed with time, while the number of coliforms in the wastewater after treatment could be maintained below the disinfection target value (3000 CFU / mL)! /.

Abstract

A sewer system including means for rapidly disinfecting pollutant-mixed rainwater and rainwater-mixed sewage discharged without passage through sewage treatment facilities in the event of heavy rainfall, namely, combined sewer overflow (CSO), sanitary sewer rainwater overflow, sanitary sewer sewage overflow, etc. prior to discharge into public waters; and a relevant method and plant for disinfection of rainwater-mixed sewage and pollutant-mixed rainwater. There is provided a sewer system characterized in that when the amount of influx sewage is ≤ given value, the whole amount of influx sewage is disinfected by chlorine or UV, while when the amount of influx sewage is ≥ given value, sewage as much as the given value is disinfected by chlorine or UV and simultaneously the sewage amounting to the influx sewage amount minus the given value of sewage amount is branched and disinfected by a bromic disinfectant.

Description

明 細 書  Specification
下水処理装置及び方法  Sewage treatment apparatus and method
技術分野  Technical field
[0001] 本発明は、排水 (drainage)を消毒する方法及び装置に関し、特に、雨水 (rainwater) で希釈された下水 (sewage),具体的には、合流式下水道越流水、分流式下水道雨 水越流水或いは分流式下水道汚水越流水を消毒処理する方法及び装置、並びに 力かる消毒装置を具備した下水道システムに関する。  [0001] The present invention relates to a method and apparatus for disinfecting drainage, in particular, sewage diluted with rainwater, specifically combined sewer stormwater overflow, diverted sewer stormwater overflow. The present invention relates to a method and apparatus for disinfecting running water or diversion sewer sewage overflow water, and a sewer system equipped with a powerful disinfection apparatus.
背景技術  Background art
[0002] 都巿にお 、て、家庭汚水や産業排水は、合流式下水道又は分流式下水道によつ て下水処理場に送られて、砂等を除去するための沈砂池、浮遊固体 (suspended soli d;SS)を除去するための固液分離処理、活性汚泥処理、次いで、消毒をこの順序で経 て、河川、湖沼、港湾、沿岸海域等の公共用水域 (public water)に放流されている。  [0002] In urban areas, domestic sewage and industrial wastewater are sent to sewage treatment plants by combined sewers or shunt sewers, and sand basins and suspended solids (suspended solids) are used to remove sand. solid-liquid separation treatment to remove soli d; SS), activated sludge treatment, and then disinfection in this order and then released into public water such as rivers, lakes, harbors, coastal waters, etc. Yes.
[0003] そして、消毒としては、一般的には、塩素ガスや、塩素系消毒剤で消毒することが 一般的である。下水、屎尿、産業排水等には、感染症の源になる病原菌が含まれる ことがある力 である。一般的には、塩素系消毒剤が添加され、 lmじ当たりの大腸菌 群数 (大腸菌数) 3000個 (CFU/mL)以下にしている。なお、塩素系消毒剤を添加し ないで、紫外線照射やオゾン添加が行われる場合もあるが、設備が膨大になるため 用途が限られている。  [0003] In general, disinfection is generally performed using chlorine gas or a chlorine-based disinfectant. Sewage, human waste, industrial wastewater, etc., may contain pathogens that can cause infections. In general, chlorine-based disinfectants are added to keep the number of coliforms per lm (the number of E. coli) below 3000 (CFU / mL). In some cases, ultraviolet irradiation or ozone addition may be performed without adding a chlorine-based disinfectant, but the use is limited due to the huge amount of equipment.
[0004] し力しながら、大量の降雨時には、下水処理場の処理容量の問題などから、下水 処理場での各種処理及び消毒を経な!/、で雨水が混入した下水や、各種の汚濁物が 混入した雨水を公共用水域に放流しなければならない事態が起こる。この雨天時に 公共用水域に放流される雨水混入下水や汚濁物質混入雨水を、公共用水域に放流 される前に速やかに消毒することが重要である。  [0004] However, during heavy rain, due to problems with the treatment capacity of the sewage treatment plant, various treatments and disinfection have not been performed at the sewage treatment plant! There will be a situation where rainwater mixed with things must be discharged into public waters. It is important to sterilize sewage mixed with rainwater and polluted rainwater that is discharged into public waters during this rainy season before it is discharged into public waters.
発明の開示  Disclosure of the invention
[0005] 本発明は、大量の降雨時に、下水処理場を経ないで放流される雨水混入下水や 汚濁物質混入雨水、或!ヽは下水処理場内で生物処理及び消毒処理を経な!、で放 流される雨水が混入した簡易放流水を、公共用水域に放流される前に速やかに消 毒する手段を設けた下水道システム、並びに雨水混入下水や汚濁物質混入雨水の 消毒方法及び装置を提供する。 [0005] The present invention relates to rainwater-mixed sewage or pollutant-mixed stormwater that is discharged without passing through a sewage treatment plant during a large amount of rain, or is not subjected to biological treatment and disinfection treatment in a sewage treatment plant! Quickly discharge simple discharged water mixed with discharged rainwater before it is discharged into public water bodies. Provided are a sewer system provided with means for poisoning, and a method and apparatus for disinfecting sewage mixed with rainwater or rainwater mixed with pollutants.
図面の簡単な説明 Brief Description of Drawings
[図 1]合流式下水道の代表的な構成例を示すフロー図である。 FIG. 1 is a flowchart showing a typical configuration example of a combined sewer.
[図 2]分流式下水道の代表的な構成例を示すフロー図である。 FIG. 2 is a flowchart showing a typical configuration example of a shunt sewer.
[図 3]下水処理場の代表的な構成例を示すフロー図である。 FIG. 3 is a flowchart showing a typical configuration example of a sewage treatment plant.
[図 4]本発明の一態様に力かる下水処理装置の構成例を示す図である。 FIG. 4 is a diagram showing a configuration example of a sewage treatment apparatus that works on one embodiment of the present invention.
[図 5]本発明の一態様に力かる下水処理装置の構成例を示す図である。 FIG. 5 is a diagram showing a configuration example of a sewage treatment apparatus according to one embodiment of the present invention.
[図 6]本発明の一態様に力かる下水処理装置の構成例を示す図である。 FIG. 6 is a diagram showing a configuration example of a sewage treatment apparatus according to one embodiment of the present invention.
[図 7]本発明の一態様に力かる下水処理装置の構成例を示す図である。 FIG. 7 is a diagram showing a configuration example of a sewage treatment apparatus according to one embodiment of the present invention.
[図 8]本発明の一態様に力かる下水処理装置の構成例を示す図である。 FIG. 8 is a diagram showing an example of the configuration of a sewage treatment apparatus according to one embodiment of the present invention.
[図 9]本発明の一実施形態にかかる消毒装置を説明する概略説明図である FIG. 9 is a schematic explanatory diagram illustrating a disinfection device according to an embodiment of the present invention.
[図 10]沈砂池に消毒剤を投入する本発明の一形態を説明する概略説明図である。 FIG. 10 is a schematic explanatory view illustrating one embodiment of the present invention in which a disinfectant is introduced into a sand basin.
[図 11]本発明の他の形態を示す概略説明図である。 FIG. 11 is a schematic explanatory view showing another embodiment of the present invention.
[図 12]消毒水を雨天時下水道越流水に添加するための添加装置の一実施態様を示 す概略説明図である。  FIG. 12 is a schematic explanatory view showing one embodiment of an adding device for adding disinfecting water to sewer overflow water in rainy weather.
[図 13]消毒剤の貯留 ·供給装置として採用することのできる他の形態を示す概略説 明図である。  FIG. 13 is a schematic explanatory diagram showing another embodiment that can be adopted as a disinfectant storage / supply device.
[図 14]固体消毒剤の貯留部の具体的な構成例を示す図である。  FIG. 14 is a diagram showing a specific configuration example of a solid disinfectant storage unit.
[図 15]固体消毒剤貯槽の一形態を示す図である。  FIG. 15 is a view showing an embodiment of a solid disinfectant storage tank.
[図 16]固体消毒剤貯槽の一形態を示す図である。  FIG. 16 is a diagram showing an embodiment of a solid disinfectant storage tank.
[図 17]定量供給器の一形態を示す図である。  FIG. 17 is a diagram showing an embodiment of a metering feeder.
[図 18]定量供給器の一形態を示す図である。  FIG. 18 is a view showing an embodiment of a metering feeder.
[図 19]固体消毒剤貯槽にコンテナを接続した形態を示す図である。  FIG. 19 is a view showing a form in which a container is connected to a solid disinfectant storage tank.
[図 20]固体消毒剤コンテナの構成例を説明する図である。  FIG. 20 is a diagram illustrating a configuration example of a solid disinfectant container.
[図 21]固体消毒剤供給設備の設置形態の一例を説明する図である。  FIG. 21 is a diagram illustrating an example of an installation form of a solid disinfectant supply facility.
[図 22]固体消毒剤を収容した容器の他の形態を説明する図である。  FIG. 22 is a diagram for explaining another form of a container containing a solid disinfectant.
[図 23]固体消毒剤を水に溶解して消毒水を形成する溶解部の他の構成例を示す図 である。 FIG. 23 is a diagram showing another configuration example of a dissolving unit that dissolves a solid disinfectant in water to form disinfecting water. It is.
圆 24]本発明において使用することのできる他の形態の固体臭素系消毒剤貯留 ·供 給装置を示す図である。 FIG. 24 is a diagram showing another form of solid bromine-based disinfectant storage / supply device that can be used in the present invention.
圆 25]本発明において使用することのできる他の形態の固体臭素系消毒剤貯留 ·供 給装置を示す図である。 FIG. 25 is a diagram showing another form of solid bromine-based disinfectant storage and supply device that can be used in the present invention.
圆 26]流体 ·粉体移送用一軸ねじ式ポンプを用いた固体臭素系消毒剤貯留 ·供給装 置の他の例を示す図である。 [26] Fig. 26 is a diagram showing another example of a solid bromine-based disinfectant storage / supply device using a single screw screw pump for fluid / powder transfer.
圆 27]固体臭素系消毒剤を固体のまま処理対象の雨天時下水道越流水に投入する 本発明の一態様に係る消毒装置の一具体例を示す図である。 [27] Fig. 27 is a diagram showing a specific example of a disinfecting apparatus according to one aspect of the present invention in which solid bromine-based disinfectant is put into a sewer stormwater overflow to be treated in a solid state.
圆 28]消毒剤注入装置の一形態を示す図である。 圆 28] It is a figure which shows one form of disinfectant injection apparatus.
圆 29]消毒剤注入装置の他の形態を示す図である。 [29] FIG. 29 is a view showing another embodiment of the disinfectant injection device.
圆 30]消毒剤注入装置の他の形態を示す図である。 FIG. 30 is a view showing another embodiment of the disinfectant injection device.
圆 31]固体の消毒剤を雨天時下水道越流水に投入した後の未溶解消毒剤残存率、 残留ハロゲン濃度、大腸菌群数の時間的推移を示すグラフである。 [31] This is a graph showing the time course of the undissolved disinfectant residual rate, residual halogen concentration, and number of coliform bacteria after a solid disinfectant was added to sewer stormwater overflow.
圆 32]本発明の他の態様に力かる雨天時下水道越流水の消毒装置の概念を示す図 である。 [32] FIG. 32 is a view showing a concept of a disinfection device for sewer overflow water in rainy weather according to another embodiment of the present invention.
[図 33]消毒剤を添加した後の雨天時下水道越流水の流路の形状を変化させた形態 を示す図である。  FIG. 33 is a diagram showing a form in which the shape of the flow path of sewer stormwater overflow after the addition of the disinfectant is changed.
[図 34]消毒剤を添加した後の雨天時下水道越流水の流路 507の形状を変化させた 他の形態を示す図である。  FIG. 34 is a view showing another embodiment in which the shape of the channel 507 of sewer stormwater overflow after the addition of the disinfectant is changed.
[図 35]消毒剤を添加した後の雨天時下水道越流水の流路 507の形状を変化させた 他の形態を示す図である。  FIG. 35 is a view showing another embodiment in which the shape of the channel 507 of sewer stormwater overflow after the addition of the disinfectant is changed.
[図 36]固体消毒剤を処理対象の雨天時下水道越流水に投入する消毒装置の一形 態の概念を示す図である。  FIG. 36 is a diagram showing a concept of one embodiment of a disinfecting apparatus for injecting a solid disinfectant into sewer stormwater overflow to be treated.
圆 37]固体の臭素系消毒剤を固体のままで処理対象の雨天時下水道越流水に投入 して消毒を行う方式の消毒装置の他の構成例を示す図である。 [37] FIG. 37 is a diagram showing another configuration example of a disinfecting apparatus that disinfects a solid bromine-based disinfectant as it is in a solid wastewater sewer stormwater overflow.
圆 38]固体の臭素系消毒剤を固体のままで処理対象の雨天時下水道越流水に投入 して消毒を行う方式の消毒装置の他の構成例を示す図である。 [図 39]下水処理設備における雨天時越流水に対して所定量のハロゲン系消毒剤を 添加した際の、降雨後経過時間と消毒後大腸菌群数の関係とを示すグラフである。 [38] FIG. 38 is a diagram showing another configuration example of a disinfecting apparatus that disinfects solid bromine-based disinfectant as it is into solid sewer overflow water to be treated. FIG. 39 is a graph showing the relationship between the elapsed time after rainfall and the number of coliform bacteria after disinfection when a predetermined amount of halogen-based disinfectant was added to rainwater overflow in a sewage treatment facility.
[図 40]降雨後 0. 5時間経過後(図 39の A点)での雨天時下水に対して種々の濃度 のハロゲン系消毒剤を添加した場合の、消毒後の大腸菌群数を示すグラフである。 [Figure 40] Graph showing the number of coliform bacteria after disinfection when various concentrations of halogen-based disinfectant are added to sewage in the rain after 0.5 hours (point A in Figure 39) It is.
[図 41]降雨後 45分経過後(図 39の B点)での雨天時下水に対して種々の濃度のハ ロゲン系消毒剤を添加した場合の、消毒後の大腸菌群数を示すグラフである。  [Fig.41] A graph showing the number of coliforms after disinfection when various concentrations of a halogen-based disinfectant are added to sewage during rainy weather after 45 minutes (point B in Fig. 39). is there.
[図 42]降雨後 1. 5時間経過後(図 39の C点)での雨天時下水に対して種々の濃度の ハロゲン系消毒剤を添加した場合の、消毒後の大腸菌群数を示すグラフである。 [Fig.42] A graph showing the number of coliform bacteria after disinfection when various concentrations of halogenated disinfectant are added to sewage in the rain after 5 hours (point C in Fig. 39) after rain It is.
[図 43]種々の降雨後経過時間における雨天時越流水に対してハロゲン系消毒剤を 添加した場合の、消毒剤添加後経過時間と被処理液中の残留ハロゲン濃度との関 係を示すグラフである。  FIG. 43 is a graph showing the relationship between the elapsed time after adding a disinfectant and the residual halogen concentration in the liquid to be treated when a halogen-based disinfectant is added to rainwater overflow at various elapsed times after rainfall. It is.
圆 44]本発明の一態様に係る雨天時下水道越流水の消毒装置の構成例を示す図 である。 [FIG. 44] A diagram showing an example of the configuration of a disinfection device for sewer stormwater overflow according to one embodiment of the present invention.
[図 45]消毒剤が添加された雨天時下水道越流水に対して還元剤を添加する処理を 行う本発明の一形態を説明する図である。  FIG. 45 is a diagram illustrating an embodiment of the present invention in which a reducing agent is added to sewer stormwater overflow to which a disinfectant is added.
圆 46]消毒装置が消毒する排水を収集する下水管路網と処理地域を示す図である。 圆 47]消毒装置が消毒する排水を収集する下水管路網と処理地域及び隣接する処 理地域を示す図である。 圆 46] It is a diagram showing the sewer network that collects the wastewater disinfected by the disinfection device and the treatment area.圆 47] It is a diagram showing the sewer network that collects the wastewater to be disinfected by the disinfection device, the treatment area and the adjacent treatment area.
圆 48]本発明に係る雨天時下水道越流水消毒装置の制御装置の構成例を示す図 である。 [FIG. 48] A diagram showing a configuration example of a control device of a sewer stormwater overflow disinfecting device according to the present invention.
圆 49]本発明にかかる雨天時下水道越流水消毒装置の制御方法に用いられるマツ ビング処理を示す図で、同図(a)は各処理地域 A, B、 C、 D、 E、 Xで測定された降 雨情報をマッピング処理した模式図で、同図 (b)は同図 (a)の時間 t後の模式図であ る。 圆 49] This figure shows the mapping process used in the control method of the sewer stormwater overflow disinfection device according to the present invention, where (a) is measured in each treatment area A, B, C, D, E, X This is a schematic diagram mapping the rainfall information. Fig. (B) is a schematic diagram after time t in Fig. (A).
圆 50]本発明にかかる雨天時下水道越流水消毒装置の制御装置の他の構成例を 示す図である。 FIG. 50 is a diagram showing another configuration example of the control device of the sewer overflow water disinfection device in the rain according to the present invention.
圆 51]本発明にかかる雨天時下水道越流水消毒装置の制御装置の他の構成例を 示す図である。 [図 52]本発明にかかる異常検知機構を有する排水消毒装置の一実施形態によって 消毒が実行される状態を示す系統図である。 [51] FIG. 51 is a diagram showing another configuration example of the control device for the sewer stormwater overflow disinfecting device according to the present invention. FIG. 52 is a system diagram showing a state in which disinfection is executed by an embodiment of a wastewater disinfection apparatus having an abnormality detection mechanism according to the present invention.
[図 53]薬剤添加量の過剰、過小を検知する処理手順を示す図である。  FIG. 53 is a diagram showing a processing procedure for detecting an excess and an excess of the amount of drug added.
[図 54]薬剤添加量の過剰、過小を検知する処理手順を示す図である。  FIG. 54 is a diagram showing a processing procedure for detecting an excess or an excess of a drug addition amount.
[図 55]薬剤添加量の過剰を検知する処理手順を示す図である。  FIG. 55 is a diagram showing a processing procedure for detecting an excessive amount of drug addition.
[図 56]固体消毒剤の異常供給を検知して供給を停止する制御装置の概念を示す図 である。  FIG. 56 is a diagram showing a concept of a control device that detects an abnormal supply of a solid disinfectant and stops the supply.
[図 57]本発明によって固体臭素系消毒剤による雨天時下水道越流水の消毒を行う 装置の運転方法の一形態を説明する図である。  FIG. 57 is a diagram for explaining an embodiment of a method of operating an apparatus for disinfecting sewer stormwater overflow with a solid bromine-based disinfectant according to the present invention.
[図 58]本発明に力かる雨天時下水道越流水の消毒システムの制御体系の一例を示 す概念図である。  FIG. 58 is a conceptual diagram showing an example of a control system of a sewage overflow water disinfection system that is useful in the present invention.
[図 59]実施例 4で用いた雨天時下水道越流水の消毒装置の構成を示す図である。  FIG. 59 is a diagram showing a configuration of a disinfection device for sewer stormwater overflow used in Example 4.
[図 60]実施例 5の結果を示すグラフである。  FIG. 60 is a graph showing the results of Example 5.
[0007] 図 46において、 710は処理場、 711は下水管、 PI, P2, P3は中継ポンプである。 In FIG. 46, 710 is a treatment plant, 711 is a sewer pipe, and PI, P2, and P3 are relay pumps.
[0008] 図 48において、 710は処理場、 720は降雨情報測定手段、 721aは処理地域 Aの 降雨情報、 722aは処理地域 Aの降雨情報、 730は制御装置、 731は降雨情報マツ ビング処理手段、 732は降雨情報推定処理手段、 733は予想降雨量、 734は予想 降雨強度、 735は予想流入量、 736は大腸菌群数推定処理手段、 737は予測値 Z 実測値補正処理手段、 741は薬剤添加量、 742は薬剤消費量、 743は排水消毒装 置運転開始時刻、 750は濁度測定手段、 751は流入水濁度、 752は実測値測定手 段、 753は降雨量、 754は降雨強度、 755は流入水量、 756は薬剤供給量、 757は 放流水残留薬剤濃度である。 [0008] In FIG. 48, 710 is a treatment plant, 720 is rainfall information measuring means, 721a is rainfall information of processing area A, 722a is rainfall information of processing area A, 730 is a control device, and 731 is rainfall information mapping processing means. 732: Rainfall information estimation processing means, 733: Expected rainfall, 734: Expected rainfall intensity, 735: Expected inflow, 736: E. coli group number estimation processing means, 737: Predicted value Z Actual value correction processing means, 741: Drug Addition amount, 742 is chemical consumption, 743 is drainage disinfection start time, 750 is turbidity measurement means, 751 is influent turbidity, 752 is actual value measurement method, 753 is rainfall, 754 is rainfall intensity 755 is the influent water volume, 756 is the chemical supply volume, and 757 is the residual chemical concentration in the discharged water.
[0009] 図 50において、 710は処理場、 720は降雨情報測定手段、 721xは処理地域 Xの 降雨情報、 722xは処理地域 Xの降雨情報、 730は制御装置、 731は降雨情報マツ ビング処理手段、 732は降雨情報推定処理手段、 733は予想降雨量、 734は予想 降雨強度、 735は予想流入量、 736は大腸菌群数推定処理手段、 737は予測値 Z 実測値補正処理手段、 737a〜737cは補正値加算処理手段、 741は薬剤添加量、 742は薬剤消費量、 743は排水消毒装置運転開始時刻、 750は濁度測定手段、 75 1は流入水濁度、 752は実測値測定手段、 753は降雨量、 754は降雨強度、 755は 流入水量、 756は薬剤供給量、 757は放流水残留薬剤濃度、 760は地域特性シユミ レーシヨン手段、 761は予想流入水量、 762は予想流入汚濁負荷である。 [0009] In FIG. 50, 710 is a treatment plant, 720 is rainfall information measuring means, 721x is rainfall information of processing area X, 722x is rainfall information of processing area X, 730 is a control device, and 731 is rainfall information mapping processing means. 732 is the rainfall information estimation processing means, 733 is the predicted rainfall, 734 is the predicted rainfall intensity, 735 is the expected inflow, 736 is the coliform group number estimation processing means, 737 is the predicted value Z actual value correction processing means, 737a to 737c Is the correction value addition processing means, 741 is the amount of chemical added, 742 is the amount of chemical consumption, 743 is the start time of the drainage disinfection device, 750 is the turbidity measuring means, 75 1 is influent water turbidity, 752 is measured value measurement means, 753 is rainfall, 754 is rainfall intensity, 755 is inflow water quantity, 756 is chemical supply quantity, 757 is residual water residual chemical concentration, 760 is regional characteristic simulation means 761 is the expected inflow water volume and 762 is the expected inflow pollution load.
[0010] 図 51において、 710は処理場、 720は降雨情報測定手段、 721xは処理地域 Xの 降雨情報、 722xは処理地域 Xの降雨情報、 730は制御装置、 737は予測値 Z実測 値補正処理手段、 737a, 737bは補正値加算処理手段、 738は薬剤添加量算出処 理手段、 739は薬剤添加率設定手段、 741は薬剤添加量、 742は薬剤消費量、 75 2は実測値測定手段、 753は降雨量、 754は降雨強度、 755は流入水量、 756は薬 剤供給量、 757は放流水残留薬剤濃度、 760は地域特性シュミレーシヨン手段、 76 1は予想流入水量、 762は予想流入汚濁負荷である。  [0010] In FIG. 51, 710 is a treatment plant, 720 is rainfall information measuring means, 721x is rainfall information of processing region X, 722x is rainfall information of processing region X, 730 is a control device, and 737 is a predicted value Z actual value correction. Processing means, 737a and 737b are correction value addition processing means, 738 is a medicine addition amount calculation processing means, 739 is a medicine addition rate setting means, 741 is a medicine addition amount, 742 is a medicine consumption amount, 752 is a measured value measurement means 753, rainfall, 754, rainfall intensity, 755, inflow, 756, drug supply, 757, residual chemical concentration, 760, regional characteristics simulation means, 761, expected inflow, 762, expected inflow It is a pollution load.
[0011] 図 52【こお!/、て、 810ίま沈砂池、 810aiま流人咅^ 810biま沈砂咅^ 811ίま放流水路 、 812は河川、 813は放流水残留ハロゲン濃度計、 814は放流口監視カメラ、 820は スクリーン、 821は原水流量計、 830は消毒剤添加装置、 831はホッノ 832は消毒 剤、 833は供給機、 834はェジェクタ、 835はホッパ重量、 836は供給機回転数、 84 0は溶解装置、 841は溶解槽、 842は攪拌機、 843は溶解槽残留ハロゲン濃度計、 XIはホッパ重量計である。  [0011] Fig. 52 [Koo! /, 810ί or 810ai or 810ai or 810ai or 810bi or 810bi or 811 or 812, a river, 813 or 814 Mouth monitoring camera, 820 screen, 821 raw water flow meter, 830 disinfectant addition device, 831 hocno 832 disinfectant, 833 feeder, 834 ejector, 835 hopper weight, 836 rotation speed 840 is a dissolution apparatus, 841 is a dissolution tank, 842 is a stirrer, 843 is a dissolution tank residual halogen concentration meter, and XI is a hopper weigh scale.
[0012] 図 53において、 813は放流水残留ハロゲン濃度計、 843は溶解槽残留ハロゲン濃 度計、 870は残留ハロゲンン高レベル判定出力、 871は残留ハロゲン低レベル判定 出力、 901は放流水残留ハロゲン濃度高レベルしきい値、 902は溶解槽残留ハロゲ ン濃度低レベルしきい値、 903は溶解槽残留ハロゲン濃度高レベルしきい値、 904 は残留ハロゲン濃度差 (消毒剤消費量)低レベルしき!、値である。  [0012] In Fig. 53, 813 is a residual halogen concentration meter for discharged water, 843 is a residual halogen concentration meter for dissolution tank, 870 is a high-level residual halogen determination output, 871 is a low-level residual halogen output, and 901 is a residual water residual halogen. Concentration high level threshold, 902 is dissolution tank residual halogen concentration low level threshold, 903 is dissolution tank residual halogen concentration high level threshold, 904 is residual halogen concentration difference (disinfectant consumption) low threshold! , Value.
[0013] 図 54において、 835はホッパ重量計、 836は供給機回転数、 881は薬剤添力卩量過 小判定出力、 883は薬剤添加量過剰判定出力、 910は供給機回転数→吐出量換 算係数、 911は薬剤吐出量添加量低レベルしきい値、 912は薬剤吐出量添加量高 レベルしきい値、 913は薬剤吐出量判定処理サンプリング周期である。  [0013] In FIG. 54, 835 is a hopper weigh scale, 836 is the number of revolutions of the feeder, 881 is an output of excessive determination of the amount of added drug, 883 is an output of excess determination of the amount of added drug, and 910 is the number of revolutions of the supply machine → discharge amount The conversion coefficient, 911 is a medicine discharge amount addition amount low level threshold, 912 is a medicine discharge amount addition amount high level threshold, and 913 is a medicine discharge amount determination processing sampling period.
[0014] 図 55において、 814は放流口監視カメラ、 890は魚類異常判定出力、 921は魚類 判定パターン、 922は魚類漂流判定用移動範囲座標 1、 923は魚類漂流判定用移 動範囲座標 2、 924は魚類漂流判定時間、 925は漂流魚類個体数高レベルしきい値 である。 [0014] In FIG. 55, 814 is a discharge port monitoring camera, 890 is a fish abnormality judgment output, 921 is a fish judgment pattern, 922 is a fish drift judgment movement range coordinate 1, 923 is a fish drift judgment movement range coordinate 2, 924 is the fish drift detection time, 925 is the drift fish population high level threshold It is.
[0015] 図 59において、 551は消毒剤貯留槽、 552は消毒剤計量手段、 553は消毒剤移 送配管、 554は消毒剤混合手段、 555は乾燥空気供給手段、 556は除塵手段、 55 7は消毒対象水、 559は固体臭素系消毒剤、 560は圧力調整手段である。  In FIG. 59, 551 is a disinfectant storage tank, 552 is a disinfectant metering means, 553 is a disinfectant transfer pipe, 554 is a disinfectant mixing means, 555 is a dry air supply means, 556 is a dust removing means, and 55 7 Is water to be disinfected, 559 is a solid bromine-based disinfectant, and 560 is a pressure adjusting means.
発明の実施の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 「合流式下水道」 (combined sewer)とは、家庭汚水及び産業排水と雨水とを同一の 管に捕集して下水処理場へ送る方式であり、下水処理場にて、通常は、最初沈殿池 による懸濁固形分の除去処理、曝気槽による生物処理、最終沈殿池による汚泥の除 去、並びに塩素系消毒剤による消毒などの各処理が行われる。合流式下水道システ ムの代表的な構成例を図 1に示す。一般家庭、工場等の汚水排出源から排出された 汚水は下水道管渠に捕集される。また、雨水も雨水溝などを経由して同じ下水道管 渠に捕集される。このようにして下水道管渠に集められた汚水及び雨水は、下水処 理場に送られて、沈殿処理、曝気(生物反応)処理、最終沈殿処理、消毒処理などの 各処理を経て、公共水域に放流される。公共水域としては、河川、湖沼、港湾、沿岸 海域などが挙げられる。しかしながら、降雨量が多い場合には、下水処理場で処理 可能な量を越える雨水混入下水が流入するおそれがある。このため、下水道管路の 途中に雨水吐き室、ポンプ場 (排水機場)等の雨水混入下水の排除施設が設けられ ている。雨水吐き室では、場合によっては濾過スクリーンなどを設置して夾雑物を排 除した後に越流水を放流している。また、ポンプ場には、通常、沈砂池が設置され、 排除された雨水混入下水は沈砂池によって簡易処理された後放流される。このような 雨天時における雨水混入下水の放流水は、一般に合流式下水道越流水(combined sewer overflow: CSO)と呼ばれて 、る。  [0016] "Combined sewer" is a system that collects domestic sewage and industrial wastewater and rainwater in the same pipe and sends them to the sewage treatment plant. Each treatment includes removal of suspended solids in the first sedimentation basin, biological treatment in the aeration tank, sludge removal in the final sedimentation basin, and disinfection with a chlorinated disinfectant. Figure 1 shows a typical configuration example of a combined sewer system. Sewage discharged from sewage discharge sources such as general households and factories is collected in sewer pipes. Rainwater is also collected in the same sewer pipe via the rainwater ditch. The sewage and rainwater collected in the sewer pipes in this way are sent to a sewage treatment plant, where they are subjected to precipitation treatment, aeration (biological reaction) treatment, final precipitation treatment, disinfection treatment, and other public water areas. To be released. Public waters include rivers, lakes, harbors, coastal waters, and so on. However, if there is a lot of rainfall, there is a risk that sewage mixed with rainwater will exceed the amount that can be treated at the sewage treatment plant. For this reason, facilities for draining sewage mixed with rainwater, such as a rainwater discharge chamber and a pumping station (drainage station), are installed in the middle of the sewer pipe. In the rainwater discharge chamber, in some cases, a filtration screen is installed to remove foreign substances, and then overflow water is discharged. In addition, a sedimentation basin is usually installed at the pumping station, and the drained sewage mixed with stormwater is discharged after being simply treated by the sedimentation basin. Such sewage sewage discharge in rainy weather is generally called combined sewer overflow (CSO).
[0017] 一方、「分流式下水道」 (separated sewer)とは、家庭汚水及び産業排水と、雨水とを 別々の管に捕集し、家庭汚水及び産業排水を下水処理場へ送り、雨水を公共水域 に放流する方式である。分流式下水道システムの代表的な構成例を図 2に示す。一 般家庭、工場等の汚水排出源から排出された汚水は、分流式下水道の汚水管渠に 捕集され、下水処理場に送られて所定の処理を経て、公共水域に放流される。一方 、雨水は、雨水溝などを経由して分流式下水道の雨水管渠に捕集され、雨水管路の 複数箇所に設置されたポンプ場 (排水機場)力 公共水域に放流される。このような 分流式下水道にぉ 、て、雨水管路のポンプ場力 排出される分流式下水道の雨水 越流水は、本来、雨水のみが含まれるはずである。しかし、現実には、大量の雨が降 つたときなどには、大量の雨水が下水道を流れ、このときに、道路などの地表面に存 在する汚濁物や、下水道内に堆積したヘドロも一緒に流してしまう。従って、分流式 下水道の雨水越流水にも、地表面に存在する汚濁物及びへドロに起因する大腸菌 が含まれることがある。 [0017] On the other hand, “separated sewer” means collecting domestic sewage and industrial wastewater and rainwater in separate pipes, sending domestic sewage and industrial wastewater to sewage treatment plants, and making rainwater public. It is a method of discharging into the water area. Figure 2 shows a typical configuration example of a diversion sewer system. Sewage discharged from sewage discharge sources such as general households and factories is collected in sewage pipes of the sewerage sewer system, sent to the sewage treatment plant, and discharged into public water bodies through the prescribed treatment. On the other hand, rainwater is collected in the sewer pipe of the sewerage sewer through the rainwater ditch, etc. Pump station (drainage station) force installed at multiple locations Discharged to public water areas. In such a sewer system, the sewer stormwater overflow that is discharged from the pumping station of the storm water pipeline should originally contain only rainwater. However, in reality, when a large amount of rain falls, a large amount of rainwater flows through the sewer. At this time, contaminants present on the ground surface such as roads and sludge accumulated in the sewer are also present. Will be washed away. Therefore, stormwater overflows in diverted sewers may contain E. coli caused by contaminants and sludge on the ground surface.
[0018] 上記の合流式下水道越流水及び分流式下水道の雨水越流水の!/、ずれの場合に おいても、越流水中の大腸菌群数が放流規制値(3000CFU/mL以下)を超えること があり、消毒をすることが所望される。ここで、 CFUとは、コロニー形成単位(colony for ming unit) , s味する。  [0018] Even in the case of stormwater overflow of the combined sewer and sewer sewage mentioned above! /, Even if there is a deviation, the number of coliforms in the overflow will exceed the discharge limit (3000 CFU / mL or less) It is desirable to disinfect. Here, CFU means colony forming unit, s.
[0019] 下水処理場の一般的な構成例を図 3に示す。下水道管路から送られてきた下水は 、揚水ポンプによって下水処理場に導入され、最初沈殿池 (初沈池)で処理されて、 夾雑物や懸濁固形分が沈殿によって除去される。次に、曝気槽で生物処理を行った 後、最終沈殿池で沈殿処理を行なって汚泥を分離した後、処理水を消毒槽 (塩素混 和槽)で消毒する。塩素混和槽に代えて、或いはこれと組みあわせて UV照射によつ て処理水を消毒することもある。この一連の処理を経たものが下水処理水として公共 水域に放流される。し力しながら、合流式下水道システムの場合には、下水道管渠を 雨水と汚水とがー緒に流れるため、大量の降雨時には、下水処理場の処理容量を超 える量の雨水混入下水が流れてくることがある。この場合、揚水ポンプ場において一 部の下水を排除して公共水域に放流することがある。また、最初沈殿池の処理容量 と曝気槽の処理容量とは一般に異なり、曝気槽の処理容量の方が小さい。従って、 最初沈殿池の処理容量内であるが、曝気槽の処理容量を超える量の下水が下水処 理場に導入された場合には、曝気槽に下水を導入する前に、その一部を排除して、 消毒槽 (塩素混和槽及び Z又は UV照射槽)で簡易処理した後に公共水域に放流 することがある。また、下水処理場によっては、この放流水に対して消毒槽を設置す るスペースがないことがあり、そのような場合には、未処理のまま公共水域に放流され ることがある。このような下水処理場内での雨水混入下水の放流水も合流式下水道 越流水(combined sewer overflow : CSO)と呼ばれ、その消毒処理が重要な課題とな つている。 [0019] Fig. 3 shows a typical configuration example of a sewage treatment plant. The sewage sent from the sewer pipe is introduced into the sewage treatment plant by the pump, and treated in the first sedimentation basin (primary sedimentation basin), and impurities and suspended solids are removed by sedimentation. Next, after biological treatment in the aeration tank, sedimentation is performed in the final sedimentation tank to separate the sludge, and the treated water is then disinfected in the disinfection tank (chlorine mixing tank). The treated water may be disinfected by UV irradiation instead of or in combination with a chlorine mixing tank. After this series of treatments, it is discharged into public water as treated sewage. However, in the case of a combined sewerage system, rainwater and sewage flow together in the sewer pipe, so that when there is a large amount of rain, an amount of rainwater-mixed sewage that exceeds the treatment capacity of the sewage treatment plant flows. May come. In this case, some sewage may be discharged into the public water area at the pumping pump station. Also, the treatment capacity of the first sedimentation basin is generally different from the treatment capacity of the aeration tank, and the treatment capacity of the aeration tank is smaller. Therefore, when the amount of sewage that is within the treatment capacity of the first settling basin but exceeds the treatment capacity of the aeration tank is introduced into the sewage treatment plant, a part of the sewage is introduced before introducing it into the aeration tank. Elimination and simple treatment in disinfection tanks (chlorine mixing tank and Z or UV irradiation tank) may be released into public waters. Also, depending on the sewage treatment plant, there is no space to install a disinfecting tank for this discharged water. In such a case, it may be discharged into public water bodies without being treated. The sewage discharged from the sewage treatment plant is also a combined sewer. It is called combined sewer overflow (CSO), and its disinfection treatment is an important issue.
[0020] また、分流式下水道の汚水管渠は、本来、汚水のみが流れるはずであり、大量の 降雨時においても汚水管渠を流れる下水の量は増カロしない。し力しながら、実際に は相当量の不明水が分流式下水道の汚水管渠内に侵入しており、汚水管渠から越 流して公共水域に放流されてしまう下水が存在する。これは、分流式下水道の汚水 越流水(sanitary sewer overflow: SSO)と呼ばれており、その消毒処理が重要な課題 となっている。  [0020] In addition, the sewage pipe of the sewerage sewer system should originally flow only sewage, and the amount of sewage flowing through the sewage pipe does not increase even during heavy rainfall. However, in reality, a considerable amount of unknown water has entered the sewer pipes of the diversion sewer, and there is sewage that overflows from the sewer pipes and is discharged into the public water area. This is called sanitary sewer overflow (SSO) in a sewer system, and its disinfection is an important issue.
[0021] 本発明の一態様は、これらの合流式下水道越流水、分流式下水道雨水越流水、 分流式下水道汚水越流水を速やかに消毒処理する手段(図 1〜図 3に示す本発明 による消毒装置)を備えた下水道システムを提供する。  [0021] One aspect of the present invention is a means for quickly disinfecting these combined sewer sewage overflow, split sewer stormwater overflow, and split sewer sewage overflow (disinfection according to the present invention shown in FIGS. 1 to 3). A sewer system provided with a device).
[0022] 即ち、本発明によれば、晴天時若しくは少量の雨天時で、下水処理場の処理容量 を超えない量の下水が下水処理場に流れ込む場合には、下水を、下水処理場にお いて、最初沈殿池、曝気槽、最終沈殿池などの所定の処理を行った後、塩素系消毒 剤及び Z又は UV照射によって消毒処理を行った後に公共水域に放流する力 大 量の降雨によって下水処理場の処理容量を超える量の雨水を含んだ下水が下水処 理場に流れ込むか若しくは流れ込むおそれのある場合には、下水処理場の処理容 量を超える量の雨水混入下水については、下水道管路の雨天時下水道越流水排除 施設、例えば雨水吐き室、ポンプ場 (排水機場)、或いは下水処理場の揚水ポンプ 場において分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、下 水処理場の処理容量内の雨水混入下水につ!、ては、下水処理場にお!、て最初沈 殿池、曝気槽、最終沈殿池などの所定の処理を行った後に、塩素系消毒剤及び Z 又は UV照射によって消毒処理を行った後に公共水域に放流することを特徴とする 下水道システムが提供される。  That is, according to the present invention, when the amount of sewage that does not exceed the treatment capacity of the sewage treatment plant flows into the sewage treatment plant in fine weather or a small amount of rain, the sewage is passed to the sewage treatment plant. After the prescribed treatment of the first sedimentation basin, aeration tank, final sedimentation basin, etc., sterilization by chlorinated disinfectant and sterilization treatment by Z or UV irradiation, and then discharge to public water area due to heavy rainfall When sewage containing rainwater exceeding the treatment capacity of the sewage treatment plant flows into or may flow into the sewage treatment plant, sewage pipes that contain storm water that exceeds the treatment capacity of the sewage treatment plant Sewage overflow drainage facilities during rainy days on roads, such as rainwater spout rooms, pumping stations (drainage station), or pumping pumping stations of sewage treatment plants, and after disinfecting with bromine-based disinfectants, discharge into public water bodies Sewage treatment After the prescribed treatment of the first sedimentation basin, aeration tank, final sedimentation basin, etc., the chlorinated disinfectant and Z Or a sewage system is provided, which is characterized by being discharged into public water after being disinfected by UV irradiation.
[0023] また、本発明の他の形態によれば、分流式下水道であって、下水道の汚水管渠を 流れる汚水については、下水処理場において、最初沈殿池、曝気槽、最終沈殿池な どの所定の処理を行った後に、塩素系消毒剤及び Z又は UV照射によって消毒処 理を行った後に公共水域に放流し、下水道の雨水管渠を流れる雨水については、 雨水排除施設、例えばポンプ場 (排水機場)から公共水域に放流するが、ファースト フラッシュと呼ばれる降雨直後や大量の降雨などによって消毒が必要となる場合に は、下水道の雨水管渠を流れる雨水について、雨水排除施設において臭素系消毒 剤による消毒処理を行った後に公共水域に放流することを特徴とする下水道システ ムが提供される。 [0023] Further, according to another aspect of the present invention, the sewage that flows through the sewer pipe of the sewer system, such as a first sedimentation basin, an aeration tank, and a final sedimentation basin, is treated in the sewerage treatment plant. For storm water that flows through public sewers and drains through sewer pipes after sterilization with chlorinated disinfectant and Z or UV irradiation after prescribed treatment. When it is discharged from a rainwater drainage facility, such as a pumping station (drainage station), into a public water area. A sewage system is provided, which is characterized by being discharged into public water after being disinfected with bromine-based disinfectant at the exclusion facility.
[0024] 更に、本発明の他の形態によれば、晴天時若しくは少量の雨天時で、下水処理場 の曝気槽の処理容量を超えな 、量の下水が下水処理場に流れ込む場合には、下水 を、下水処理場において、最初沈殿池、曝気槽、最終沈殿池などの所定の処理を行 つた後に、塩素系消毒剤及び Z又は UV照射によって消毒処理を行った後に公共 水域に放流するが、大量の降雨によって下水処理場の最初沈殿池の処理容量は超 えないが曝気槽の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ込 むか若しくは流れ込むおそれのある場合には、曝気槽の処理容量を超える量の雨水 混入下水については、下水処理場での最初沈殿池における処理の後に分岐して、 臭素系消毒剤による消毒を行った後に公共水域に放流し、曝気槽の処理容量内の 雨水混入下水については、下水処理場での最初沈殿池における処理に続いて、曝 気槽、最終沈殿池などの所定の処理を行い、続いて塩素系消毒剤及び Z又は UV 照射によって消毒処理を行った後に公共水域に放流することを特徴とする下水道シ ステムが提供される。  [0024] Further, according to another aspect of the present invention, when the amount of sewage flows into the sewage treatment plant in a fine weather or a small amount of rain, the amount of sewage does not exceed the treatment capacity of the aeration tank of the sewage treatment plant. Sewage is discharged into the public water area after sewage treatment at the sewage treatment plant, after the prescribed treatment such as the first settling basin, aeration tank, and final settling basin, and then disinfecting with chlorinated disinfectant and Z or UV irradiation. If there is a possibility that sewage containing the amount of rainwater exceeding the treatment capacity of the aeration tank will flow into or may flow into the sewage treatment plant due to a large amount of rainfall. For sewage mixed with rainwater that exceeds the treatment capacity of the aeration tank, it is branched after treatment in the first sedimentation basin at the sewage treatment plant, disinfected with a bromine-based disinfectant, and then discharged into public water areas. Rainwater mixed within the processing capacity of For incoming sewage, following the treatment in the first sedimentation basin at the sewage treatment plant, prescribed treatments such as an aeration tank and final sedimentation basin are performed, followed by sterilization treatment by chlorinated disinfectant and Z or UV irradiation. After that, a sewer system is provided, which is characterized by being discharged into public water areas.
[0025] また、本発明の他の態様は、上述の合流式下水道越流水、分流式下水道雨水越 流水又は分流式下水道汚水越流水を消毒処理するための装置を提供する。かかる 装置は、一態様においては、固体臭素系消毒剤の貯留 ·供給装置と、該固体臭素系 消毒剤の貯留 ·供給装置力 供給される固体臭素系消毒剤を、合流式下水道越流 水、分流式下水道雨水越流水、分流式下水道汚水越流水に添加 ·混合する消毒剤 添加'混合装置とを具備する。  [0025] Further, another aspect of the present invention provides an apparatus for disinfecting the above-mentioned combined sewer overflow, split sewer stormwater overflow or split sewer sewage overflow water. In one aspect, such an apparatus includes a storage / supply device for a solid bromine-based disinfectant, and a storage / supply device power for the solid bromine-based disinfectant. It is equipped with a disinfectant addition / mixing device that is added to and mixed with sewer stormwater overflow and sewer sewage overflow.
[0026] 上記に説明したように、本発明が対象とする被処理水としては、合流式下水道にお いて大量の降雨時に下水処理場における適正な処理を経ないで公共水域に放流さ れてしまう雨水が混入した下水、即ち合流式下水道越流水 (CSO)、分流式下水道 にお 、て降雨時に雨水管渠から公共水域に放流される汚濁物質を含んだ雨水、即 ち分流式下水道雨水越流水、分流式下水道において、汚水管渠から公共水域に放 流される不明水を含んだ汚水、即ち分流式下水道汚水越流水(SSO)を挙げること ができる。以下の説明においては、これらの合流式下水道越流水、分流式下水道雨 水越流水又は分流式下水道汚水越流水を総称して、雨天時下水道越流水 (sewer st ormwater overflow)と呼ぶ。また、本明細書の説明においては、本発明によって消毒 処理する処理対象水を、場合により雨天時下水道越流水と称するがこの記載は本発 明を限定するものではな 、。 [0026] As described above, the treated water targeted by the present invention is discharged into a public water area without proper treatment in a sewage treatment plant when a large amount of rain occurs in a combined sewer. In sewage mixed with rainwater, that is, combined sewer stormwater overflow (CSO) and diversion sewers, rainwater containing pollutants released from rainwater pipes to public water areas during rainfall In sewerage sewer stormwater overflow and diversion sewerage, sewage containing unknown water discharged from sewage pipes to public water areas, that is, sewer sewer sewage overflow (SSO) can be mentioned. In the following description, these combined sewer overflow, split sewer stormwater overflow or split sewer sewage overflow is collectively referred to as sewer stormwater overflow. In the description of the present specification, the water to be disinfected by the present invention is sometimes referred to as sewer stormwater overflow, but this description does not limit the present invention.
[0027] 上記に説明した本発明の概念は、また図 4に示すように規定することもできる。図 4 において、下水は分岐装置に流入する。流入下水が所定値以下の場合には、流入 下水は出口 1から流出し、出口 1から流出した下水は塩素又は UVで消毒する消毒 槽を有する消毒施設に送られて消毒処理がなされる。消毒処理がなされた下水は公 共水域に放流することができる。また、流入下水が所定値以上の量である場合には、 所定値以下の量の流入下水は出口 1から流出し、上記と同様の処理がされる。流入 下水量力 所定値の下水量を除いた下水量は出口 2から流出し、下水を臭素系消 毒剤によって消毒する臭素下水消毒装置に送られ、臭素系消毒剤による消毒処理 力 される。臭素下水消毒装置で消毒処理がなされた下水も、公共水域に放流する ことができる。なお、ここでの所定値とは、例えば、下水処理場の処理容量、或いは 図 3に示すように下水処理場内で最初沈殿池と曝気槽の間で分岐させる場合には曝 気槽の処理容量を指す。  [0027] The concept of the present invention described above can also be defined as shown in FIG. In Figure 4, sewage flows into the branching device. If the inflow sewage is less than the specified value, the inflow sewage flows out from the outlet 1, and the sewage outflow from the outlet 1 is sent to a disinfection facility having a disinfection tank that is disinfected with chlorine or UV for disinfection. Disinfected sewage can be discharged into public water areas. In addition, when the amount of inflow sewage is greater than or equal to a predetermined value, the amount of inflow sewage less than or equal to the predetermined value flows out from the outlet 1 and is treated in the same manner as described above. Inflow Sewage capacity The amount of sewage, excluding the specified amount of sewage, flows out of the outlet 2 and is sent to a bromine sewage disinfection device that disinfects the sewage with a bromine-based disinfectant. Sewage that has been disinfected by bromine sewage disinfection equipment can also be discharged into public waters. The predetermined value here is, for example, the treatment capacity of the sewage treatment plant, or the treatment capacity of the aeration tub when it is branched between the first sedimentation basin and the aeration tub in the sewage treatment plant as shown in FIG. Point to.
[0028] 即ち、本発明の他の態様は、  [0028] That is, another aspect of the present invention provides:
下水を塩素又は UVで消毒する消毒槽を有する消毒施設と;  A disinfection facility with a disinfection tank that disinfects sewage with chlorine or UV;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;  A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、入口への流入下水を出口 1及び出口 2に分ける分 岐装置であって、入口への流入下水量が所定値以下の場合には流入下水量の全量 を出口 1に流し、流入下水量が所定値以上の場合には、所定値の下水量を出口 1に 流し、流入下水量から所定値の下水量を除いた下水量を出口 2に流す分岐装置と; から構成され、  A branching device that has an inlet, outlet 1 and outlet 2 and divides the sewage flowing into the inlet into outlet 1 and outlet 2.If the amount of sewage flowing into the inlet is below a predetermined value, the total amount of sewage flowing in When the inflow sewage amount is greater than or equal to the predetermined value, the sewage amount is discharged to the outlet 1, and the sewage amount obtained by removing the predetermined amount of sewage from the inflow sewage amount is discharged to the outlet 2. And consisting of
上記分岐装置の出口 1が上記消毒施設の下水導入部に接続され、上記分岐装置 の出口 2が上記臭素下水処理装置の下水導入部に接続されている下水処理装置に 関する。 The outlet 1 of the branch device is connected to the sewage introduction section of the disinfection facility, and the branch device The sewage treatment equipment is connected to the sewage introduction section of the bromine sewage treatment equipment.
[0029] 上記の態様において、流入下水量が所定値以上の場合に流入下水量から所定値 の下水量を除いた下水量 (分岐装置の出口 2から流出する下水量)は、上記に説明 した雨天時下水道越流水という概念で考えることができる。  [0029] In the above aspect, when the inflow sewage amount is equal to or greater than the predetermined value, the sewage amount obtained by subtracting the sewage amount of the predetermined value from the inflow sewage amount (the sewage amount flowing out from the outlet 2 of the branching device) is described above. It can be thought of as the concept of sewer stormwater overflow.
[0030] 消毒施設としては、たとえば下水処理場を例示することができる。消毒施設は、図 5 に示すように、最初沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導 入部が接続され、最初沈殿池の出口が消毒槽の下水導入部に接続されるようにする ことができる。更に、消毒施設は、図 6に示すように、最初沈殿池、ばつき槽及び最終 沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水導入部が接続され、最 初沈殿池の出口がばつき槽の下水導入部に接続され、ばつき槽の出口が最終沈殿 池の下水導入部に接続され、最終沈殿池の出口が消毒槽の下水導入部に接続され るようにすることちでさる。  [0030] As the disinfection facility, for example, a sewage treatment plant can be exemplified. As shown in Fig. 5, the disinfection facility further has an initial settling basin, the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank. Can be done. Furthermore, as shown in Fig. 6, the disinfection facility further has an initial settling basin, a batting tank, and a final settling basin, and the sewage introduction section of the first settling basin is connected to the introduction section of the disinfection facility, and the first settling basin The outlet of the basin tank is connected to the sewage introduction part of the basin tank, the outlet of the basin tank is connected to the sewage introduction part of the final sedimentation tank, and the exit of the final sedimentation tank is connected to the sewage introduction part of the disinfection tank Say it with a word.
[0031] 更に、消毒施設内においても分岐装置及び臭素消毒装置を配置して、所定値以 上の流入水が流入した場合にはその超過分を分岐して臭素消毒装置によって消毒 処理することができる。即ち、本発明の他の態様は、消毒施設が、更に、最初沈殿池 と、入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の 場合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所 定値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流 す分岐装置と、下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、 消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が 分岐装置の入口に接続され、分岐装置の出口 1が消毒槽の下水導入部に接続され 、分岐装置の出口 2が臭素下水処理装置の下水導入部に接続される上記に記載の 下水処理装置に関する。力かる形態の構成例を図 7に示す。更には、本発明の他の 態様は、消毒施設が、更に、最初沈殿池と、ばつき槽と、最終沈殿池と、入口と出口 1 及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1及び出口 2に 分ける分岐装置であって、分岐装置への流入水量が所定値以下の場合には流入水 量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定値の水量を出 口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す分岐装置と、 下水を臭素系消毒剤によって消毒する臭素下水処理装置 (device)とを有し、消毒施 設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が分岐装 置の入口に接続され、分岐装置の出口 1がばつき槽の下水導入部に接続され、ばつ き槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が消毒槽の 下水導入部に接続されて、分岐装置の出口 2が臭素下水処理装置の下水導入部に 接続される上記に記載の下水処理装置に関する。力かる形態の構成例を図 8に示す [0031] Further, a branching device and a bromine disinfection device are also arranged in the disinfection facility, and when inflow water exceeding a predetermined value flows, the excess is branched and disinfected by the bromine disinfection device. it can. That is, according to another aspect of the present invention, the disinfection facility further includes an initial settling basin, an inlet and an outlet 1 and an outlet 2, and receives the effluent water from the first settling basin at the inlet to the outlet 1 and the outlet 2. When the amount of water flowing into the branching device is less than the predetermined value, the entire amount of the inflowing water flows to the outlet 1, and when the amount of inflowing water is greater than the predetermined value, the predetermined amount of water is discharged to the outlet 1. A branching device that flows the amount of water excluding the specified amount of water to the outlet 2 and a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant, and first settles at the introduction part of the disinfection facility. The sewage inlet of the pond is connected, the outlet of the first sedimentation basin is connected to the inlet of the branching device, the outlet 1 of the branching device is connected to the sewage inlet of the disinfection tank, and the outlet 2 of the branching device is connected to the bromine sewage treatment device. The present invention relates to the sewage treatment apparatus described above connected to the sewage introduction section. Fig. 7 shows an example of a configuration that can be used. Furthermore, in another aspect of the present invention, the disinfection facility further includes an initial settling basin, a flaking tank, a final settling basin, an inlet and an outlet 1 and an outlet 2, and the effluent from the first basin. Is a branching device that accepts the water at the inlet and separates it into outlet 1 and outlet 2. A branching device that flows the entire amount of water to outlet 1 and flows the predetermined amount of water to outlet 1 when the amount of influent water is greater than or equal to the predetermined value, and flows the amount of water excluding the predetermined amount of water to outlet 2 A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant, the sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, and the outlet of the first sedimentation basin is connected to the branch device Connected to the inlet, outlet 1 of the branching device is connected to the sewage introduction section of the batting tank, the outlet of the batting tank is connected to the sewage introduction section of the final sedimentation tank, and the outlet of the final sedimentation tank is introduced to the sewage of the disinfection tank The sewage treatment device according to the above, wherein the outlet 2 of the branch device is connected to the sewage introduction unit of the bromine sewage treatment device. Fig. 8 shows a configuration example of a powerful form
[0032] 更に、上記の図 7又は図 8に示す分岐装置及び臭素下水消毒装置を含む装置を 消毒施設内にのみ配置した構成も本発明の一態様に含まれる。即ち、本発明の他 の態様は、下水処理場における下水処理装置であって、 Furthermore, a configuration in which the apparatus including the branch device and the bromine sewage disinfection device shown in FIG. 7 or FIG. 8 is disposed only in the disinfection facility is also included in one aspect of the present invention. That is, another aspect of the present invention is a sewage treatment apparatus in a sewage treatment plant,
最初沈殿池と;  First sedimentation basin;
下水を塩素又は UVで消毒する消毒槽を有する消毒設備と;  A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;  A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置;と力 なり、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Equipment; and power,
分岐装置の出口 1が消毒設備の下水導入部に接続され、分岐装置の出口 2が臭 素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置に 関する。  The present invention relates to a sewage treatment apparatus characterized in that outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility, and outlet 2 of the branching apparatus is connected to the sewage introduction part of the sewage treatment apparatus.
[0033] 更に本発明の他の態様は、下水処理場における下水処理装置であって、  [0033] Still another aspect of the present invention is a sewage treatment apparatus in a sewage treatment plant,
最初沈殿池と;  First sedimentation basin;
ばつき楼と;  Batsukiro;
最終沈殿池と;  The final sedimentation basin;
下水を塩素又は UVで消毒する消毒槽を有する消毒設備と; 下水を臭素系消毒剤によって消毒する臭素下水処理装置と; 入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、流入水量が所定値以下の場合には流入水 量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定値の水量を出 口 1に流し、流入水量力 所定値の水量を除 、た水量を出口 2に流す分岐装置と;か らなり、 A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV; A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant; a branching device that has an inlet, an outlet 1 and an outlet 2 and receives the effluent from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2 If the inflow water volume is less than or equal to the predetermined value, the entire inflow water volume flows to the outlet 1, and if the inflow water volume is greater than or equal to the predetermined value, the predetermined amount of water flows to the outlet 1, and the inflow water volume force And a branching device that drains the amount of water to outlet 2;
下水処理装置の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出 口が分岐装置の入口に接続され、分岐装置の出口 1がばつき槽の下水導入部に接 続され、ばつき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出 口が消毒設備の下水導入部に接続されて、分岐装置の出口 2が臭素下水処理装置 の下水導入部に接続されていることを特徴とする下水処理装置に関する。  The sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flapping tank. The outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is the sewage introduction part of the bromine sewage treatment device. It is related with the sewage treatment apparatus characterized by being connected to.
上記に説明した下水処理装置においては、消毒施設によって下水中の大腸菌群 数を下水 lccあたり 3000個以下にすることができる。また、消毒施設によって下水中 の大腸菌数を下水 lOOccあたり 200個以下にすることができる。更に、分岐装置の入 口は合流式下水道に接続することができる。また、臭素下水処理装置によって下水 中の大腸菌群数を下水 lccあたり 3000個以下にすることができる。更に、臭素下水 処理装置によって下水中の大腸菌数を下水 lOOccあたり 200個以下にすることがで きる。消毒施設及び Z又は臭素下水処理装置によって消毒された下水は公共水域 に流すことができる。また、上記に規定の下水処理装置において、臭素下水処理装 置は、固体臭素系消毒剤の貯留 '供給装置と、該固体臭素系消毒剤の貯留 '供給装 置カゝら供給される固体臭素系消毒剤を、被処理水に添加'混合する消毒剤添加'混 合装置とを具備することができる。また、固体臭素系消毒剤の貯留 '供給装置は、固 体臭素系消毒剤の貯槽と、貯槽内の固体臭素系消毒剤を所定の量計量して排出す る定量供給機とを備え、該貯槽及び定量供給機は、圧縮空気をその内部に噴射す る複数個の噴射口で構成された固体臭素系消毒剤の撹拌手段を備えることができる 。また、定量供給機は、計量手段を有する回転テーブルを備えることができる。更に、 消毒剤添加'混合装置は、被処理水の一部を受容して固体臭素系消毒剤を混合' 溶解する消毒水調製装置と、消毒水を被処理水に投入する手段とを備えることがで きる。更に、消毒剤添加'混合装置は、被処理水が流れる流路内に設置することがで きる。更に、固体臭素系消毒剤の貯留 ·混合装置及び添加 ·混合装置は、固体臭素 系消毒剤を貯留する貯留槽、貯留槽に接続されており、消毒剤を固体のままで注入 点まで移送するための消毒剤移送配管、消毒剤移送配管に接続されており、配管内 を移送されてきた固体臭素系消毒剤を消毒対象の被処理水に加える消毒剤注入装 置、力 構成することができる。更に、消毒剤が添加位置力 被処理水の放流箇所 へ流れ着くまでの間に完全に溶解するように装置を構成することができる。更には、 被処理水のサンプルを採取するための分取ラインと、サンプリングされた被処理水サ ンプルに消毒剤を添加するための消毒剤供給手段と、消毒剤が添加された被処理 水サンプルの有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、を更に備 え、有効ハロゲン濃度測定装置によって測定された消毒剤添加後の被処理水サン プル中の有効ハロゲン濃度の減少程度に応じて消毒剤添加 ·混合装置によって被 処理水中に加えられる消毒剤の添加量を制御する消毒剤添加量制御手段を備える ように下水処理装置を構成することができる。また、消毒剤を添加した後の被処理水 中に還元剤を添加する還元剤供給装置と、消毒剤を添加した後の被処理水中の有 効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、測定された消毒剤添加後 の被処理水中の有効ハロゲン濃度に応じて還元剤の添加量を制御する還元剤添カロ 量制御装置を更に備えることができる。 In the sewage treatment apparatus described above, the number of coliforms in sewage can be reduced to 3000 or less per lcc of sewage by disinfection facilities. In addition, disinfection facilities can reduce the number of E. coli in sewage to 200 or less per sewage lOOcc. Furthermore, the entrance of the branching device can be connected to a combined sewer. Bromine sewage treatment equipment can reduce the number of coliforms in sewage to 3000 or less per lcc of sewage. Furthermore, the bromine sewage treatment equipment can reduce the number of E. coli in sewage to 200 or less per sewage lOOcc. Sewage sterilized by disinfection facilities and Z or bromine sewage treatment equipment can be discharged into public water bodies. Further, in the sewage treatment apparatus specified above, the bromine sewage treatment apparatus includes a solid bromine-based disinfectant storage and supply device and a solid bromine-based disinfectant storage and supply device. A disinfectant addition “mixing device” for adding and mixing the system disinfectant to the water to be treated can be provided. The storage and supply device for the solid bromine-based disinfectant includes a storage tank for the solid bromine-based disinfectant and a metering feeder for measuring and discharging a predetermined amount of the solid bromine-based disinfectant in the storage tank. The storage tank and the metering feeder can be equipped with a solid bromine-based disinfectant stirring means composed of a plurality of injection ports for injecting compressed air into the inside thereof. Moreover, the fixed quantity feeder can be provided with a rotary table having a weighing means. Further, the disinfectant addition 'mixing device is equipped with a disinfecting water preparation device that accepts a part of the treated water and mixes and dissolves the solid bromine-based disinfectant; and means for introducing the disinfecting water into the treated water. In wear. Furthermore, the disinfectant addition / mixing device can be installed in a flow path through which water to be treated flows. Furthermore, the solid bromine-based disinfectant storage / mixing device and addition / mixing device are connected to the storage tank for storing the solid bromine-based disinfectant and the storage tank, and the disinfectant is transferred to the injection point in the solid state. Disinfectant transfer piping, and disinfectant transfer piping, and the disinfectant injection device that adds the solid bromine-based disinfectant transferred through the piping to the water to be disinfected can be configured. . Furthermore, the apparatus can be configured so that the disinfectant completely dissolves before it reaches the discharge position of the water to be treated. Furthermore, a preparative line for collecting a sample of treated water, a disinfectant supply means for adding a disinfectant to the sampled treated water sample, and a treated water sample to which a disinfectant has been added. And an effective halogen concentration measuring device that measures the effective halogen concentration of the water to be disinfected according to the degree of decrease in the effective halogen concentration in the water sample to be treated after the addition of the disinfectant measured by the effective halogen concentration measuring device. The sewage treatment device can be configured to include a disinfectant addition amount control means for controlling the addition amount of the disinfectant added to the treated water by the agent addition / mixing device. In addition, a reducing agent supply device for adding a reducing agent to the water to be treated after adding the disinfectant, an effective halogen concentration measuring device for measuring the effective halogen concentration in the water to be treated after adding the disinfectant, A reducing agent-added calorie amount control device that controls the amount of reducing agent added according to the measured effective halogen concentration in the treated water after addition of the disinfectant can be further provided.
[0035] また、本発明の他の態様は、下水を消毒処理する方法であって、  [0035] Another aspect of the present invention is a method for disinfecting sewage,
流入下水を、流入下水量が所定値以下の場合には流入下水量の全量を塩素又は UVによって消毒し、流入下水量が所定値以上の場合には、所定値の下水量を塩素 又は UVによって消毒し、同時に流入下水量から所定値の下水量を除!、た下水量を 臭素系消毒剤によって消毒することを特徴とする下水処理方法に関する。  Inflow sewage is disinfected with chlorine or UV when the inflow sewage is below the specified value, and when the inflow sewage is over the predetermined value, the sewage with the specified value is supplied with chlorine or UV. The present invention relates to a sewage treatment method characterized by disinfecting and simultaneously removing a predetermined amount of sewage from the inflow sewage and disinfecting the sewage with a bromine-based disinfectant.
[0036] 力かる方法において、塩素又は UVによる消毒によって下水中の大腸菌群数を下 水 lccあたり 3000個以下にすることが好ましい。また、塩素又は UVによる消毒によ つて下水中の大腸菌数を下水 lOOccあたり 200個以下にすることができる。更に、上 記の方法によって処理対象の下水として合流式下水道の下水を処理することができ る。上記の方法においては、臭素系消毒剤による消毒によって下水中の大腸菌群数 を下水 lccあたり 3000個以下にすることができる。また、臭素系消毒剤による消毒に よって下水中の大腸菌数を下水 lOOccあたり 200個以下にすることができる。更に、 塩素又は UVによって消毒された下水及び Z又は臭素系消毒剤によって消毒された 下水を公共水域に流すことができる。また、臭素系消毒剤による消毒処理の時間は 3 分以内であることができる。また、臭素系消毒剤として固体の臭素系消毒剤を被処理 水に添加'混合して消毒を行うことができる。更に、臭素系消毒剤として、固体の臭素 系系消毒剤を被処理水の一部に混合 '溶解して消毒水を調製し、調製された消毒水 を被処理水に投入することによって消毒を行うことができる。更に、消毒剤が、添加位 置力 被処理水の放流箇所へ流れ着くまでの間に完全に溶解するようにすることが できる。更に、上記の方法においては、被処理水の一部をサンプリングして臭素系消 毒剤を添加し、臭素系消毒剤が添加された被処理水サンプルの有効ハロゲン濃度 を測定して、測定された臭素系消毒剤添加後の被処理水サンプル中の有効ハロゲ ン濃度の減少程度に応じて被処理水に加える臭素系消毒剤の添加量を制御するこ とを更に含むことができる。また、上記の方法においては、臭素系消毒剤を添加した 後の被処理水中の有効ハロゲン濃度を測定し、測定された消毒剤添加後の被処理 水中の有効ハロゲン濃度に応じて、臭素系消毒剤を添加した後の被処理水中に還 元剤を添加することができる。 [0036] In the powerful method, the number of coliforms in the sewage is preferably 3000 or less per lcc of sewage by disinfection with chlorine or UV. In addition, disinfection with chlorine or UV can reduce the number of E. coli in sewage to 200 or less per lOOcc of sewage. Furthermore, sewage from the combined sewer can be treated as sewage to be treated by the above method. In the above method, the number of coliforms in the sewage by disinfection with a bromine-based disinfectant Can be reduced to 3000 or less per lcc of sewage. In addition, disinfection with bromine-based disinfectants can reduce the number of E. coli in sewage to 200 or less per sewage lOOcc. In addition, sewage sterilized by chlorine or UV and sewage sterilized by Z or bromine-based disinfectants can be run into public waters. Also, disinfection time with bromine disinfectant can be within 3 minutes. Further, as a bromine-based disinfectant, a solid bromine-based disinfectant can be added to and mixed with water to be treated for disinfection. Furthermore, as a bromine-based disinfectant, a solid bromine-based disinfectant is mixed and dissolved in a part of the water to be treated to prepare disinfecting water, and the prepared disinfecting water is added to the water to be disinfected. It can be carried out. Furthermore, the disinfectant can be completely dissolved before it reaches the location where the treated water is discharged. Furthermore, in the above method, a portion of the water to be treated is sampled, a bromine-based disinfectant is added, and the effective halogen concentration of the water to be treated to which the bromine-based disinfectant is added is measured. In addition, the method may further include controlling the amount of the bromine-based disinfectant added to the water to be treated according to the degree of decrease in the effective halogen concentration in the water to be treated after the addition of the bromine-based disinfectant. In the above method, the effective halogen concentration in the treated water after the addition of the bromine-based disinfectant is measured, and the bromine-based disinfection is determined according to the measured effective halogen concentration in the treated water after the addition of the disinfectant. A reducing agent can be added to the water to be treated after the agent is added.
[0037] 以下に本発明において用いることのできる種々の形態の臭素消毒装置及び臭素 消毒装置による消毒の制御方法などについて詳細に説明する。上記で述べたように 、以下の説明においては、本発明によって分岐装置で出口 2に誘導され、臭素系消 毒剤で消毒処理される処理対象水を、場合により雨天時下水道越流水と呼ぶが、こ の記載は本発明を限定するものではない。また、以下の説明においては便宜上臭素 消毒装置を単に消毒装置と呼ぶことがある。 [0037] Hereinafter, various forms of bromine disinfection devices that can be used in the present invention, disinfection control methods using the bromine disinfection devices, and the like will be described in detail. As described above, in the following description, the water to be treated, which is guided to the outlet 2 by the branching device according to the present invention and is sterilized by the bromine-based disinfectant, is sometimes referred to as sewer stormwater overflow. However, this description does not limit the present invention. In the following description, the bromine disinfection device is sometimes simply referred to as a disinfection device.
汚水や排水などの下水の消毒は、通常、紫外線照射、オゾン殺菌や、次亜塩素酸ナ トリウムなどの塩素系消毒剤を用いて行われている。特に塩素系消毒剤は、紫外線 照射やオゾン殺菌に比べて、設備が簡潔であり、汚れの状態に対して適用性が高い など、利点が多い。  Disinfection of sewage such as sewage and drainage is usually carried out using ultraviolet irradiation, ozone sterilization, and chlorine-based disinfectants such as sodium hypochlorite. In particular, chlorine-based disinfectants have many advantages compared to ultraviolet irradiation and ozone sterilization, such as simple equipment and high applicability to soil conditions.
[0038] しかし、通常の下水処理に適用された技術を雨天時下水道越流水の処理に転用 すると次の問題点が生じる。まず、雨天時下水道越流水には、アンモニア、ァミンが 共存するため、下記式(1)に代表される化学反応が生じ、活性塩素がクロラミンに変 化し、殺菌効果が lZio以下に低下する。従って、病原菌の数は、変わらなくてもァ ンモ-ァゃァミンが存在すると、塩素系消毒剤の添加量を増大させる必要がある。 式 1 [0038] However, the technology applied to normal sewage treatment is diverted to the treatment of sewer stormwater overflow. Then, the following problems arise. First, in the rainwater sewer overflow, ammonia and ammine coexist, so a chemical reaction represented by the following formula (1) occurs, the active chlorine changes to chloramine, and the bactericidal effect drops below lZio. Therefore, even if the number of pathogenic bacteria does not change and the presence of ammonia-camine, it is necessary to increase the amount of chlorinated disinfectant added. Formula 1
[0039] NH + + HC10→NH Cl+H 0+H+ (1) [0039] NH + + HC10 → NH Cl + H 0 + H + (1)
4 2 2  4 2 2
また、塩素系消毒剤を用いるときの消毒時間は 15分以上必要であるので ("下水道 施設計画 ·設計指針と解説"参照)、雨天時下水道越流水と塩素系消毒剤を混和し、 15分以上滞留させる混和槽が必要となる。しかし、雨天時下水道越流水の排除施設 にはそのような混和槽を設置できる空間的余裕がない。  In addition, when using a chlorine-based disinfectant, the disinfection time of 15 minutes or more is required (see “Sewerage Facility Planning / Design Guidelines and Explanations”). A mixing tank for retaining the above is required. However, the drainage facility for sewer overflow in rainy weather does not have enough space to install such a mixing tank.
[0040] そこで、雨天時下水道越流水の消毒処理には、消毒時間が短い消毒剤、及び、そ の混合方法が求められる。  [0040] Therefore, in disinfection treatment of sewer stormwater overflow, a disinfectant having a short disinfection time and a mixing method thereof are required.
[0041] 本発明の特徴の一つは、雨天時下水道越流水の消毒に固体臭素系消毒剤を用い るという点にある。本発明において用いることのできる固体臭素系消毒剤としては、例 えば、 1—ブロモ 3 クロ口一 5, 5 ジメチルヒダントイン(BCDMH)、 1, 3 ジブ 口モー 5, 5—ジメチルヒダントイン(DBDMH)などを挙げることができる。  [0041] One of the features of the present invention is that a solid bromine-based disinfectant is used for disinfecting sewer stormwater overflow. Examples of the solid bromine-based disinfectant that can be used in the present invention include 1-bromo 3 black mouth 5,5 dimethylhydantoin (BCDMH), 1,3 dib mouth mouth 5,5-dimethylhydantoin (DBDMH), and the like. Can be mentioned.
[0042] 本発明の一側面では、固体臭素系消毒剤を貯留する装置と、該固体消毒剤を水 に混合して消毒水を得る消毒水調製装置と、前記消毒水を、有機物と、アンモニア 又はアンモ-ゥムイオンとを含む雨天時下水道越流水に添加して消毒を行う消毒水 添加装置とを具備する雨天時下水道越流水の消毒装置が提供される。  [0042] In one aspect of the present invention, a device for storing a solid bromine-based disinfectant, a disinfecting water preparation device for obtaining disinfecting water by mixing the solid disinfectant with water, the disinfecting water, an organic substance, ammonia Alternatively, a disinfection device for sewer stormwater overflow is provided, which includes a disinfecting water addition device for disinfection by adding to rainwater sewer stormwater overflow containing ammonia ions.
[0043] 本発明にお 、て、前記雨天時下水道越流水中の全有機物炭素 (total organic carb on)が、 5mg/L以上であることが好ましい。前記雨天時下水道越流水中のアンモ-ゥ ムイオン濃度力 lmg/L以上であることが好ましい。  [0043] In the present invention, the total organic carbon in the sewer stormwater overflow is preferably 5 mg / L or more. It is preferable that the concentration of ammonia ions in the sewer stormwater overflow is 1 mg / L or more.
[0044] 前記消毒水中の消毒剤の濃度は、活性塩素濃度に換算して、 100mg/L as Cl〜l Og/L as CIであることが好ましい。  [0044] The concentration of the disinfectant in the disinfecting water is preferably 100 mg / L as Cl to l Og / L as CI in terms of active chlorine concentration.
[0045] 前記雨天時下水道越流水中の消毒剤の添加濃度は、活性塩素濃度に換算して、 0. 5mg/L as Cl〜25mg/L as CIであることが好ましい。  [0045] The addition concentration of the disinfectant in the sewer stormwater overflow is preferably 0.5 mg / L as Cl to 25 mg / L as CI in terms of active chlorine concentration.
[0046] 前記添加工程は、前記消毒水を前記雨天時下水道越流水の水面下に導入させる 工程を含むことが好ましい。更に、消毒された雨天時下水道越流水を公共水域に放 流する工程を更に含むことが好まし 、。 [0046] In the addition step, the disinfecting water is introduced under the surface of the sewer stormwater overflow. It is preferable to include a process. Furthermore, it is preferable to further include a step of discharging the sterilized sewer stormwater overflow into the public water area.
[0047] 本発明の他の側面では、消毒剤と雨天時下水道越流水の一部とから消毒水を製 造する装置と、 [0047] In another aspect of the present invention, an apparatus for producing disinfecting water from a disinfectant and a part of sewer stormwater overflow,
雨天時下水道越流水中の砂を除去するための沈砂池と、  A sand basin for removing sand in sewer stormwater overflow,
前記消毒水を沈砂池に導入するための第 1流路と、  A first flow path for introducing the disinfecting water into the sand basin;
を有し、前記雨天時下水道越流水が前記沈砂池に滞留中に消毒される、雨天時下 水道越流水を消毒する装置が提供される。  There is provided an apparatus for disinfecting sewer stormwater overflow, wherein the sewer stormwater overflow is disinfected while staying in the sand basin.
[0048] 本発明において、前記消毒水製造装置は、消毒剤貯留装置と、前記消毒剤を前 記雨天時下水道越流水に添加する装置と、前記消毒剤と前記雨天時下水道越流水 とを混合する装置とを有することが好ましい。また、前記沈砂池が 2以上の沈砂部を 有し、前記第 1流路は、各々の沈砂部に消毒水を導入するための分配槽を有するこ とが好ましい。 [0048] In the present invention, the disinfecting water production apparatus mixes a disinfectant storage device, an apparatus for adding the disinfectant to the sewer stormwater overflow, and the disinfectant and the sewer stormwater overflow. It is preferable to have a device for Moreover, it is preferable that the said sand basin has two or more sand settling parts, and the said 1st flow path has a distribution tank for introduce | transducing disinfection water into each sand settling part.
[0049] 前記第 1流路は、前記消毒水を前記雨天時下水道越流水の水面下に導入するた めの添加装置に連結されて 、ることが好まし!/、。  [0049] Preferably, the first flow path is connected to an addition device for introducing the disinfecting water below the surface of the sewer stormwater overflow!
[0050] 消毒された雨天時下水道越流水を公共水域に放流することができるように貯留す るための貯留池又は放流水路を更に含むことが好ましい。 [0050] It is preferable to further include a reservoir or a discharge channel for storing the sterilized sewer stormwater overflow so that it can be discharged into the public water area.
[0051] 前記貯留池又は放流水路に、消毒された雨天時下水道越流水の水質を検査する ための計測器が設けられて 、ることが好ま 、。 [0051] Preferably, the storage pond or the discharge channel is provided with a measuring instrument for inspecting the quality of the sterilized sewer stormwater overflow.
[0052] 前記沈砂池中の雨天時下水道越流水の一部を前記消毒水製造装置に導入する ための第 2流路を更に有することが好ま 、。 [0052] It is preferable to further include a second flow path for introducing a part of sewer stormwater overflow in the sand basin into the disinfecting water production apparatus.
[0053] 本発明にお 、ては、有機物と、アンモニア又はアンモ-ゥムイオンとを含む雨天時 下水道越流水が消毒される。 In the present invention, sewer stormwater overflow containing organic matter and ammonia or ammonia ions is sterilized.
[0054] 例えば、合流式下水道では、汚水や排水などの下水と雨水とが混合して下水道管 渠を流れる。そして、このように両者が混合した下水、特に、下水処理場で処理され な 、で放流される雨天時下水道越流水が、本発明によって消毒される。 [0054] For example, in a combined sewer, sewage such as sewage and drainage and rainwater mix and flow through a sewer pipe. In addition, sewage mixed with both in this way, in particular, sewer stormwater overflow discharged without being treated at the sewage treatment plant is disinfected by the present invention.
[0055] 分流式下水道では、生下水の下水道 (汚水管渠)と雨水の下水道 (雨水管渠)とが 別れている方式であり、雨水管渠を流れ、公共水域に放流される雨天時下水道越流 水力 本発明によって消毒される。 [0055] In the sewerage sewer system, the sewer (raw water pipe) of raw sewage is separated from the sewer (rain pipe) of rainwater. Hydropower Disinfected by the present invention.
[0056] 雨天時下水道越流水中の有機物の含有量としては、例えば、この雨天時下水道越 流水には、全有機物炭素(total organic carbon)が、 5mg/L以上であってもよぐ 10m g/L以上であってもよぐ 30mg/L以上であってもよぐ 50mg/L以上であってもよい。 合流式下水でも、分流式下水でも、一般的には、全有機物炭素 (total organic carbo n)が、 5mg/L以上である。  [0056] The content of organic matter in the sewer stormwater overflow is, for example, 10 mg of total organic carbon in the sewer stormwater overflow, even if the total organic carbon is 5 mg / L or more. It may be 30 mg / L or more, or 50 mg / L or more. In both combined and separated sewage, the total organic carbon is generally 5 mg / L or more.
[0057] 処理対象の雨天時下水道越流水のアンモ -ゥムイオン濃度が、 lmg/L以上であつ てもよく、 10mg/L以上であってもよい。雨天時下水道越流水中にアンモ-ゥムイオン が含まれているときには、活性臭素がブロマミン (NH Br、 NHBr等)に変化する。し  [0057] The concentration of ammonia ions in the sewer stormwater overflow to be treated may be 1 mg / L or more, or 10 mg / L or more. When ammonia ions are contained in sewer stormwater overflow, the active bromine changes to bromamine (NH Br, NHBr, etc.). Shi
2 2  twenty two
かし、ブロマミンの場合には、次亜臭素酸と同程度の消毒効果を維持するため、効果 的に消毒することができる。合流式下水では、一般的には、アンモニアイオン濃度が 、 lmg/L以上である。また、分流式下水では、降雨直後のファーストフラッシュ (first A ush)と呼ばれる越流水では、アンモニアイオン濃度が lmg/L以上であることが多い。  However, bromamine can be effectively disinfected because it maintains the same level of disinfection as hypobromite. In combined sewage, the ammonia ion concentration is generally 1 mg / L or more. In addition, in diversion sewage, the ammonia ion concentration is often 1 mg / L or more in overflow water called first flush after rain.
[0058] 本発明の一側面では、雨水で希釈された下水を主対象とするが、分流式下水道に よる雨水を対象にしてもよい。更に、下水、し尿、若しくは、産業排水、又は、これらの 処理水など、有機物とアンモニア又はアミンを含む水を、本発明の方法で処理しても よい。 [0058] In one aspect of the present invention, sewage diluted with rainwater is mainly targeted, but rainwater by a shunt sewer may be targeted. Further, water containing organic matter and ammonia or amine, such as sewage, human waste, industrial wastewater, or treated water, may be treated by the method of the present invention.
[0059] 本発明の一側面では、被処理水には、大腸菌を含んでいる。このような水は、特に 消毒をする必要が高いからである。合流式下水には、一般的には、大腸菌も含まれ ている。また、分流式雨水にも、大腸菌が含まれていることが多い。  [0059] In one aspect of the present invention, the water to be treated contains E. coli. This is because it is particularly necessary to disinfect such water. The combined sewage generally contains E. coli. Also, diversion rainwater often contains E. coli.
[0060] 本発明では、固体臭素系消毒剤が用いられる。塩素系消毒剤と比べて、臭素系消 毒剤は、消毒時間が短いことが特徴である。臭素系消毒剤では、数十秒から数分、 例えば 30秒〜 15分、好ましくは 40秒〜 10分、より好ましくは 45秒〜 5分、更に好ま しくは 50秒〜 3分で消毒ができる。また、次亜臭素酸 (HOBr)は天然で容易に分解 するので、排水に残存した次亜臭素酸を分解処理するための装置を設ける必要がな い。これに対して、塩素系消毒剤では、活性塩素が下水中のアンモニアと反応し、ク 口ラミンを形成し、殺菌力を低下させるため、雨天時下水道越流水の排除施設の滞 留時間内で消毒することは困難である。また、クロラミンの残留性が高いため、分解 処理するための装置を設ける必要がある。 [0060] In the present invention, a solid bromine-based disinfectant is used. Compared to chlorine-based disinfectants, bromine-based disinfectants are characterized by a shorter disinfection time. Bromine-based disinfectants can be disinfected in several tens of seconds to several minutes, such as 30 seconds to 15 minutes, preferably 40 seconds to 10 minutes, more preferably 45 seconds to 5 minutes, and even more preferably 50 seconds to 3 minutes. . In addition, since hypobromite (HOBr) is easily decomposed in nature, it is not necessary to provide an apparatus for decomposing the hypobromite remaining in the waste water. In contrast, in chlorine-based disinfectants, active chlorine reacts with ammonia in sewage to form kulamin and reduce sterilizing power. It is difficult to disinfect. In addition, chloramine has high persistence, so it decomposes It is necessary to provide an apparatus for processing.
[0061] 本発明で好適に用いられる固体臭素系消毒剤としては、 1—ブロモ 3 クロ口一 5 , 5 ジメチルヒダントイン(BCDMH)、 1, 3 ジブ口モー 5, 5 ジメチルヒダントイン (DBDMH)などを挙げることができる。  [0061] Examples of the solid bromine-based disinfectant suitably used in the present invention include 1-bromo 3 black mouth 5, 5 dimethyl hydantoin (BCDMH), 1, 3 dib mouth water 5, 5 dimethyl hydantoin (DBDMH) and the like. Can be mentioned.
[0062] 本発明の一側面では、所定の消毒剤を水に混合する工程を含む。本発明では、雨 天時下水道越流水の排除施設で消毒剤を雨天時下水道越流水に添加してもよい。 雨天時下水道越流水の排除施設としては、例えば、合流式下水道の雨水吐き室、ポ ンプ場 (排水機場)、分流式下水道のポンプ場 (排水機場)、下水処理場の揚水ボン プ場、下水処理場の最初沈殿池から曝気槽への流路から分岐して雨天時下水道越 流水を公共水域に放流する施設などを挙げることができる。本発明の消毒剤は、これ らの雨天時下水道越流水排除施設に流入する下水管渠で添加しても良いし、雨水 排除ポンプ井で添加してもよいし、雨水排除ポンプ流入管内で添加してもよい。また 、これらの雨天時下水道越流水排除施設には沈砂池を設けている場合が多い。その 場合には、消毒剤を、沈砂池中、或いは沈砂池の流入部で添加してもよい。消毒剤 の添加場所は、上記の 1ケ所に限らず、数ケ所に分けて添加することができる。  [0062] One aspect of the present invention includes a step of mixing a predetermined disinfectant with water. In the present invention, a disinfectant may be added to sewer stormwater overflow at a facility for removing sewer stormwater overflow. Examples of drainage facilities for sewer overflow in rainy weather include stormwater discharge rooms for combined sewers, pumping stations (drainage station), sewerage pumping stations (drainage station), pumping pumps for sewage treatment plants, and sewage A facility that branches from the flow path from the first sedimentation basin of the treatment plant to the aeration tank and discharges the sewer stormwater overflow into the public water area. The disinfectant of the present invention may be added at a sewer pipe that flows into these sewer overflow drainage facilities during rainy weather, may be added at a rainwater drainage pump well, or added within a rainwater drainage pump inlet pipe. May be. In addition, these sewer overflow facilities for drainage often have sand basins. In that case, a disinfectant may be added in the sedimentation basin or at the inflow part of the sedimentation basin. The place of disinfectant addition is not limited to the above one, but can be added in several places.
[0063] あるいは、雨天時下水道越流水の排除施設に、雨天時下水道越流水が流れる主 流路と、主流路カも分岐するバイパス流路とを設け、このバイパス流路に消毒槽を設 置してもよい。この消毒槽にて、消毒剤を雨天時下水道越流水に添加し、消毒剤を 雨天時下水道越流水に溶解させてもょ ヽ。  [0063] Alternatively, in a drainage facility for sewer stormwater overflow, a main channel through which sewer stormwater overflow flows and a bypass channel that also divides the main channel are provided, and a disinfection tank is installed in the bypass channel May be. In this disinfection tank, disinfectant can be added to sewer stormwater overflow, and disinfectant can be dissolved in sewer stormwater overflow.
[0064] 消毒剤を添加する場所が雨水排除ポンプの流入側であれば、ポンプ内の撹拌力 によって、消毒剤と雨天時下水道越流水との混合が十分行われるため、好ましい。ま た、消毒剤を沈砂池流入部で添加すれば、沈砂池での滞留時間を反応時間に利用 することができるので好ま U、。  [0064] If the place where the disinfectant is added is the inflow side of the rainwater draining pump, it is preferable because the disinfectant and the sewer stormwater overflow are sufficiently mixed by the stirring force in the pump. In addition, if a disinfectant is added at the inflow section of the sand basin, the residence time in the sand basin can be used for the reaction time.
[0065] 本発明で用いられる消毒剤は、室温で固体であるので、消毒剤を水に溶解させて 消毒水にして、雨天時下水道越流水に添加することができる。溶解方法は特に限定 しないが、ェジェクタ一による水流撹拌、流路撹拌、混合装置を設けた溶解槽のいず れでもよい。  [0065] Since the disinfectant used in the present invention is solid at room temperature, the disinfectant can be dissolved in water to form disinfecting water, which can be added to sewer stormwater overflow. The dissolution method is not particularly limited, and any of a water flow stirring by an ejector, a flow path stirring, and a dissolution tank provided with a mixing device may be used.
[0066] 例えば、消毒剤の飽和溶解濃度に対して、 1重量%以上、好ましくは 10重量%以 上、更に好ましくは 20重量%以上の消毒剤が溶解して 、る消毒水を用いても良!、。 もっとも、添加した消毒剤の全てを水に溶解させる必要はなぐ消毒水中に固体の消 毒剤が残留していてもよい。 [0066] For example, 1% by weight or more, preferably 10% by weight or less with respect to the saturated dissolution concentration of the disinfectant. Furthermore, more preferably, 20% by weight or more of the disinfectant can be dissolved, and disinfecting water may be used! However, it is not necessary to dissolve all of the added disinfectant in water, and solid disinfectant may remain in the disinfecting water.
[0067] 消毒水の濃度は、活性塩素濃度に換算して、 100mg/L as CI〜: LOg/L as CIである ことが好ましぐ 200mg/L as Cl〜2g/L as CIであることが更に好ましい。消毒水の濃 度が、 100mg/L as CUり小さい場合には、消毒水の添カ卩量が多量になるば力りでな ぐ希釈水によって消毒剤が消費される場合もあるので、殺菌が十分でないおそれが ある。一方、消毒水の濃度が、 10g/L as Cはり大きい場合には、消毒剤と雨天時下 水道越流水との混合が不充分となり、消毒効果が低減する。  [0067] The concentration of disinfecting water in terms of active chlorine concentration is preferably 100 mg / L as CI to: LOg / L as CI, preferably 200 mg / L as Cl to 2 g / L as CI. Is more preferable. If the concentration of disinfecting water is less than 100 mg / L as CU, the disinfectant may be consumed by diluting water without force if the amount of water added to the disinfecting water is large. May not be sufficient. On the other hand, when the concentration of disinfecting water is 10g / L as C, mixing of disinfectant and sewer stormwater overflow will be insufficient, and the disinfecting effect will be reduced.
[0068] 消毒水添加量は、消毒水中の消毒剤の濃度、降雨量、雨天時下水道越流水の水 質等に依存し、一般には、降雨量、即ち、雨天時下水道越流水の量及び水質の増 加に対応して、消毒水添加量が増加する。しかし、本発明の一実施態様では、雨水 が増すことによって流入水質の汚濁度が減じる。したがって、本発明の一実施態様 では、雨水が増え、流入水量が 3倍になったとしても、消毒水又は消毒剤の添加量を 3倍にする必要はない。したがって、あら力じめビーカテスト等で流入水質における最 適添加量を見出し、その値に流入水量を乗じて消毒水又は消毒剤添加量を定める のが合理的である。  [0068] The amount of disinfecting water depends on the concentration of the disinfectant in the disinfecting water, the amount of rainfall, the quality of the sewer stormwater overflow, etc., and in general, the amount of rainfall, that is, the amount of sewer stormwater overflow and water quality Corresponding to this increase, the amount of disinfecting water added will increase. However, in one embodiment of the present invention, increasing the amount of rainwater reduces the pollution of the incoming water quality. Therefore, in one embodiment of the present invention, even if the amount of rainwater increases and the amount of inflow water triples, it is not necessary to triple the amount of disinfecting water or disinfectant added. Therefore, it is reasonable to find the optimum amount of influent water by brute force beaker test etc. and multiply the value by the amount of influent water to determine the amount of disinfectant water or disinfectant added.
[0069] 流入水質の把握については、濁度もしくは電気伝導度を測定することにより、雨水 の混入状態を把握することができる。この指標であれば、オンタイム検出が可能であ る。これらの指標以外には、降雨パターン、雨天時下水道越流水中の粒子性状、 SS 含有量、化学的酸素要求量(COD、 Chemical Oxygen Demand),生物学的酸素要 求量(BOD、 Biological Oxygen Demand)等を用いることができ、これらの指標を任意 に組み合わせても良い。また、流入水量については、様々な流量計を利用してもよい 力 雨水排除ポンプの稼動台数'負荷状況力 割り出しても力まわない。  [0069] Regarding inflow water quality, it is possible to grasp the state of rainwater contamination by measuring turbidity or electrical conductivity. With this index, on-time detection is possible. In addition to these indicators, rainfall patterns, particle properties in sewer stormwater overflow, SS content, chemical oxygen demand (COD), biological oxygen demand (BOD, Biological Oxygen Demand) ) Etc., and these indicators may be combined arbitrarily. In addition, as for the inflow water volume, various flowmeters may be used.
[0070] 次いで、上記消毒水を、所定の雨天時下水道越流水に添加して、消毒する。例え ば、消毒水槽中の消毒水をバイパス流路を介して、メイン流路に導入させる。  [0070] Next, the disinfecting water is added to a predetermined sewer stormwater overflow to disinfect. For example, the disinfecting water in the disinfecting water tank is introduced into the main channel through the bypass channel.
[0071] 雨天時下水道越流水が、雨水が混入した下水、屎尿、又は、産業排水等の場合に は、通常、雨天時下水道越流水中の消毒剤の添加濃度が、活性塩素濃度に換算し て、 0. 5〜25mg/L as CIであることが好ましぐ l〜15mg/L as CIであることが更に好 ましい。消毒剤の添加濃度は、消毒水中の消毒剤の濃度及び量、並びに、雨天時 下水道越流水の量力 計算することができる。消毒剤の添加濃度は、雨天時下水道 越流水中で消毒剤が消費される前の値である。 [0071] When the sewer stormwater overflow is rainwater-mixed sewage, human waste, or industrial wastewater, the concentration of the disinfectant in the sewer stormwater overflow is usually converted to the active chlorine concentration. 0.5 to 25 mg / L as CI is more preferable, and 1 to 15 mg / L as CI is more preferable. The concentration of the disinfectant can be calculated from the concentration and amount of the disinfectant in the disinfecting water, and the amount of sewer stormwater overflow. The concentration of the disinfectant is the value before the disinfectant is consumed in the sewer stormwater overflow.
[0072] 被処理水が、雨水が混入した下水、尿尿、産業排水等の場合、これらの被処理水 は、一般的に大腸菌群が 104〜: L07CFU/mLの範囲で含まれる力 消毒剤の上記添 加量により、確実に速やかに通常、 1分程度で被処理水に対する殺菌を行うことがで きる。 [0072] When treated water is sewage mixed with rainwater, urine, industrial wastewater, etc., these treated waters generally contain coliforms in the range of 10 4 to: L0 7 CFU / mL. By adding the above-mentioned amount of force disinfectant, it is possible to sterilize the water to be treated quickly and surely in about 1 minute.
[0073] 図 9は、本発明の一実施形態を説明する概略説明図である。  [0073] FIG. 9 is a schematic explanatory diagram illustrating an embodiment of the present invention.
[0074] 雨天時下水道越流水が、メインの下水管渠カも放流用の流路 12に流れこんでいる 。流路 12内の雨天時下水道越流水は、放流ゲート 11を越えて放流水路 17に移動し 、公共水域 19に放流される。放流水路 17中の雨天時下水道越流水について、残留 ハロゲン検出器、濁度計、電気伝導度計などの計測器 18で計測する。残留ハロゲン 検出器は、次亜臭素酸等の活性ハロゲンの残留濃度を測定する。このように、残留 ノ、ロゲン検出器は、放流ゲートから放流口の手前の間に配置されることが好ましい。 [0074] Sewer stormwater overflow flows into the discharge channel 12 as well as the main sewer pipe. The sewer stormwater overflow in the channel 12 moves to the discharge channel 17 through the discharge gate 11 and is discharged to the public water area 19. The sewer stormwater overflow in discharge channel 17 is measured with measuring instrument 18 such as residual halogen detector, turbidity meter, and conductivity meter. Residual halogen detector measures the residual concentration of active halogens such as hypobromous acid. Thus, it is preferable that the residual / logen detector is disposed between the discharge gate and the front of the discharge port.
[0075] 残留ハロゲン検出器で検出した活性ハロゲン濃度力LC 値 (例えば、 BCDMHの  [0075] LC value of active halogen detected by residual halogen detector (for example, BCDMH
50  50
場合には、活性塩素(C1 )換算で、 0. 4mg/L)以上の場合には、 LC 値以下になる  In the case of 0.4 mg / L or more in terms of active chlorine (C1), the LC value will be below
2 50  2 50
ように、望ましくは LC 値の  Preferably LC value
50 1Z2(例えば、 BCDMHの場合には、活性塩素(C1 )換  50 1Z2 (For example, in the case of BCDMH, change the active chlorine (C1)
2 算で 0. 2mg/L)以上の場合には、 LC 値の  If the sum is 0.2 mg / L or more, the LC value
50 1Z2以下になるように、消毒剤又は消 毒水の供給量を減らすか、もしくは一時的に遮断する。これにより、公共用水域中の 水棲生物に与える悪影響を軽減することができる。  Reduce the supply of disinfectant or disinfecting water so that it is 50 1Z2 or less, or temporarily block it. As a result, adverse effects on aquatic organisms in public water bodies can be reduced.
[0076] そして、これらの計測値及び大腸菌群数が所定の放流基準を満たして 、ることを確 認して、河川等の公共水域 19に放流される。 [0076] Then, after confirming that these measured values and the number of coliforms meet a predetermined discharge standard, the measured value is discharged into a public water area 19 such as a river.
[0077] 公共水域 (public water)には、河川、湖沼、港湾、沿岸海域、公共溝渠、かんがい 用水路、及び、その他の公共の用に供される水域または水路が含まれる。 [0077] Public water includes rivers, lakes, harbors, coastal waters, public trenches, irrigation canals, and other public water bodies or channels.
[0078] 図 9の実施態様では、流路 12にバイパス流路 20が接続している。流路 12に流れ 込んだ雨天時下水道越流水の一部が、バイパス流路 20に導入される。そして、この 雨天時下水道越流水には、臭素系消毒剤が添加されて、消毒水に変換して、再び、 流路 12に戻される。 In the embodiment of FIG. 9, a bypass channel 20 is connected to the channel 12. A part of the sewer stormwater overflow that flows into the channel 12 is introduced into the bypass channel 20. And in this sewer stormwater overflow, bromine-based disinfectant is added and converted into disinfecting water. Returned to channel 12.
[0079] 流路 12には、汲み上げポンプ 13が配置されている。流路 12の雨天時下水道越流 水の一部は、汲み上げポンプ 13によってバイパス流路 20に揚水される。  [0079] A pumping pump 13 is disposed in the flow path 12. Part of the sewer stormwater overflow in the channel 12 is pumped to the bypass channel 20 by the pump 13.
[0080] バイパス流路 20には、自動スクリーン 22、流量計 23、消毒剤添加装置 30、溶解装 置 40、ポンプ 46がこの順序に配置されている。 [0080] In the bypass channel 20, an automatic screen 22, a flow meter 23, a disinfectant addition device 30, a dissolution device 40, and a pump 46 are arranged in this order.
[0081] 消毒剤添加装置 30は、固体臭素系消毒剤 39を貯蔵するためのホッパー 32と、固 体臭素系消毒剤 39を供給するための供給機 34と、消毒剤をバイパス流路に排出す るためのェジェクタ一 36とを有する。 [0081] The disinfectant addition device 30 includes a hopper 32 for storing the solid bromine-based disinfectant 39, a feeder 34 for supplying the solid bromine-based disinfectant 39, and discharging the disinfectant to the bypass channel. It has an ejector 36 for use.
[0082] 固体臭素系消毒剤が添加されたバイパス流路 20内の雨天時下水道越流水は、溶 解装置 40に導かれる。溶解装置 40は、固体の臭素系消毒剤を雨天時下水に溶解 するものである。消毒剤が液体のときには、消毒剤を雨天時下水に混合するものであ る。装置 40は、攪拌槽 41aと貯留槽 41bとに分かれた溶解槽を有する。もっとも、この ように溶解槽を 2槽に分ける必要はな 、。 The sewer stormwater overflow in the bypass channel 20 to which the solid bromine-based disinfectant is added is guided to the dissolving device 40. The dissolution apparatus 40 dissolves a solid bromine-based disinfectant in sewage during rainy weather. When the disinfectant is liquid, the disinfectant is mixed with sewage in rainy weather. The apparatus 40 has a dissolution tank divided into a stirring tank 41a and a storage tank 41b. However, it is not necessary to divide the dissolution tank into two tanks in this way.
[0083] 攪拌槽 41aには、水位計 42及び排水を攪拌するための攪拌機 44が設けられて ヽ る。攪拌槽 41a内の雨天時下水道越流水は、攪拌機 44で攪拌され、雨天時下水道 越流水中に固体の消毒剤を溶解して消毒水を形成することができる。貯留槽 41aで オーバフローした消毒水が、貯留槽 41bに移送される。 [0083] The stirring tank 41a is provided with a water level gauge 42 and a stirrer 44 for stirring the waste water. The sewer stormwater overflow in the agitation tank 41a is stirred by the agitator 44, and the disinfectant water can be formed by dissolving the solid disinfectant in the sewer stormwater overflow. The disinfecting water overflowed in the storage tank 41a is transferred to the storage tank 41b.
[0084] 固体の消毒剤の溶解度が小さいときには、溶解装置 40を設けることが好ましい。一 方、固体の消毒剤の溶解度が大きいときには、流路中で速やかに消毒剤が溶解する ので、必ずしも溶解装置は必要でない。 [0084] When the solubility of the solid disinfectant is small, it is preferable to provide a dissolution apparatus 40. On the other hand, when the solubility of the solid disinfectant is high, the disinfectant dissolves quickly in the flow path, so a dissolution apparatus is not necessarily required.
[0085] 装置 40で得られた消毒水は、好ましくは、ポンプ 46により、流路 47を通って雨天時 下水道越流水の流路 12に導かれる。 [0085] The disinfecting water obtained by the device 40 is preferably guided by the pump 46 to the flow path 12 of the sewer stormwater overflow through the flow path 47.
[0086] なお、雨天時下水道越流水の流路 12或いは放流流路 17に溜め部分を形成したり[0086] In addition, a reservoir portion is formed in the flow path 12 or the discharge flow path 17 of the sewer stormwater overflow.
、或いは撹拌機や邪魔板を配置して、消毒水と雨天時下水道越流水との混合を促 進させることができる。 Alternatively, a stirrer or baffle can be placed to promote mixing of disinfecting water with sewer stormwater overflow.
[0087] また、雨天時下水道越流水の排除施設に沈砂池が配置されている場合には、沈砂 池の流入部又は沈砂池の沈砂部に消毒水を導入してもよい。一般的な沈砂池の構 成を図 10に示す。沈砂池 10は、流入部 11と、沈砂部 14a, b, cとに分かれる。 [0088] 沈砂池 10の流入部 11に、汲み上げポンプ 13を配置する。雨天時下水道越流水の 流路 12から沈砂池の流入部 11に導入された雨天時下水道越流水の一部力 汲み 上げポンプ 13によってバイパス流路 20に揚水される。一方、流入部 11の雨天時下 水道越流水の他の部分は、沈砂部 14a、 14b、 14cに流入する。 [0087] In addition, when a sedimentation basin is disposed in the drainage facility for sewer overflow in rainy weather, disinfecting water may be introduced into the inflow portion of the sedimentation basin or the sedimentation portion of the sedimentation basin. Figure 10 shows a typical sand basin configuration. The sand basin 10 is divided into an inflow part 11 and a sand settling part 14a, b, c. [0088] A pumping pump 13 is disposed at the inflow portion 11 of the sand basin 10. The rainwater sewer stormwater overflow 12 is pumped into the bypass basin 20 by the pumping pump 13, which is part of the sewer stormwater overflow introduced into the inflow 11 of the sand basin. On the other hand, the other part of the sewer stormwater overflow in the inflow part 11 flows into the sand settling parts 14a, 14b, 14c.
[0089] バイパス流路 20に導入された雨天時下水道越流水の一部は、図 9に示す消毒剤 供給装置、溶解装置によって消毒剤が溶解されて消毒水を形成し、この消毒水が、 流路 47を介して、沈砂池 10に導かれる。消毒水は、直接、沈砂池 10に導かれても 良いし、図 11に示されるように、分配槽 48を介して、沈砂池 10に導かれても良い。  [0089] A part of the sewer stormwater overflow introduced into the bypass channel 20 is dissolved by the disinfectant supply device and dissolution device shown in Fig. 9 to form disinfectant water. It is guided to the sedimentation basin 10 through the channel 47. The disinfecting water may be guided directly to the sand basin 10 or may be guided to the sand basin 10 via a distribution tank 48 as shown in FIG.
[0090] 即ち、図 11では、流路 47に、分配槽 48が設けられている。図 11では、説明の便宜 上、沈砂池 10の沈砂部 14a、 14b、 14cを図示し、流入部 11は省略されている。  That is, in FIG. 11, the distribution tank 48 is provided in the flow path 47. In FIG. 11, for convenience of explanation, the sand settling portions 14a, 14b, and 14c of the sand settling basin 10 are illustrated, and the inflow portion 11 is omitted.
[0091] 消毒水は、沈砂池 10の流入部 11に導かれても良いし、図 11に示されるように、沈 砂池 10の沈砂部 14a、 14b、 14cの各々の上流に導入されてもよい。  [0091] The disinfecting water may be guided to the inflow portion 11 of the sand basin 10 or may be introduced upstream of each of the sand settling portions 14a, 14b, 14c of the sand basin 10 as shown in FIG. Also good.
[0092] 図 11に示されるように、消毒水が、沈砂池 10の沈砂部 14a、 14b、 14cの各々の上 流に導入される場合には、分配槽 48において、消毒水を沈砂部 14a、 14b、 14cの 各々に導かれる消毒水を予め分配することが好ま 、。  [0092] As shown in FIG. 11, when disinfecting water is introduced upstream of each of the sand settling parts 14a, 14b, 14c of the sand settling basin 10, the disinfecting water is supplied to the sand settling part 14a in the distribution tank 48. It is preferred to pre-distribute the disinfecting water led to each of 14b, 14c.
[0093] 沈砂部 14a、 14b、 14cでは、雨天時下水道越流水中に含まれている砂が沈降して 除去される。同時に、雨天時下水道越流水と消毒水とが混合し、雨天時下水道越流 水が消毒される。消毒された雨天時下水道越流水は、ポンプ 16によって放流水路 1 7に誘導され、公共水域 19に放流される。沈砂部 14a、 14b、 14cでは、雨天時下水 道越流水及び消毒水は、好ましくは、 1秒〜 30分滞留し、更に好ましくは、 1秒〜 15 分滞留し、更になお好ましくは、 1秒〜 10分滞留する。  [0093] In the sand settling portions 14a, 14b, and 14c, the sand contained in the sewer stormwater overflow settles and is removed. At the same time, sewer stormwater overflow and disinfecting water are mixed to disinfect the sewer stormwater overflow. The sterilized sewer stormwater overflow is guided to the discharge channel 17 by the pump 16 and discharged to the public water area 19. In the sand settling parts 14a, 14b, and 14c, the sewage overflow water and disinfecting water during rain preferably stay for 1 to 30 minutes, more preferably 1 to 15 minutes, and still more preferably 1 second. Stay for ~ 10 minutes.
[0094] 図 12に、消毒水を雨天時下水道越流水に添加するための添加装置の一実施態様 を示す。添加装置 50は、水平方向に伸びる管 52と、この管 52に連通し、消毒水を雨 天時下水道越流水に導入する導入部を有する。管 52は、消毒水の供給流路に連流 し、図示されていない支持体で支えられている。導入部の一実施態様は、例えば、管 52から吊り下がる複数のホース 54である。ホースの開口端 56は、雨天時下水道越 流水の水面下に位置することが好ましい。分配槽 48から分配された消毒水は、消毒 水の供給流路、管 52、ホース 54をこの順序に流れて、雨天時下水道越流水 15に添 加される。 [0094] Fig. 12 shows an embodiment of an addition device for adding disinfecting water to sewer stormwater overflow. The adding device 50 has a pipe 52 extending in the horizontal direction and an introduction section that communicates with the pipe 52 and introduces disinfecting water into sewer stormwater overflow. The pipe 52 communicates with the disinfecting water supply flow path and is supported by a support (not shown). One embodiment of the introducer is, for example, a plurality of hoses 54 suspended from the tube 52. The open end 56 of the hose is preferably located below the surface of the sewer stormwater overflow. Disinfecting water distributed from the distribution tank 48 flows in this order through the disinfecting water supply channel, pipe 52 and hose 54, and is added to the sewer overflow 15 in rainy weather. Added.
[0095] ホース 54の開口端 56が雨天時下水道越流水 15の水面上に位置するときには、ホ ースの開口端 56から消毒水の飛沫が風等により、ミストを形成し、周囲の機器、特に 電装機器を腐食させる危険がある。ホースの開口端 56は雨天時下水道越流水 15の 水面下に配置されて 、ることが好ま 、。  [0095] When the open end 56 of the hose 54 is located on the surface of the sewer stormwater overflow 15, the mist of the disinfecting water forms a mist from the open end 56 of the hose due to wind, etc. In particular, there is a risk of corroding electrical equipment. The open end 56 of the hose is preferably located below the surface of the sewer overflow 15 in rainy weather.
[0096] 管 52は、消毒水で腐食されない材質であることが好ましぐ例えば、インコネル等の 金属材料、ポリテトラフルォロエチレン、ポリ塩ィ匕ビュル等のプラスチック材料を用い ることができる。管 52は、ホースを支えるのに十分な機械強度を有することが好ましい 。剛性であることが好ましいが、柔軟であってもよい。  [0096] The tube 52 is preferably made of a material that is not corroded by disinfecting water. For example, a metal material such as Inconel, or a plastic material such as polytetrafluoroethylene or polysalt polybule can be used. . The tube 52 preferably has sufficient mechanical strength to support the hose. It is preferably rigid, but may be flexible.
[0097] 各々の管 52には、例えば、 2〜20本、好ましくは、 2〜10本、更に好ましくは、 2〜 6本のホースを吊り下げても良い。隣接する 2本のホース間の間隔は、一定であること が好ましい。消毒水を排水に効率よく混合することができるからである。もっとも、隣接 する 2本のホース間の間隔が異なっていても良い。ホース 54は、柔軟であることが好 ましいが、剛性であってもよい。  [0097] For example, 2 to 20, preferably 2 to 10, and more preferably 2 to 6 hoses may be hung on each pipe 52. The distance between two adjacent hoses is preferably constant. This is because disinfecting water can be efficiently mixed with waste water. However, the distance between two adjacent hoses may be different. The hose 54 is preferably flexible but may be rigid.
[0098] なお、上記では、雨天時下水道越流水の一部を分岐して消毒剤溶解用の水として 用いる例を示したが、水道水や雑用水などを消毒剤溶解用の水として用いることもで きる。  [0098] In the above, an example has been shown in which a part of sewer stormwater overflow is branched and used as disinfectant-dissolving water, but tap water, miscellaneous water, or the like is used as disinfectant-dissolving water. You can also.
[0099] 本発明において、消毒剤の貯留 ·供給装置として採用することのできる他の形態を 図 13に示す。固体臭素系消毒剤の貯留 ·供給槽 100は、筒型、例えば円筒型の貯 留部 101と供給部 102とに分かれる。貯留部 101の底部には、槽内の固体消毒剤を 撹拌するための撹拌翼などの撹拌装置が備えられ、モーター 104に接続して回転す るようになっている。また、貯留部 101には、空気源設備 105から空気が供給される。 供給部 102から、所定量の固体消毒剤が排出されて、誘導管 107を通って、薬品溶 解部 109の溶解コーン 108に落下する。  FIG. 13 shows another embodiment that can be employed as a disinfectant storage / supply device in the present invention. The solid bromine-based disinfectant storage / supply tank 100 is divided into a cylindrical storage unit 101 and a supply unit 102, for example, a cylindrical type. A stirrer such as a stirring blade for stirring the solid disinfectant in the tank is provided at the bottom of the storage unit 101 and is connected to a motor 104 to rotate. In addition, air is supplied to the storage unit 101 from the air source facility 105. A predetermined amount of the solid disinfectant is discharged from the supply unit 102, passes through the guide tube 107, and falls onto the dissolution cone 108 of the chemical dissolution unit 109.
[0100] 図 13に示す消毒剤貯留装置によれば、貯留部の形状を筒型、例えば円筒型にす ると共に、撹拌翼による機械的撹拌と空気による撹拌によって、粉体の圧密とブリッジ の形成を防止している。従来のホッパーのように、貯留部が逆円錐型であると、固体 消毒剤によってブリッジが形成されて供給不良を起こしやすい。特に、本発明では、 大量の降雨時の雨天時下水道越流水を消毒するということを目的としているので、固 体の臭素系消毒剤を長期間貯留し、年に十数回〜数十回の大量の降雨時に速や かに雨天時下水道越流水に添加して消毒を行わなければならない。また、このような 消毒剤の添加装置は、例えば、下水道の雨水吐き室やポンプ場などに設置され、無 人状態で遠隔操作により作動させるため、長期間圧密やブリッジを形成しないで貯 留,供給ができなければならない。更に、固体臭素系消毒剤は、他の固体粉体と比 ベて圧密やブリッジを起こしやす!/、と!/ヽぅ特性を有しており、圧密及びブリッジを防止 することは、固体臭素系消毒剤をスムーズに供給するためには必須である。図 13に 示す消毒剤貯留装置 100では、固体消毒剤を、撹拌翼 103によって機械的に撹拌 すると共に、空気源 105からの空気を、槽 100の底部の複数箇所に設けられた空気 孔より噴出させることによって撹拌する。なお、空気源 105からの空気の導入ラインに は、除湿器を設置して、乾燥空気が貯留部 101に供給されるようにすることが好まし い。撹拌用空気の湿度は、例えば圧力 0. 5MPaの際の露点が 5°C以下とすることが 好ましい。撹拌用空気を除湿することにより、加水分解による固体臭素系消毒剤の劣 化を防止することができる。撹拌用空気の供給は、間欠的に行うことができる。撹拌 用空気の供給量は、貯留部 lm3に対して 80NL/min程度にすることが好ましい。空気 源 105としては、常時 0. 5MPa以上の圧力が確保できる機器を用いることが好ましい 。また、貯留部 101内に連続的に乾燥空気を供給して内部を加圧状態とすることによ り、供給部 102からの固体消毒剤の排出を目づまりなく円滑に行うことができる。貯留 部 101内の空気は集塵装置 106を通って排気される。 [0100] According to the disinfectant storage device shown in Fig. 13, the shape of the storage part is cylindrical, for example, cylindrical, and the compaction of the powder and the bridge are performed by mechanical stirring by a stirring blade and stirring by air. Prevents formation. If the reservoir is an inverted conical shape like a conventional hopper, a bridge is formed by the solid disinfectant, which tends to cause poor supply. In particular, in the present invention, The purpose is to disinfect sewer stormwater overflow during heavy rains, so a solid bromine-based disinfectant is stored for a long period of time. It must be disinfected by adding it to the sewer overflow water during rainy weather. In addition, such disinfectant addition devices are installed in, for example, sewer storm drains and pump stations, and are operated by remote operation in an unattended state. Must be able to supply. In addition, solid bromine-based disinfectants are more susceptible to compaction and bridging than other solid powders! / And! / ヽ ぅ characteristics, and preventing solidification and bridging It is essential for the smooth supply of disinfectants. In the disinfectant storage device 100 shown in FIG. 13, the solid disinfectant is mechanically agitated by the agitating blade 103, and the air from the air source 105 is ejected from air holes provided at a plurality of locations at the bottom of the tank 100. To stir. It is preferable to install a dehumidifier on the air introduction line from the air source 105 so that dry air is supplied to the storage unit 101. As for the humidity of the stirring air, for example, the dew point at a pressure of 0.5 MPa is preferably 5 ° C or less. By dehumidifying the stirring air, deterioration of the solid bromine-based disinfectant due to hydrolysis can be prevented. The supply of the stirring air can be performed intermittently. The supply amount of stirring air is preferably about 80 NL / min with respect to the reservoir lm 3 . As the air source 105, it is preferable to use a device that can always secure a pressure of 0.5 MPa or more. In addition, by continuously supplying dry air into the storage unit 101 to make the inside pressurized, the solid disinfectant can be smoothly discharged from the supply unit 102 without being obscure. The air in the storage unit 101 is exhausted through the dust collector 106.
[0101] 集塵装置 106としては、バグフィルター、水洗塔、サイクロンなどを用いることができ る。 [0101] As the dust collector 106, a bag filter, a water washing tower, a cyclone, or the like can be used.
[0102] 固体消毒剤の貯留部 101の形状は、円筒型が好ましいが、撹拌機や空気パージ による粉体流動機構を備えれば、円錐状や角型のものも用いることができる。また、 貯留部での固体消毒剤の撹拌手段としては、上記の機械的撹拌、空気ブローによる 撹拌の他に、容器自体を振動させる手法も採用できる。  [0102] The shape of the solid disinfectant reservoir 101 is preferably a cylindrical shape, but a conical or square shape can also be used if a powder flow mechanism by a stirrer or air purge is provided. As a means for stirring the solid disinfectant in the storage section, a method of vibrating the container itself can be adopted in addition to the mechanical stirring and stirring by air blow.
[0103] 固体消毒剤の貯留部 101の具体的な構成例を図 14を参照して説明する。 A specific configuration example of the solid disinfectant storage unit 101 will be described with reference to FIG.
[0104] 図 14を参照して説明すると、固体消毒剤の貯留部は、固体消毒剤の貯槽 100と、 貯槽 100内の粉体を所定の量計量して供給先に排出する定量供給機 102とを備え ている。貯槽 100は支持フレーム 112に取付けられ、定量供給機 102は貯槽 100の 下面に取付けられている。 Referring to FIG. 14, the solid disinfectant reservoir includes a solid disinfectant storage tank 100, A fixed quantity feeder 102 that measures a predetermined amount of the powder in the storage tank 100 and discharges it to a supply destination is provided. The storage tank 100 is attached to the support frame 112, and the metering feeder 102 is attached to the lower surface of the storage tank 100.
[0105] 図 15及び図 16を参照して貯槽 100について説明する。貯槽 100は、円筒容器状 に形成され、排出口 124が形成された底板 100a、固体消毒剤投入口 126が設けら れた天井板 100b、及び円筒状の容器本体 100cを備えている。投入口 126から固 体消毒剤が容器内に投入される。また底板 100a上には、底板 100aを貫通する駆動 軸 128を有し鉛直方向に延びる軸線 115を中心に所定の方向 Rに回転される粉体 の攪拌手段である攪拌翼 130を備えている。  [0105] The storage tank 100 will be described with reference to Figs. The storage tank 100 is formed in a cylindrical container shape, and includes a bottom plate 100a in which a discharge port 124 is formed, a ceiling plate 100b in which a solid disinfectant input port 126 is provided, and a cylindrical container body 100c. Solid disinfectant is introduced into the container through the inlet 126. Further, on the bottom plate 100a, there is provided a stirring blade 130 which is a powder stirring means having a drive shaft 128 penetrating the bottom plate 100a and rotating in a predetermined direction R around an axis 115 extending in the vertical direction.
[0106] 容器本体 100cは、その周縁の周方向に等間隔で 8個所、攪拌翼 130の近傍に開 口する圧縮空気の噴射口である噴射ノズル 132を備えている。底板 100aには、軸線 115の回りに等間隔で 4個所攪拌翼 130に向けて開口する噴射ノズル 132を備えて いる。噴射ノズル 132の各々には、圧縮空気源 162の乾燥圧縮空気力 逆止弁 164 を介して供給される。圧縮空気は、その噴射量、噴射間隔などが自在に制御されて 供給される。  [0106] The container main body 100c is provided with eight injection nozzles 132 that are compressed air injection ports that are opened in the vicinity of the stirring blades 130 at eight equal intervals in the circumferential direction of the peripheral edge thereof. The bottom plate 100a is provided with injection nozzles 132 that open toward the four stirring blades 130 at equal intervals around the axis 115. Each of the injection nozzles 132 is supplied via a dry compressed air force check valve 164 of a compressed air source 162. The compressed air is supplied with its injection amount, injection interval, etc. freely controlled.
[0107] 逆止弁 164は周知のものでよぐ例えば弁体が弁座に対して垂直に移動するポぺ ット弁、あるいは弁板が弁座に対しヒンジを中心に揺動開閉するスイングキャッチ弁な どを用いることができる。そして粉体が圧縮空気源の方向に逆流するのを確実に止 めるために、弁体あるいは弁板を周知の手段であるスプリング 165などによって押さ え、圧縮空気が流されたときにのみ開弁するようにするとよ 、。  [0107] The check valve 164 may be a well-known valve, for example, a poppet valve in which the valve element moves vertically with respect to the valve seat, or a swing in which the valve plate swings around the hinge with respect to the valve seat. A catch valve can be used. In order to stop the powder from flowing backward in the direction of the compressed air source, the valve body or the valve plate is pressed by a well-known means such as a spring 165, and is opened only when compressed air is flowed. I'll try to speak.
[0108] 固体消毒剤投入口 126には、その開口を閉じる、蓋部材、あるいは開閉自在なバ タフライ弁などが取付けられる。また天井板 100bには、集塵設備につながる集塵口 1 00dが備えられている。容器本体 100cの外周部には、貯槽 100を支持フレーム 12 ( 図 14)上に載置するためのブラケット 100eが 4個備えられている。  [0108] The solid disinfectant inlet 126 is attached with a lid member or an openable butterfly valve that closes the opening. The ceiling plate 100b is provided with a dust collection port 100d connected to a dust collection facility. Four brackets 100e for mounting the storage tank 100 on the support frame 12 (FIG. 14) are provided on the outer periphery of the container body 100c.
[0109] 攪拌翼 130は、軸線 115を中心に容器本体 100cの内周部まで放射状に反対方向 に延びた一対の放射翼 131、 131を備えている。放射翼 131の各々は、連通する上 方に凸の中空三角断面を有し、半径方向先端部は回転方向 Rの側に向けて曲げら れ、また上方に突出されている。放射翼 131には、その中空部に駆動軸 128内を通 して前述の逆止弁 164を介した加圧空気が圧縮空気源 162から供給され、三角断面 の上端の稜線上及び回転方向 R側の面には、その噴射口 133が複数個形成されて いる。 [0109] The agitating blade 130 includes a pair of radiating blades 131 and 131 extending radially in the opposite direction from the axis 115 to the inner peripheral portion of the container body 100c. Each of the radiating blades 131 has an upwardly projecting hollow triangular cross section communicating therewith, and the radial tip portion is bent toward the direction of rotation R and protrudes upward. The radiating blade 131 passes through the inside of the drive shaft 128 through the hollow portion. Then, pressurized air is supplied from the compressed air source 162 through the check valve 164 described above, and a plurality of injection ports 133 are formed on the ridgeline at the upper end of the triangular section and on the surface in the rotation direction R side. Yes.
[0110] 図 17及び図 18を参照して定量供給機 102について説明する。定量供給機 102は 、円筒状の容器本体 134、容器本体 134の底板 136上に配設され底板 136を貫通 する駆動軸 138を有して鉛直方向に延びる軸線 115を中心に所定の回転方向 RRに 回転される回転テーブル 140、及び回転テーブル 140上に一体に備えられた攪拌 手段である攪拌翼 142を備えている。定量供給機 102は、駆動軸 138を回転駆動さ せる駆動源 144を備えている。  [0110] The quantitative feeder 102 will be described with reference to Figs. The metering feeder 102 has a cylindrical container body 134, a drive shaft 138 disposed on the bottom plate 136 of the container body 134 and penetrating through the bottom plate 136, and a predetermined rotational direction RR about an axis 115 extending in the vertical direction. And a stirring blade 142 which is a stirring means integrally provided on the rotary table 140. The quantitative feeder 102 includes a drive source 144 that rotates the drive shaft 138.
[0111] 容器本体 134は、貯槽 100の排出口 124と実質的に同じ大きさの内径を有した円 筒状を成し、底板 136には供給口 146が形成され、円筒の上端は取付フランジ 147 を有して開放されており、貯槽 100の底板 100aの排出口 124の部分に取付けられる  [0111] The container body 134 has a cylindrical shape having an inner diameter substantially the same size as the discharge port 124 of the storage tank 100, the supply port 146 is formed on the bottom plate 136, and the upper end of the cylinder is a mounting flange. 147 is open and attached to the outlet 124 of the bottom plate 100a of the storage tank 100.
[0112] 回転テーブル 140は、計量手段としての上下及び半径方向外方が開口された計量 室 140aを、外周の周方向に複数個備えている。計量室 140aの外方及び下方の開 口は、容器本体 134の周壁及び底板 136によって実質上閉じられている。容器本体 134内の粉体は、回転テーブル 140を所定の方向 RRに回転させると、順次に計量 室 140aに上側の開口力も導入され、すり切り板 140bの部分においてこの上側の開 口も閉じられ、計量室 140aに閉じ込められる。回転方向 RRのすり切り板 140bの中 央においては、下側の開口は供給口 146に開けられ、計量室 140a内の粉体は放出 される。したがって、計量室 140aの容積及び回転テーブル 40の回転数を規定する ことにより、所定の量の粉体が計量されて供給口 146に排出される。 [0112] The turntable 140 is provided with a plurality of measuring chambers 140a, which are opened at the top and bottom and in the radial direction, as measuring means, in the circumferential direction of the outer periphery. The outer and lower openings of the measuring chamber 140a are substantially closed by the peripheral wall of the container body 134 and the bottom plate 136. When the rotary table 140 is rotated in a predetermined direction RR, the upper opening force is sequentially introduced into the measuring chamber 140a, and the upper opening is also closed at the part of the scraping plate 140b. Contained in weighing chamber 140a. In the center of the cutting plate 140b in the rotation direction RR, the lower opening is opened at the supply port 146, and the powder in the measuring chamber 140a is discharged. Therefore, by defining the volume of the measuring chamber 140a and the rotational speed of the rotary table 40, a predetermined amount of powder is weighed and discharged to the supply port 146.
[0113] 円筒状の容器本体 134は、その周縁の 3個所、攪拌翼 142の近傍の下部に開口す る圧縮空気の噴射口である噴射ノズル 148を備えている。噴射ノズル 148〖こは、前述 の貯槽 100に備えられた噴射ノズル 132と同様に、圧縮空気源 162の乾燥圧縮空気 力 噴射量、噴射間隔などを制御されて逆止弁 164を介し供給される。  [0113] The cylindrical container body 134 is provided with injection nozzles 148 that are compressed air injection ports that are opened at three locations on the periphery of the container body 134 and in the lower part in the vicinity of the stirring blades 142. The injection nozzle 148 is supplied through the check valve 164 by controlling the dry compressed air force injection amount, the injection interval, etc. of the compressed air source 162 in the same manner as the injection nozzle 132 provided in the storage tank 100 described above. .
[0114] 攪拌翼 142は、軸線 115を中心に容器本体 134の内周部まで放射状に反対方向 に延びる一対の放射翼 143、 143を備えている。放射翼 143の各々は、連通し上方 に凸の中空三角断面を有し、半径方向先端部は上方に突出されている。放射翼 14 3には、その中空部に駆動軸 138内を通して前述の逆止弁 164を介した加圧空気が 圧縮空気源 162から供給され、三角断面の上端の稜線上及び回転方向 RR側の面 には、その噴射口 150が複数個形成されている。 [0114] The stirring blade 142 includes a pair of radiating blades 143 and 143 extending radially in the opposite direction from the axis 115 to the inner peripheral portion of the container main body 134. Each of the radiating wings 143 communicates upward Has a convex hollow triangular cross section, and the tip end in the radial direction protrudes upward. The compressed air is supplied from the compressed air source 162 to the radiating blade 14 3 through the check shaft 164 through the drive shaft 138 into the hollow portion thereof, and is on the ridge line at the upper end of the triangular section and on the rotation direction RR side. A plurality of injection ports 150 are formed on the surface.
[0115] 定量供給機 102の供給口 146には管部材 107が接続されている。定量供給機 10 2から供給された固体消毒剤は、管部材 107の下方に配置された、排出した粉体を 水に溶かす溶解手段である溶解コーン 108に落下する。溶解コーン 108からの溶解 水は流水が圧送された管路 20のェジヱクタ 109に流され、ェジヱクタ 109の吸引作 用によって吸引され、輸送管路 47により目的の場所に送られる。  [0115] A pipe member 107 is connected to the supply port 146 of the fixed amount feeder 102. The solid disinfectant supplied from the metering feeder 102 falls to a dissolution cone 108 disposed below the pipe member 107, which is a dissolution means for dissolving the discharged powder in water. Dissolved water from the melting cone 108 flows into the ejector 109 of the conduit 20 to which the flowing water is pumped, sucked by the suction action of the ejector 109, and sent to the target location through the transport conduit 47.
[0116] 溶解コーン 108においては、上方の拡がった漏斗状本体の上端部周縁の複数個 のノズル力 水が放出され、放出された水は漏斗状本体の内面に沿って渦巻状にな つて下方に流される。そしてこの流れの中に、管部材 107から粉体を投入することに より、粉体は溶解される。もっとも、粉体の全てを水に溶解させる必要はなぐ消毒水 中に固体の消毒剤が残留して!/、てもよ!/、。  [0116] In the melting cone 108, a plurality of nozzle force water is discharged at the periphery of the upper end of the funnel-shaped body that spreads upward, and the discharged water forms a spiral along the inner surface of the funnel-shaped body. Washed away. The powder is melted by introducing the powder from the tube member 107 into this flow. However, it is not necessary to dissolve all of the powder in water. There is a solid disinfectant remaining in the disinfecting water!
[0117] 上記に説明した構成の固体消毒剤貯留 ·供給装置によれば、薬剤供給部と薬品溶 解部の間に溶解コーンを設け、供給部で切り出した薬品は溶解コーンに落下する構 造とした。この構造により、薬品溶解部と供給部とを切り離すことができ、消毒水が固 体薬剤の貯留部に逆流することが防止できる。  [0117] According to the solid disinfectant storage and supply device having the configuration described above, a dissolution cone is provided between the drug supply unit and the chemical dissolution unit, and the chemical cut out by the supply unit falls to the dissolution cone. It was. With this structure, the chemical dissolution part and the supply part can be separated, and the disinfecting water can be prevented from flowing back to the solid drug storage part.
[0118] 薬品供給部としては、上記に説明したテーブルフィーダ一方式のものの他に、スクリ ユーフィーダ一方式、ロータリーバルブ方式の供給装置を採用することができる。また 、薬品溶解部としては、上記に説明した渦流式溶解コーンとェジェクタとの併用の他 に、円形又は角形の滑り台給水方式や、単純槽と攪拌機とを組みあわせた形式や、 ラインミキサーなどの形式のものを採用することができる。  [0118] In addition to the table feeder type described above, a drug feeder type or rotary valve type supply device can be employed as the chemical supply unit. In addition to the combined use of the vortex-type melting cone and ejector described above, the chemical dissolving section includes a circular or square slide water supply system, a combination of a simple tank and a stirrer, a line mixer, etc. A form can be adopted.
[0119] また、貯留部 101の消毒剤投入口 126に、固体消毒剤のコンテナを接続できるよう な形態にすることもできる。図 19によれば、固体消毒剤の貯槽 101は、消毒剤投入 口 126において、固体消毒剤の収容された開閉自在な排出口 184を有する複数個 の容器であるコンテナ 186 (図示は 1個)と排出口 184を介して連結される(図 19の状 態)。 [0120] 図 20を参照してコンテナ 186について説明する。コンテナ 186は、排出口 184が下 端に形成された容器本体 114と、排出口 184に設けられ常時は排出口 184を閉じて V、る弁体であるコーン 116と、コーン 116に一端が連結され容器本体 114内を上方 に延びて他端が外方に突出した軸部材であるコーンロッド 118とを備えている。排出 口 184は、コーンロッド 118の突出端を把持してコーン 116を操作することにより開閉 される。コーンロッド 118は、容器本体 114内に配設されたばねを有する付勢手段 12 0によって、コーン 116を排出口 184を閉じる方向に付勢されている。 [0119] In addition, a solid disinfectant container can be connected to the disinfectant inlet 126 of the storage unit 101. According to FIG. 19, the solid disinfectant storage tank 101 has a container 186 (one in the figure) as a plurality of containers having an openable / closable outlet 184 containing a solid disinfectant at the disinfectant inlet 126. And the discharge port 184 (state of FIG. 19). [0120] The container 186 will be described with reference to FIG. The container 186 has a container body 114 having a discharge port 184 formed at the lower end, a cone 116 that is provided at the discharge port 184 and is normally closed by closing the discharge port 184, and one end connected to the cone 116. And a cone rod 118 which is a shaft member extending upward in the container main body 114 and projecting the other end outward. The discharge port 184 is opened and closed by gripping the protruding end of the cone rod 118 and operating the cone 116. The cone rod 118 is biased in a direction to close the discharge port 184 by biasing means 120 having a spring disposed in the container body 114.
[0121] 容器本体 114は、円筒状たて型の本体部 114a、粉体の投入口 114bを有した上蓋 部 114c、コーン 116が当接し排出口 184の形成された漏斗状の底部 114d、及び底 部 114dの先端部に形成され貯槽 101に揷脱自在に連結される円筒状のガイド部 1 14eを備えている。本体部 114aの下部外周には、保管、移動、貯槽 101上への載置 、などのためのフレーム 14fが備えられている。  [0121] The container main body 114 includes a cylindrical vertical main body 114a, an upper lid 114c having a powder inlet 114b, a funnel-shaped bottom 114d in which a cone 116 contacts and a discharge outlet 184 is formed, and A cylindrical guide portion 114e is formed at the tip of the bottom portion 114d and is detachably connected to the storage tank 101. A frame 14f for storage, movement, placement on the storage tank 101, and the like is provided on the outer periphery of the lower portion of the main body 114a.
[0122] コーン 116は、中空の円錐体状を成し、その底面の外周縁には排出口 184に当接 するシール材であるコーンシール 117が取付けられ、頂部はコーンロッド 118に連結 されている。  [0122] The cone 116 has a hollow cone shape, and a cone seal 117, which is a seal material that comes into contact with the discharge port 184, is attached to the outer peripheral edge of the bottom surface, and the top portion is connected to the cone rod 118. Yes.
[0123] コーンロッド 118は、上蓋部 114cに取付けられたシャフトガイド 114gによって上下 に摺動自在に案内されている。付勢手段 120は、シャフトガイド 114gとコーンロッド 1 18のピン 119との間に圧縮コイルばね 121を備えて!/、る。圧縮コイルばね 121の中 をコーンロッド 118が通されている。コーンロッド 118の突出した上端には、弁開閉手 段 (弁開閉手段にっ 、ては後に述べる)によって解除自在に把持される円板状のフ ランジ部 122が備えられて 、る。  [0123] The cone rod 118 is slidably guided up and down by a shaft guide 114g attached to the upper lid portion 114c. The biasing means 120 includes a compression coil spring 121 between the shaft guide 114g and the pin 119 of the cone rod 118. A cone rod 118 is passed through the compression coil spring 121. The protruding upper end of the cone rod 118 is provided with a disc-shaped flange portion 122 that is releasably gripped by a valve opening / closing means (the valve opening / closing means will be described later).
[0124] 図 21を参照して、上述のごとく構成された固体消毒剤供給設備の設置形態の一例 について説明する。固体消毒剤の貯槽 101及び定量供給機 102のそばには、間隔 を置いて、固体消毒剤を収容したコンテナ 186が複数個、 3段の棚 156に、図 20の 紙面に垂直の方向に複数列、格納されている。貯槽 101及び定量供給機 102と棚 1 56との間には、スタツカクレーン 158が備えられ、スタツカクレーン 158によって棚 15 6のコンテナ 186は必要に応じて適宜に出し入れされ、取り出されたコンテナ 186は 、貯槽 101上に、排出口 184のガイド部 114eを貯槽の投入口 126に挿入させ載置さ れる。 [0124] With reference to FIG. 21, an example of the installation form of the solid disinfectant supply facility configured as described above will be described. Near the solid disinfectant storage tank 101 and metering dispenser 102, there are a plurality of containers 186 containing solid disinfectants at intervals, in a three-tier shelf 156, in a direction perpendicular to the paper surface of FIG. Column, stored. A stagger crane 158 is provided between the storage tank 101 and the fixed quantity feeder 102 and the shelf 1 56, and the container 186 on the shelf 15 6 is appropriately taken in and out as needed by the stagger crane 158. 186 is placed on storage tank 101 by inserting guide part 114e of discharge port 184 into storage tank input port 126. It is.
[0125] 載置されたコンテナ 186の上方には弁開閉手段 160が備えられている。弁開閉手 段 160は、空気圧シリンダによって水平方向に開閉されコンテナ 186のコーンロッド 1 18のフランジ 122を着脱自在に把持すると共に、上下方向に移動させる空気圧シリ ンダを備え、コーンロッド 118を動かしてコンテナ 186の弁体であるコーン 116を開閉 する。  A valve opening / closing means 160 is provided above the placed container 186. The valve opening / closing means 160 is equipped with a pneumatic cylinder that is opened and closed horizontally by a pneumatic cylinder and detachably holds the flange 122 of the cone rod 118 of the container 186 and moves in the vertical direction. Open and close the cone 116, which is the valve body of the container 186.
[0126] 図 22を参照して固体消毒剤を収容した容器の他の形態である、フレコンバッグ 180 を用いた実施形態について説明する。フレコンバッグ 180は、柔軟な袋により形成さ れた、粉体などを収容するのに用いられる周知のものである。フレコンバッグ 180は、 袋の下部にテープ、ロープなどにより開閉自在に縛られ閉じられる排出口 180aを備 え、上部には吊り下げ用のロープ 180bを備えている。粉体の収容されたフレコンバッ グ 180は、格納場所において電動チェンブロック 184を用いて吊り金具 182により吊 り下げられ移動され、貯槽 101上に、排出口 180aを固体消毒剤投入口 126に挿入 させて位置付けられる。そして、排出口 180aをそれを閉じているテープ、ロープなど を解いて開け、固体消毒剤を貯槽 101に充填する。  [0126] An embodiment using a flexible container bag 180, which is another form of a container containing a solid disinfectant, will be described with reference to FIG. The flexible container bag 180 is a well-known bag that is formed of a flexible bag and is used to store powder or the like. The flexible container bag 180 has a discharge port 180a that can be freely opened and closed by a tape, a rope or the like at the bottom of the bag and a rope 180b for suspension at the top. The flexible container bag 180 containing the powder is suspended and moved by the hanging bracket 182 using the electric chain block 184 at the storage location, and the discharge port 180a is inserted into the solid disinfectant input port 126 on the storage tank 101. Positioned. Then, the discharge port 180a is opened by opening a tape, a rope, or the like that closes the discharge port 180a, and the storage tank 101 is filled with the solid disinfectant.
[0127] 上述したとおりの固体消毒剤供給設備の作用について説明する。  [0127] The operation of the solid disinfectant supply facility as described above will be described.
[0128] (1)必要なときに必要量の固体消毒剤を供給できる:  [0128] (1) The required amount of solid disinfectant can be supplied when needed:
固体消毒剤を複数個の容器である、コンテナ 186あるいはフレコンバッグ 180に分 けて収容し、供給先の必要量に応じて容器を貯槽 101に順次に連結し貯槽 101内 に粉体を充填し、充填された粉体を定量供給機 102によって所定の量計量して供給 先に供給するので、容器及び貯槽内に収容する粉体の量を少なくでき、圧密による 粉体の固化を防止できる。また、貯槽 101内に攪拌手段 130、定量供給機 102内に 攪拌手段 142を備えると共に、圧縮空気を定期的に貯槽 101及び Z又は定量供給 機 102内に、周壁、攪拌手段などから噴射するので、粉体の固化をさらに防止できる 。したがって、必要なときに必要量の粉体を供給することができる。  The solid disinfectant is stored in multiple containers, such as container 186 or flexible container bag 180, and the containers are sequentially connected to storage tank 101 according to the required amount of the supply destination, and the storage tank 101 is filled with powder. The filled powder is weighed in a predetermined amount by the quantitative feeder 102 and supplied to the supply destination. Therefore, the amount of powder stored in the container and the storage tank can be reduced, and solidification of the powder due to compaction can be prevented. Further, the storage tank 101 is equipped with the stirring means 130, the fixed quantity feeder 102 is provided with the stirring means 142, and the compressed air is periodically injected into the storage tank 101 and Z or the fixed quantity feeder 102 from the peripheral wall, the stirring means, etc. Further, solidification of the powder can be prevented. Therefore, a necessary amount of powder can be supplied when necessary.
[0129] (2)作業者などに粉体が触れな!/ヽ:  [0129] (2) Do not touch the workers with powder! / ヽ :
固体消毒剤を収容した容器である、コンテナ 186あるいはフレコンバッグ 180を、貯 槽 101上にその排出口を投入口 126を介して連結して載置し固体消毒剤を貯槽 10 1に充填するので、粉体の封入された袋を開封し粉体を貯槽 101に充填するような作 業は不要であり、作業者などに粉体の触れるのが防止される。 Container 186 or flexible container bag 180, which is a container containing solid disinfectant, is placed on storage tank 101 with its discharge port connected via input port 126 to store solid disinfectant 10 1 is filled, it is not necessary to open the bag in which the powder is sealed and fill the storage tank 101 with the powder, and the operator can be prevented from touching the powder.
[0130] (3)逆止弁:  [0130] (3) Check valve:
貯槽 101及び定量供給機 102内に、逆止弁 164を介して圧縮空気を噴射するので 、貯槽 101及び定量供給機 102内を加圧状態に維持することができ、供給口 146か らの粉体の 出をよりスムースに行える。  Since the compressed air is injected into the storage tank 101 and the metering feeder 102 via the check valve 164, the inside of the tank 101 and the metering feeder 102 can be maintained in a pressurized state, and the powder from the supply port 146 can be maintained. You can get out of your body more smoothly.
[0131] (4)定量供給機に連結した柔軟な管部材:  [0131] (4) Flexible pipe member connected to the metering feeder:
定量供給機 102の粉体供給口 146に連結した管部材 107を、柔軟な塩化ビニルの ごとき合成樹脂によって形成することにより、加圧された定量供給機 102内の回転テ 一ブル 140の計量室 140aが回転テーブル 140の回転により固体消毒剤供給口 146 に間欠的に連通すると、管部材 107に間欠的に加圧状態の固体消毒剤が排出され その作用によって管部材 107は伸縮振動する。したがって、固体消毒剤が管部材 10 7の中に閉塞されるのが防止される。管部材 107として鋼管などを用いた場合に行わ れる閉塞を防止するための外部から打撃を与えることも不要になる。管部材 107を透 明なものにすれば、その中の粉体の状態が確認でき好都合である。  The tube member 107 connected to the powder supply port 146 of the quantitative feeder 102 is made of a synthetic resin such as flexible vinyl chloride, so that the rotary table 140 in the pressurized quantitative feeder 102 is measured in the measuring chamber 140 When 140a intermittently communicates with the solid disinfectant supply port 146 by the rotation of the rotary table 140, the solid disinfectant in a pressurized state is intermittently discharged to the tube member 107, and the tube member 107 expands and contracts by its action. Therefore, the solid disinfectant is prevented from being blocked in the pipe member 107. It is not necessary to hit the outside from the outside in order to prevent the blockage that occurs when a steel pipe or the like is used as the pipe member 107. If the tube member 107 is made transparent, the state of the powder in the tube member 107 can be confirmed conveniently.
[0132] (5)溶解手段:  [0132] (5) Dissolution means:
さら〖こ、定量供給機 102により計量され排出された固体消毒剤を、溶解手段である溶 解コーン 108を通して溶解水にして搬送するようにすれば、単に流水の圧送された 輸送管路に粉体を投入し供給先に送るのに比べて、効率良ぐ効果的に送ることが できる。  Furthermore, if the solid disinfectant weighed and discharged by the quantitative feeder 102 is transported as dissolved water through the dissolution cone 108, which is a dissolution means, the powder is simply transferred to the transport line that is pumped with running water. It can be sent efficiently and effectively compared to sending the body to the supplier.
[0133] また、上記に説明の装置においては、下記のように、本発明の範囲内においてさま ざまな変形ある 、は修正ができる。  [0133] In addition, the apparatus described above can be modified or modified in various ways within the scope of the present invention as described below.
[0134] (1)定量供給機の設置位置: [0134] (1) Installation position of metering feeder:
本実施の形態においては、定量供給機 102は貯槽 101外に取付けられているが、 定量供給機 102を貯槽 101内に、例えば攪拌手段 130と同一の軸線 115上で駆動 するように酉己設してちよい。  In the present embodiment, the fixed amount feeder 102 is attached to the outside of the storage tank 101. However, the fixed amount feeder 102 is installed in the storage tank 101 so as to be driven on the same axis 115 as the stirring means 130, for example. You can do it.
[0135] (2)逆止弁の設置位置: [0135] (2) Check valve installation position:
本実施の形態においては、圧縮空気源 162の圧縮空気を貯槽 101及び定量供給 機 102の複数個の噴射ノズル 132、 148、噴射口 133、 150などに、共通の逆止弁 1 64を介して供給したが、貯槽 101、定量供給機 102、攪拌翼 130、攪拌翼 142など の大きさ、形状、そして扱う固体消毒剤の種類、圧縮空気の供給間隔などに応じて、 噴射ノズル、噴射口の部分に固体消毒剤が詰まらないように、逆止弁を噴射ノズル 及び Z又は噴射口の部分それぞれに備えてもょ 、。 In the present embodiment, the compressed air from the compressed air source 162 is supplied to the storage tank 101 and the fixed amount. It was supplied to a plurality of injection nozzles 132, 148, injection ports 133, 150, etc. of the machine 102 through a common check valve 164, but the storage tank 101, fixed quantity supply machine 102, stirring blade 130, stirring blade 142, etc. Depending on the size, shape, type of solid disinfectant to be handled, supply interval of compressed air, etc., check valve should be connected to the injection nozzle and Z or so that the solid disinfectant will not clog the injection nozzle and injection port. Prepare for each part of the injection port.
[0136] 固体消毒剤を水に溶解して消毒水を形成する溶解部の他の構成例を図 23に示す 。上記図 13等で説明した固体消毒剤の貯槽 101が、雨天時下水道越流水の流路 1 2に設けられたピット 210の上に設置されている。定量供給機 102に接続した消毒剤 誘導管 107がピット 210の中に向力つて配置される。流路 12内には、水中混合機 20 2が取り付けられた水中ェジェクタ 201が設置される。流路 12内の雨天時下水道越 流水の一部がポンプ 203によって揚水され、ストレーナ 205で夾雑物を除去した後、 配管 207, 208を通して、水中混合機 202及び水中ェジヱクタ 201に供給される。水 中混合機 202内に、上方の消毒剤誘導管 107から落下する固体消毒剤が投入され 、水中ェジ クタ 201内で水中に十分に混合されて消毒水が形成されて、放出口 20 4から、被処理水、即ち雨天時下水道越流水中に投入される。なお、図 23bは、図 23 aの A— A線を上力 見た図であり、このように、放出口 204を分岐させて配置するこ とちでさる。 [0136] Fig. 23 shows another configuration example of the dissolving portion that dissolves the solid disinfectant in water to form disinfecting water. The solid disinfectant storage tank 101 described in FIG. 13 and the like is installed on a pit 210 provided in the flow path 12 of sewer stormwater overflow. A disinfectant guide pipe 107 connected to the metering feeder 102 is disposed in the pit 210 in a counter-force. An underwater ejector 201 to which an underwater mixer 202 is attached is installed in the flow path 12. A part of the sewer stormwater overflow in the flow path 12 is pumped up by the pump 203, and after removing impurities by the strainer 205, it is supplied to the underwater mixer 202 and the underwater ejector 201 through the pipes 207 and 208. The solid disinfectant falling from the upper disinfectant guide pipe 107 is put into the underwater mixer 202, and the disinfecting water is sufficiently mixed in the underwater ejector 201 to form disinfecting water. To the treated water, that is, the sewer stormwater overflow. Note that FIG. 23b is a view of the AA line in FIG. 23a viewed from the top, and thus the discharge port 204 is branched and arranged.
[0137] このような構成とすることにより、装置の高さを低くすることができる。従来の固体消 毒剤貯留 '供給装置では、供給装置の下方に混合機が配置されるので、装置の高さ 力 Sどうしても高くなつてしまう。上記の構成とすることで、混合機が下水流路内に配置 されるので、装置の高さが低くなる。実際には、従来の固体消毒剤貯留 '供給装置で は 5. 5m程度の高さであったものが、図 23に示す構成では、装置高さを 2〜3m程度 にすることができる。装置の高さを低くできることで、装置を設置する際の制約がなく なる。このように固体消毒剤貯留槽の設置高さを低くすることができるので、貯留槽へ の固体消毒剤の補充をラインによって行う場合などに、動力を小さくすることができる 。また、混合機への給水揚程が小さくなるため、給水のための動力を小さくすることが できる。更に、従来の固体消毒剤貯留 ·供給装置では、消毒剤混合機及び消毒水投 入装置が、雨天時下水道越流水流路の上部の地上に配置されているので、混合機 力も消毒水が溢れ出した場合、消毒水が周りに散乱してしまうが、図 23に示す構成 では、消毒剤の混合機が雨天時下水道越流水中に配置されるので、例えば消毒水 排出管の目づまりなどによって混合機力 消毒水が溢れだしても、処理対照の雨天 時下水道越流水中に入るだけであり、周りを汚染することがない。 [0137] With such a configuration, the height of the apparatus can be reduced. In the conventional solid disinfectant storage 'feeding device, the mixer is disposed below the feeding device, so the height force S of the device is inevitably high. With the above configuration, the mixer is disposed in the sewage flow path, so that the height of the apparatus is reduced. Actually, the conventional solid disinfectant storage and supply device was about 5.5 m high, but in the configuration shown in FIG. 23, the device height can be about 2 to 3 m. By reducing the height of the device, there are no restrictions when installing the device. Thus, since the installation height of the solid disinfectant storage tank can be lowered, the power can be reduced when the solid disinfectant is replenished to the storage tank by a line. Moreover, since the feed water head to the mixer becomes small, the power for water supply can be reduced. Furthermore, in the conventional solid disinfectant storage and supply device, the disinfectant mixer and the disinfecting water injection device are disposed on the ground above the sewer stormwater overflow channel. If the disinfecting water overflows, the disinfecting water will be scattered around. However, in the configuration shown in Fig. 23, the disinfectant mixer is placed in the sewer stormwater overflow. Even if the mixer disinfecting water overflows due to clogging, etc., it will only enter the sewer sewage overflow during treatment rain and will not contaminate the surroundings.
[0138] 本発明において使用することのできる他の形態の固体臭素系消毒剤貯留 ·供給装 置を図 24に示す。図 24に示す固体臭素系消毒剤の貯留 ·供給装置は、上部に固体 臭素系消毒剤投入口 252を有する貯留槽 250と、貯留槽 250の下部の開口(固体 臭素系消毒剤排出口)に取り付けられた固体臭素系消毒剤定量供給装置 251とから 構成される。貯留槽 250は、例えば中央部が幅広の樽型の形状で、中心軸 260が傾 斜するように、フレーム 257によって設置されており、モーター 253によって軸 260を 中心として回転するように構成されている。貯留槽 250の内壁には、撹拌用の邪魔板 256を複数設置することが好ましい。貯留槽 250の下部の開口(固体臭素系消毒剤 排出口)には、スクリューフィーダ一 255が取り付けられていて、貯留槽 250内に収容 されている固体臭素系消毒剤は、モーター 254によってフィーダ一 255を回転させる ことで、所定量が誘導管 107を通って供給される。誘導管の下方に図 13で示す溶解 コーン 108や、図 23で示す水中混合機 202などの固体消毒剤溶解装置を配置する ことができる。この方式の貯留槽によれば、固体臭素系消毒剤のような圧密しやすい 粉体を、貯留槽の回転によって混合することでブリッジの防止を図ることができる。ま た、貯留槽の機高を低くすることができ、更に固体消毒剤撹拌用の空気が不要とい つた利点がある。 [0138] Fig. 24 shows another form of the solid bromine-based disinfectant storage and supply device that can be used in the present invention. The storage and supply device for solid bromine-based disinfectant shown in Fig. 24 has a storage tank 250 having a solid bromine-based disinfectant inlet 252 at the top and an opening at the bottom of the storage tank 250 (solid bromine-based disinfectant discharge port). It consists of a solid bromine-based disinfectant quantitative supply device 251 attached. The storage tank 250 has, for example, a barrel shape with a wide central portion, is installed by a frame 257 so that the central shaft 260 is inclined, and is configured to rotate around the shaft 260 by a motor 253. Yes. It is preferable to install a plurality of baffle plates 256 for stirring on the inner wall of the storage tank 250. A screw feeder 255 is attached to the lower opening (solid bromine-based disinfectant discharge port) of the storage tank 250, and the solid bromine-based disinfectant contained in the storage tank 250 is fed to the feeder by the motor 254. By rotating 255, a predetermined amount is supplied through the induction tube 107. A solid disinfectant dissolving device such as a dissolving cone 108 shown in FIG. 13 or an underwater mixer 202 shown in FIG. 23 can be arranged below the induction tube. According to this type of storage tank, bridging can be prevented by mixing a compacted powder such as a solid bromine-based disinfectant by rotating the storage tank. In addition, there is an advantage that the height of the storage tank can be lowered and that air for stirring the solid disinfectant is unnecessary.
[0139] 図 25は、本発明において使用することのできる他の形態の固体臭素系消毒剤貯 留-供給装置を示す図である。図 25に示す装置においては、固体臭素系消毒剤貯 留槽 310の底部の排出口に、流体'粉体移送用一軸ねじ式ポンプ 312が接続されて いる。一軸ねじ式ポンプ 312のスクリュー部をモーター 314によって回転させることに より、貯留槽 310内の固体臭素系消毒剤を強制的に吸引して、水平方向に移送する ことができる。一軸ねじ式ポンプ 312の終端部には固体臭素系消毒剤の誘導管 107 が接続されている。誘導管の下方に図 13で示す溶解コーン 108や、図 23で示す水 中混合機 202などの固体消毒剤溶解装置を配置することができる。この方法によれ ば、薬品貯槽の直下部に固体臭素系消毒剤の溶解装置を設置する必要がなくなる ため、設備の高さを低くすることができる。また、薬品供給設備の付近に、固体臭素 系消毒剤溶解用の多量の溶解水を配置 '誘導する必要がなくなるので、プラント全体 としての工事費を削減することができ、また設置条件が緩和される。この目的で使用 することのできる流体 ·粉体移送用一軸ねじ式ポンプとしては、例えば、英国 Mono P ump Ltd.社のモノポンプなどを用いることができる。また、かかる装置は、固体臭素系 消毒剤貯留,供給装置としての用途の固体臭素系消毒剤の貯留槽に固体臭素系消 毒剤を補充するための移送手段としても用いることができる。なお、図 25に示す固体 臭素系消毒剤貯留槽 310は、所謂ホッパー型であるが、底面に機械的撹拌装置や エアパージなどの圧密'ブリッジ防止機構 311が設置されており、この機構によって ブリッジの形成などを防止している。勿論、例えば、図 13、図 15、図 24などに示す貯 留槽を用いることもできる。 [0139] Fig. 25 is a diagram showing another form of a solid bromine-based disinfectant storage and supply device that can be used in the present invention. In the apparatus shown in FIG. 25, a fluid single-screw pump 312 for transferring powder is connected to the discharge port at the bottom of the solid bromine-based disinfectant storage tank 310. By rotating the screw portion of the single screw pump 312 by the motor 314, the solid bromine-based disinfectant in the storage tank 310 can be forcibly sucked and transferred in the horizontal direction. A solid bromine-based disinfectant induction tube 107 is connected to the end of the single screw pump 312. A solid disinfectant dissolving device such as the dissolving cone 108 shown in FIG. 13 or the water mixer 202 shown in FIG. 23 can be arranged below the induction tube. This way This eliminates the need to install a solid bromine-based disinfectant dissolution device directly below the chemical storage tank, thus reducing the height of the facility. In addition, it is not necessary to place a large amount of dissolved water for dissolving solid bromine-based disinfectant in the vicinity of the chemical supply facility, so that construction costs for the entire plant can be reduced and installation conditions are eased. The As a single screw screw pump for fluid / powder transfer that can be used for this purpose, for example, a mono pump manufactured by Mono Pump Ltd. in the UK can be used. Such a device can also be used as a transfer means for replenishing a solid bromine-based disinfectant storage tank for use as a solid bromine-based disinfectant storage and supply device. Note that the solid bromine-based disinfectant storage tank 310 shown in FIG. 25 is a so-called hopper type, but is provided with a consolidation preventing mechanism 311 such as a mechanical stirrer or air purge on the bottom surface. Prevents formation. Of course, for example, the storage tank shown in FIGS. 13, 15, 24, etc. can be used.
流体'粉体移送用一軸ねじ式ポンプを用いた固体臭素系消毒剤貯留 '供給装置の 他の例を図 26に示す。固体臭素系消毒剤貯留槽 310と一軸ねじ式ポンプ 312の構 成は、図 25に示す構成と同様である。図 26に示すシステムにおいては、更に、別の 一軸ねじ式ポンプ 320を配置し、この導入口 322に固体臭素系消毒剤を溶解するた めの溶解用水を導入する。一軸ねじ式ポンプ 312のスクリュー部をモーター 321によ つて回転させることによって溶解用水が移送されて、配管 324を通って、導入口 325 より、固体臭素系消毒剤が移送されている一軸ねじ式ポンプ 312に導入される。好ま しくは、一軸ねじ式ポンプ 312内で混合された溶解用水と固体臭素系消毒剤は、次 に乳化分散機 326に導入され、モーター 327によって乳化分散機 326を運転するこ と〖こより、固体臭素系消毒剤のスラリーが形成され、誘導管 328を通って移送される。 誘導管 328内を移送される固体臭素系消毒剤のスラリーは、そのまま、処理対象の 雨天時下水道越流水中に投入することができる。乳化分散機 326としては、例えば、 グラインダ様の形状を持つ乳化ポンプなどを用いることができる。このように、固体臭 素系消毒剤を水中でスラリー状に分散させてこれを処理対象の雨天時下水道越流 水に投入することにより、水に溶解しにくい固体臭素系消毒剤をある程度の濃度の水 スラリーとして投入点まで移送し、速やかに処理対象の雨天時下水道越流水中に分 散させて溶解させることが可能である。 Fig. 26 shows another example of a fluid 'solid bromine-based disinfectant storage' supply device using a single screw pump for powder transfer. The configuration of the solid bromine-based disinfectant storage tank 310 and the single screw pump 312 is the same as the configuration shown in FIG. In the system shown in FIG. 26, another single screw pump 320 is further arranged, and water for dissolving the solid bromine-based disinfectant is introduced into the inlet 322. Single screw screw pump 312 is rotated by the motor 321 and the dissolution water is transferred through the pipe 324 and the solid bromine-based disinfectant is transferred from the inlet 325. Introduced in 312. Preferably, the dissolving water and the solid bromine-based disinfectant mixed in the single screw pump 312 are then introduced into the emulsifying disperser 326, and the emulsifying disperser 326 is operated by the motor 327, so that the solid A bromine-based disinfectant slurry is formed and transferred through induction tube 328. The solid bromine-based disinfectant slurry transported in the induction tube 328 can be directly put into the sewer stormwater overflow to be treated. As the emulsification disperser 326, for example, an emulsification pump having a grinder-like shape can be used. In this way, a solid bromine-based disinfectant that is difficult to dissolve in water can be obtained at a certain concentration by dispersing a solid odor-based disinfectant in water and throwing it into the sewer stormwater overflow to be treated. As a slurry, it is transferred to the entry point and quickly separated into the sewer stormwater overflow. It is possible to dissolve and dissolve.
[0141] このように一軸ねじ式ポンプを二つ組みあわせることで、例えば、固体臭素系消毒 剤移送用の一軸ねじ式ポンプ 312の能力を給水用の一軸ねじ式ポンプ 320の能力 よりも大きくすることにより、貯槽 310内の薬品を強制的に一軸ねじ式ポンプ 312内に 吸い込ませることができる。従って、固体臭素系消毒剤移送用の一軸ねじ式ポンプと 給水用一軸ねじ式ポンプの能力を適当に調整することによって、薬剤の供給量を微 妙に調節することができる。  [0141] By combining two single screw pumps in this way, for example, the single screw pump 312 for transferring a solid bromine-based disinfectant is made larger than the single screw pump 320 for supplying water. Thus, the chemical in the storage tank 310 can be forcibly sucked into the single screw pump 312. Therefore, by appropriately adjusting the capacities of the single screw pump for transferring the solid bromine-based disinfectant and the single screw pump for water supply, the supply amount of the drug can be finely adjusted.
[0142] 上記に説明の雨天時下水道越流水の消毒装置は、固体の臭素系消毒剤をまず水 、例えば処理対象の雨天時下水道越流水の一部を分取したものに混合'溶解して消 毒水を形成し、これを雨天時下水道越流水に投入して消毒を行うというものである。 しかしながら、本発明の他の態様においては、固体の臭素系消毒剤を固体のまま処 理対象の雨天時下水道越流水に注入 ·溶解して消毒処理を行うこともできる。  [0142] In the rainwater sewer overflow water disinfection device described above, a solid bromine-based disinfectant is first mixed and dissolved in water, for example, a portion of the rainwater sewer overflow water to be treated. Disinfecting water is formed and this is thrown into sewer stormwater overflow for disinfection. However, in another embodiment of the present invention, the solid bromine-based disinfectant can be infused and dissolved in the sewer stormwater overflow to be treated in the solid state for disinfection.
[0143] 図 27に、固体臭素系消毒剤を固体のまま処理対象の雨天時下水道越流水に投入 する本発明の一態様に係る消毒装置の一具体例を示す。消毒剤貯留槽 401には、 粉末状又は顆粒状の固体臭素系消毒剤 408が収容されている。消毒剤 408は、バ ルブ 404を開放することにより、消毒剤切り出し装置 402と計量装置 403とを介して、 消毒剤移送配管 405に送られる。消毒剤移送配管 405の末端は消毒剤注入装置 4 09に接続され、ここで消毒剤 408が消毒対象の雨天時下水道越流水 412に加えら れる。図 27に示す消毒装置においては、消毒剤注入装置 409は、モータ 406に接 続した撹拌翼 407が取り付けられており、この撹拌翼 407の作用により、粉末状又は 顆粒状の固体臭素系消毒剤 408が被処理対象水中に溶解される。  [0143] FIG. 27 shows a specific example of a disinfecting apparatus according to one aspect of the present invention in which a solid bromine-based disinfectant is put into a sewer stormwater overflow to be treated as a solid. In the disinfectant storage tank 401, a powdery or granular solid bromine-based disinfectant 408 is accommodated. The disinfectant 408 is sent to the disinfectant transfer pipe 405 via the disinfectant cutting device 402 and the metering device 403 by opening the valve 404. The end of the disinfectant transfer pipe 405 is connected to a disinfectant injection device 409, where the disinfectant 408 is added to the sewer stormwater overflow 412 to be disinfected. In the disinfecting apparatus shown in FIG. 27, the disinfectant injecting apparatus 409 is equipped with a stirring blade 407 connected to a motor 406, and by the action of this stirring blade 407, a powdery or granular solid bromine-based disinfectant 408 is dissolved in the water to be treated.
[0144] なお、消毒剤注入装置 409は、好ましくは、消毒対象の被処理水の噴流を生起せ しめる手段を有していて、生起せしめられた噴流の作用によって消毒剤注入装置内 が減圧状態となり、この減圧により発生する吸引力によって粉末状又は顆粒状の固 体臭素系消毒剤が移送せしめられるような構造を有していることが好ましい。このよう な構造の幾つかの具体例を図 28〜図 30に示す。  [0144] Note that the disinfectant injection device 409 preferably has a means for generating a jet of water to be disinfected, and the disinfectant injection device is in a reduced pressure state by the action of the generated jet. Thus, it is preferable to have a structure in which the solid bromine-based disinfectant in the form of powder or granules can be transferred by the suction force generated by this reduced pressure. Some specific examples of such a structure are shown in FIGS.
[0145] 図 28に示す消毒剤注入装置 409は、モータ 406と撹拌翼 407とを接続するシャフ トの周りを囲む細管 424と、細管 424の終端部付近を囲むカバー 421から構成され ている。細管 424の終端部は被処理水 412中に配置されており、細管の上部には消 毒剤移送配管 405が接続されている。モータ 406により撹拌翼 407を回転させること によって、カバー内に水流が発生し、細管の終端部の近傍で噴流 422が生じる。この 噴流によって細管 424内が減圧状態となり、これによつて生じる吸引力により粉末状 又は顆粒状の固体臭素系消毒剤 423が細管 424の終端部に向力つて空気移送され る。移送された消毒剤 423は、水流 422に加えられ、撹拌翼 407によって消毒対象 水と混合される。 [0145] The disinfectant injection device 409 shown in Fig. 28 includes a narrow tube 424 surrounding the shaft connecting the motor 406 and the stirring blade 407, and a cover 421 surrounding the vicinity of the end of the thin tube 424. ing. The terminal portion of the thin tube 424 is disposed in the water to be treated 412, and a disinfectant transfer pipe 405 is connected to the upper portion of the thin tube. By rotating the stirring blade 407 by the motor 406, a water flow is generated in the cover, and a jet 422 is generated in the vicinity of the end of the narrow tube. Due to this jet flow, the inside of the narrow tube 424 is depressurized, and the powdery or granular solid bromine-based disinfectant 423 is urged toward the terminal portion of the thin tube 424 by air due to the suction force generated thereby. The transferred disinfectant 423 is added to the water stream 422 and mixed with the water to be disinfected by the stirring blade 407.
[0146] また、図 29に示す消毒剤注入装置 409は、雨天時下水道越流水を流す流路内に 、オリフィスを形成する板状部材 431が配置されている。そして、オリフィスの出口近 傍に消毒剤移送配管 405が接続されて 、る。排水の水流がオリフィスを通過すること によって噴流 432が生起し、この噴流により消毒剤移送配管 405の末端付近が減圧 状態となり、これによつて生じる吸引力により粉末状又は顆粒状の消毒剤 433が噴流 に向力つて移送され、噴流の撹拌作用によって排水と混合される。  Further, in the disinfectant injection device 409 shown in FIG. 29, a plate-like member 431 that forms an orifice is disposed in a flow path for flowing sewer stormwater overflow. The disinfectant transfer pipe 405 is connected near the outlet of the orifice. A jet 432 is generated by the flow of the waste water passing through the orifice, and this jet reduces the vicinity of the end of the disinfectant transfer pipe 405, and the suction force generated thereby causes the powdery or granular disinfectant 433 to form. It is transferred to the jet and is mixed with waste water by the stirring action of the jet.
[0147] 更に、図 30に示す消毒剤注入装置 409は、雨天時下水道越流水の水流 412中に ポンプ 441が配置され、これ力 排水が配管 443内に導入され、ェジェクタ 442を通 て再び水流 412に戻される。そして、消毒剤移送配管 405がェジェクタ 442に接続さ れている。ェジェクタ 442によって噴流が発生せしめられて、消毒剤移送配管 405の 末端付近が減圧状態となり、これによつて生じる吸引力により粉末状又は顆粒状の消 毒剤が配管 443に向力つて移送され、噴流の撹拌作用によって排水と混合される。 消毒剤注入装置内を減圧状態にするための手段としては、上記の構成の他に、消毒 剤注入装置 409の近傍に吸引機を設置することもできる。  Further, in the disinfectant injection device 409 shown in FIG. 30, a pump 441 is arranged in the water flow 412 of sewer stormwater overflow, and this power drainage is introduced into the pipe 443, and again through the ejector 442. Returned to 412. A disinfectant transfer pipe 405 is connected to the ejector 442. A jet is generated by the ejector 442, and the vicinity of the end of the disinfectant transfer pipe 405 is depressurized, and the powdery or granular disinfectant is transferred to the pipe 443 by the suction force generated by this, It is mixed with waste water by the stirring action of the jet. As a means for reducing the pressure in the disinfectant injecting apparatus, a suction machine can be installed in the vicinity of the disinfectant injecting apparatus 409 in addition to the above configuration.
[0148] このように、固体の臭素系消毒剤を固体のまま直接処理対象の雨天時下水道越流 水に投入して混合することにより、以下のような利点が得られる。  [0148] Thus, the following advantages can be obtained by mixing the solid bromine-based disinfectant directly into the sewer stormwater overflow to be treated in the solid state.
[0149] まず、消毒剤を予め水に溶解又は懸濁してから消毒対象水に注入する方法で必要 な消毒剤を溶解する為の設備、即ち溶解槽、撹拌装置、イジェクタなどが不要であり 、設備コストが低くなる。更に、水に溶解又は懸濁した後の消毒水を消毒対象水への 注入点まで圧送するための設備、即ち移送ポンプ、イジェクタなども不要である。また 、スラリー状の消毒液を消毒対象水に注入する場合には、消毒剤が溶解槽内に不均 一に分布することを防止するために、溶解槽での十分な撹拌を継続しなければなら ないが、固体の臭素系消毒剤を固体のまま直接処理対象の雨天時下水道越流水に 投入して混合することにより、この操作も不要となる。更に、溶液又はスラリー状の消 毒剤が配管内に堆積して閉塞することもない。 [0149] First, a facility for dissolving a disinfectant required by a method of injecting the disinfectant into water to be disinfected after dissolving or suspending the disinfectant in advance, that is, a dissolution tank, a stirring device, an ejector, and the like are unnecessary. Equipment costs are reduced. Furthermore, equipment for pumping disinfecting water after dissolving or suspending in water to the point of injection into the water to be disinfected, that is, a transfer pump, an ejector, etc., is unnecessary. In addition, when a slurry-like disinfectant is injected into the water to be disinfected, the disinfectant is unevenly distributed in the dissolution tank. In order to prevent it from being distributed evenly, thorough stirring must be continued in the dissolution tank, but the solid bromine-based disinfectant should be put directly into the sewer stormwater overflow to be treated. By mixing, this operation becomes unnecessary. Furthermore, the disinfectant in the form of a solution or slurry does not accumulate in the pipe and clog.
[0150] 特に、雨天時下水道越流水の消毒を消毒液の注入によって行う場合には、消毒液 の必要注入量は、降雨状態によって左右され、大きく変動するために、雨天時下水 の確実な消毒処理を行うためには、常に必要注入量以上の消毒液を準備しておく必 要がある。し力しながら、一旦水に溶解した消毒剤は、固体状態に比べて消毒活性 の低下が著しぐ消毒剤を溶液状態で保管することは困難である。従って、必要注入 量以上に調製した溶液は廃棄せざるを得ず、運転コストの増大及び資源の無駄につ ながる。し力しながら、固体の臭素系消毒剤を固体のまま直接処理対象の雨天時下 水道越流水に投入して混合する t ヽぅ手法を採用することにより、必要量のみを必要 時に貯留槽力 排出するので、消毒剤の注入量を適切に制御することが可能であり 、注入が終了した時点で無駄になる消毒剤溶解液が生じない。更に、消毒剤を溶解 する水を予め確保することが困難な設備においても、確実な消毒処理を行うことが可 能である。更に消毒剤注入量の制御が容易であり、過剰注入や注入不足の危険性 が低くなる。更には、消毒剤注入装置において噴流を生起せしめる構造を採用する ことにより、消毒剤移送配管内を減圧状態として粉末状又は顆粒状の消毒剤を移送 することで、移送配管中に破損が生じても、消毒剤が破損部分力 吹き出すことがな い。  [0150] In particular, when disinfecting sewer stormwater overflow by injecting disinfectant solution, the required amount of disinfectant solution depends on rainfall conditions and varies greatly. In order to carry out the treatment, it is necessary to always prepare more disinfectant solution than necessary. However, once the disinfectant is dissolved in water, it is difficult to store the disinfectant in a solution state in which the disinfection activity is significantly lower than that in the solid state. Therefore, a solution prepared in excess of the required injection volume must be discarded, resulting in increased operating costs and resource waste. However, by using a solid bromine-based disinfectant directly in the rainwater sewer stormwater overflow that is to be treated and mixing it in the solid state, only the required amount can be stored when necessary. Since it is discharged, it is possible to appropriately control the injection amount of the disinfectant, and no disinfectant solution is wasted when the injection is completed. Furthermore, it is possible to perform a reliable disinfection process even in facilities where it is difficult to secure water for dissolving the disinfectant in advance. Furthermore, it is easy to control the amount of disinfectant injection, and the risk of over-injection and insufficient injection is reduced. Furthermore, by adopting a structure that generates a jet in the disinfectant injection device, the disinfectant transfer pipe is reduced in pressure and the powder or granular disinfectant is transferred, causing damage to the transfer pipe. However, the disinfectant will not blow out the damaged parts.
[0151] 上記に説明の形態は、固体臭素系消毒剤を固体のまま処理対象の雨天時下水道 越流水に投入 *混合することで雨天時下水道越流水の消毒を行うというものであるが 、雨天時下水道越流水に固体臭素系消毒剤を投入して消毒処理を行うためには、 消毒剤と処理対象の雨天時下水道越流水との混合操作を消毒剤の注入点で行う必 要性は必ずしもない。  [0151] In the form described above, solid bromine-based disinfectant is put into the sewer stormwater overflow that is to be treated as a solid * mixed to disinfect sewer stormwater overflow. In order to perform disinfection treatment by introducing solid bromine-based disinfectant into the sewer stormwater overflow, it is not always necessary to perform the mixing operation of the disinfectant and the sewer stormwater overflow to be treated at the injection point of the disinfectant. Absent.
[0152] 混合操作の目的の第一は、固体の消毒剤を被処理水中に溶解することである。消 毒剤が固体のままでは、消毒剤と被処理水との接触効率が低ぐ消毒速度の低下を 招く。消毒剤を溶解することによって、消毒剤と被処理水との接触効率が向上して消 毒速度が速まる。雨天時下水道越流水が公共水域に放流されるまでの時間に制約 がある場合には、十分な消毒効果を得るために、消毒速度を速めることが重要となる [0152] The first purpose of the mixing operation is to dissolve a solid disinfectant in the water to be treated. If the disinfectant is in a solid state, the contact efficiency between the disinfectant and the water to be treated is low, and the disinfection rate is reduced. Dissolving the disinfectant improves the contact efficiency between the disinfectant and the water to be treated. Increases poison speed. If there is a restriction on the time it takes for sewer stormwater overflow to be discharged into public waters, it is important to increase the speed of disinfection in order to obtain a sufficient disinfection effect.
[0153] 混合操作の目的の第二は、消毒剤を被処理水中に均一に拡散させることである。 [0153] The second purpose of the mixing operation is to uniformly disperse the disinfectant in the water to be treated.
消毒対象とする被処理水の全体に消毒剤を均一に行き渡らせなければ、消毒剤濃 度が高い箇所では過剰添加となって消毒剤が無駄になるば力りでなぐ公共水域に 高濃度の残留ハロゲンが放流される可能性がある。一方、消毒剤濃度が低い箇所で は、添加不足になって十分な消毒が行われないことになる。消毒剤を被処理水中に 均一に拡散させて消毒剤濃度を均等にすることによって、過不足のない消毒剤の添 加が可能になる。  If the disinfectant is not evenly distributed throughout the treated water to be disinfected, it will be added excessively in areas where the disinfectant concentration is high, and if the disinfectant is wasted, high concentration will be generated in public water areas where it will be used by force. Residual halogen may be released. On the other hand, at locations where the concentration of the disinfectant is low, insufficient addition will result in insufficient disinfection. By dispersing the disinfectant uniformly in the water to be treated and making the disinfectant concentration uniform, it is possible to add disinfectant without excess or deficiency.
[0154] 混合操作の目的の第三は、消毒剤を被処理水中に溶解'拡散させることによって、 雨天時下水道越流水が公共水域に到る迄の間に、残留ハロゲンを一定値以下の濃 度にまで低減することである。消毒剤が固体のままで、或いは溶解した消毒剤が不均 一で高濃度のままで公共水域に流出すると、局所的に高濃度の残留ハロゲンを放流 することになり、放流先の生態系に悪影響を与える可能性がある。これを防ぐために は、雨天時下水道越流水が公共水域に到るまでの間に、消毒剤が完全に溶解し、 更に溶解後に残留ハロゲンが低減するだけの時間が必要である。このため、消毒剤 を混合することによって溶解 '拡散させることが重要である。  [0154] The third purpose of the mixing operation is to dissolve the disinfectant in the treated water and diffuse it so that the residual halogen concentration is below a certain level until the sewer stormwater overflow reaches the public water area. Is to reduce the degree. If the disinfectant remains solid or the dissolved disinfectant flows out into public waters with uneven and high concentrations, it will release high concentrations of residual halogen locally, which will affect the destination ecosystem. May have adverse effects. In order to prevent this, it takes time for the disinfectant to completely dissolve before the sewer stormwater overflow reaches the public water area, and to reduce the residual halogen after dissolution. For this reason, it is important to dissolve and diffuse by mixing disinfectants.
[0155] ところで、ハロゲン系消毒剤がその消毒能力(酸化力)によって消毒を行い、酸ィ匕反 応の終了によって酸ィ匕力が消失するまでに要する時間は、溶解に要する時間に比 ベて十分に短い。例えば、ハロゲン系消毒剤として 1ーブロモー 3—クロロー 5, 5— ジメチルヒダントイン(BCDMH)を用いて、有効ハロゲン濃度が 2mg/L as CI程度で 消毒処理を行う場合、消毒剤の酸化力の消失は、有効ハロゲン濃度が 0. 5mg/L as CI以下に低減したことを指標とすることができる。消毒剤の添加量が 10mg/L as CIの 場合、被処理水中に消毒剤が溶解するのに要する時間が 1分程度であるのに対して 、有効ハロゲン濃度が 2mg/L as CIから 0. 5mg/L as CIに低下するのに要する時間 は 10〜30秒程度である。この時間に幅があるのは、被処理水、即ち雨天時下水道 越流水中の有機物質濃度による影響を受けるためである。したがって、消毒剤を少し づっ溶解して、完全に溶解してから更に 30秒程度の時間を確保することで、十分な 消毒効果と、放流水の残留ハロゲン濃度の低減の両方を図ることができる。 [0155] By the way, the time required for the halogen-based disinfectant to disinfect by its disinfecting ability (oxidation power) and the disappearance of the acidity by the completion of the acidification reaction is compared to the time required for dissolution. Short enough. For example, when 1-bromo-3-chloro-5,5-dimethylhydantoin (BCDMH) is used as a halogen-based disinfectant and the disinfection treatment is performed at an effective halogen concentration of about 2 mg / L as CI, the disinfectant's oxidizing power disappears. It can be used as an index that the effective halogen concentration is reduced to 0.5 mg / L as CI or less. When the amount of disinfectant added is 10 mg / L as CI, the time required for the disinfectant to dissolve in the water to be treated is about 1 minute, whereas the effective halogen concentration is 0 to 2 mg / L as CI. The time required to decrease to 5 mg / L as CI is about 10 to 30 seconds. This time varies because it is affected by the concentration of organic substances in the treated water, that is, the sewer stormwater overflow. Therefore, a little disinfectant If it is dissolved and secured for about 30 seconds after it is completely dissolved, it is possible to achieve both a sufficient disinfection effect and a reduction in the residual halogen concentration of the discharged water.
[0156] このことを、図 31に模式的に示す。図 31は、固体の消毒剤を固体のままで被処理 水中に投入した場合の、未溶解の消毒剤の残存率、残留ハロゲン濃度、及び大腸 菌群の時間経過を示す。時間経過と共に消毒剤が溶解するので、未溶解の消毒剤 の量は低減し、残留ハロゲン濃度は上昇する。しかしながら、残留ハロゲン濃度は、 消毒反応などの酸ィ匕反応に伴ってハロゲンが消費されて減少するので、消毒剤の溶 解による増加分と酸ィ匕反応による消費に伴う減少分とが相殺し、増加し続けることは なぐある存在量で推移することになる。そして、未溶解の消毒剤がなくなった後に、 残留ハロゲン濃度は急激に減少する。この間の大腸菌群は、常に供給される酸化力 に曝露されるために、残留ハロゲンが枯渴するまで低減し続ける。 [0156] This is schematically shown in FIG. Fig. 31 shows the residual rate of undissolved disinfectant, the residual halogen concentration, and the time course of the colon bacteria group when the solid disinfectant is put into the water to be treated as a solid. As the disinfectant dissolves over time, the amount of undissolved disinfectant decreases and the residual halogen concentration increases. However, the residual halogen concentration decreases due to the consumption of halogen accompanying acid and sour reactions such as disinfection reactions, so the increase due to dissolution of the disinfectant offsets the decrease due to consumption due to acid and soot reaction. However, if it continues to increase, it will shift at a certain abundance. And after the undissolved disinfectant disappears, the residual halogen concentration decreases rapidly. During this time, the coliform group is constantly exposed to the oxidative power supplied, so it continues to decrease until the residual halogens are depleted.
[0157] したがって、本発明の他の態様によれば、固体臭素系消毒剤を、固体のまま処理 対象の雨天時下水道越流水に投入し、消毒剤が添加位置から公共水域に到達する までの間に完全に溶解するようにして、雨天時下水道越流水の消毒を行うことができ る。 [0157] Therefore, according to another aspect of the present invention, the solid bromine-based disinfectant is put into the sewer stormwater overflow to be treated in a solid state until the disinfectant reaches the public water area from the addition position. It is possible to disinfect the sewer stormwater overflow in such a way that it completely dissolves in the meantime.
[0158] 図 32にかかる技術思想に基づいた本発明の他の態様に力かる雨天時下水道越流 水の消毒装置の概念を示す。図 32において、 501は消毒剤貯留装置であり、その中 に固体臭素系消毒剤 502が貯留されている。固体臭素系消毒剤は、注入量制御装 置 503によって計量され、消毒剤移送配管 504を経由して、雨天時下水道越流水の 流路 505に設けられた消毒剤添加位置 506まで移送され、消毒対象の雨天時下水 道越流水 507に添加される。消毒剤が添加された雨天時下水道越流水は、消毒剤 添加位置 506から雨天時下水道越流水放流口 508までの流路 507を一定時間をか けて流下した後に、放流口 508から河 J 11などの公共水域 509に放流される。  [0158] Fig. 32 shows the concept of a sterilization device for sewer stormwater overflow that works on another aspect of the present invention based on the technical concept of Fig. 32. In FIG. 32, reference numeral 501 denotes a disinfectant storage device in which a solid bromine-based disinfectant 502 is stored. The solid bromine-based disinfectant is weighed by the injection amount control device 503, transferred via the disinfectant transfer pipe 504 to the disinfectant addition position 506 provided in the sewer stormwater overflow channel 505, and disinfected. Added to target sewage stormwater overflow 507. The sewer stormwater overflow with the disinfectant added flows through the channel 507 from the disinfectant addition position 506 to the sewer stormwater overflow outlet 508 for a certain period of time, and then flows from the outlet 508 to the river J 11 Discharged into public water areas 509.
[0159] 好ましい態様においては、放流口 508に到達するまでの時間として、消毒剤添カロ 位置 506で消毒剤が添加されてカゝら少なくとも 2分間、更に消毒剤が完全に溶解して 力も少なくとも 1分間を確保することが好ましい。このことによって、消毒剤は、流路 50 7を流下しながら、水流によって雨天時下水道越流水中に溶解し且つ拡散する。消 毒剤は、溶解したものから順次消毒能力(酸化力)を発現して消毒反応を行い、酸ィ匕 反応によって消毒能力(酸ィ匕力)が消失する。よって、固体の臭素系消毒剤が流路 5 07を流下しながら水流によって雨天時下水道越流水中に溶解することにより、少し ずつ一定時間にわたって消毒力(酸化力)を供給し続けることになる。供給された消 毒能力は、逐次酸ィ匕反応によって消費されて消失するため、放流口 508においては 、残留ハロゲンが高濃度に残留することがない。 [0159] In a preferred embodiment, the time to reach the discharge port 508 is at least 2 minutes after the disinfectant is added at the disinfectant-added caro position 506, and the disinfectant is completely dissolved and the force is at least It is preferable to secure 1 minute. As a result, the disinfectant dissolves and diffuses in the sewer stormwater overflow by the water stream while flowing down the flow path 507. The disinfectant develops disinfection ability (oxidation power) sequentially from the dissolved one, and performs disinfection reaction. The disinfecting ability (acidity) disappears due to the reaction. Therefore, the solid bromine-based disinfectant dissolves in the sewer stormwater overflow by the water flow while flowing down the channel 507, so that the disinfecting power (oxidizing power) continues to be supplied little by little for a certain period of time. Since the supplied disinfecting capacity is consumed and disappears by successive acid-oxidation reactions, residual halogen does not remain at a high concentration at the outlet 508.
[0160] 図 33は、消毒剤を添加した後の雨天時下水道越流水の流路 507の形状を変化さ せた形態を示す。消毒剤の添加位置 506から放流口 508までの時間を確保するた めに、流路 507を迂流式水路 507aとしている。なお、迂流式水路 507aを同一容量 の槽とすることも可能である力 その場合には、槽内での短絡流を防止して流れを押 し出し流れに近づけるために、槽内に仕切板を配置することが好ましい。なお、迂流 式水路は、水平迂流式、上下迂流式のいずれでもよい。  [0160] Fig. 33 shows a form in which the shape of the flow path 507 of the sewer stormwater overflow after the addition of the disinfectant is changed. In order to secure the time from the addition position 506 of the disinfectant to the outlet 508, the channel 507 is a bypass channel 507a. It is also possible to make the bypass channel 507a a tank of the same capacity.In that case, in order to prevent a short circuit flow in the tank and bring the flow close to the extruding flow, a partition is formed in the tank. It is preferable to arrange a plate. The bypass channel can be either a horizontal bypass type or a vertical bypass type.
[0161] 図 34は別の形態例を示す。この例では、流路の途中に脱ハロゲン剤添加装置 510 を設置している。消毒剤が過剰添加された場合に、放流口 508に達するまでに残留 ノ、ロゲンが十分に低下しない場合があり得る。このような場合に備えて、脱ハロゲン 剤添加装置 510から亜硫酸ナトリウムなどの還元剤を添加して、残留ハロゲンを中和 する。脱ノ、ロゲン剤添加装置 509からの還元剤の添加位置は、迂流式水路 507aの 途中でもよいし、迂流式水路 7aの下流でもよい。  FIG. 34 shows another example. In this example, a dehalogenating agent addition apparatus 510 is installed in the middle of the flow path. If an excessive amount of disinfectant is added, the residual amount and logogen may not be sufficiently reduced until the outlet 508 is reached. In preparation for such a case, a reducing agent such as sodium sulfite is added from the dehalogenating agent addition apparatus 510 to neutralize residual halogen. The position of addition of the reducing agent from the denoising / logging agent addition device 509 may be in the middle of the bypass channel 507a or downstream of the bypass channel 7a.
[0162] 図 35は、更に別の形態例を示す。この例では、消毒剤を添加した後の雨天時下水 道越流水の流路を、スタティックミキサ 507bによって構成した。流路を長くしなくても 放流口 508までの時間を確保することが可能な場合、スタティックミキサ 507bによつ て水流による溶解 ·混合を促進することで、消毒効果をより高めることができる。  FIG. 35 shows still another embodiment. In this example, the flow channel of the sewage overflow water after the addition of the disinfectant was constituted by the static mixer 507b. If the time to the outlet 508 can be secured without lengthening the flow path, the disinfection effect can be further enhanced by promoting the dissolution / mixing by the water flow with the static mixer 507b.
[0163] 更に図 36は、更に別の形態例を示す。例えば合流式下水道の雨水吐き室やボン プ場などの雨天時下水道越流水排除施設 511からの雨天時下水道越流水に対して 消毒剤の添加を行う場合には、放流口 508に達するまでの十分な時間を確保できな いことがある。この場合に、雨天時下水道越流水排除施設 511の上流の下水道管渠 513に注入点 514を設けて、ここに固体臭素系消毒剤を添加することで、消毒剤が 被処理水に添加されてカゝら放流口に達するまでの時間を確保する。但し、この場合 には、消毒剤が添加された下水の一部が下水処理場 512に流入することになる。そ こで、消毒剤が添加された下水が下水処理場 512に達する迄に残留ハロゲン濃度が 低減しない場合には、その途中に脱ハロゲン剤添加装置 510を設置して、亜硫酸ナ トリウムなどの還元剤を添加することにより、残留ハロゲンの中和を行うことができる。 [0163] Further, FIG. 36 shows still another embodiment. For example, when disinfectant is added to the sewer stormwater overflow from the sewer stormwater overflow facility 511 such as a rainwater spout chamber or a pumping station of the combined sewer, it is sufficient to reach the outlet 508. Time may not be secured. In this case, an injection point 514 is provided in the sewer pipe 513 upstream of the sewer stormwater overflow drainage facility 511, and a solid bromine-based disinfectant is added thereto, so that the disinfectant is added to the treated water. Secure the time to reach the outlet. However, in this case, a part of the sewage to which the disinfectant is added flows into the sewage treatment plant 512. So If the residual halogen concentration does not decrease before the sewage to which the disinfectant is added reaches the sewage treatment plant 512, a dehalogenating agent adding device 510 is installed in the middle of the sewage treatment plant 512, and a reducing agent such as sodium sulfite. The residual halogen can be neutralized by adding.
[0164] 固体の臭素系消毒剤を固体のままで処理対象の雨天時下水道越流水に投入して 消毒を行う方式の消毒装置の他の構成例を図 37に示す。消毒剤貯留槽 551には、 粉末状又は顆粒状の固体の臭素系消毒剤 559が収容されている。消毒剤 559は、 注入量制御装置 558が接続された注入装置 552で計量され、消毒剤移送配管 553 を介して、流路 557内の雨天時下水道越流水に投入され、消毒がされた後、放流口 508より公共水域に放流される。  [0164] Fig. 37 shows another configuration example of a disinfecting apparatus that disinfects solid bromine-based disinfectant as it is in the solid wastewater sewer stormwater overflow. The disinfectant storage tank 551 contains a bromine-based disinfectant 559 in the form of a powder or granules. The disinfectant 559 is weighed by the injection device 552 to which the injection amount control device 558 is connected, and is put into the sewer stormwater overflow in the channel 557 via the disinfectant transfer pipe 553, and then disinfected. It is discharged into the public water area from the outlet 508.
[0165] 図 38に他の構成例を示す。消毒剤貯留槽 551には、粉末状又は顆粒状の固体の 臭素系消毒剤 559が収容されている。消毒剤 559は、注入量制御装置 558が接続さ れた注入装置 552で計量され、消毒剤移送配管 553に送られる。消毒剤移送配管 5 53の末端は、消毒剤混合装置 554に接続されており、消毒剤混合装置 554に供給 された消毒剤 559は、混合装置 554内で、流路 557を流れる雨天時下水道越流水 に投入され、混合される。また、貯留槽 551と注入量制御装置 552には、乾燥空気供 給装置 555から乾燥空気が注入される。これにより、貯留槽 551と注入量制御装置 5 52の内部を常に乾燥状態且つ加圧状態に保つことができる。更に、貯留槽 551及 び注入量制御装置 552の内部の気圧を一定の加圧状態に保っために、乾燥空気 供給装置 555と貯留槽 551及び注入量制御装置 552との間に圧力調整装置 560を 配置することができる。貯留槽 551及び注入量制御装置 552からの排気は、除塵装 置 556によって排気中の消毒剤を除去した後に大気中に排出する。消毒剤混合装 置 554から排出された消毒処理水に対して、還元剤添加混合装置 561によって還元 剤を添カ卩して、残留ハロゲンの中和処理を行って力も放流口 508から放流することも できる。消毒剤混合装置 554としては、消毒剤を消毒対象水と消毒可能な状態まで 混合する機能を有する装置であればよい。例えば、迂流壁を有する水路、管路又は 槽、気体供給機と連結する散気装置、超音波発生装置、回転翼を有する撹拌装置、 レジューサ若しくはポンプなどを用いることができる。  FIG. 38 shows another configuration example. The disinfectant storage tank 551 contains a bromine-based disinfectant 559 in the form of powder or granules. The disinfectant 559 is measured by the injection device 552 to which the injection amount control device 558 is connected, and is sent to the disinfectant transfer pipe 553. The end of the disinfectant transfer pipe 5 53 is connected to the disinfectant mixing device 554, and the disinfectant 559 supplied to the disinfectant mixing device 554 is passed over the sewer in rainy weather flowing through the channel 557 in the mixing device 554. It is poured into running water and mixed. Further, dry air is injected into the storage tank 551 and the injection amount control device 552 from the dry air supply device 555. Thereby, the inside of the storage tank 551 and the injection amount control device 552 can always be kept in a dry state and a pressurized state. Further, in order to keep the pressure inside the storage tank 551 and the injection amount control device 552 in a constant pressure state, the pressure adjustment device 560 is provided between the dry air supply device 555 and the storage tank 551 and the injection amount control device 552. Can be arranged. The exhaust from the storage tank 551 and the injection volume control device 552 is discharged into the atmosphere after the disinfectant in the exhaust gas is removed by the dust removal device 556. Disinfectant water discharged from the disinfectant mixing device 554 is added with a reducing agent by the reducing agent addition mixing device 561 to neutralize residual halogen, and the power is also discharged from the outlet 508. You can also. The disinfectant mixing device 554 may be any device having a function of mixing the disinfectant with the disinfecting target water until it can be disinfected. For example, a water channel, pipe or tank having a bypass wall, an air diffuser connected to a gas supply device, an ultrasonic generator, an agitator having a rotating blade, a reducer or a pump can be used.
[0166] 次に、本発明において固体臭素系消毒剤の注入量を制御する方法について説明 する。固体臭素系消毒剤などのハロゲン系消毒剤の使用量は少ない方が環境や人 類に与える影響が少なぐ好ましいことは言うまでもない。しかしながらこれまでは、安 全対策上の見地から、病原菌の十分な消毒効果を達成'維持するために、本来必要 である消毒剤有効成分濃度を越える過剰な消毒剤を用いてきたのが実情である。 [0166] Next, a method for controlling the injection amount of the solid bromine-based disinfectant in the present invention will be described. To do. Needless to say, it is preferable to use a halogen-based disinfectant such as a solid bromine-based disinfectant with less influence on the environment and human beings. However, until now, from the viewpoint of safety measures, in order to achieve and maintain a sufficient disinfection effect of pathogenic bacteria, it has been the actual situation that an excessive disinfectant exceeding the concentration of the active ingredient of the disinfectant that is originally necessary has been used. is there.
[0167] しかし、公共水域に放流される消毒処理後の排水中の残留ハロゲン濃度が高すぎ る場合には、公共水域及びその周辺に生育する水棲生物や動植物などの生態系に 悪影響を及ぼすことが明らかになるにつれ、適正な消毒剤濃度を排水に添加するこ とが必要であるとの認識を有するに至った。  [0167] However, if the residual halogen concentration in the wastewater after disinfection that is released into public water areas is too high, it may adversely affect ecosystems such as aquatic organisms and animals and plants that grow in the public water areas. As it became clear, they came to realize that it was necessary to add the proper disinfectant concentration to the wastewater.
[0168] ところで、本発明が処理対象とする雨天時下水道越流水は、非常に短時間で水質 が激しく変動するので、適正な消毒剤濃度を決定することが非常に困難である。すな わち、雨天時下水道越流水の水質は、降雨の状況により瞬時に大きく変動し、汚水 濃度が高く且つ還元性の有機物濃度及び Z又は無機物濃度が高い場合と、雨水に よる希釈が進んで汚水濃度が低下し且つ還元性の有機物濃度及び Z又は無機物 濃度が低下した場合では、消毒剤の必要量が大きく異なり、水質変動に応じた適切 な最少量の消毒剤の添加を行うことが困難である、という問題がある。  [0168] By the way, the sewer stormwater overflow to be treated by the present invention has a drastic fluctuation in water quality in a very short time, so it is very difficult to determine an appropriate disinfectant concentration. In other words, the quality of sewer stormwater overflow varies greatly depending on the rainfall conditions, and when the concentration of sewage is high and the concentration of reducing organic and Z or inorganic substances is high, dilution with rainwater proceeds. When the sewage concentration decreases and the reducing organic concentration and Z or inorganic concentration decrease, the required amount of disinfectant differs greatly, and an appropriate minimum amount of disinfectant may be added according to the water quality fluctuation. There is a problem that it is difficult.
[0169] そこで、本発明においては、排水の水質変動に応じて、適正な消毒効果を発揮し 且つ残留ハロゲンを発生させないような消毒剤の適正量を求め、この最少必要量の 消毒剤を被処理液中に添加することができる。  [0169] Therefore, in the present invention, an appropriate amount of the disinfectant that exhibits an appropriate disinfecting effect and does not generate residual halogen is obtained according to the water quality fluctuation of the waste water, and the minimum necessary amount of disinfectant is applied. It can be added to the treatment liquid.
[0170] 以下に、本発明にお 、て消毒剤の注入量を制御する一つの方法の技術思想を具 体例に基づいて説明する。以下の説明は、一具体例を挙げて説明しているもので、 本発明はこの記載に限定されるものではない。まず、既設の下水処理施設において 、降雨時の種々の時点における合流式下水道越流水を採水してビーカにとり、消毒 剤として BCDMHを用い、消毒剤添力卩量を 3ppm(=mg/L)としてビーカに加えて、 90 秒間消毒処理を行った。降雨開始後の経過時間と消毒処理後の処理水中の大腸菌 群数との関係を求めた。結果を図 39に示す。  [0170] Hereinafter, the technical idea of one method for controlling the injection amount of a disinfectant in the present invention will be described based on specific examples. The following description is given with a specific example, and the present invention is not limited to this description. First, in an existing sewage treatment facility, the combined sewer stormwater overflow at various times during rainfall is sampled into a beaker, BCDMH is used as the disinfectant, and the disinfectant load is 3 ppm (= mg / L). In addition to the beaker, it was disinfected for 90 seconds. The relationship between the elapsed time after the start of rainfall and the number of coliforms in the treated water after disinfection was determined. The results are shown in FIG.
[0171] 図 39から、降雨後 30分経過 (A時点)では消毒処理後の大腸菌群数が 9000CFU /mL、降雨後 45分経過(B時点)では消毒処理後の大腸菌群数が 4700CFU/mLで あり、いずれも消毒目標値 (水質汚濁防止法に定める放流基準値: 3000CFU/mL以 下)を満足しない。降雨後 1時間 30分経過 (C時点)で消毒後の大腸菌群数は 10CF U/mL未満となり、消毒目標値以下になったことが分かる。これは、降雨の継続に従つ て雨天時下水の性状が変化することにより、同じ消毒剤添加量(3ppm)であっても消 毒効果が異なり、消毒剤過剰又は消毒剤過小の状態が生じることを示している。即ち 、降雨開始直後は、下水中の大腸菌群が高い濃度で流出するため、これを十分に消 毒処理するためには多量の消毒剤が必要となるが、降雨開始力 ある程度時間が経 過した時点では、雨水によって汚水が希釈されて排水中の大腸菌群数が減少するた め、消毒処理に必要な消毒剤の量が少なくなる。 [0171] From Fig. 39, the number of coliforms after disinfection is 9000 CFU / mL after 30 minutes after rain (A time point), and the number of coliform groups after disinfection is 4700 CFU / mL after 45 minutes after rain (time B). In both cases, the disinfection target value (discharge standard value stipulated in the Water Pollution Control Law: 3000 CFU / mL or more) Do not satisfy (below). One hour and 30 minutes after the rain (C time point), the number of coliform bacteria after disinfection was less than 10 CF U / mL, which is below the disinfection target value. This is because the properties of sewage during rainy weather change as rain continues, and even at the same disinfectant addition amount (3 ppm), the disinfection effect is different, resulting in a state where the disinfectant is excessive or the disinfectant is too small. It is shown that. That is, immediately after the start of rainfall, the coliforms in the sewage flow out at a high concentration, so a large amount of disinfectant is necessary to fully disinfect this, but the rain start force has passed for some time. At that time, sewage is diluted by rainwater and the number of coliforms in the wastewater decreases, so the amount of disinfectant required for disinfection is reduced.
[0172] 次に、降雨開始から 0. 5時間経過後(図 39の A点)の合流式下水道越流水を採水 したものをビーカにとり、 BCDMHを種々の添加率でカ卩えて 90秒間消毒処理を行い、 処理水中の大腸菌群数を計測した。結果を図 40に示す。 BCDMH添加率が 2ppmで は、消毒処理後の大腸菌群数は 104CFU/mL以上であり、消毒目標値である 3000C FU/mLを満足しない。処理水中の消毒処理後の大腸菌群数は、 BCDMH添加率力 ppmでは 3000CFU/mLを僅かに超える程度となり、 BCDMH添力卩率カ ^ppmでは 100 CFU/mL以下となり、消毒目標値を大きく下回った。以上のことから、この時点の下水 道越流水の消毒には、 4. 2〜4. 3ppm程度の添加率で BCDMHをカ卩えることが必要 なことが分かる。 [0172] Next, 0.5 hours after the start of rainfall (point A in Fig. 39), collected sewage overflow water was collected into a beaker, and BCDMH was collected at various addition rates and disinfected for 90 seconds. After treatment, the number of coliforms in the treated water was counted. The results are shown in FIG. When the BCDMH addition rate is 2 ppm, the number of coliforms after disinfection is 10 4 CFU / mL or more, and the disinfection target value of 3000 CFU / mL is not satisfied. The number of coliforms after disinfection in the treated water is slightly higher than 3000 CFU / mL at the BCDMH addition rate ppm, and below 100 CFU / mL at the BCDMH addition rate rate ^ ppm, which is well below the disinfection target value. It was. Based on the above, it can be seen that sterilization of sewage overflow water at this point requires that BCDMH be supported at an addition rate of about 4.2 to 4.3 ppm.
[0173] 更に、降雨開始から 45分経過後(図 39の B点)及び 1. 5時間経過後(図 39の C点 )についても同様に、 BCDMH添加率と、 90秒消毒処理後の大腸菌群数との関係を 調べ、結果を図 41及び図 42に示した。これらの図より、 B点(降雨 45分経過後)では 、下水道越流水の消毒に必要な BCDMH添加率は 3. 5〜3. 6ppm程度、 C点(降雨 1. 5時間経過後)では、下水道越流水の消毒に必要な BCDMH添加率は 1. 6〜1. 7ppm程度であることが分かる。  [0173] Furthermore, after 45 minutes from the start of rainfall (point B in Fig. 39) and after 1.5 hours (point C in Fig. 39), the BCDMH addition rate and the E. coli after 90 seconds of disinfection were similarly applied. The relationship with the number of groups was examined, and the results are shown in Figs. From these figures, at point B (after 45 minutes of rainfall), the BCDMH addition rate required for disinfection of sewer overflow water is about 3.5 to 3.6 ppm, and at point C (after 1.5 hours of rainfall), It can be seen that the BCDMH addition rate required for disinfection of sewer overflows is about 1.6 to 1.7 ppm.
[0174] 次に、図 39での A点(降雨後 30分経過)、 B点(降雨後 45分経過)及び C点(降雨 後 1. 5時間経過)での合流式下水道越流水を採水したものをビーカにとり、 BCDMH を図 39の実験と同じ添加率 3ppmでカ卩え、 BCDMH添加後の経過時間と処理水中の 残留ハロゲン濃度との関係を調べた。結果を図 43に示す。 A点 (降雨後 30分経過) では、消毒剤添加直後ですでに残留ハロゲン濃度は 0. lmg/L asCl未満であり、図 39の結果と併せて考えると、 BCDMH添加率 3ppmでは被処理液の消毒効果は充分 でないといえる。 B点(降雨後 45分経過)では、消毒剤添加後約 20秒で残留ハロゲ ン濃度が約 0. lmg/L as CIであり、 100秒でほぼ Omg/L as CIに近いことがわかる。 [0174] Next, the combined sewer overflows at point A (30 minutes after the rain), point B (45 minutes after the rain) and point C (1.5 hours after the rain) in Figure 39 are collected. The water was taken into a beaker, BCDMH was added at the same addition rate of 3 ppm as in the experiment of Fig. 39, and the relationship between the elapsed time after addition of BCDMH and the residual halogen concentration in the treated water was investigated. The results are shown in FIG. At point A (30 minutes after rain), the residual halogen concentration was already less than 0.1 mg / L asCl immediately after the disinfectant was added. Considering the results of 39, it can be said that the disinfection effect of the liquid to be treated is not sufficient when the BCDMH addition rate is 3 ppm. At point B (45 minutes after rain), the residual halogen concentration is about 0.1 mg / L as CI about 20 seconds after the addition of the disinfectant, and it is almost close to Omg / L as CI after 100 seconds.
2 2  twenty two
図 39の結果(消毒時間 90秒で大腸菌群数が 4700CFU/mL)と併せて考えると、 B時 点での消毒剤添加量 3ppmは、必要量よりも未だ若干少ないといえる。また、 C時点で は、消毒剤添加後約 20秒では残留ハロゲン濃度が 0. 3mg/L as CI強と高ぐ約 15  Considering the results shown in Fig. 39 (disinfection time 90 seconds and number of coliforms 4700 CFU / mL), the amount of 3 ppm disinfectant added at time B is still slightly less than the required amount. At C, the residual halogen concentration was about 0.3 mg / L as CI, about 15 seconds, about 20 seconds after the addition of the disinfectant.
2  2
0秒まで徐々に低下するが、約 150秒以降は約 0. lmg/L as CI強で安定 (消毒作用  It gradually decreases to 0 seconds, but after about 150 seconds, it is stable at about 0.1 mg / L as CI (disinfection action)
2  2
の飽和)している。これより、 C時点(降雨後 1. 5時間)での消毒剤の添カ卩量 3ppmは 過剰で、消毒処理後に残留ハロゲンが残存してしまったことがわかる。  Is saturated). From this, it can be seen that the amount of 3 ppm of disinfectant added at point C (1.5 hours after rain) was excessive, and residual halogen remained after disinfection.
[0175] これらの結果を踏まえて、当該下水処理施設の雨天時下水の処理においては、消 毒剤処理後の残留ハロゲン濃度を、消毒目標値を確実に達成するための多少の余 裕を見て、図 43での B線と C線のほぼ中間地点に設定すればよい。即ち、図 43から 、 BCDMH添加後 20秒の時点で残留ハロゲン濃度を 0. 2mg/L as CIに設定すれば [0175] Based on these results, in the treatment of sewage in rainy weather at the sewage treatment facility, the residual halogen concentration after disinfectant treatment is considered to have some allowance to reliably achieve the disinfection target value. Therefore, it should be set at approximately the midpoint between lines B and C in Figure 43. That is, from FIG. 43, if the residual halogen concentration is set to 0.2 mg / L as CI 20 seconds after adding BCDMH,
2  2
よい。実際の消毒処理に当たっては、定期的に排水のサンプルを採り、所定濃度の 消毒剤を入れて残留ハロゲン濃度の減少程度を測定する。これが上記で設定した設 定値 (上記の場合には消毒剤添加後 20秒で残留ハロゲン濃度 0. 2mg/L as CI )より  Good. In actual disinfection treatment, drainage samples should be taken periodically, and the degree of decrease in residual halogen concentration should be measured by adding disinfectant at a predetermined concentration. This is the value set above (in the above case, residual halogen concentration 0.2 mg / L as CI 20 seconds after adding disinfectant)
2 も高 ヽ場合には、排水への消毒剤の投入量を排水サンプルに投入した濃度よりも低 い値に調整し、逆に残留ハロゲン濃度の減少程度が設定値よりも低い場合には消毒 剤投入量を排水サンプルに投入した濃度よりも高! ヽ値に調整する。この作業を定期 的に繰り返して、排水への消毒剤の投入量を経時的に制御することにより、消毒剤投 入量を、充分な消毒効果が得られ且つ残留ハロゲンが生じな!/、最適値に維持するこ とが可能になる。なお、サンプルに投入する消毒剤の濃度は、その時点で排水中に に実際に投入している濃度とすることが好ましい。このようにすれば、消毒剤投入濃 度の大きな変動を防ぐことができ、より緻密な制御が可能となるからである。また、サ ンプルにぉ ヽて測定された残留ハロゲン濃度の減少程度と設定値との差から、実際 に排水中に投入する濃度をどの程度増減させればょ 、かにつ 、ては、当業者が経 験的に決定することができる。  If 2 is too high, the amount of disinfectant input to the wastewater is adjusted to a value lower than the concentration input to the wastewater sample. Conversely, if the degree of decrease in residual halogen concentration is lower than the set value, disinfection Adjust the agent input to a higher value than the concentration in the drainage sample. By periodically repeating this operation and controlling the amount of disinfectant input to the waste water over time, the amount of disinfectant input can be sufficiently reduced and no residual halogen is generated! / It becomes possible to maintain the value. Note that the concentration of the disinfectant to be added to the sample is preferably set to the concentration actually input into the waste water at that time. This is because a large variation in the concentration of the disinfectant can be prevented and more precise control can be performed. In addition, from the difference between the decrease in the residual halogen concentration measured over the sample and the set value, how much the concentration actually put into the wastewater should be increased or decreased. This can be determined empirically by the vendor.
[0176] なお、図 39、図 43の曲線は、対象となる下水処理設備が同じであれば、多少の変 動はあるがほぼ同様の傾向を示す。したがって、処理対象の下水処理設備において[0176] The curves in Fig. 39 and Fig. 43 show some changes if the target sewage treatment facilities are the same. Although there is movement, it shows almost the same tendency. Therefore, in the sewage treatment facility to be treated
、図 39、図 43のようなグラフを作成して残留ハロゲン濃度の減少程度の目標値を設 定すれば、以降の降雨時には、この設定値に基づいて雨天時下水に対する消毒剤 添加量の制御を行うことができる。 39, create a graph as shown in Fig. 43 and set a target value for reducing the residual halogen concentration, and then control the amount of disinfectant added to sewage during rainy weather based on this set value during subsequent rainfalls. It can be performed.
[0177] この技術思想に基づいて構成した本発明の一態様に係る雨天時下水道越流水の 消毒装置の構成例を図 44に示す。  [0177] Fig. 44 shows a configuration example of a disinfection device for sewer stormwater overflow according to one embodiment of the present invention configured based on this technical idea.
[0178] 図 44に示す消毒装置は、被処理液(雨天時下水道越流水) 601の導入ライン 602 と、消毒槽 (沈砂池) 603と、被処理液に消毒剤を導入するための消毒剤導入手段 6 04とを備える。消毒剤導入手段としては、上述の種々の形態の消毒剤供給装置を用 いることができる。消毒剤導入手段 604は、消毒槽 603の上流のライン 602中に導入 してもよいし、或いは消毒槽 603に直接投入してもよい。上記に説明したように、消毒 槽 (沈砂池) 603を設けずに雨天時下水道越流水の流路中に消毒剤を投入してもよ い。また、被処理液導入ライン 602の途中に、試験用の被処理液サンプルを採取す るための分取ライン 612が接続されている。分取ライン 612には、揚水ポンプ 616が 接続されている。  [0178] The disinfection device shown in Fig. 44 includes an introduction line 602 of a liquid to be treated (sewer overflow in rainy weather) 601, a disinfection tank (sedimentation basin) 603, and a disinfectant for introducing a disinfectant into the liquid to be treated. Introducing means 2004 is provided. As the disinfectant introduction means, the disinfectant supply devices of various forms described above can be used. The disinfectant introduction means 604 may be introduced into the line 602 upstream of the disinfection tank 603 or may be directly introduced into the disinfection tank 603. As described above, the disinfectant may be introduced into the sewer stormwater overflow channel without providing the disinfection tank (sedimentation basin) 603. In addition, a preparative line 612 for collecting a test liquid sample to be tested is connected in the process liquid introduction line 602. A pumping pump 616 is connected to the sorting line 612.
[0179] 本発明による消毒方法を実施するためには、まず、準備段階として、処理対象とな る雨天時下水道越流水排除施設において、降雨時に、降雨開始から種々の時間が 経過した後の複数の越流水サンプルを採取して、これに適当量の消毒剤をカ卩えて消 毒後の大腸菌群数を測定することによって、降雨後の経過時間と消毒後の大腸菌群 数との関係(図 39のグラフ)と、消毒剤添加後の経過時間と被処理水の残留ハロゲン 濃度との関係(図 43のグラフ)を作成して、これらの関係から、目標とすべき残留ハロ ゲン減少程度の値を設定しておく。例えば、図 39及び図 43に示す関係が得られた 場合には、上記に説明したように、消毒剤添加後 20秒で残留ハロゲン濃度 0. 2mg/ L as CIという目標値が設定される。  [0179] In order to carry out the disinfection method according to the present invention, first, as a preparatory stage, in the rainwater sewer stormwater drainage facility to be treated, a plurality of items after various times have elapsed since the start of the rain at the time of rain. A sample of overflow water was collected, and an appropriate amount of disinfectant was added to the sample to measure the number of coliform bacteria after disinfection, so that the relationship between the elapsed time after rainfall and the number of coliform bacteria after disinfection (Fig. 39) and the relationship between the elapsed time after addition of the disinfectant and the residual halogen concentration in the treated water (graph in Fig. 43). Set the value. For example, when the relationships shown in FIGS. 39 and 43 are obtained, as described above, a target value of 0.2 mg / L as CI for the residual halogen concentration is set 20 seconds after the addition of the disinfectant.
2  2
[0180] 雨天時下水道越流水の消毒は、消毒剤導入手段 604から適当量の消毒剤を投入 して、消毒槽 603で処理することによって行うが、本発明方法においては、消毒剤を 添加する前の被処理液を、周期的にライン 612よりサンプリングする。サンプリングさ れた被処理液は、モニタリング槽 613に収容され、ここで所定量の濃度の消毒剤 614 が添加され、撹拌機(図示せず)によって混合撹拌される。モニタリング槽に加える消 毒剤の濃度は、緻密な濃度制御を可能にするためには、その時点で消毒剤導入手 段 604によって被処理液中に実際に供給されている消毒剤の濃度とすることが好ま しい。モニタリング槽 613には、被処理液中の残留ハロゲン濃度を測定する測定器 6 15が接続されており、消毒剤添加後の残留ハロゲン濃度の数値を継時的に測定す る。この目的で用いることのできる残留ハロゲン濃度測定器としては、例えば、ポーラ ログラフ方式による遊離塩素計 (例えば、東亜ディーケーケ一 (株)製造の製品名 CL M— 37又は CLM— 22)などを挙げることができる。測定された残留ハロゲン濃度値 は記録計 618によって記録される。そして、当該雨天時下水道越流水排除施設に関 して、予め設定されている目標値と、モニタリング槽 613において測定された値とを比 較する。例えば、当該下水処理設備に関して図 39及び図 43のグラフが得られている 場合には、設定値は消毒剤添加後 20秒で残留ハロゲン濃度が 0. 2mg/L as CIとい [0180] Disinfection of sewer stormwater overflow is performed by adding an appropriate amount of disinfectant from the disinfectant introduction means 604 and treating in the disinfection tank 603. In the method of the present invention, disinfectant is added. The previous liquid to be processed is periodically sampled from line 612. The sampled liquid to be treated is stored in the monitoring tank 613, where a predetermined amount of disinfectant 614 is stored. Is added and mixed and stirred by a stirrer (not shown). The concentration of the disinfectant added to the monitoring tank is the concentration of the disinfectant actually supplied to the liquid to be treated by the disinfectant introduction means 604 at that time in order to enable precise concentration control. I like it. The monitoring tank 613 is connected to a measuring device 615 for measuring the residual halogen concentration in the liquid to be treated, and continuously measures the value of the residual halogen concentration after adding the disinfectant. Residual halogen concentration measuring instruments that can be used for this purpose include, for example, a polarographic free chlorine meter (for example, product name CL M-37 or CLM-22 manufactured by Toa DKKEI Co., Ltd.). Can do. The measured residual halogen concentration value is recorded by a recorder 618. Then, regarding the rainwater sewer stormwater drainage facility, the preset target value and the value measured in the monitoring tank 613 are compared. For example, if the graphs of Fig. 39 and Fig. 43 are obtained for the sewage treatment facility, the set value is 20 mg after adding the disinfectant and the residual halogen concentration is 0.2 mg / L as CI.
2 う値であるので、モニタリング槽 613で消毒剤が添加された被処理水サンプルの、消 毒剤添加後 20秒における残留ハロゲン濃度を測定する。そして、この値が設定値で ある 0. 2mg/L as CIよりも高い場合には、消毒剤導入手段 604から投入する消毒剤  Since the value is 2%, the residual halogen concentration of the treated water sample to which the disinfectant is added in the monitoring tank 613 is measured 20 seconds after the disinfectant is added. If this value is higher than the set value of 0.2 mg / L as CI, the disinfectant to be introduced from the disinfectant introduction means 604 is used.
2  2
の濃度を減少させ、逆に 0. 2mg/L as CIよりも低い場合には、消毒剤導入手段 604 If the concentration is lower than 0.2 mg / L as CI, disinfectant introduction means 604
2  2
力も投入する消毒剤の濃度を増加させる。この消毒剤投入濃度の制御は、予め設定 した残留ハロゲン濃度減少程度の目標値を入力したコンピュータ(図示せず)に、残 留ハロゲン濃度測定器 615での測定値を通信ライン 604を通してインプットし、設定 値と測定値との比較結果に応じて投入消毒剤量を制御する自動制御装置 (図示せ ず)を用いることにより、自動的に行うことができる。残留ハロゲン濃度減少程度の測 定が完了した被処理水サンプルは、戻しライン 617を介して被処理液導入ライン 602 に戻し、被処理液と共に消毒槽 603に導入する。消毒槽 603では、消毒剤が加えら れた被処理液が短い場合には 1分以内、長い場合には 10分以内滞留されて、消毒 剤との反応が進められる。消毒処理が行われた被処理水は、ポンプ 606により揚水さ れて、排水路 607を介して、公共水域 608に放流される。 Also increase the concentration of disinfectant to put power. The disinfectant input concentration is controlled by inputting the measured value of the residual halogen concentration measuring device 615 through a communication line 604 to a computer (not shown) that has input a preset target value for decreasing the residual halogen concentration. This can be done automatically by using an automatic control device (not shown) that controls the amount of input disinfectant according to the comparison result between the set value and the measured value. The treated water sample for which the measurement of the decrease in residual halogen concentration has been completed is returned to the treated liquid introduction line 602 via the return line 617 and introduced into the disinfection tank 603 together with the treated liquid. In the disinfection tank 603, when the liquid to be treated with the disinfectant is short, it stays within 1 minute, and within 10 minutes when it is long, the reaction with the disinfectant proceeds. The treated water that has been sterilized is pumped up by the pump 606 and discharged into the public water area 608 through the drainage channel 607.
なお、被処理液サンプルは、消毒剤投入位置よりも上流力 採取することが好まし い。消毒剤投入位置よりも下流カゝらサンプルを採取する、即ち消毒剤が添加されて 、る被処理液をサンプルとして採取すると、消毒途中のある時点での残留ハロゲン濃 度を測定することになるが、図 43に示したように、残留ハロゲン濃度は消毒剤添加後 の経過時間に極めて敏感に依存して変化するので、これでは適切な制御はできない 力 である。 In addition, it is preferable to collect the sample to be treated upstream from the disinfectant input position. Take a sample downstream from the disinfectant input position, that is, disinfectant is added If the sample liquid is collected as a sample, the residual halogen concentration at a certain point during the disinfection will be measured, but as shown in Fig. 43, the residual halogen concentration is measured as the elapsed time after adding the disinfectant. This is a force that cannot be adequately controlled because it changes very sensitively.
[0182] この態様によれば、上記のモニタリング操作を、定期的、例えば 1分〜 60分毎、好 ましくは 5分〜 20分毎に行い、その結果に応じて消毒剤の添加濃度を調整する。こ れによって、特に時間の経過によってその性状が大きく変動する雨天時越流水の消 毒処理に際して、充分な消毒効果を与えると共に、残留ハロゲンを公共用水域に放 出することのない、適切な消毒剤添加濃度を維持することが可能になる。  [0182] According to this embodiment, the above monitoring operation is performed periodically, for example, every 1 to 60 minutes, preferably every 5 to 20 minutes, and the concentration of the disinfectant added is determined according to the result. adjust. This makes it possible to provide adequate disinfection, especially in the case of disinfecting rainwater overflowing water, whose properties vary greatly over time, and at the same time appropriate disinfection without releasing residual halogen to public water areas. It becomes possible to maintain the agent addition concentration.
[0183] なお、雨天時下水道越流水の消毒においては、消毒剤の添加量は、消毒剤の種 類や越流水の性状などによっても変化する力 一般に 1〜: LOmg/L(ppm)、好ましくは 2〜6mg/Lであり、本発明においても、この範囲内で消毒剤添加量を制御することが 好ましい。  [0183] In disinfection of sewer stormwater overflow, the amount of disinfectant added varies depending on the type of disinfectant and the nature of the overflow water. Generally, 1 to: LOmg / L (ppm), preferably Is 2 to 6 mg / L. In the present invention, it is preferable to control the addition amount of the disinfectant within this range.
[0184] 上述したように、消毒槽 603は、特別な反応槽でなくても、雨天時下水道越流水の 流路であってもよぐ固体臭素系消毒剤による消毒に必要な接触時間を取れればよ い。ここで、固体臭素系消毒剤による消毒に必要な接触時間とは、処理対象の雨天 時下水道越流水の最大越流量を設定し、少なくとも 20秒、できれば 30秒、更に好ま しくは 60秒とすればよい。また、処理対象の雨天時下水道越流水の最大越流量の 設定方法は、次のようにするのが合理的である。下水道において越流水が生じるの は、合流式下水道における大量の雨天時、若しくは分流式下水道における不明水や マンホール等から雨水が大量に混入した場合である。下水道への雨水の流入は、降 雨状況によって大きく変化する。つまり、台風や集中豪雨などの場合には浸水被害 が出たり、河川の氾濫が生じることまである。本発明は、このような極端に大量の降雨 の場合を想定するものではない。なぜなら、このような場合の雨天時下水道越流水の 水質は、雨水と殆ど同じ清澄な水となり、消毒が必要ではなくなる力 である。様々な 調査を通じて、処理対象としての雨天時下水道越流水の最大越流量は、晴天時下 水量の 20倍から 10倍に設定することが望ましい。このように、処理対象の雨天時下 水道越流水の量を明確にし、固体臭素系消毒剤の接触時間を設定することにより、 消毒槽若しくは雨天時下水道越流水流路の大きさを決定することができる。 [0184] As described above, the disinfection tank 603 can have a contact time required for disinfection with a solid bromine-based disinfectant, even if it is not a special reaction tank or a sewer stormwater overflow channel. It ’s good. Here, the contact time required for disinfection with a solid bromine-based disinfectant is set to the maximum overflow rate of the sewer stormwater overflow to be treated, and should be at least 20 seconds, preferably 30 seconds, and more preferably 60 seconds. That's fine. In addition, it is reasonable to set the maximum overflow rate for sewer stormwater overflow to be treated as follows. Overflow water is generated in the sewerage system when there is a large amount of rain in the combined sewerage system or when a large amount of rainwater is mixed from unknown water or manholes in the diversion sewerage system. The inflow of rainwater into the sewer varies greatly depending on the rainfall conditions. In other words, in the case of a typhoon or heavy rain, flooding may occur and rivers may overflow. The present invention does not assume such an extremely heavy rainfall. This is because the quality of sewer stormwater overflow is almost the same as that of rainwater, and it is a force that does not require disinfection. Through various surveys, it is desirable to set the maximum overflow of sewer stormwater overflow as 20 to 10 times the amount of sewage in clear weather. In this way, by clarifying the amount of sewer stormwater overflow to be treated and setting the contact time of the solid bromine-based disinfectant, The size of the sterilization tank or the sewer stormwater overflow channel can be determined.
[0185] また、図 44で示す雨天時下水道越流水消毒装置によって消毒剤が添加された処 理水の残留ハロゲン濃度を測定し、残留ハロゲン濃度が高い場合には、還元剤を加 えて中和を行った後に放流することが好ましい。図 45に示すシステムは、図 44の消 毒槽 603の下流の消毒剤が添加された雨天時下水道越流水に対する処理方法を示 す。消毒剤が添加された雨天時下水道越流水は、消毒槽 603から排水流路に誘導 される。ここで、残留ハロゲン濃度検出計 623によって処理水の残留ハロゲン濃度を 測定し、残留ハロゲン濃度が高い場合には、還元剤 621を投入し、還元槽 622で残 留ハロゲンの中和を行った後に、排水路 607を介して公共水域 608に放流する。な お、還元剤 621は、図 45に示すように排水流路 620に直接投入してもよいし、還元 槽 622に投入してもよい。また、還元槽 622を設けずに、排水流路 607中で中和が 行われるようにしてもよい。還元剤の添加量は、残留ハロゲン濃度の設定値 (先の例 では 0. 2mg/L)に対して化学的に等量であれば十分である。なぜならば、実際の消 毒処理後の残留ハロゲン濃度は、設定値より低い値になるからである。更に、ハロゲ ン検出計 623を、図 44に示す消毒剤導入手段と連動させて、排水流路 620中の被 処理水中の残留ハロゲン濃度が高い場合には、投入する消毒剤の量を制御すること もできる。このようにすれば、固体臭素系消毒剤の添加量を最小にし、且つ、還元剤 添加量を過剰にすることなぐハロゲンの無害化が達成される。  [0185] In addition, the residual halogen concentration of the treated water to which the disinfectant was added was measured by the rainwater sewer overflow water disinfection device shown in Fig. 44, and if the residual halogen concentration was high, a reducing agent was added to neutralize the treatment water. It is preferable to discharge after performing. The system shown in Fig. 45 shows the treatment method for sewer stormwater overflow with the addition of the disinfectant downstream of the disinfection tank 603 in Fig. 44. The sewer stormwater overflow with the disinfectant added is guided from the disinfection tank 603 to the drainage channel. Here, the residual halogen concentration of the treated water is measured by the residual halogen concentration detector 623. If the residual halogen concentration is high, the reducing agent 621 is added and the residual halogen is neutralized in the reduction tank 622. And discharged into public water area 608 via drainage channel 607. Note that the reducing agent 621 may be input directly into the drainage channel 620 as shown in FIG. 45 or may be input into the reducing tank 622. Further, neutralization may be performed in the drainage channel 607 without providing the reduction tank 622. The amount of reducing agent added is sufficient if it is chemically equivalent to the set value of the residual halogen concentration (0.2 mg / L in the previous example). This is because the residual halogen concentration after the actual disinfection process is lower than the set value. Further, the halogen detector 623 is linked with the disinfectant introduction means shown in FIG. 44 to control the amount of disinfectant to be introduced when the residual halogen concentration in the treated water in the drainage channel 620 is high. You can also. In this way, the halogen detoxification can be achieved by minimizing the addition amount of the solid bromine-based disinfectant and making the addition amount of the reducing agent excessive.
[0186] また、本発明に係る雨天時下水道越流水の消毒システムにおいて、処理地域の降 雨情報から、降雨開示時刻、降雨総量、降雨継続時間の予測を行い、この予測値に 基づいて消毒剤の添加量を制御することができる。  [0186] Further, in the disinfection system for sewer stormwater overflow according to the present invention, the rainfall disclosure time, the total amount of rainfall, and the rainfall duration time are predicted from the rainfall information of the treatment area, and the disinfectant is based on the predicted values. The amount of addition of can be controlled.
[0187] 従来、この種の排水消毒装置の制御方法としては、排水消毒装置を設置する処理 場内に設けられた測定装置により、排水の流入量及び流入汚濁負荷、降雨量、降雨 強度を測定し、該測定した測定値力 該排水消毒装置に流入する排水中の大腸菌 群数を推定して薬剤の添加量を予測し制御していた。  [0187] Conventionally, as a control method for this type of wastewater disinfection device, the inflow amount of wastewater, the inflow pollution load, the rainfall amount, and the rainfall intensity are measured by a measuring device provided in the treatment plant where the wastewater disinfection device is installed. The measured value force was estimated and controlled by estimating the number of E. coli groups in the wastewater flowing into the wastewater disinfection device.
[0188] 図 46は、家庭排水や工場排水などの下水を収集する下水管路網と処理地域を示 す図である。処理地域 X内で発生した下水、雨水を含む下水及び地表を流下した雨 水等の排水は、処理地域 X内に設けられた下水管 711に流入する。各下水管 711に 流入した排水は合流し、該合流した排水は直接下水処理場 710に設けられた下水 消毒装置に流入するか又は各中継ポンプ Pl、 P2、 P3により下水処理場に送水され る。 [0188] Fig. 46 is a diagram showing a sewage pipe network that collects sewage such as domestic wastewater and factory wastewater, and a treatment area. Wastewater such as sewage generated in treatment area X, sewage containing rainwater, and rainwater flowing down the ground surface flows into a sewage pipe 711 provided in treatment area X. Each sewer pipe 711 The wastewater that has flowed in joins, and the joined wastewater flows directly into the sewage disinfection device provided in the sewage treatment plant 710 or is sent to the sewage treatment plant by the relay pumps Pl, P2, and P3.
[0189] 本発明の一態様においては、このような下水システムにおいて、処理地域内の下水 、雨水を含む下水及び地表を流下した雨水等を含む排水、特に雨天時下水道越流 水を薬剤により消毒する消毒装置の制御方法において、処理地域に設けられた測定 点又は該処理地域及び隣接する処理地域に設けられた測定点力 降雨情報を収集 し、降雨情報力 処理地域内における降雨開始時刻、降雨総量及び降雨継続時間 の予測を行い、該予測した降雨開始時刻、降雨総量及び降雨継続時間から薬剤添 加量、薬剤消費量及び排水消毒装置運転開始時刻を予測し該排水消毒装置を制 御する。  [0189] In one embodiment of the present invention, in such a sewage system, sewage in the treatment area, sewage containing rainwater, drainage containing rainwater flowing down the surface, etc., particularly sewer stormwater overflow is disinfected with chemicals. In the control method of the disinfection device, the measurement point provided in the treatment area or the measurement point force provided in the treatment area and the adjacent treatment area Rainfall information is collected and the rainfall start time, rainfall in the treatment area Predict the total amount and the duration of rainfall, and control the drainage disinfection device by predicting the amount of medicine added, the amount of medicine consumed, and the start time of the drainage disinfection device from the predicted rainfall start time, total precipitation amount, and rainfall duration. .
[0190] こののような消毒装置の制御方法を採用すると、処理地域に設けられた測定点又 は該処理地域及び隣接する処理地域に設けられた測定点より収集された降雨情報 力 処理地域内における降雨開始時刻、降雨総量及び降雨継続時間のを予測する ので、薬剤添加量、薬剤消費量及び排水消毒装置運転開始時刻をリアルタイムに予 柳』することができる。  [0190] When such a method for controlling a disinfection device is adopted, the rainfall information collected from the measurement points provided in the treatment area or the measurement points provided in the treatment area and the adjacent treatment area. Because it predicts the rainfall start time, total rainfall amount, and rainfall duration time in, it is possible to predict the amount of drug added, the amount of drug consumed, and the start time of drainage disinfection equipment in real time.
[0191] また、他の形態によれば、処理地域内の下水、雨水を含む下水及び地表を流下し た雨水等を含む排水、特に雨天時下水道越流水を薬剤により消毒する消毒装置の 制御装置にお!、て、処理地域又は該処理地域及び隣接する処理地域の降雨情報 を測定する降雨情報測定手段と、降雨情報測定手段により測定された降雨情報から 処理地域内における降雨開始時刻、降雨総量及び降雨継続時間の予測を行う降雨 情報予測処理手段と、降雨情報予測処理手段により予測された降雨開始時刻、降 雨総量及び降雨継続時間から薬剤添加量、薬剤消費量及び排水消毒装置運転開 始時刻の予測を行う大腸菌群数予測処理手段を具備することができる。  [0191] Further, according to another embodiment, the control device of the disinfection device that disinfects the sewage in the treatment area, the sewage including the rainwater, the drainage including the rainwater flowing down the surface of the ground, etc., in particular, the sewer sewage overflow water in the rain From the rainfall information measurement means that measures the rainfall information of the treatment area or the treatment area and the adjacent treatment area, and the rainfall information measured by the rainfall information measurement means, the rainfall start time and the total amount of rainfall in the treatment area And rainfall information prediction processing means for predicting the rainfall duration, and the amount of medicine added, the amount of medicine consumed, and the start of drainage disinfection from the rainfall start time, the total amount of rainfall and the rainfall duration predicted by the rainfall information prediction processing means. An E. coli group number prediction processing means for predicting the time can be provided.
[0192] このように排水消毒装置の制御装置は、処理地域又は該処理地域及び隣接する 処理地域の降雨情報を測定する降雨情報測定手段と降雨情報から処理地域内にお ける降雨開始時刻、降雨総量及び降雨継続時間の予測を行う降雨情報予測処理手 段と降雨開始時刻、降雨総量及び降雨継続時間カゝら薬剤添加量、薬剤消費量及び 消毒装置運転開始時刻の予測を行う大腸菌群数予測処理手段を具備するので、薬 剤添加量、薬剤消費量及び排水消毒装置運転開始時刻をリアルタイムに予測するこ とがでさる。 [0192] As described above, the control device of the wastewater disinfection device includes the rainfall information measuring means for measuring the rainfall information of the treatment area or the treatment area and the adjacent treatment area, the rain start time in the treatment area, the rainfall from the rain information. Prediction method of rainfall information to predict the total amount and the duration of rainfall, the rain start time, the total amount of rainfall and the duration of rainfall, the amount of drug added, the amount of drug consumed, and Since the E. coli group number prediction processing means for predicting the operation start time of the sterilizer is provided, it is possible to predict the amount of added drug, the amount of drug consumption, and the operation start time of the waste water sterilizer in real time.
[0193] 他の形態によれば、上述のの消毒装置の制御装置において、降雨情報測定手段 により測定された降雨情報から排水消毒装置に流入する排水の流入水量及び流入 汚濁負荷を予測する地域特性シミュレーション手段と該地域特性シミュレーション手 段により予測された流入水量及び流入汚濁負荷により薬剤添加量、薬剤消費量及 び排水消毒装置運転開始時刻の補正をする予測値補正処理手段を具備することが できる。  [0193] According to another aspect, in the above-described disinfection device control apparatus, the regional characteristics for predicting the inflow water amount and inflow pollution load of the wastewater flowing into the wastewater disinfection device from the rainfall information measured by the rain information measuring means It is possible to provide a prediction value correction processing means for correcting the amount of added medicine, the amount of medicine consumed, and the operation start time of the drainage disinfection device based on the inflow water amount and the inflow pollution load predicted by the simulation means and the regional characteristic simulation means. .
[0194] このように地域特性シミュレーション手段により予測された流入水量及び流入汚濁 負荷により薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の補正をする予測 値補正処理手段を具備するので、該薬剤添加量、薬剤消費量及び排水消毒装置運 転開始時刻の予測をさらに正確に行うことができる。  [0194] Since the inflow water amount and the inflow pollution load predicted by the regional characteristic simulation means are provided with the predicted value correction processing means for correcting the drug addition amount, the drug consumption amount, and the disinfection device operation start time, the drug It is possible to predict the addition amount, chemical consumption, and drainage disinfection start time more accurately.
[0195] 更に他の形態によれば、上述の消毒装置の制御装置において、消毒装置に流入 する被処理水の流入水濁度を測定する濁度測定手段を設け、降雨情報予測処理手 段により予測された降雨開始時刻、降雨総量及び降雨継続時間及び濁度測定手段 により測定された流入水濁度から薬剤添加量、薬剤消費量及び排水消毒装置運転 開始時刻の予測を行うことができる。  [0195] According to still another embodiment, the control device of the disinfecting apparatus includes turbidity measuring means for measuring the inflow turbidity of the water to be treated flowing into the disinfecting apparatus, and the rain information prediction processing means From the predicted rainfall start time, total rainfall amount and duration of rainfall, and inflow water turbidity measured by the turbidity measuring means, it is possible to predict the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time.
[0196] このように降雨情報予測処理手段により予測された降雨開始時刻、降雨総量及び 降雨継続時間及び濁度測定手段により測定された流入水濁度から薬剤添加量、薬 剤消費量及び消毒装置運転開始時刻を予測するので、該薬剤添加量、薬剤消費量 及び排水消毒装置運転開始時刻の予測をさらに正確に行うことができる。  [0196] The amount of drug added, the amount of drug consumed, and the disinfection device based on the rainfall start time, the total amount of rainfall, the duration of rainfall, and the inflow water turbidity measured by the turbidity measuring means predicted by the rainfall information prediction processing means. Since the operation start time is predicted, the drug addition amount, the drug consumption amount, and the drainage disinfection device operation start time can be predicted more accurately.
[0197] 更に他の形態によれば、処理地域内の下水、雨水を含む下水及び地表を流下した 雨水等を含む排水、特に雨天時下水道越流水を薬剤により消毒する消毒装置の制 御装置にお!、て、処理地域又は該処理地域及び隣接する処理地域の降雨情報を 測定する降雨情報測定手段と、降雨情報測定手段により測定された降雨情報から排 水消毒装置に流入する排水の流入水量及び流入汚濁負荷を予測する地域特性シミ ユレーシヨン手段と、予め排水に対する薬剤添加率を設定する薬剤添加率設定手段 と、地域特性シミュレーション手段により予測された流入水量、流入汚濁負荷及び薬 剤添加率設定手段より設定された薬剤添加率カゝら薬剤添加量及び薬剤消費量の予 測を行う薬剤添加量算出処理手段を具備することができる。 [0197] According to still another aspect, the present invention provides a control device for a disinfection device that disinfects wastewater including sewage in a treatment area, sewage including rainwater, rainwater flowing down the surface of the earth, etc., particularly sewer stormwater overflow with chemicals. The amount of inflow of wastewater that flows into the wastewater disinfection device from the rainfall information measurement means that measures the rainfall information of the treatment area or the treatment area and the adjacent treatment area, and the rainfall information measured by the rain information measurement means And regional characteristic simulation means for predicting inflow pollution load, and chemical addition rate setting means for setting the chemical addition rate for wastewater in advance In addition, the amount of influent water predicted by the regional characteristic simulation means, the inflow pollution load, and the amount of drug addition set by the means for setting the drug addition rate, and the amount of drug added and the amount of drug consumed are predicted. Means can be provided.
[0198] このように処理地域又は該処理地域及び隣接する処理地域の降雨情報を測定す る降雨情報測定手段と、降雨情報から排水消毒装置に流入する排水の流入水量及 び流入汚濁負荷を予測する地域特性シミュレーション手段と、予め被処理水に対す る薬剤添加率を設定する薬剤添加率設定手段と、流入水量、流入汚濁負荷及び薬 剤添加率から薬剤添加量及び薬剤消費量の予測を行う薬剤添加量算出処理手段 を具備するので、薬剤添加量及び薬剤消費量を簡単な構成でリアルタイムに予測す ることがでさる。  [0198] In this way, the rainfall information measuring means for measuring the rainfall information of the treatment area or the treatment area and the adjacent treatment area, and the amount of influent water flowing into the waste water disinfection device and the inflow pollution load are predicted from the rain information. Predicting the amount of drug added and the amount of drug consumed from the inflow water amount, the inflow pollution load and the drug addition rate. Since the medicine addition amount calculation processing means is provided, it is possible to predict the medicine addition amount and the medicine consumption amount in real time with a simple configuration.
[0199] 他の形態によれば、上述のいずれかの消毒装置の制御装置において、消毒装置 が設置される処理施設における降雨量、降雨強度、該消毒装置に流入する被処理 水の流入水量、消毒装置に供給される薬剤の薬剤供給量、消毒装置から放流される 放流水残留薬剤濃度を測定する実測値測定手段を設け、実測値測定手段により測 定された測定値により薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の予測 を補正する実測値補正処理手段を具備することを特徴とする。  [0199] According to another embodiment, in the control device for any one of the above-described disinfection apparatuses, the amount of rainfall in the treatment facility where the disinfection apparatus is installed, the rainfall intensity, the amount of inflow water to be treated flowing into the disinfection apparatus, Measured value measurement means is provided to measure the amount of drug supplied to the disinfection device and the concentration of residual drug discharged from the disinfection device. It comprises an actual value correction processing means for correcting the consumption amount and the prediction of the disinfection device operation start time.
[0200] このように実測値測定手段により測定された測定値で薬剤添加量、薬剤消費量及 び消毒装置運転開始時刻の予測を補正する実測値補正処理手段を具備するので、 該薬剤添加量、薬剤消費量及び消毒装置運転開始時刻の予測をさらに正確に行う ことができる。  [0200] Since the measurement value correction processing means for correcting the prediction of the drug addition amount, the drug consumption amount, and the disinfection device operation start time based on the measurement values measured by the actual value measurement means is provided, the drug addition amount In addition, the drug consumption and the disinfection device operation start time can be predicted more accurately.
[0201] 図 47は、上記に説明の形態の消毒装置が消毒する排水を収集する下水管路網と 処理地域及び隣接する処理地域を示す図である。図 47に示すように、雨天時下水 道越流水の消毒装置を設置する下水処理場 710の処理地域 Xの周囲には、同様の 下水処理場を有する処理地域 A、 B、 C、 D、 Eが隣接して存在する。なお、本実施形 態例における下水管路網の基本的構成は、図 46に示す下水管網と同一であるので その説明は省略する。  [0201] FIG. 47 is a diagram showing a sewage pipeline network that collects waste water to be sterilized by the disinfecting apparatus of the embodiment described above, a treatment area, and an adjacent treatment area. As shown in Fig. 47, treatment areas A, B, C, D, and E with similar sewage treatment plants around treatment area X of 710 sewage treatment plant 710 where sewage overflow water disinfection equipment is installed. Are adjacent to each other. Note that the basic configuration of the sewer network in this embodiment is the same as that of the sewer network shown in FIG.
[0202] 図 48は、本発明にかかる排水消毒装置の制御装置の構成例を示す図である。同 図に示すように、処理地域 A内には複数の降雨情報測定手段 720、 720· ··が設けら れ、該降雨情報測定手段 720、 720· ··で処理地域 A内の降雨情報 721a、 722a〜 が測定できるようになつている。なお、各降雨情報測定手段 720は、図示は省略する 1S 処理地域 A内の中継ポンプが設置されているポンプ場、排水機場、処理場、計 測設備を有する施設に設けられている。その他の処理地域 B、 C、 D、 E、 Xについて も、同様な降雨情報測定手段でそれぞれの処理地域の降雨量、降雨強度などの降 雨情報を測定するようになっている。該各処理地域 A, B、 C、 D、 E、 Xで測定された 降雨情報は、市販の電話回線を利用したデータ伝送装置やアメダスシステムなどを 利用して制御装置 730に連続的又は定期的に伝送されてくるようになっている。 [0202] FIG. 48 is a diagram showing a configuration example of the control device of the wastewater disinfection device according to the present invention. As shown in the figure, a plurality of rainfall information measuring means 720, 720. Thus, the rainfall information measuring means 720, 720,... Can measure the rainfall information 721a, 722a˜ in the processing area A. Each rainfall information measuring means 720 is provided in a facility having a pump station, a drainage station, a treatment plant, and a measurement facility where a relay pump in 1S treatment area A is omitted. For other treatment areas B, C, D, E, and X, rainfall information such as rainfall and rainfall intensity in each treatment area is measured using the same rainfall information measurement means. The rainfall information measured in each processing area A, B, C, D, E, X is continuously or periodically sent to the control device 730 using a data transmission device or an AMeDAS system using a commercially available telephone line. To be transmitted.
[0203] 図 49は、雨天時下水道越流水消毒装置の制御方法に用いられるマッピング処理 を示す図で、同図(a)は各処理地域 A, B、 C、 D、 E、 Xで測定された降雨情報をマツ ビング処理した模式図で、同図(b)は同図(a)の時間 t経過後の模式図である。上記 制御装置 730に入力された処理地域 A, B、 C、 D、 E、 Xからの降雨情報は、降雨情 報マッピング処理手段 731により図 49 (a)に示すような模式図にマッピング処理され る。各処理地域 A, B、 C、 D、 E、 Xで測定された降雨情報は、連続的又は定期的に 制御装置 730に伝送されるので、図 49 (a)に示す模式図は時間 t経過後に図 49 (b) に示すような模式図となる。なお、上記マッピング処理された降雨情報は、 Aで示すよ うに降雨強度の強弱で表されて!/、る。  [0203] Figure 49 shows the mapping process used in the control method for sewer overflow water disinfection equipment in rainy weather. Figure (a) is measured in each treatment area A, B, C, D, E, X. (B) is a schematic diagram after elapse of time t in FIG. (A). The rain information from the processing areas A, B, C, D, E, and X input to the control device 730 is subjected to mapping processing by the rain information mapping processing means 731 into a schematic diagram as shown in FIG. The The rainfall information measured in each treatment area A, B, C, D, E, and X is transmitted to the control device 730 continuously or periodically. It will be a schematic diagram as shown in Fig. 49 (b) later. Note that the rainfall information that has been mapped is represented by the intensity of rainfall intensity as shown by A! /.
[0204] 次に、連続的又は定期的に伝送されマッピング処理された降雨情報の時系列推移  [0204] Next, the time series of rainfall information that was transmitted continuously or periodically and mapped
(図 49参照)から、降雨情報推定処理手段 732より処理地域 Xにおける降雨開始時 刻、降雨総量及び降雨継続時間の予測を行う。また、該降雨情報推定処理手段 73 2は、予測した降雨開始時刻、降雨総量及び降雨継続時間から、処理地域 Xの処理 場 710における予想降雨量 733、予想降雨強度 734及び消毒装置に流入する被処 理水の予想流入量 735を求める。該求められた予想降雨量 733、予想降雨強度 73 4及び予想流入量 735は既知の大腸菌群数推定処理手段 736に入力される。また、 大腸菌群数推定手段 736には、下水処理場 710に設置された濁度測定手段 750で 測定された消毒装置に流入する被処理水の流入水濁度 751が入力されている。  (See Fig. 49) Prediction of rainfall start time, total amount of rainfall, and rainfall duration in processing area X from rainfall information estimation processing means 732. Further, the rainfall information estimation processing means 73 2 calculates the predicted rainfall 733, the predicted rainfall intensity 734, and the amount of water flowing into the disinfection device from the predicted rainfall start time, total rainfall, and rainfall duration, at the treatment plant 710 in the processing area X. Calculate the estimated inflow 735 of treated water. The calculated expected rainfall 733, expected rainfall intensity 734, and expected inflow 735 are input to known coliform group number estimation processing means 736. In addition, the turbidity 751 of the influent water flowing into the disinfection apparatus measured by the turbidity measuring means 750 installed in the sewage treatment plant 710 is input to the coliform group number estimating means 736.
[0205] 大腸菌群数推定処理手段 736は、上記入力された予想降雨量 733、予想降雨強 度 734、予想流入量 735及び流入水濁度 751から、大腸菌群数を推定し、それに対 する必要な薬剤添加量 736a、薬剤消費量 736b及び排水消毒装置運転開始時刻 7 36cの予測を行う。 [0205] The coliform group number estimation processing means 736 estimates the number of coliform groups from the input predicted rainfall 733, predicted rainfall intensity 734, predicted inflow 735, and inflow turbidity 751 and Estimate the required amount of added medicine 736a, consumed amount 736b, and drainage disinfection start time 736c.
[0206] 次に処理地域 Xの下水処理場 710に設けられた実測値測定手段 752より、処理場 710における降雨量 753、降雨強度 754、該排水消毒装置に流入する排水の流入 水量 755、排水消毒装置に供給されるハロゲン系薬剤の薬剤供給量 756、排水消 毒装置から放流される排水の放流水残留薬剤濃度 757を測定する。該測定された 降雨量 753、降雨強度 754、流入水量 755、薬剤供給量 756、放流水残留薬剤濃 度 757を予測値 Z実測値補正処理手段 737に入力する。  [0206] Next, from the measured value measuring means 752 provided in the sewage treatment plant 710 of the treatment area X, the rainfall amount 753, the rainfall intensity 754, the inflow amount of wastewater flowing into the wastewater disinfection device 755, the wastewater at the treatment plant 710 Measure the chemical supply amount 756 of halogenated chemicals supplied to the disinfection device and the concentration 757 of the residual chemicals in the discharged water discharged from the wastewater disinfection device. The measured rainfall amount 753, rainfall intensity 754, influent water amount 755, chemical supply amount 756, and discharge water residual chemical concentration 757 are input to the predicted value Z actual measurement value correction processing means 737.
[0207] 予測値 Z実測値補正処理手段 737は、上記入力された降雨量 753、降雨強度 75 4、流入水量 755、薬剤供給量 756、放流水残留薬剤濃度 757から薬剤添加量 736 a、薬剤消費量 736b、排水消毒装置運転開始時刻 736cの各予測値を補正する補 正値を求める。該求められた各補正値は、補正値加算処理手段 737a、 737b, 737 cで薬剤添加量 736a、薬剤消費量 736b及び排水消毒装置運転開始時刻 736c〖こ 加算処理され、薬剤添加量 741、薬剤消費量 742及び排水消毒装置運転開始時刻 743が求められる。  [0207] Predicted value Z actual measurement value correction processing means 737 includes the above input rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, discharge water residual drug concentration 757 to drug addition amount 736a, drug Find the correction value to correct each predicted value of consumption 736b and drainage disinfection start time 736c. Each of the obtained correction values is added to the correction value addition processing means 737a, 737b, 737c, and the addition amount 736a, the consumption amount 736b of the medicine and the start time 736c of the waste water disinfection device are added, and the addition amount 741 of the addition medicine, Consumption 742 and drainage disinfection start time 743 are required.
[0208] 制御装置 730は、上記各補正値を加算処理することで求められた薬剤添加量 741 、薬剤消費量 742及び排水消毒装置運転開始時刻 743の各予測値により、排水消 毒装置の運転、薬剤添加量、薬剤消費量の制御を行う。なお、薬剤添加量 741は、 排水消毒装置の実際の薬剤添加量設定値として、薬剤添加のリアルタイム制御に使 用される。また、薬剤消費量 742は、処理場 710内にストックされている薬剤の保有 量との比較を行い、排水消毒装置に添加する薬剤が不足する場合は警報などを発 することで、運転員に薬剤の補充を求める目的で使用される。また、排水消毒装置運 転開始時刻 743は、運転員に排水消毒装置運転開始時刻を知らせるとともに、排水 消毒装置の自動運転開始指令として使用する。  [0208] The control device 730 operates the drainage disinfection device based on the predicted values of the drug addition amount 741, the chemical consumption amount 742, and the drainage disinfection device operation start time 743 obtained by adding the correction values. Control the amount of drug added and the amount of drug consumed. The drug addition amount 741 is used for real-time control of drug addition as the actual drug addition amount setting value of the waste water disinfection device. The chemical consumption 742 is compared with the amount of chemicals stored in the treatment plant 710, and if there is a shortage of chemicals to be added to the wastewater disinfection device, an alarm is issued to the operator. Used to seek drug replacement. The drainage disinfection operation start time 743 is used to inform the operator of the drainage disinfection operation start time and as an automatic operation start command for the drainage disinfection apparatus.
[0209] 上記のように、各処理地域 A, B, C, D, E、 X内の各降雨情報測定手段 20で測定 された降雨情報をもとに降雨情報推定処理手段 732が、処理地域 X内における降雨 開始時刻、降雨総量及び降雨継続時間を予測するとともに処理地域 Xの処理場 71 0における予想降雨量 733、予想降雨強度 734、予想流入量 735を求め、この予想 降雨量 733、予想降雨強度 734、予想流入量 735から大腸菌群数推定処理手段 73 6が大腸菌群数を推定し、それに対する排水消毒装置の制御に必要な薬剤添加量 7 36a、薬剤消費量 736b及び排水消毒装置運転開始時刻 736cを予測するで、各予 測値をリアルタイムにて予測することができる。 [0209] As described above, the rainfall information estimation processing means 732 is based on the rainfall information measured by the rainfall information measuring means 20 in each processing area A, B, C, D, E, and X. Prediction of rainfall start time, total amount of rainfall, and duration of rainfall in X, as well as calculating expected rainfall 733, expected rainfall intensity 734, and expected inflow 735 at treatment plant 71 0 in treatment area X. E. coli group number estimation processing means 73 6 estimates the number of coliforms from rainfall 733, expected rainfall intensity 734, expected inflow 735, and the amount of drug added necessary for controlling the drainage disinfection device 7 36a, drug consumption 736b And by predicting the start time 736c of the drainage disinfection device, each predicted value can be predicted in real time.
[0210] また、大腸菌群数推定処理手段 736は予想降雨量 733、予想降雨強度 734、予想 流入量 735及び流入水濁度 751から薬剤添加量 736a、薬剤消費量 736b及び消毒 装置運転開始時刻 736cを予測するので、各予測値の予測をさらに正確に行うことが できる。 [0210] In addition, E. coli group number estimation processing means 736 has an estimated rainfall of 733, an estimated rainfall intensity of 734, an estimated inflow of 735, and an influent water turbidity of 751. Therefore, it is possible to predict each predicted value more accurately.
[0211] さらに予測値 Z実測値補正処理手段 737が降雨量 753、降雨強度 754、流入水 量 755、薬剤供給量 756、放流水残留薬剤濃度 757から補正値を求め、補正値カロ 算処理手段 737a、 737b, 737cで該各補正値を薬剤添加量 736a、薬剤消費量 73 6b及び消毒装置運転開始時刻 736cに加算処理し、薬剤添加量 741、薬剤消費量 742及び消毒装置運転開始時刻 743を求めるので、各予測値の予測をさらに正確 に行うことができる。  [0211] Furthermore, the predicted value Z actual value correction processing means 737 obtains a correction value from the rainfall amount 753, the rainfall intensity 754, the inflow water amount 755, the chemical supply amount 756, and the residual chemical concentration 757 of the discharge water, and the correction value calorie calculation processing means In 737a, 737b, and 737c, the respective correction values are added to the drug addition amount 736a, the drug consumption amount 73 6b, and the disinfection device operation start time 736c to obtain the drug addition amount 741, the drug consumption amount 742, and the disinfection device operation start time 743. Therefore, each predicted value can be predicted more accurately.
[0212] 図 50は消毒装置の制御装置の他の構成例を示す図である。図 50に示す消毒装 置の制御装置の基本的構成は、図 48に示す排水消毒装置の制御装置と略同一で あるのでその説明は省略する。本消毒装置の制御装置が図 48に示す消毒装置の制 御装置と異なる点は、地域特性シミュレーション手段 760を具備する点である。  FIG. 50 is a diagram showing another configuration example of the control device of the disinfection device. The basic configuration of the control device for the disinfection device shown in FIG. 50 is substantially the same as that of the drainage disinfection device shown in FIG. The control device of the present disinfection device is different from the control device of the disinfection device shown in FIG.
[0213] 処理地域 X内の各降雨情報測定手段 720より測定された降雨量、降雨強度などの 降雨情報 721χ、 722χ· · ·は、制御装置 730の降雨情報マッピング処理手段 731に 入力されるとともに、地域特性シミュレーション手段 760に入力される。該地域特性シ ミュレーシヨン手段 760は、市販の地域特性シミュレーションソフトウェアであり、予め 登録した処理地域の地形情報、雨水収集ルート、下水管路網、下水排出人口、下水 排出種別を設定初期条件として入力し、そして上記降雨情報 721χ、 722χ· · ·を入力 することで、水理'水質解析を行うものである。  [0213] Rainfall information 721χ, 722χ ··· such as rainfall amount and rainfall intensity measured by each rainfall information measuring means 720 in the processing area X are input to the rainfall information mapping processing means 731 of the control device 730 Are input to the regional characteristic simulation means 760. The regional characteristic simulation means 760 is a commercially available regional characteristic simulation software, which inputs pre-registered landform information, rainwater collection route, sewage pipe network, sewage discharge population, and sewage discharge type as set initial conditions. Then, by inputting the above rainfall information 721χ, 722χ ···, hydraulic 'water quality analysis is performed.
[0214] 地域特性シミュレーション手段 760は、処理地域 X内の降雨情報力も排水消毒装 置に流入する排水の予想流入水量 761及び予想流入汚濁負荷 762を求める。該求 められた予想流入水量 761及び予想流入汚濁負荷 762は、実測値測定手段 752に より測定された降雨量 753、降雨強度 754、流入水量 755、薬剤供給量 756、放流 水残留薬剤濃度 757とともに予測値 Z実測値補正処理手段 737に入力される。 [0214] The regional characteristic simulation means 760 obtains the expected inflow amount 761 of the wastewater flowing into the wastewater disinfection device and the expected inflow pollution load 762 in the rainfall information power in the treatment area X. The calculated expected inflow water volume 761 and expected inflow pollution load 762 are stored in the measured value measuring means 752. In addition to the measured rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, and discharge water residual drug concentration 757, it is input to the predicted value Z actual value correction processing means 737.
[0215] 予測値 Z実測値補正処理手段 737は、入力された降雨量 753、降雨強度 754、流 入水量 755、薬剤供給量 756、放流水残留薬剤濃度 757、予想流入量 761及び予 想流入汚濁負荷 762から薬剤添加量 736a、薬剤消費量 736b及び消毒装置運転 開始時刻 736cを補正する補正値を求める。該各補正値は、補正値加算処理手段 7 37a, 737b, 737cで大腸菌群数推定処理手段 736からの薬剤添加量 736a、薬剤 消費量 736b及び排水消毒装置運転開始時刻 736cの各予測値に加算処理され、 薬剤添加量 741、薬剤消費量 742及び排水消毒装置運転開始時刻 743の各予測 値が求められる。制御装置 730は、該各予測値により、排水消毒装置の運転、薬剤 添加量、薬剤消費量の制御を行う。  [0215] Predicted value Z measured value correction processing means 737 is the input rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, effluent water residual drug concentration 757, expected inflow amount 761 and forecast inflow From the pollutant load 762, find correction values to correct the drug addition amount 736a, drug consumption amount 736b, and disinfection device operation start time 736c. The correction values are added to the predicted values of the added amount of medicine 736a, the amount of medicine consumed 736b and the operation start time 736c of the waste water disinfection device from the Escherichia coli group number estimation processing means 736 in the correction value addition processing means 7 37a, 737b, 737c. After processing, the predicted values of the drug addition amount 741, the drug consumption amount 742, and the drainage disinfection operation start time 743 are obtained. The control device 730 controls the operation of the drainage disinfection device, the amount of added medicine, and the amount of consumed medicine according to each predicted value.
[0216] 上記のように予測値 Z実測値補正処理手段 737が地域特性シミュレーション手段 7 60で求めた予想流入水量 761及び予想流入汚濁負荷 762から薬剤添加量 736a、 薬剤消費量 736b及び排水消毒装置運転開始時刻 736cを補正する補正値を求め、 該各補正値を補正値加算処理手段 737a、 737b, 737cにより大腸菌群数推定手段 736からの薬剤添加量 736a、薬剤消費量 736b及び消毒装置運転開始時刻 736c に加算処理することで、薬剤添加量 741、薬剤消費量 742及び消毒装置運転開始 時刻 743を求めるので、各予測値の予測をさらに正確に行うことができる。  [0216] As described above, the predicted value Z actual value correction processing means 737 uses the regional characteristic simulation means 760, the expected inflow water amount 761 and the expected inflow pollution load 762 from the added amount of medicine 736a, the chemical consumption amount 736b, and the drainage disinfection device. A correction value for correcting the operation start time 736c is obtained, and each correction value is added to the correction value addition processing means 737a, 737b, 737c from the E. coli group number estimation means 736, the drug addition amount 736a, the drug consumption amount 736b, and the disinfection device operation start. By performing addition processing at time 736c, the drug addition amount 741, the drug consumption amount 742, and the disinfection device operation start time 743 are obtained, so that each predicted value can be predicted more accurately.
[0217] なお、上記の形態例では、処理地域 X内の各降雨情報測定手段 720で測定された 降雨情報 721x、 722x…のみを地域特性シミュレーション手段 760に入力する場合 を説明したが、これに限定されるものではなぐ処理地域 X及び隣接する処理地域 A , B, C, D, Eの各降雨情報を入力しても良い。  [0217] In the above embodiment, a case has been described in which only the rainfall information 721x, 722x, ... measured by each of the rainfall information measuring means 720 in the processing area X is input to the regional characteristic simulation means 760. The rainfall information of the processing area X and the adjacent processing areas A, B, C, D, and E may be input without limitation.
[0218] 図 51は、消毒装置の制御装置の他の構成例を示す図である。まず、処理地域 X内 の各降雨情報測定手段 720により測定された降雨量、降雨強度などの降雨情報 72 1χ、 722χ· · ·は、地域特性シミュレーション手段 760に入力される。  FIG. 51 is a diagram showing another configuration example of the control device of the disinfection device. First, the rainfall information 72 1χ, 722χ..., Such as rainfall amount and rainfall intensity measured by each rainfall information measuring means 720 in the processing area X is input to the regional characteristic simulation means 760.
[0219] 地域特性シミュレーション手段 760は、処理地域 X内の降雨情報から消毒装置に 流入する被処理水の予想流入水量 761及び予想流入汚濁負荷 762を求める。該求 められた予想流入水量 761及び予想流入汚濁負荷 762は、薬剤添加量算出処理 手段 738に入力される。 [0219] The regional characteristic simulation means 760 obtains the estimated inflow amount 761 of the treated water flowing into the disinfection device and the expected inflow pollution load 762 from the rainfall information in the treatment area X. The calculated expected inflow water volume 761 and expected inflow pollution load 762 Input to means 738.
[0220] また、薬剤添加量算出処理手段 738には、予め消毒装置に流入する排水に対する 薬剤添加率を設定する薬剤添加率設定手段 739で設定された薬剤添加率 739aが 入力されるようになっている。該薬剤添加量算出処理手段 738は、入力された薬剤 添加率 739a、予想流入水量 761及び予想流入汚濁負荷 762から、薬剤添加量 73 6a及び薬剤消費量 736bの予測を行う。  [0220] Also, the medicine addition amount calculation processing means 738 is inputted with the medicine addition rate 739a set in advance by the medicine addition rate setting means 739 for setting the medicine addition rate for the waste water flowing into the sterilizer. ing. The medicine addition amount calculation processing means 738 predicts the medicine addition amount 736a and the medicine consumption amount 736b from the inputted medicine addition rate 739a, expected inflow water amount 761, and expected inflow pollution load 762.
[0221] 処理地域 Xの処理場 710に設けられた実測値測定手段 752より、処理場 710にお ける降雨量 753、降雨強度 754、流入水量 755、薬剤供給量 756、放流水残留薬剤 濃度 757を測定する。該測定された降雨量 753、降雨強度 754、流入水量 755、薬 剤供給量 756、放流水残留薬剤濃度 757は、制御装置 730の予測値 Z実測値補正 処理手段 737に入力される。  [0221] From the measured value measurement means 752 installed in the treatment plant 710 in the treatment area X, the amount of rainfall 753, the rainfall intensity 754, the amount of incoming water 755, the amount of chemical supply 756, the concentration of residual chemical in the effluent 757 Measure. The measured rainfall amount 753, rainfall intensity 754, inflow water amount 755, drug supply amount 756, and discharged water residual drug concentration 757 are input to the predicted value Z actual value correction processing means 737 of the control device 730.
[0222] 予測値 Z実測値補正処理手段 737は、薬剤添加量算出処理手段 738からの薬剤 添加量 736a及び薬剤消費量 736bの各予測値を補正する補正値を上記入力された 降雨量 753、降雨強度 754、流入水量 755、薬剤供給量 756、放流水残留薬剤濃 度 757から求める。該各補正値は、補正値加算処理手段 737a、 737bで薬剤添カロ 量算出処理手段 738からの薬剤添加量 736a及び薬剤消費量 736bの各予測値に 加算処理され、薬剤添加量 741及び薬剤消費量 742を求める。制御装置 730は、薬 剤添加量 741及び薬剤消費量 742より排水消毒装置の制御を行う。  [0222] Predicted value Z actual measurement value correction processing means 737 receives the correction values for correcting predicted values of the drug addition amount 736a and the drug consumption amount 736b from the drug addition amount calculation processing means 738. Calculated from rainfall intensity 754, influent water volume 755, chemical supply volume 756, and residual water chemical concentration 757. The respective correction values are added to the respective predicted values of the drug addition amount 736a and the drug consumption amount 736b from the drug addition calorie amount calculation processing means 738 by the correction value addition processing means 737a and 737b, and the drug addition amount 741 and the drug consumption are calculated. Find the amount 742. The control device 730 controls the waste water disinfection device based on the drug addition amount 741 and the drug consumption amount 742.
[0223] 上記のように、処理地域 X内の各降雨情報測定手段 720で測定された降雨情報 7 21x、 722x…力 地域特性シミュレーション手段 760により予想流入水量 761及び 予想流入汚濁負荷 762を求め、薬剤添加量算出手段 738が該予想流入水量 761、 予想流入汚濁負荷 762及び薬剤添加率設定手段 739で設定された薬剤添加率 73 9aから薬剤添加量 741及び薬剤消費量 742を予測するので、各予測値をリアルタイ ムにて予測することができる。  [0223] As described above, the rainfall information 721x, 722x ... force measured by each rainfall information measuring means 720 in the treatment area X is calculated by the regional characteristic simulation means 760 to obtain the expected inflow water quantity 761 and the expected inflow pollution load 762, The drug addition amount calculation means 738 predicts the drug addition amount 741 and the drug consumption amount 742 from the predicted inflow water amount 761, the expected inflow pollution load 762, and the drug addition rate 73 9a set by the drug addition rate setting means 739. Predicted values can be predicted in real time.
[0224] なお、上記の形態例では、処理地域 X内の各降雨情報測定手段 720で測定された 降雨情報 721x、 722x…のみを地域特性シミュレーション手段 760に入力する場合 を説明したが、本発明はこれに限定されるものではなぐ処理地域 X及び隣接する処 理地域 A, B, C, D, Eの各降雨情報を入力しても良い。 [0225] また、上記では、下水処理場での雨天時下水道越流水を消毒する形態について 説明しているが、雨水吐き室、ポンプ場 (排水機場)などの雨天時下水道越流水排除 施設で雨天時下水道越流水を消毒する形態についても、上述の制御装置を適用す ることがでさる。 [0224] In the above embodiment, the case has been described in which only the rainfall information 721x, 722x, ... measured by each of the rainfall information measuring means 720 in the processing area X is input to the regional characteristic simulation means 760. However, it is also possible to input rainfall information for processing area X and adjacent processing areas A, B, C, D and E. [0225] In addition, the above describes the form of disinfecting sewer stormwater overflow at a sewage treatment plant. However, it is raining at a sewer stormwater overflow drainage facility such as a rainwater spout chamber or pumping station (drainage station). The above control device can also be applied to the form of disinfecting sewer overflows.
[0226] 更に、本発明に係る雨天時下水道越流水の消毒装置には、固体臭素系消毒剤添 加量の過剰、過小を検知できる異常検知機構(固体臭素系消毒剤添加量検知手段 )を備免ることがでさる。  [0226] Further, the rainwater sewer overflow water disinfecting apparatus according to the present invention has an abnormality detection mechanism (solid bromine-based disinfectant addition amount detection means) capable of detecting an excess or an excess of the solid bromine-based disinfectant addition amount. You can get rid of it.
[0227] 本発明において使用することのできる固体臭素系消毒剤添加量検知手段は、固体 臭素系消毒剤添加直後の被処理水で計測した残留ハロゲン濃度と、消毒剤が添カロ された被処理水が放流される放流水路で計測した残留ハロゲン濃度とが所定のしき Vヽ値を越えること及び/又は両残留ハロゲン濃度を比較することによって、ハロゲン 系薬剤添加量の過剰及び Z又は過小を検知する手段である。即ちハロゲン系薬剤 添加直後の被処理水で計測した残留ハロゲン濃度と、放流水路で計測した残留ハロ ゲン濃度とがそれぞれ所定のしき ヽ値を越えた場合、ハロゲン系薬剤添加量の過剰 または過小として検知する。またハロゲン系薬剤添加直後の被処理水で計測した残 留ハロゲン濃度と、放流水路で計測した残留ハロゲン濃度とを比較して、その濃度差 を消毒剤消費量としてこの消毒剤消費量を予め設定しておいた消毒剤消費量低レ ベルしき 、値と比較して低レベルしき 、値未満の場合は、消費して!/、な 、のに必要 以上の消毒剤を添カ卩していることになるので、ハロゲン系薬剤添カ卩量の過剰として検 知する。  [0227] The solid bromine-based disinfectant addition amount detection means that can be used in the present invention includes the residual halogen concentration measured in the water to be treated immediately after the addition of the solid bromine-based disinfectant, and the treatment to which the disinfectant is added. Excessive and Z or under-detection of halogenated chemicals is detected by comparing the residual halogen concentration measured in the discharge channel where water is discharged with a predetermined threshold V ヽ value and / or comparing both residual halogen concentrations. It is means to do. In other words, if the residual halogen concentration measured in the treated water immediately after the addition of the halogen-based chemical and the residual halogen concentration measured in the discharge channel exceed the predetermined threshold value, the amount of addition of the halogen-based chemical is excessive or too small. Detect. Also, compare the residual halogen concentration measured in the treated water immediately after the addition of the halogen-based chemical with the residual halogen concentration measured in the discharge channel, and set the disinfectant consumption in advance using the concentration difference as the disinfectant consumption. The disinfectant consumption is low, if it is lower than the value, and if it is less than the value, it is consumed! Therefore, it is detected as an excessive amount of halogenated chemical additive.
[0228] また、固体臭素系消毒剤添加量検知手段は、固体臭素系消毒剤保有量 (保有量 力 求めた消費量)と吐出量とを比較することで固体臭素系消毒剤添加量の過剰及 び Z又は過小を検知する手段である。即ち、固体臭素系消毒剤保有量の差分から 求めた実際の消費量と回転数や流量計などの測定機器で計測した吐出量との誤差 の比率が、予め設定してお!ヽた薬剤吐出量添加量の高低レベルしき!ヽ値 (比率)を 超えた場合、薬剤添加量の過剰または過小として検知する。  [0228] In addition, the solid bromine-based disinfectant addition amount detection means detects the excess of the solid bromine-based disinfectant addition amount by comparing the solid bromine-based disinfectant possession amount (consumption amount determined consumption amount) with the discharge amount. And a means to detect Z or under. In other words, the ratio of the error between the actual consumption obtained from the difference in the amount of solid bromine-based disinfectant possessed and the discharge rate measured with a measuring device such as the rotation speed or flow meter is set in advance! High and low level of the amount of added medicine discharge! When the threshold (ratio) is exceeded, it is detected as an excessive or too small amount of drug added.
[0229] また、固体臭素系消毒剤添加量検知手段は、放流水路に生息する魚類を画像監 視することで固体臭素系消毒剤添加量の過剰を検知する手段である。即ち画像監 視して 、る魚類が死ぬまたは弱るなどして漂流して 、ると判断した個体数が予め設 定してお!/ヽた漂流魚類個体数高レベルしき ヽ値を越えた場合、薬剤添加過剰と判定 し検知する。 [0229] The solid bromine-based disinfectant addition amount detection means is a means for detecting an excess of the solid bromine-based disinfectant addition amount by monitoring images of fish inhabiting the discharge channel. That is, the image supervisor The number of individuals that are determined to be drifting due to the death or weakness of the fish is set in advance! Judge as excessive and detect.
[0230] 図 52は本発明において使用することのできる異常検知機構を有する消毒装置の 一実施形態によって被処理水の消毒が実行される状態を示す系統図であり、一例と して、粉末状の固体臭素系消毒剤を用い、水に溶解して消毒水を形成してこれを被 処理水に添加する方式を示している。以下の装置の構成は、上記で説明した各種形 態の消毒剤貯留'供給装置や、固体臭素系消毒剤を固体のまま被処理水に投入す る方式の消毒装置にも適用することができる。また、以下の説明では、沈砂池で雨天 時下水道越流水の消毒を行う形態について説明しているが、上記で説明したような 雨天時下水道越流水の流路において消毒を行う各種の形態についても適用するこ とがでさる。  FIG. 52 is a system diagram showing a state in which disinfection of treated water is performed by an embodiment of a disinfection apparatus having an abnormality detection mechanism that can be used in the present invention. As an example, a powder state This method uses a solid bromine-based disinfectant, dissolves in water to form disinfecting water, and adds it to the water to be treated. The following apparatus configuration can also be applied to the disinfectant storage and supply apparatus of the various forms described above and the disinfection apparatus of the type in which the solid bromine-based disinfectant is fed into the treated water in the solid state. . In the following explanation, the form of disinfection of sewer stormwater overflow in a sand basin is explained, but various forms of disinfection in the flow path of sewer stormwater overflow as described above are also described. It can be applied.
[0231] 図 52において、 810は消毒装置によって消毒が実行される雨天時下水道越流水 が流入、流出する沈砂池である。そして沈砂池 810の流入部 810aに流入した雨天 時下水道越流水の一部は、ポンプ P1によって汲み上げられてスクリーン 820で異物 が取り除かれ、原水流量計 821で流量が測定された後に、消毒剤添加装置 830〖こ 送られる。  [0231] In FIG. 52, reference numeral 810 denotes a sand basin into which the sewer stormwater overflow flows and flows out, which is sterilized by the disinfection device. A part of the sewer stormwater overflow that flows into the inflow 810a of the sand basin 810 is pumped up by the pump P1, foreign matter is removed by the screen 820, the flow rate is measured by the raw water flow meter 821, and then the disinfectant is added. 830 pieces of equipment are sent.
[0232] 消毒剤添加装置 830では、ホッパ 831内に投入されている固体臭素系消毒剤 832 をモータ Mlを駆動することで供給機 833からェジェクタ 834に所定量ずつ供給して 排水中に添加する。消毒剤が添加された水は溶解装置 840の溶解槽 841内に送ら れ、モータ M2によって駆動される攪拌機 842によって攪拌されて消毒剤が確実に溶 解された後、ポンプ P2によって沈砂池 810の流入部 810aに戻されることで被処理水 の消毒が実行され、沈砂部 810bを経て放流水路 811から河川などの公共水域 812 に放流される。  [0232] In the disinfectant addition device 830, the solid bromine-based disinfectant 832 charged in the hopper 831 is supplied to the ejector 834 from the supply unit 833 to the ejector 834 by driving the motor Ml and added to the waste water. . The water to which the disinfectant is added is sent into the dissolution tank 841 of the dissolution apparatus 840, and is stirred by the stirrer 842 driven by the motor M2, so that the disinfectant is reliably dissolved, and then the water in the sand basin 810 is pumped by the pump P2. By returning to the inflow section 810a, the water to be treated is sterilized, and is discharged from the discharge channel 811 to the public water area 812 such as a river through the sand settling section 810b.
[0233] 以下に説明する装置においては、前記の消毒を実行する上で、被処理水の過剰 消毒或いは消毒不良を迅速且つ確実に防止するため、三種類の異常検知手段を設 置している。即ち薬剤添加量の過剰、過小を検知する手段と、薬剤添加が確実に実 行されて!ヽることを監視する手段と、薬剤添加量過剰判定を補完する手段とを具備し ている。以下説明する。 [0233] In the apparatus described below, three types of abnormality detection means are installed in order to quickly and surely prevent excessive sterilization or disinfection failure of treated water when performing the above-mentioned disinfection. . In other words, there are provided means for detecting whether the amount of drug addition is excessive or too small, means for monitoring whether the drug addition has been executed reliably, and means for complementing the determination of excess drug addition. ing. This will be described below.
[0234] 消毒を実行する上で、被処理水の過剰消毒或いは消毒不良を防止するため薬剤 添加量の過剰、過小を検知する必要がある。そこで放流水路 811と溶解装置 840に それぞれ残留ハロゲン濃度計 813, 843を設置し、両者の測定値を図示しないコン ピュータ(又は電気回路)に入力することで図 53に示す処理手順に従って薬剤添カロ 量の過剰、過小を検知する。  [0234] When performing disinfection, it is necessary to detect excess or under-loading of chemicals in order to prevent excessive disinfection or disinfection of treated water. Therefore, the residual halogen concentration meters 813 and 843 are installed in the discharge channel 811 and the dissolution apparatus 840, respectively, and the measured values of both are input to a computer (or an electric circuit) (not shown), and the chemical procedure with chemicals is performed according to the processing procedure shown in FIG. Detect excess or underdose.
[0235] 即ち、図 53において、まず残留ハロゲン濃度計 813によって測定した放流水路 81 1での残留ハロゲン濃度と、残留ハロゲン濃度計 843によって測定した溶解装置 840 での残留ハロゲン濃度とを入力する。そして図 53の残留ハロゲン濃度判定処理フロ 一にお 、て、まず残留ハロゲン濃度計 813によって測定した放流水路 811での残留 ハロゲン濃度を予め設定してぉ 、た放流水残留ハロゲン濃度高レベルしき 、値 901 と比較してこれを越えて 、た場合は薬剤添加過剰と判定し、残留ハロゲン高レベル 判定出力 870を出力する。  That is, in FIG. 53, first, the residual halogen concentration in the discharge water channel 81 1 measured by the residual halogen concentration meter 813 and the residual halogen concentration in the dissolving device 840 measured by the residual halogen concentration meter 843 are input. Then, in the residual halogen concentration determination process flow of FIG. 53, first, the residual halogen concentration in the discharge water channel 811 measured by the residual halogen concentration meter 813 is set in advance, and then the residual halogen concentration in the discharged water reaches a high level. If it exceeds the value 901 and exceeds this value, it is determined that the chemical is excessively added, and a high residual halogen level determination output 870 is output.
[0236] 次に残留ハロゲン濃度計 843によって測定した溶解装置 840での残留ハロゲン濃 度を予め設定してぉ 、た溶解槽残留ハロゲン濃度低レベルしき 、値 902と比較して 低レベルしき 、値 902未満の場合は薬剤添加過小と判定し、残留ハロゲン低レベル 判定出力 871を出力する。次に溶解装置 840での残留ハロゲン濃度を予め設定して ぉ 、た溶解槽残留ハロゲン濃度高レベルしき 、値 903と比較して高レベルしき 、値 9 03以上の場合は薬剤添加過剰と判定し、残留ハロゲン高レベル判定出力 870を出 力する。  [0236] Next, the residual halogen concentration in the dissolution apparatus 840 measured by the residual halogen concentration meter 843 is set in advance, and the dissolution tank residual halogen concentration threshold is lower than the value 902. If it is less than 902, it is judged that the chemical has been added too little, and the residual halogen low level judgment output 871 is output. Next, the residual halogen concentration in the dissolution apparatus 840 is set in advance, and the dissolution tank residual halogen concentration is set to a high level compared to the value 903. The residual halogen high level judgment output 870 is output.
[0237] 更に残留ハロゲン濃度計 843によって測定した溶解装置 840での残留ハロゲン濃 度と、残留ハロゲン濃度計 813によって測定した放流水路 811での残留ハロゲン濃 度との差分を消毒剤消費量として捉え、この消毒剤消費量が予め設定してぉ ヽた残 留ハロゲン濃度差 (消毒剤消費量)低レベルしき!、値 904と比較して低レベルしき ヽ 値 904未満の場合は薬剤添加過剰と判定して残留ハロゲン高レベル判定出力 870 を出力する。即ち消毒剤は殺菌しょうとする物質が多いとその消費量が増えるので、 消毒剤消費量が少な 、と 、うことは、消費して 、な 、のに (殺菌しょうとする物質が多 くないのに)必要以上の消毒剤を添加していることになる。従って、たとえ溶解装置 8 40での残留ハロゲン濃度と放流水路 811での残留ハロゲン濃度とがそれぞれ個別 には所定の許容数値内に入っているとしても、必要以上の消毒剤を添加していると 判定するのである。 [0237] Further, the difference between the residual halogen concentration in the dissolution apparatus 840 measured by the residual halogen concentration meter 843 and the residual halogen concentration in the discharge channel 811 measured by the residual halogen concentration meter 813 is regarded as the disinfectant consumption. If the disinfectant consumption is set in advance and the residual halogen concentration difference (disinfectant consumption) is low, the threshold is low compared to the value 904. Judgment is made and the residual halogen high level judgment output 870 is output. In other words, the amount of disinfectant to be sterilized increases its consumption, so the amount of disinfectant consumption is low. However, you are adding more disinfectant than necessary. Thus, even if the melting device 8 Even if the residual halogen concentration at 40 and the residual halogen concentration in the discharge channel 811 are individually within the prescribed allowable values, it is determined that more disinfectant than necessary is added.
[0238] 以上の検知手段によれば、溶解槽 841で計測した残留ハロゲン濃度 (即ちハロゲ ン系薬剤添加直後の排水で計測した残留ハロゲン濃度)及びその下流の放流水路 8 11で計測した残留ハロゲン濃度と、予め設定した残留ハロゲン濃度しきい値等とを 比較することで薬剤添加過剰、過小を判定できるので、従来のように放流水路 811だ けで計測する場合に比べて、薬剤添加から測定点までの時間遅れがなく迅速且つ 確実に薬剤添加の過剰、過小を判定できる。また二点で測定した残留ハロゲン濃度 を比較してその濃度差を消毒剤消費量として薬剤添加過剰を判定するので、この点 からも薬剤添加の過剰を判定できる。  [0238] According to the above detection means, the residual halogen concentration measured in the dissolution tank 841 (that is, the residual halogen concentration measured in the wastewater immediately after the addition of the halogen-based chemical agent) and the residual halogen concentration measured in the discharge channel 8 11 downstream thereof. By comparing the concentration with a preset threshold value of residual halogen concentration, etc., it is possible to determine whether or not the drug is added excessively or too little. There is no time delay to the point, and it is possible to quickly and surely determine whether the drug is excessive or too small. Moreover, since the residual halogen concentration measured at two points is compared and the concentration difference is used as the disinfectant consumption amount to determine the excessive drug addition, the excessive drug addition can also be determined from this point.
[0239] 消毒を実行する上で、薬剤添加が確実に実行されて ヽることを監視することが必要 である。そこで消毒剤添加装置 830のホッパ 831に設けたホッパ重量計 XIによって ホツバの重量 35を測定し、またモータ Mlの回転数 36を測定し、両測定値を図示し ないコンピュータ (又は電気回路)に入力することで図 54に示す処理手順に従って薬 剤添加が確実に実行されて ヽることを監視する。  [0239] In performing disinfection, it is necessary to monitor that drug addition is being performed reliably. Therefore, the hopper weight meter XI provided in the hopper 831 of the disinfectant addition device 830 is used to measure the weight 35 of the hot bar and the rotation speed 36 of the motor Ml. When input is made, it is monitored that the drug addition has been executed reliably according to the procedure shown in Fig. 54.
[0240] 即ち、図 54の薬剤吐出量判定処理フローにおいて、まず時刻はり予め設定してお いた薬剤吐出量判定処理サンプリング周期 913で k+ 1回サンプリングした供給機回 転数 836に〔供給機回転数—吐出量換算係数〕 910をカゝけて求めた粉体薬剤吐出 量と、時刻 tと時刻 t+kにおけるホッパ重量 835の差分力も求めた粉体薬剤消費量と の比率が、予め設定してお!、た薬剤吐出量添加量低レベルしき!、値 911未満の場 合、薬剤添加量過小と判定し、薬剤添加量過小判定出力 881を出力する。即ち本来 、ホツバ重量 835の差分力も求めた粉体薬剤消費量と供給機回転数 836から求めた 粉体薬剤吐出量とは一致するはずであるが、ホッパ重量 835の差分から求めた粉体 薬剤消費量よりも供給機回転数 836から求めた粉体薬剤吐出量の方が多いというこ とは、供給機回転数 836から求めた粉体薬剤吐出量が実際に吐出している吐出量よ りも見かけ上多くなつているということであり、これは所定の粉体薬剤吐出量を得るた めに決定した供給機回転数 836によっては所定の粉体薬剤吐出量を得ることが出来 ず、もっと回転数を上げなければならないこと、あるいは、供給機 833の機械的な不 具合により、所定の粉体薬剤吐出量を得ることができないことを意味し、つまり薬剤添 加量過小ということになる。 That is, in the medicine discharge amount determination processing flow of FIG. 54, first, the time is set in advance for the supply number of rotations 836 sampled k + 1 times in the medicine discharge amount determination processing sampling period 913 set in advance [ Number-Discharge rate conversion factor] The ratio between the powder drug discharge amount obtained by counting 910 and the powder drug consumption amount for which the differential force of hopper weight 835 at time t and time t + k is also set in advance. If the drug discharge amount addition level is low, and the value is less than 911, it is determined that the drug addition amount is too low, and the drug addition amount underdetermination output 881 is output. In other words, the amount of powder medicine consumed, which also obtained the difference force of the hot weight 835, should be the same as the amount of powder medicine discharged from the rotating speed 836 of the feeder, but the powder medicine obtained from the difference of the hopper weight 835 The fact that the amount of powdered drug discharge determined from the feeder rotation speed 836 is larger than the amount of consumption means that the amount of powdered drug discharge determined from the supply machine rotation speed 836 is greater than the discharge volume actually discharged. However, the amount of powder medicine discharge can be obtained depending on the rotational speed of the feeder 836 determined to obtain the predetermined amount of powder medicine discharge. This means that it is necessary to increase the number of revolutions further, or that the prescribed powder medicine discharge amount cannot be obtained due to a mechanical failure of the feeder 833, that is, the medicine addition amount is too small. become.
[0241] 一方、粉体薬剤吐出量と粉体薬剤消費量との比率が、予め設定しておいた薬剤吐 出量添加量高レベルしきい値 912以上の場合、薬剤添加量過剰と判定し、薬剤添加 量過剰判定出力 882を出力する。何れの条件も満たさない場合は出力しない。  [0241] On the other hand, if the ratio between the powder drug discharge amount and the powder drug consumption amount is equal to or higher than the preset drug discharge amount addition level high threshold 912, it is determined that the drug addition amount is excessive. Then, the medicine addition amount excess judgment output 882 is output. If neither condition is met, no output is made.
[0242] このように粉体薬剤吐出量と粉体薬剤消費量とを比較することで、リアルタイムで薬 剤添加が確実に実行されているカゝ否かを監視することができる。  [0242] By comparing the powder drug discharge amount and the powder drug consumption amount in this way, it is possible to monitor whether or not the drug addition has been reliably executed in real time.
[0243] 消毒装置の残留ハロゲン濃度計が測定異常となり、薬剤添加過剰、過小の判定が 不可能になる状態においても、消毒を実行すベぐ残留ハロゲン濃度計による異常 判定を補完するため、図 55に示す画像処理技術を用いた放流水路の魚類生息状 態判定処理を実行することができる。  [0243] Even when the residual halogen concentration meter of the disinfection device becomes abnormal in measurement, and it is impossible to determine whether chemicals are excessively added or too small, it is necessary to perform the disinfection. It is possible to execute the fish habitat state determination process for the discharge channel using the image processing technology shown in 55.
[0244] 即ち、放流水路 811の放流口に放流口監視カメラ 814を設置し、図 55に示す魚類 異常判定処理フローにおいて、放流口監視カメラ 814の映像データと、予め設定し ておいた魚類判定パターン 921とのパターン比較を行ない、類似する映像パターン を放流水路 811に生息する魚類と判断する。そして魚類と判断した各映像パターン に対して、最初に検知した座標より、その周辺区域即ち、魚類の移動範囲を示す 2つ の魚類漂流判定用移動範囲座標 922, 923を定め、魚類と判断した映像パターンが その座標範囲(点線で囲む範囲)内に予め設定しておいた魚類漂流判定時間 924 で定めた時間を超えて存在した場合、当該魚類は死ぬ或いは弱るなどして漂流して V、る魚類と判定する。以上の判定処理を魚類と判断した全ての映像パターンに対し て行な ヽ、漂流して!/ヽる魚類個体数が予め設定してお!ヽた漂流魚類個体数高レべ ルしきい値 925を越えた場合、薬剤添加過剰と判定し、魚類異常判定出力 890を出 力する。  [0244] That is, the outlet monitoring camera 814 is installed at the outlet of the outlet channel 811. In the fish abnormality determination processing flow shown in Fig. 55, the video data of the outlet monitoring camera 814 and the preset fish judgment are set. Pattern comparison with pattern 921 is performed, and similar video patterns are determined to be fish inhabiting discharge channel 811. Then, for each image pattern judged to be fish, two fish drift detection movement range coordinates 922 and 923 indicating the movement range of the fish are determined from the first detected coordinates, and judged as fish. If the image pattern exists within the coordinate range (the range enclosed by the dotted line) for a time exceeding the time set in the fish drift determination time 924, the fish drifts by dying or weakening V, It is judged as a fish. The above determination process is performed for all video patterns that have been determined to be fish ヽ, drifted! / Pre-set number of fish to be struck! If it exceeds 925, it is determined that the drug has been added excessively, and a fish abnormality determination output 890 is output.
[0245] 以上のように判定した薬剤添加量の過剰、過小に関する出力 870, 871, 881, 88 2, 890は、消毒装置の運転員に異常発生を警報として知らしめる目的で使用したり 、また薬剤添加過剰或いは過小に応じて薬剤投入量を増加或いは減少せしめる自 動制御を実行する目的で使用したり、更に薬剤添加量過剰の場合に薬剤の投入自 動停止や中和薬剤の自動投入を実行する目的で使用することができる。 [0245] The output 870, 871, 881, 88 2, 890 regarding the excess or under-determined amount of the drug determined as described above can be used for the purpose of notifying the operator of the disinfection device as an alarm, or It is used for the purpose of executing automatic control to increase or decrease the amount of drug input according to the excessive or too small amount of drug added, or when the drug is excessively added, It can be used for the purpose of suspending movement or automatically injecting a neutralizing agent.
[0246] 図 56に示すように、固体臭素系消毒剤の貯留槽 951をはかり(ロードセル) 953の 上に設置し、切り出し装置 952の故障などによって消毒剤の供給速度が異常に速く なった場合に、検知器 956によって異常供給を検知して非常供給停止装置 955を作 動させて、供給管 954からの固体臭素系消毒剤の供給を停止することによって、固 体臭素系消毒剤が異常に大量に供給されて、残留ハロゲンによって放流口周辺の 環境が悪ィ匕するのを防止することができる。  [0246] As shown in Fig. 56, when the solid bromine-based disinfectant storage tank 951 is installed on a scale (load cell) 953 and the disinfectant supply speed becomes abnormally high due to a failure of the cutting device 952 In addition, when the abnormal supply is detected by the detector 956 and the emergency supply stop device 955 is activated to stop the supply of the solid bromine disinfectant from the supply pipe 954, the solid bromine disinfectant becomes abnormal. A large amount can be supplied to prevent the surrounding halogen from deteriorating the environment around the outlet.
[0247] 本発明によって固体臭素系消毒剤による雨天時下水道越流水の消毒を行う装置 の運転方法としては、例えば次のような方法がある。処理対象の雨天時下水道越流 水力 合流式下水道や分流式下水道のポンプ場 (排水機場)からの越流水である場 合、越流水の放流は次のように行われることが多い。ポンプ場には沈砂池若しくは雨 水貯留施設が配置されている。図 57において、下水道管渠 961内を流れる下水に 雨水が混入して量が多くなると、可動ゲート 962が開放されて雨水混入下水が越流 する(雨天時下水道越流水)。越流水は沈砂池若しくは雨水貯留施設 963に収容さ れ、スクリーン 971を通してポンプ井 972に流入する。ポンプ井 972内には雨水ポン プが配置されており、可動ゲート 962が開放されて力も所定時間経過後に雨水ボン プ 964が作動して沈砂池若しくは雨水貯留施設 963内の雨天時下水道越流水が放 流流路 965に誘導され、放流流路 965から河川などの公共水域 966に放流される。 また、雨水ポンプ 964は、通常複数台設置され、ポンプ井 972内の水位によって雨 水ポンプ 964の稼働台数が制御されるようになっている。可動ゲート 962の作動は、 通常、中央監視室の作業員が、降雨確率、降雨情報、降雨量などの各種の気象情 報に基づいて行う。このような場合、可動ゲート 962が作動して沈砂池若しくは雨水 貯留施設 963内に雨天時下水道越流水が流れ込んだ際に、まず、ポンプ 967を可 動させて雨天時下水道越流水の一部を取り出して、混合装置 969において固体臭 素系消毒剤 968と混合して消毒水を調整し、これを沈砂池若しくは雨水貯留施設 96 3内に投入することができる。この際、沈砂池若しくは雨水貯留施設 963の容量から 算出した所定量の固体臭素系消毒剤をあらかじめ投入して沈砂池若しくは雨水貯留 施設 963内に溜まる雨天時下水道越流水の消毒を行うことができる。その後、雨水ポ ンプ 964が作動して雨天時下水道越流水の公共水域への放流が始まったら、越流 水の流量にあわせて適当量の固体臭素系消毒剤を投入するように、消毒剤の供給 量を制御することができる。なお、図 57では、固体臭素系消毒剤を水に溶解して消 毒水を形成し、これを雨天時下水道越流水中に投入する方式を示している力 固体 臭素系消毒剤を固体のまま沈砂池の雨天時下水道越流水中に投入する方式でもよ い。なお、このような制御は、ポンプ場などの雨天時下水道越流水排除施設や下水 道管渠、下水処理場などにおける水量、残留ハロゲン濃度、放流ゲート (可動ゲート )開信号、雨水ポンプ運転信号などのモニター値を、中央制御室などの遠隔の管理 施設に送り、管理施設において遠隔で制御することが好ましい。即ち、雨天時下水 道越流水排除施設の現場では、無人で消毒剤の投入を制御することができるように することが好ましい。このような制御体系の概念を図 58に示す。 [0247] Examples of the operation method of the apparatus for disinfecting sewer stormwater overflow with a solid bromine-based disinfectant according to the present invention include the following methods. Sewer overflow in the rainy target to be treated Hydropower In the case of overflow water from a combined sewer or a sewer pump station (drainage station), the overflow water is often discharged as follows. The pumping station has a sand basin or rainwater storage facility. In Fig. 57, when rainwater enters the sewage pipe 961 and the amount increases, the movable gate 962 is opened and the sewage mixed with stormwater overflows (sewage overflow in rainy weather). Overflow water is stored in a sand basin or rainwater storage facility 963 and flows into the pump well 972 through a screen 971. A rainwater pump is installed in the pump well 972, and the rainwater pump 964 is activated after the movable gate 962 is opened and the force has been applied for a predetermined time, and the sewer stormwater overflow in the sand basin or rainwater storage facility 963 is discharged. It is guided to the discharge channel 965 and discharged from the discharge channel 965 to a public water area 966 such as a river. A plurality of rainwater pumps 964 are usually installed, and the number of operating rainwater pumps 964 is controlled by the water level in the pump well 972. The operation of the movable gate 962 is usually performed by workers in the central monitoring room based on various types of weather information, such as rainfall probability, rainfall information, and rainfall. In such a case, when the movable gate 962 is activated and sewer stormwater overflow flows into the sand basin or rainwater storage facility 963, first, the pump 967 is moved to remove some of the sewer stormwater overflow. It can be taken out and mixed with the solid odor disinfectant 968 in the mixing device 969 to adjust the disinfecting water, which can be put into a sand basin or rainwater storage facility 963. At this time, a predetermined amount of solid bromine-based disinfectant calculated from the capacity of the settling basin or rainwater storage facility 963 can be added in advance to disinfect sewer stormwater overflow that accumulates in the settling basin or rainwater storage facility 963. . Then rainwater po When the pump 964 is activated and the discharge of sewer stormwater overflow into the public water area begins, the disinfectant supply amount is controlled so that an appropriate amount of solid bromine-based disinfectant is introduced in accordance with the overflow water flow rate. can do. In addition, in Fig. 57, a force showing a method of dissolving solid bromine-based disinfectant in water to form disinfecting water and throwing it into sewer overflow water during rainy weather Solid bromine-based disinfectant remains solid It is also possible to use a method of throwing it into the sewer stormwater overflow in the sand basin. Such control includes the amount of water, residual halogen concentration, discharge gate (movable gate) open signal, rainwater pump operation signal, etc. in sewer stormwater overflow drainage facilities such as pump stations, sewer pipes, and sewage treatment plants. It is preferable to send the monitored value to a remote management facility such as a central control room and control it remotely at the management facility. In other words, it is preferable that the disinfectant input can be controlled unattended at the site of the drainage overflow drainage facility in rainy weather. Figure 58 shows the concept of such a control system.
[0248] 図 58に示す制御体系によれば、臭素消毒装置の制御は、付帯する動力制御盤 10[0248] According to the control system shown in FIG. 58, the control of the bromine disinfection device is controlled by the accompanying power control panel 10.
02に組み込まれたシーケンサなどの制御ユニットによって自動的に行われる。 This is done automatically by a control unit such as a sequencer built in 02.
[0249] 薬品供給器 1003は、粉体流動槽 (ロードセルを含む)、粉体流動機、薬品供給機[0249] The chemical feeder 1003 is a powder fluidizer (including a load cell), a powder fluidizer, and a chemical feeder.
、溶解コーン、付属弁類から構成される。 It consists of a melting cone and attached valves.
[0250] 原水濁度計 1004は、流入原水の濁度を常時出力する。 [0250] Raw water turbidity meter 1004 always outputs the turbidity of incoming raw water.
[0251] 溶解水流量計 1005は、薬品溶解用の給水量を常時出力する。 [0251] Dissolved water flow meter 1005 always outputs the amount of water supply for chemical dissolution.
[0252] 残留ハロゲン計 1007は、放流水の残留ハロゲン濃度を常時出力する。 [0252] Residual halogen meter 1007 always outputs the residual halogen concentration of the discharged water.
[0253] 動力制御盤 1002では、以下の制御が行われる。 [0253] In the power control panel 1002, the following control is performed.
•注入量制御:中央操作室 1001から「放流水量」のデータ、薬品供給機 1003に付 帯する供給機から「回転数」のデータを取込み、これを「給粉量」に変換して、水量変 動に対して注入率を一定にして適性注入するように制御を行う。  • Injection volume control: Takes the data of “discharged water” from the central operation room 1001 and the “rotation speed” data from the feeder attached to the chemical feeder 1003, converts this into “powder feed”, and converts the water volume Control is performed so that the injection rate is kept constant with respect to the change and the injection is performed appropriately.
•注入率制御:「供給機運転時間」、「放流水量」のデータを取込み、経時変化により 大腸菌群数が減少することを想定して薬品注入率を段階的に減少させることで、過 剰注入を防止する制御を行う。  • Injection rate control: By taking the data of “operator operating time” and “discharged water” and reducing the chemical injection rate step by step, assuming that the number of coliforms decreases with time, excessive injection Control to prevent this.
•注入率演算制御:原水濁度計 1004から「濁度」のデータ、中央操作室 1001から「 放流量」、「降雨強度」、「降雨量」のデータを取込み、原水中に含まれる大腸菌群数 を演算し、薬注量 (率)を決定して注入制御を行う。 •運転シーケンス管理:補機類 1006について例えば集塵機の「連動運転」指令、 CS O放流設備 1008ついてゲートの「開閉」など、付帯機器に関する連動運転管理を行 • Injection rate calculation control: The turbidity data from raw water turbidity meter 1004 and the data of “discharge flow rate”, “rainfall intensity” and “rainfall” are taken from central operation room 1001, and coliform bacteria contained in raw water Calculate the number, determine the dose (rate), and perform injection control. • Operation sequence management: For auxiliaries 1006, for example, “Synchronized operation” command for dust collector, “Opening / closing” of gate for CS O discharge facility 1008, etc.
•注入判定:薬品供給機 1003の給粉量は供給機回転数カゝら計算するが、これだけ ではブリッジなどによる空運転を検知できない。そのため、薬品を貯留している粉体 流動部のロードセルで粉体変動重量を計測し、回転数からの計算値と比較して整合 性を判定する。 • Injection determination: The amount of powder supplied to the chemical feeder 1003 is calculated from the number of revolutions of the feeder, but this alone cannot detect idle operation due to a bridge. Therefore, the powder fluctuation weight is measured with the load cell of the powder flow section where chemicals are stored, and the consistency is determined by comparing with the calculated value from the rotation speed.
•各データ記録:計装力もの測定値、故障履歴などを盤内のレコーダで記録する。  • Record each data: Record instrumentation measurements, failure histories, etc. with a recorder in the panel.
[0254] なお、必要によって、運転モード、状態表示や各種データを中央操作室 1001へ送 り、中央操作室から運転'監視が行えるようにする。  [0254] If necessary, the operation mode, status display, and various data are sent to the central operation room 1001 so that the operation can be monitored from the central operation room.
[0255] 放流開始後、即ち雨水ポンプ運転開始後の消毒剤の注入量は、タイマーによって 数段階に分けて注入量を徐々に低下させることが好ましい。例えば、運転開始後 0〜 1時間、 1〜3時間、 3〜5時間、 5時間〜の 4段階に分けて、それぞれ消毒剤の注入 率を 10mg/L、 7mg/L、 5mg/L、 3mg/Lというように徐々に低下させることができる。添 加段階の数、各段階の長さ、各段階での消毒剤注入率などは、降雨量、降雨タイプ 、降雨予報などの情報に基づいて適宜変更することができる。例えば、予め数パター ンの添加プログラムを設定しておき、降雨量、降雨タイプなどの情報に基づいて選択 することができる。このような場合でも、消毒剤注入点の下流の雨天時下水道越流水 流路にハロゲン濃度計を設置し、残留ハロゲン濃度が異常に高い場合には、注入を 停止したり、若しくは警報を発するなどの制御を行うことが好ましい。更に、制御設備 上の安全対策としては、例えば、放流側に設置の残留ハロゲン計によって消毒剤の 過剰注入検知機構を設け、過剰注入を検知したの場合には供給停止を行ったり、消 毒剤供給装置においてブリッジ等によって供給が滞った場合を想定し、一定時間消 毒剤貯留槽の重量が変化しなカゝつた場合に警報を発したり、消毒剤溶解水がェジェ クタ一上部の溶解コーン力も逆流した場合に検知する機構を設けて、検知にて供給 停止したり、消毒剤溶解水の供給量不足を検知する機構、即ち、電磁流量計の下限 検知機構を設けて、異常検知により溶解水供給弁を閉として逆流を防止する、という ような制御を行うことが好まし 、。 本発明の各種態様は、以下の通りである。 [0255] It is preferable that the injection amount of the disinfectant after the start of discharge, that is, after the start of the rainwater pump operation, is gradually reduced in several stages by a timer. For example, after the start of operation, the injection rate of the disinfectant is divided into 4 stages of 0 to 1 hour, 1 to 3 hours, 3 to 5 hours and 5 hours to 10 mg / L, 7 mg / L, 5 mg / L and 3 mg, respectively. It can be gradually reduced like / L. The number of additional stages, the length of each stage, the disinfectant injection rate at each stage, etc. can be changed as appropriate based on information such as rainfall, rainfall type, and rainfall forecast. For example, an addition program of several patterns can be set in advance, and the selection can be made based on information such as rainfall amount and rainfall type. Even in such a case, a halogen concentration meter is installed in the sewer stormwater overflow downstream of the disinfectant injection point, and if the residual halogen concentration is abnormally high, the injection is stopped or an alarm is issued. It is preferable to perform control. Furthermore, as a safety measure on the control equipment, for example, a disinfectant over-injection detection mechanism is provided by a residual halogen meter installed on the discharge side, and when over-injection is detected, the supply is stopped or the disinfectant Assuming a case where the supply device is stagnant due to a bridge, etc., if the weight of the disinfectant storage tank does not change for a certain period of time, an alarm is issued, or the disinfectant-dissolved water is dissolved in the dissolution cone at the top of the ejector. Provide a mechanism to detect when the force also flows backward, stop supplying by detection, or detect a shortage of disinfectant dissolved water supply amount, that is, provide a lower limit detection mechanism for electromagnetic flowmeters, and dissolve by detecting abnormalities. It is preferable to perform control such as closing the water supply valve to prevent backflow. Various aspects of the present invention are as follows.
1.下水を塩素又は UVで消毒する消毒槽を有する消毒施設と;  1. a disinfection facility with a disinfection tank that disinfects sewage with chlorine or UV;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;  A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、入口への流入下水を出口 1及び出口 2に分ける分 岐装置であって、入口への流入下水量が所定値以下の場合には流入下水量の全量 を出口 1に流し、流入下水量が所定値以上の場合には、所定値の下水量を出口 1に 流し、流入下水量から所定値の下水量を除いた下水量を出口 2に流す分岐装置と; から構成され、  A branching device that has an inlet, outlet 1 and outlet 2 and divides the sewage flowing into the inlet into outlet 1 and outlet 2.If the amount of sewage flowing into the inlet is below a predetermined value, the total amount of sewage flowing in When the inflow sewage amount is greater than or equal to the predetermined value, the sewage amount is discharged to the outlet 1, and the sewage amount obtained by removing the predetermined amount of sewage from the inflow sewage amount is discharged to the outlet 2. And consisting of
上記分岐装置の出口 1が上記消毒施設の下水導入部に接続され、上記分岐装置 の出口 2が上記臭素下水処理装置の下水導入部に接続されている下水処理装置。 A sewage treatment apparatus, wherein an outlet 1 of the branch device is connected to a sewage introduction section of the disinfection facility, and an outlet 2 of the branch apparatus is connected to a sewage introduction section of the bromine sewage treatment apparatus.
2.消毒施設によって下水中の大腸菌群数を下水 lccあたり 3000個以下にする請求 項 1に記載の下水処理装置。 2. The sewage treatment apparatus according to claim 1, wherein the number of coliforms in the sewage is set to 3000 or less per sewage lcc by the disinfection facility.
3.消毒施設によって下水中の大腸菌数を下水 lOOccあたり 200個以下にする請求 項 1に記載の下水処理装置。  3. The sewage treatment apparatus according to claim 1, wherein the number of Escherichia coli in the sewage is reduced to 200 or less per sewage lOOcc by a disinfection facility.
4.分岐装置の入口は合流式下水道に接続されて!、る請求項 1に記載の下水処理 装置。  4. The sewage treatment device according to claim 1, wherein the entrance of the branching device is connected to the combined sewer system!
5.臭素下水処理装置によって下水中の大腸菌群数を下水 lccあたり 3000個以下 にする請求項 1に記載の下水処理装置。  5. The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of coliform bacteria in the sewage to 3000 or less per lcc of sewage.
6.臭素下水処理装置によって下水中の大腸菌数を下水 lOOccあたり 200個以下に する請求項 1に記載の下水処理装置。  6. The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of E. coli in sewage to 200 or less per sewage lOOcc.
7.消毒施設及び Z又は臭素下水処理装置によって消毒された下水を公共水域に 流す請求項 1に記載の下水処理装置。  7. The sewage treatment device according to claim 1, wherein sewage sterilized by the disinfection facility and Z or bromine sewage treatment device is allowed to flow into public water areas.
8.消毒施設は、最初沈殿池を更に有し、消毒施設の導入部に最初沈殿池の下水 導入部が接続され、最初沈殿池の出口が消毒槽の下水導入部に接続されている請 求項 1に記載の下水処理装置。  8. The disinfection facility has an initial settling basin, the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank. Item 1. A sewage treatment apparatus according to item 1.
9.消毒施設は、最初沈殿池、ばつき槽及び最終沈殿池を更に有し、消毒施設の導 入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口がばつき槽の下水 導入部に接続され、ばつき槽の出口が最終沈殿池の下水導入部に接続され、最終 沈殿池の出口が消毒槽の下水導入部に接続されて 、る請求項 1に記載の下水処理 装置。 9. The disinfection facility further has a first settling basin, a flapping tank, and a final settling basin, and the sewage introduction section of the first sedimentation basin is connected to the introduction part of the disinfection facility, and the outlet of the first sedimentation basin is the sewage of the batting tank. It is connected to the introduction part, and the outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin. The sewage treatment apparatus according to claim 1, wherein an outlet of the sedimentation basin is connected to a sewage introduction section of the disinfection tank.
10.消毒施設は、更に、  10. The disinfection facility
最初沈殿池と、  First settling basin,
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置と、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Equipment,
下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、  A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant,
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が 分岐装置の入口に接続され、分岐装置の出口 1が消毒槽の下水導入部に接続され 、分岐装置の出口 2が臭素下水処理装置の下水導入部に接続されている請求項 1 に記載の下水処理装置。  The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, the outlet 1 of the branching device is connected to the sewage introduction part of the disinfection tank, and The sewage treatment apparatus according to claim 1, wherein the outlet 2 is connected to a sewage introduction section of the bromine sewage treatment apparatus.
11.消毒施設は、更に、  11. The disinfection facility
最初沈殿池と、  First settling basin,
ばつき槽と、  A bath tank,
最終沈殿池と、  The final sedimentation basin,
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置と、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Equipment,
下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、  A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant,
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が 分岐装置の入口に接続され、分岐装置の出口 1がばつき槽の下水導入部に接続さ れ、ばつき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が 消毒槽の下水導入部に接続されて、分岐装置の出口 2が臭素下水処理装置の下水 導入部に接続されて 1ヽる請求項 1に記載の下水処理装置。 The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flapping tank. The outlet of the attached tank is connected to the sewage introduction section of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction section of the disinfection tank, and the outlet 2 of the branch device is the sewage of the bromine sewage treatment system. The sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus is connected to the introduction section.
12.下水処理場における下水処理装置であって、  12. A sewage treatment device in a sewage treatment plant,
最初沈殿池と;  First sedimentation basin;
下水を塩素又は UVで消毒する消毒槽を有する消毒設備と;  A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;  A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置;と力 なり、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Equipment; and power,
分岐装置の出口 1が消毒設備の下水導入部に接続され、分岐装置の出口 2が臭 素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置。 13.下水処理場における下水処理装置であって、  A sewage treatment apparatus characterized in that outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility, and outlet 2 of the branching apparatus is connected to the sewage introduction part of the sewage treatment apparatus. 13. A sewage treatment device in a sewage treatment plant,
最初沈殿池と;  First sedimentation basin;
ばつき楼と;  Batsukiro;
最終沈殿池と;  The final sedimentation basin;
下水を塩素又は UVで消毒する消毒槽を有する消毒設備と;  A disinfection facility having a disinfection tank for disinfecting sewage with chlorine or UV;
下水を臭素系消毒剤によって消毒する臭素下水処理装置と;  A bromine sewage treatment device for disinfecting sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、流入水量が所定値以下の場合には流入水 量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定値の水量を出 口 1に流し、流入水量力 所定値の水量を除 、た水量を出口 2に流す分岐装置と;か らなり、  A branch device that has an inlet, outlet 1 and outlet 2 and receives the effluent from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2. A diverter that flows a predetermined amount of water to outlet 1 and flows the predetermined amount of water to outlet 1 when the amount of inflow water is greater than or equal to the predetermined value. Consisting of
下水処理装置の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出 口が分岐装置の入口に接続され、分岐装置の出口 1がばつき槽の下水導入部に接 続され、ばつき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出 口が消毒設備の下水導入部に接続されて、分岐装置の出口 2が臭素下水処理装置 の下水導入部に接続されていることを特徴とする下水処理装置。 14.臭素下水処理装置が、固体臭素系消毒剤の貯留 ·供給装置と、該固体臭素系 消毒剤の貯留 ·供給装置から供給される固体臭素系消毒剤を、被処理水に添カ卩 ·混 合する消毒剤添加'混合装置とを具備することを特徴とする請求項 1〜13のいずれ かに記載の下水処理装置。 The sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is connected to the sewage introduction part of the flapping tank. The outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is the sewage introduction part of the bromine sewage treatment device. A sewage treatment apparatus characterized by being connected to the sewage treatment apparatus. 14. The bromine sewage treatment equipment adds the solid bromine-based disinfectant storage / supply device and the solid bromine-based disinfectant storage / supply device to the treated water. The sewage treatment apparatus according to any one of claims 1 to 13, further comprising a disinfectant addition 'mixing apparatus for mixing.
15.固体臭素系消毒剤の貯留,供給装置が、固体臭素系消毒剤の貯槽と、貯槽内 の固体臭素系消毒剤を所定の量計量して排出する定量供給機とを備え、該貯槽及 び定量供給機は、圧縮空気をその内部に噴射する複数個の噴射口で構成された固 体臭素系消毒剤の撹拌手段を備えている請求項 14に記載の下水処理装置。  15. The solid bromine-based disinfectant storage and supply device includes a solid bromine-based disinfectant storage tank and a quantitative feeder for measuring and discharging a predetermined amount of the solid bromine-based disinfectant in the storage tank. 15. The sewage treatment apparatus according to claim 14, wherein the quantitative feeder includes a solid bromine-based disinfectant agitation unit configured with a plurality of injection ports for injecting compressed air therein.
16.定量供給機が、計量手段を有する回転テーブルを備えた請求項 15に記載の下 水処理装置。  16. The sewage treatment apparatus according to claim 15, wherein the metering feeder includes a rotary table having a weighing means.
17.消毒剤添加 ·混合装置が、被処理水の一部を受容して固体臭素系消毒剤を混 合 ·溶解する消毒水調製装置と、消毒水を被処理水に投入する手段とを備えた請求 項 14に記載の下水処理装置。  17.Disinfection addition The sewage treatment apparatus according to claim 14.
18.消毒剤添加,混合装置が、被処理水が流れる流路内に設置されている請求項 1 7に記載の消毒装置。  18. The disinfection device according to claim 17, wherein the disinfectant addition / mixing device is installed in a flow path through which water to be treated flows.
19.固体臭素系消毒剤の貯留,混合装置及び添加,混合装置が、固体臭素系消毒 剤を貯留する貯留槽、貯留槽に接続されており、消毒剤を固体のままで注入点まで 移送するための消毒剤移送配管、消毒剤移送配管に接続されており、配管内を移 送されてきた固体臭素系消毒剤を消毒対象の被処理水に加える消毒剤注入装置、 から構成される請求項 14に記載の消毒装置。  19. Solid bromine-based disinfectant storage / mixing device and addition / mixing device is connected to the storage tank for storing the solid bromine-based disinfectant and the storage tank to transfer the disinfectant as solid to the injection point. A disinfectant transfer pipe connected to the disinfectant transfer pipe, and a disinfectant injection device for adding the solid bromine-based disinfectant transferred through the pipe to the water to be disinfected. 14. Disinfection device according to 14.
20.消毒剤が、添加位置力 被処理水の放流箇所へ流れ着くまでの間に完全に溶 解する請求項 14に記載の消毒装置。  20. The disinfection device according to claim 14, wherein the disinfectant completely dissolves before reaching the discharge position of the water to be treated.
21.更に、被処理水のサンプルを採取するための分取ラインと、サンプリングされた 被処理水サンプルに消毒剤を添加するための消毒剤供給手段と、消毒剤が添加さ れた被処理水サンプルの有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置 と、を備え、有効ハロゲン濃度測定装置によって測定された消毒剤添加後の被処理 水サンプル中の有効ハロゲン濃度の減少程度に応じて消毒剤添加'混合装置によつ て被処理水中に加えられる消毒剤の添加量を制御する消毒剤添加量制御手段を備 えた請求項 14に記載の下水処理装置。 21. Further, a preparative line for collecting a sample of water to be treated, a disinfectant supply means for adding a disinfectant to the sampled sample of water to be treated, and water to be treated with a disinfectant added An effective halogen concentration measuring device for measuring the effective halogen concentration of a sample, and adding a disinfectant according to the degree of decrease in the effective halogen concentration in the water sample to be treated after adding the disinfectant measured by the effective halogen concentration measuring device. 'A disinfectant addition amount control means is provided to control the amount of disinfectant added to the water to be treated by the mixing device. 15. A sewage treatment apparatus according to claim 14.
22.更に、消毒剤を添加した後の被処理水中に還元剤を添加する還元剤供給装置 と、消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定する有効ハロゲン 濃度測定装置と、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応 じて還元剤の添加量を制御する還元剤添加量制御装置を備えた請求項 14に記載 の下水処理装置。  22. Furthermore, a reducing agent supply device for adding a reducing agent to the treated water after adding the disinfectant, an effective halogen concentration measuring device for measuring the effective halogen concentration in the treated water after adding the disinfectant, 15. The sewage treatment apparatus according to claim 14, further comprising a reducing agent addition amount control device that controls the addition amount of the reducing agent according to the measured effective halogen concentration in the treated water after the addition of the disinfectant.
23.下水を消毒処理する方法であって、  23. A method for disinfecting sewage,
流入下水を、流入下水量が所定値以下の場合には流入下水量の全量を塩素又は UVによって消毒し、流入下水量が所定値以上の場合には、所定値の下水量を塩素 又は UVによって消毒し、同時に流入下水量から所定値の下水量を除!、た下水量を 臭素系消毒剤によって消毒することを特徴とする下水処理方法。  Inflow sewage is disinfected with chlorine or UV when the inflow sewage is below the specified value, and when the inflow sewage is over the predetermined value, the sewage with the specified value is supplied with chlorine or UV. A sewage treatment method comprising disinfecting and simultaneously removing a predetermined amount of sewage from the inflow sewage, and disinfecting the sewage with a bromine-based disinfectant.
24.塩素又は UVによる消毒によって下水中の大腸菌群数を下水 lccあたり 3000個 以下にする請求項 23に記載の方法。  24. The method according to claim 23, wherein the number of coliforms in sewage is reduced to 3000 or less per lcc of sewage by disinfection with chlorine or UV.
25.塩素又は UVによる消毒によって下水中の大腸菌数を下水 lOOccあたり 200個 以下にする請求項 23に記載の方法。  25. The method according to claim 23, wherein the number of E. coli in sewage is reduced to 200 or less per sewage lOOcc by disinfection with chlorine or UV.
26.処理対象の下水が合流式下水道の下水である請求項 23に記載の方法。  26. The method according to claim 23, wherein the sewage to be treated is sewage from a combined sewer.
27.臭素系消毒剤による消毒によって下水中の大腸菌群数を下水 lccあたり 3000 個以下にする請求項 23に記載の方法。  27. The method according to claim 23, wherein the number of coliforms in the sewage is reduced to 3000 or less per lcc of sewage by disinfection with a bromine-based disinfectant.
28.臭素系消毒剤による消毒によって下水中の大腸菌数を下水 lOOccあたり 200個 以下にする請求項 23に記載の方法。  28. The method according to claim 23, wherein the number of E. coli in sewage is reduced to 200 or less per sewage lOOcc by disinfection with a bromine-based disinfectant.
29.塩素又は UVによって消毒された下水及び Z又は臭素系消毒剤によって消毒さ れた下水を公共水域に流す請求項 23に記載の方法。  29. The method according to claim 23, wherein sewage sterilized by chlorine or UV and sewage sterilized by Z or bromine-based disinfectant are run into public water bodies.
30.臭素系消毒剤による消毒処理の時間が 3分以内である請求項 23に記載の方法  30. The method according to claim 23, wherein the disinfection time with the bromine-based disinfectant is 3 minutes or less.
31.臭素系消毒剤として固体の臭素系消毒剤を被処理水に添加 '混合して消毒を 行う請求項 23に記載の方法。 31. The method according to claim 23, wherein a solid bromine-based disinfectant is added to the water to be treated as a bromine-based disinfectant and mixed for disinfection.
32.臭素系消毒剤として、固体の臭素系系消毒剤を被処理水の一部に混合'溶解し て消毒水を調製し、調製された消毒水を被処理水に投入することによって消毒を行う 請求項 23に記載の方法。 32. As a bromine-based disinfectant, a solid bromine-based disinfectant is mixed and dissolved in a part of the water to be treated to prepare disinfecting water, and the prepared disinfecting water is poured into the water to be treated. Do 24. The method of claim 23.
33.消毒剤が、添加位置力 被処理水の放流箇所へ流れ着くまでの間に完全に溶 解する請求項 23に記載の方法。  33. The method according to claim 23, wherein the disinfectant is completely dissolved by the time it arrives at the site where the treated water is discharged.
34.被処理水の一部をサンプリングして臭素系消毒剤を添加し、臭素系消毒剤が添 加された被処理水サンプルの有効ハロゲン濃度を測定して、測定された臭素系消毒 剤添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて被処理水 に加える臭素系消毒剤の添加量を制御することを更に含む請求項 23に記載の方法  34. Add a bromine-based disinfectant by sampling a part of the water to be treated, adding a bromine-based disinfectant, and measuring the effective halogen concentration of the sample-treated water to which the bromine-based disinfectant was added. 24. The method according to claim 23, further comprising controlling the amount of bromine-based disinfectant added to the water to be treated according to the degree of decrease in effective halogen concentration in the subsequent water sample to be treated.
35.臭素系消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定し、測定さ れた消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて、臭素系消毒剤を添 加した後の被処理水中に還元剤を添加する請求項 23に記載の方法。 35. The effective halogen concentration in the treated water after adding the bromine-based disinfectant was measured, and the bromine-based disinfectant was added according to the measured effective halogen concentration in the treated water after the addition of the disinfectant. The method according to claim 23, wherein a reducing agent is added to the water to be treated later.
36.下水道システムであって、下水処理場の処理容量を超えない量の下水が下水 処理場に流れ込む場合には、下水を、下水処理場において所定の処理を行った後 に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流し、大量の降雨に よって下水処理場の処理容量を超える量の雨水を含んだ下水が下水処理場に流れ 込むか若しくは流れ込むおそれのある場合には、下水処理場の処理容量を超える量 の雨水混入下水については、下水道の雨天時下水道越流水排除施設において分 岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、下水処理場の処 理容量内の雨水混入下水については、下水処理場において所定の処理を行った後 に、塩素系消毒剤によって消毒処理を行った後に公共水域に放流することを特徴と する下水道システム。  36. If the sewage system is a sewer system and does not exceed the treatment capacity of the sewage treatment plant, it will flow into the sewage treatment plant. If the sewage containing the amount of rainwater exceeding the treatment capacity of the sewage treatment plant flows into the sewage treatment plant or may flow into it, The amount of sewage mixed with the amount of rainwater exceeding the capacity of the sewage treatment plant is branched off at the sewer stormwater sewer stormwater drainage facility, disinfected with a bromine-based disinfectant, and then discharged into a public water area. As for sewage mixed with rainwater within the treatment capacity of sewage, sewage is characterized by being discharged into a public water area after being sterilized with a chlorinated disinfectant after the prescribed treatment at a sewage treatment plant. System.
37.分流式下水道システムであって、下水道の汚水管渠を流れる汚水について、下 水処理場において所定の処理を行った後に、塩素系消毒剤によって消毒処理を行 つた後に公共水域に放流し、下水道の雨水管渠を流れる雨水については、雨水排 除施設、例えばポンプ場 (排水機場)から公共水域に放流し、大量の降雨があった場 合には、雨水排除施設において臭素系消毒剤による消毒処理を行った後に公共水 域に放流することを特徴とする下水道システム。  37. A sewerage sewerage system, in which sewage flowing through sewer pipes in the sewer system is treated at the sewage treatment plant, sterilized with a chlorinated disinfectant, and then released into public water areas. Rainwater flowing through sewer storm sewers is discharged from rainwater drainage facilities, for example, pumping stations (drainage station) to public water areas, and if there is a large amount of rainfall, disinfection with bromine-based disinfectant at the rainwater drainage facility. A sewer system characterized by being discharged into public water after treatment.
38.下水道システムであって、下水処理場の曝気槽の処理容量を超えない量の下 水が下水処理場に流れ込む場合には、下水を、下水処理場において、最初沈殿池 、曝気槽、最終沈殿池による処理を行った後に、塩素系消毒剤によって消毒処理を 行った後に公共水域に放流し、大量の降雨によって下水処理場の最初沈殿池の処 理容量は超えないが曝気槽の処理容量を超える量の雨水を含んだ下水が下水処理 場に流れ込むか若しくは流れ込むおそれのある場合には、曝気槽の処理容量を超 える量の雨水混入下水については、下水処理場での最初沈殿池における処理の後 に分岐して、臭素系消毒剤による消毒を行った後に公共水域に放流し、曝気槽の処 理容量内の雨水混入下水については、下水処理場での最初沈殿池における処理に 続いて、曝気槽、最終沈殿池による処理を行い、続いて塩素系消毒剤によって消毒 処理を行った後に公共水域に放流することを特徴とする下水道システム。 38. The sewerage system should not exceed the treatment capacity of the aeration tank at the sewage treatment plant. When water flows into a sewage treatment plant, the sewage is first treated in the sewage treatment plant by the first settling basin, aeration tank, and final settling basin, and then sterilized by a chlorine-based disinfectant before entering the public water area. When sewage containing the amount of rainwater that does not exceed the treatment capacity of the first sedimentation basin of the sewage treatment plant but exceeds the treatment capacity of the aeration tank flows into or may flow into the sewage treatment plant due to a large amount of rainfall For sewage mixed with rainwater that exceeds the treatment capacity of the aeration tank, it is branched after treatment in the first sedimentation basin at the sewage treatment plant, disinfected with a bromine-based disinfectant, and then discharged into public water bodies. For sewage mixed with rainwater in the treatment capacity of the aeration tank, treatment in the aeration tank and final sedimentation basin is followed by treatment in the first sedimentation basin at the sewage treatment plant, followed by disinfection treatment with a chlorine-based disinfectant. Sewer system, characterized in that the discharged into public waters after Tsu.
[0258] 以下、本発明の実施例を説明するが、本発明はこれに限定されるものではない。実 施例 1〜3では、図 4〜6で示されるシステムで、排水の処理をした。  [0258] Examples of the present invention will be described below, but the present invention is not limited thereto. In Examples 1 to 3, wastewater was treated with the systems shown in FIGS.
[0259] 実施例 1 [0259] Example 1
大腸菌群を含む下水処理水を被処理水として、殺菌試験を行った。消毒剤として は、 1—ブロモ—3—クロ口— 5, 5—ジメチルヒダントイン(BCDMH) (実施例 1)及び 次亜塩素酸ソーダ (比較例 1)を用いた。消毒剤の濃度を変えて、大腸菌群に対する 殺菌試験を行った。被処理水の水質を表 1に、試験結果を表 2に示す。  A sterilization test was conducted using treated sewage water containing coliforms as treated water. As the disinfectant, 1-bromo-3-chloro mouth-5,5-dimethylhydantoin (BCDMH) (Example 1) and sodium hypochlorite (Comparative Example 1) were used. Bactericidal tests against coliforms were performed with varying concentrations of disinfectant. Table 1 shows the quality of treated water and Table 2 shows the test results.
[0260] [表 1] 表 1 [0260] [Table 1] Table 1
Figure imgf000074_0001
Figure imgf000074_0001
[0261] [表 2] 表 2 [0261] [Table 2] Table 2
Figure imgf000075_0002
Figure imgf000075_0002
[0262] BCDMHは次亜塩素酸ソーダに比べ、 1Z2以下の濃度で殺菌効果を発揮し、 lm g/L as CIの添加濃度で大腸菌群数を 3000CFU/mL以下にすることができた。 [0262] BCDMH exhibited a bactericidal effect at a concentration of 1Z2 or less compared to sodium hypochlorite, and the addition of lm g / L as CI was able to reduce the number of coliforms to 3000 CFU / mL or less.
[0263] BCDMHを lmg/L as CIで添カ卩した条件でトリハロメタンは 0. lmg/L以下であった [0263] Trihalomethane was less than 0.1 mg / L under the condition that BCDMH was added with lmg / L as CI.
[0264] なお、消毒剤の添加率の表示は、臭素系消毒剤、塩素系消毒剤ともに活性塩素表 示とし、活性塩素濃度に換算して「mg/L as Cl」と表示する。例えば、 lgの BCDMH を 1Lの排水に添カ卩したときには、 540mg/L as CIになる。 [0264] The disinfectant addition rate shall be indicated as active chlorine for both bromine and chlorine disinfectants, and expressed as "mg / L as Cl" in terms of active chlorine concentration. For example, when lg BCDMH is added to 1L of wastewater, it becomes 540mg / L as CI.
[0265] 反応時間についても、 BCDMHでは 1分で十分な効果が認められたのに対し、次 亜塩素酸ソーダでは 5分以上の時間が必要であった。  [0265] As for the reaction time, BCDMH showed a sufficient effect in 1 minute, while sodium hypochlorite required more than 5 minutes.
[0266] 実施例 2  [0266] Example 2
水産加工排水を、凝集加圧浮上分離した後、更に、活性汚泥処理して得られた排 水を被処理水とした。この被処理水に対して消毒剤添加濃度を変更し殺菌試験を行 つた。被処理水の水質を表 3に試験結果を表 4に示す。  After processing and floating and separating the aquatic processing wastewater, the wastewater obtained by the activated sludge treatment was used as the treated water. The disinfection additive concentration was changed for this treated water and sterilization test was conducted. Table 3 shows the quality of treated water and Table 4 shows the test results.
[0267] [表 3] 表 3 [0267] [Table 3] Table 3
Figure imgf000075_0001
[0268] 有機性窒素とは、ァミンに加え、蛋白質等の有機性窒素全体としての値をいう。例 えば、タンパク質の場合には、タンパク質中の窒素原子のみの量をいい、タンパク質 中の炭素原子又は水素原子の量は含まれない。有機性窒素には、アンモニア、アン モ -ゥムイオンのような無機窒素は含まれな 、。
Figure imgf000075_0001
[0268] Organic nitrogen refers to the value of organic nitrogen as a whole in addition to ammine. For example, in the case of protein, it means only the amount of nitrogen atoms in the protein, and does not include the amount of carbon atoms or hydrogen atoms in the protein. Organic nitrogen does not include inorganic nitrogen, such as ammonia and ammonia ions.
[0269] [表 4] 表 4  [0269] [Table 4] Table 4
Figure imgf000076_0001
Figure imgf000076_0001
[0270] BCDMHは次亜塩素酸ソーダに比べ、 1/3以下の濃度で殺菌効果を発撰し、 2. [0270] BCDMH has a bactericidal effect at a concentration of 1/3 or less compared to sodium hypochlorite, 2.
5mg/L as CIの添加濃度で大腸菌群数を 3000CFU/mL以下にすることができた。 実施例 3  The number of coliforms could be reduced to 3000 CFU / mL or less with the addition concentration of 5 mg / L as CI. Example 3
図 4〜6で示されるシステムで、排水の処理をした。その結果を表 5にまとめる。  Wastewater was treated with the system shown in Figs. The results are summarized in Table 5.
[0271] [表 5] [0271] [Table 5]
表 5 Table 5
Figure imgf000077_0001
Figure imgf000077_0001
表 5 (続き)  Table 5 (continued)
Figure imgf000077_0002
Figure imgf000077_0002
* 1 Aは、 B C D M H (有効ハロゲン濃度 5 4 % ) を示す。 Bは、 次亜塩素酸  * 1 A indicates B C D M H (effective halogen concentration of 54%). B is hypochlorous acid
ナトリウム (有効ハロゲン濃度 1 0 % ) を示す。  Sodium (effective halogen concentration 10%).
*2 塩素 (C 1 2) 換算での添加量 [ mg/L]。 * 2 chlorine (C 1 2) amount in terms of [mg / L].
*3 N Dは、 検出せずを意味する。  * 3 N D means not detected.
[0272] RUN1 (下水量 120m3/hour)では、 BCDMH添カ卩量 12mg/Lで、大腸菌群数を 3 OOOCFU/mL以下にすることができる。 RUN2 (下水量 250m3/hour)では、 BCDM H添加量 10mg/Lでは消毒は十分である力 残留ハロゲン濃度が 0. 72mg/Lであり、 適切ではない。 BCDMH添カ卩量 5mg/Lで、大腸菌群数を 3000CFU/mL以下にする ことができ、し力も残留ハロゲン濃度が 0. 03mg/Lであり、適切である。 [0272] In RUN1 (sewage volume 120m 3 / hour), the amount of coliforms can be reduced to 3 OOOCFU / mL or less with a BCDMH supplemented amount of 12mg / L. In RUN2 (sewage volume 250m 3 / hour), BCDM H addition amount 10mg / L is sufficient for disinfection Residual halogen concentration is 0.72mg / L, which is not appropriate. The amount of coliform bacteria can be reduced to 3000 CFU / mL or less with a BCDMH supplemented amount of 5 mg / L, and the residual halogen concentration is 0.03 mg / L, which is appropriate.
[0273] RUN3 (下水量 530m3/hour)は、降雨量が多い場合であり、 BCDMH添加量 3〜 4. 5mg/Lで適正な消毒が可能であった。なお、この時の BCDMHが雨水排除下水 と接触した時間を求めたところ、 50秒程度であり、極めて短時間で消毒することがで [0274] RUN4 (下水道 250m3/hour)は塩素系消毒剤として次亜塩素酸ナトリウムを用い た比較例である。 RUN4では、次亜塩素酸ナトリウム添力卩量を 60mg/Lとしても、大腸 菌群数を 3000CFU/mL以下にすることができず、し力も残留ハロゲン濃度が 1. 53m g/Lと LC 値 (具体的には、塩素 (C1 )換算で、 0. 4mg/L)よりも高ぐ不適切である。 [0273] RUN3 (sewage volume 530m 3 / hour) is a case of heavy rainfall, and appropriate disinfection was possible with BCDMH addition of 3 to 4.5mg / L. The time when BCDMH was in contact with the sewage drainage sewage at this time was found to be about 50 seconds and could be disinfected in an extremely short time. [0274] RUN4 (sewer 250m 3 / hour) is a comparative example using sodium hypochlorite as a chlorinated disinfectant. In RUN4, even if the sodium hypochlorite supplementation dose is 60 mg / L, the number of colon bacteria cannot be reduced to 3000 CFU / mL or less, and the residual halogen concentration is 1.53 mg / L, LC value. (Specifically, it is more inappropriate than chlorine (C1) 0.4 mg / L).
50 2  50 2
[0275] なお、 RUN1〜RUN4のいずれの場合も、消毒剤添カ卩量が 0 (ゼロ)の場合力 雨 水排除処理場へ流入した雨天時下水の流入水質を示す。  [0275] In any of RUN1 to RUN4, when the amount of disinfectant-added water is 0 (zero), it indicates the quality of the influent water in rainy rain that has flowed into the rainwater drainage treatment plant.
[0276] 実施例 4 [0276] Example 4
図 59に示す消毒装置を用いて雨天時下水道越流水の消毒を行った。装置の仕様 を表 6に示す。表 7に消毒対象水の水質を示す。消毒剤として、粉末状の 1 ブロモ 3—クロロー 5, 5—ジメチルヒダントイン(BCDMH :荏原製作所製、商品名エバサ ニー 4400)を用いた。消毒剤添加量と添加後の被処理水の大腸菌群数に対する殺 菌効果を測定した結果を表 8に示す。  The disinfection device shown in Fig. 59 was used to disinfect sewer stormwater overflow. Table 6 shows the specifications of the equipment. Table 7 shows the quality of water to be disinfected. As a disinfectant, powdery 1 bromo 3-chloro-5,5-dimethylhydantoin (BCDMH: manufactured by Ebara Seisakusho, trade name Eva Sunny 4400) was used. Table 8 shows the results of measuring the bactericidal effect of the amount of disinfectant added and the number of coliforms in the treated water after the addition.
[0277] この実験結果から、消毒剤を粉末のままで被処理水に直接添加することは、残存 大腸菌群数を放流規制値である 3. O X 103CFU/mL以下にまで迅速に低減すること に有効であることが分力つた。 [0277] From this experimental result, adding the disinfectant directly to the water to be treated in powder form quickly reduces the number of remaining coliforms to the release regulation value of 3. OX 10 3 CFU / mL or less. It was divided that it was effective.
[0278] [表 6] 表 6 : 装置の仕様  [0278] [Table 6] Table 6: Equipment specifications
Figure imgf000078_0002
Figure imgf000078_0002
[0279] [表 7] 表 7 : 消毒対象水の水質
Figure imgf000078_0001
[0280] [表 8]
[0279] [Table 7] Table 7: Water quality of water to be disinfected
Figure imgf000078_0001
[0280] [Table 8]
表 8 : 消毒剤添加量と消毒後の大腸菌群数 Table 8: Disinfectant addition and number of coliforms after disinfection
Figure imgf000079_0001
Figure imgf000079_0001
[0281] 実施例 5  [0281] Example 5
図 39〜図 43を作成した下水処理施設における雨天時越流水について、本発明方 法による消毒処理を実施した。消毒装置は、図 44に示す構成の装置を用いた。消毒 剤としては、 BCDMHを用いた。消毒剤導入手段 604からの消毒剤の投入による消毒 処理を行いながら、 10分に 1回の頻度でサンプリングライン 612から被処理液のサン プルを採取してモニタリング槽 613に導入し、所定濃度の消毒剤 614を加えた。ここ で加える消毒剤 614の濃度は、その時点において消毒剤導入手段 604から被処理 液中に投入されている消毒剤濃度とした。なお、消毒処理開始時の消毒剤濃度は 5 mg/Lとした。モニタリング槽内の被処理液サンプルに BCDMHを添カ卩した 20秒後の時 点での被処理液サンプル中の残留ハロゲン濃度を測定器 615によって測定し、測定 値が 0.2 mg/L as CIよりも高い場合には消毒剤導入手段 604から加える消毒剤の濃  Disinfection treatment by the method of the present invention was performed on rainwater overflowing water in the sewage treatment facility that created Figures 39 to 43. As the disinfection apparatus, an apparatus having the configuration shown in FIG. 44 was used. BCDMH was used as the disinfectant. Disinfectant introduction means Samples of the liquid to be treated were sampled from the sampling line 612 at a frequency of once every 10 minutes and introduced into the monitoring tank 613 at a frequency of once every 10 minutes while disinfecting the disinfectant from the disinfectant introduction means 604. Disinfectant 614 was added. The concentration of the disinfectant 614 added here was the disinfectant concentration that was introduced into the liquid to be treated from the disinfectant introduction means 604 at that time. The concentration of disinfectant at the start of disinfection treatment was 5 mg / L. Measure the residual halogen concentration in the sample to be treated 20 seconds after adding BCDMH to the sample to be treated in the monitoring tank using the measuring instrument 615, and the measured value is 0.2 mg / L as CI. If it is too high, the concentration of the disinfectant added from the disinfectant introduction means 604
2  2
度を減少させ、測定値が 0. 2mg/L as CIよりも低い場合には消毒剤導入手段 604か  If the measured value is lower than 0.2 mg / L as CI, disinfectant introduction means 604
2  2
ら加える消毒剤の濃度を増カロさせた。このように 10分毎に消毒剤投入濃度の調整を 行いながら消毒処理を継続し、 15分ごとに排出液中の大腸菌群数を計測した。結果 を図 60に示す。この結果から、消毒剤添加量が時間と共に変化し、一方、被処理後 の排水中の大腸菌群数は消毒目標値 (3000CFU/mL)以下で維持できて!/、たこと が分かる。  The concentration of the added disinfectant was increased. Thus, the disinfection treatment was continued while adjusting the disinfectant input concentration every 10 minutes, and the number of coliforms in the effluent was measured every 15 minutes. The results are shown in Figure 60. From this result, it can be seen that the amount of disinfectant added changed with time, while the number of coliforms in the wastewater after treatment could be maintained below the disinfection target value (3000 CFU / mL)! /.

Claims

請求の範囲 The scope of the claims
[1] 下水を塩素又は UVで消毒する消毒槽を有する消毒施設 (facility)と;  [1] a disinfection facility with a disinfection tank that disinfects sewage with chlorine or UV;
下水を臭素系消毒剤によって消毒する臭素下水処理装置 (device)と;  A bromine sewage device that disinfects sewage with bromine disinfectants;
入口と出口 1及び出口 2を有し、入口への流入下水を出口 1及び出口 2に分ける分 岐装置であって、入口への流入下水量が所定値以下の場合には流入下水量の全量 を出口 1に流し、流入下水量が所定値以上の場合には、所定値の下水量を出口 1に 流し、流入下水量から所定値の下水量を除いた下水量を出口 2に流す分岐装置 (de vice)と;  A branching device that has an inlet, outlet 1 and outlet 2 and divides the sewage flowing into the inlet into outlet 1 and outlet 2.If the amount of sewage flowing into the inlet is below a predetermined value, the total amount of sewage flowing in When the inflow sewage amount is greater than or equal to the predetermined value, the sewage amount is discharged to the outlet 1, and the sewage amount obtained by removing the predetermined amount of sewage from the inflow sewage amount is discharged to the outlet 2. (de vice);
から構成され、  Consisting of
上記分岐装置の出口 1が上記消毒施設 (facility)の下水導入部に接続され、上記分 岐装置 (device)の出口 2が上記臭素下水処理装置 (device)の下水導入部に接続され て!ヽる下水処理装置 (apparatus)。  Outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility, and outlet 2 of the branching device is connected to the sewage introduction part of the bromine sewage treatment device (device)! A sewage treatment device (apparatus).
[2] 消毒施設によって下水中の大腸菌群数を下水 lccあたり 3000個以下にする請求項[2] Claims to reduce the number of coliforms in sewage to 3000 or less per sewage lcc by disinfection facilities
1に記載の下水処理装置。 The sewage treatment apparatus according to 1.
[3] 消毒施設によって下水中の大腸菌数を下水 lOOccあたり 200個以下にする請求項 1 に記載の下水処理装置。 [3] The sewage treatment apparatus according to claim 1, wherein the number of E. coli in the sewage is reduced to 200 or less per sewage lOOcc by a disinfection facility.
[4] 分岐装置の入口は合流式下水道に接続されて!、る請求項 1に記載の下水処理装置 [4] The sewage treatment device according to claim 1, wherein the entrance of the branching device is connected to a combined sewer!
[5] 臭素下水処理装置によって下水中の大腸菌群数を下水 lccあたり 3000個以下にす る請求項 1に記載の下水処理装置。 5. The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of coliforms in the sewage to 3000 or less per lcc of sewage.
[6] 臭素下水処理装置によって下水中の大腸菌数を下水 lOOccあたり 200個以下にす る請求項 1に記載の下水処理装置。 6. The sewage treatment apparatus according to claim 1, wherein the bromine sewage treatment apparatus reduces the number of Escherichia coli in the sewage to 200 or less per sewage lOOcc.
[7] 消毒施設及び Z又は臭素下水処理装置によって消毒された下水を公共水域に流す 請求項 1に記載の下水処理装置。 [7] The sewage treatment apparatus according to claim 1, wherein the sewage disinfected by the disinfection facility and the Z or bromine sewage treatment apparatus is allowed to flow into a public water area.
[8] 消毒施設 (facility)は、最初沈殿池を更に有し、消毒施設の導入部に最初沈殿池の 下水導入部が接続され、最初沈殿池の出口が消毒槽の下水導入部に接続されてい る請求項 1に記載の下水処理装置。 [8] The disinfection facility further has an initial settling basin, the sewage introduction section of the first settling basin is connected to the introduction section of the sterilization facility, and the outlet of the first settling basin is connected to the sewage introduction section of the disinfection tank. The sewage treatment apparatus according to claim 1.
[9] 消毒施設 (facility)は、最初沈殿池、ばつき槽及び最終沈殿池を更に有し、消毒施設 の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口がばつき槽の 下水導入部に接続され、ばつき槽の出口が最終沈殿池の下水導入部に接続され、 最終沈殿池の出口が消毒槽の下水導入部に接続されて 、る請求項 1に記載の下水 処理装置。 [9] The disinfection facility further comprises a first settling basin, a batting tub and a final settling basin. The sewage introduction part of the first sedimentation basin is connected to the introduction part of the basin, the outlet of the first sedimentation basin is connected to the sewage introduction part of the basin tank, the outlet of the basin tank is connected to the sewage introduction part of the final basin, and the final The sewage treatment apparatus according to claim 1, wherein an outlet of the settling basin is connected to a sewage introduction section of the disinfection tank.
[10] 消毒施設 (facility)は、更に、  [10] The disinfection facility is
最初沈殿池と、  First settling basin,
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置と、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Equipment,
下水を臭素系消毒剤によって消毒する臭素下水処理装置とを有し、  A bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant,
消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が 分岐装置の入口に接続され、分岐装置の出口 1が消毒槽の下水導入部に接続され 、分岐装置の出口 2が臭素下水処理装置の下水導入部に接続されている請求項 1 に記載の下水処理装置。  The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, the outlet of the first sedimentation basin is connected to the entrance of the branching device, the outlet 1 of the branching device is connected to the sewage introduction part of the disinfection tank, and The sewage treatment apparatus according to claim 1, wherein the outlet 2 is connected to a sewage introduction section of the bromine sewage treatment apparatus.
[11] 消毒施設は、更に、 [11] The disinfection facility
最初沈殿池と、  First settling basin,
ばつき槽と、  A bath tank,
最終沈殿池と、  The final sedimentation basin,
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置と、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Equipment,
下水を臭素系消毒剤によって消毒する臭素下水処理装置 (device)とを有し、 消毒施設の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出口が 分岐装置の入口に接続され、分岐装置の出口 1がばつき槽の下水導入部に接続さ れ、ばつき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出口が 消毒槽の下水導入部に接続されて、分岐装置の出口 2が臭素下水処理装置の下水 導入部に接続されて 1ヽる請求項 1に記載の下水処理装置。 Bromine sewage treatment device that disinfects sewage with bromine-based disinfectant. The sewage introduction part of the first sedimentation basin is connected to the introduction part of the disinfection facility, and the outlet of the first sedimentation basin is connected to the entrance of the branching device. The outlet 1 of the branching device is connected to the sewage introduction section The outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection tank, and the outlet 2 of the branching device is the sewage introduction part of the bromine sewage treatment equipment. The sewage treatment apparatus according to claim 1, wherein the sewage treatment apparatus is connected to the sewage system.
[12] 下水処理場における下水処理装置 (apparatus)であって、 [12] A sewage treatment plant (apparatus) in a sewage treatment plant,
最初沈殿池と;  First sedimentation basin;
下水を塩素又は UVで消毒する消毒槽を有する消毒設備 (equipment)と; 下水を臭素系消毒剤によって消毒する臭素下水処理装置 (device)と;  A disinfection facility with a disinfection tank that disinfects sewage with chlorine or UV; and a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、分岐装置への流入水量が所定値以下の場 合には流入水量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定 値の水量を出口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す 分岐装置 (device);とからなり、  A branching device that has an inlet, outlet 1 and outlet 2 and receives the effluent water from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2, and the amount of water flowing into the branching device is below a predetermined value. The total amount of influent water flows to outlet 1, and when the amount of influent water is greater than or equal to a predetermined value, the predetermined amount of water flows to outlet 1, and the amount of inflow water volume excluding the predetermined amount of water flows to outlet 2. Device;
分岐装置の出口 1が消毒設備の下水導入部に接続され、分岐装置の出口 2が臭 素下水処理装置の下水導入部に接続されていることを特徴とする下水処理装置 (app aratus)0 Sewage treatment device (app aratus) 0 , characterized in that outlet 1 of the branching device is connected to the sewage introduction part of the disinfection facility and outlet 2 of the branching device is connected to the sewage introduction part of the sewage treatment device
[13] 下水処理場における下水処理装置 (apparatus)であって、  [13] A sewage treatment plant (apparatus) in a sewage treatment plant,
最初沈殿池と;  First sedimentation basin;
ばつき楼と;  Batsukiro;
最終沈殿池と;  The final sedimentation basin;
下水を塩素又は UVで消毒する消毒槽を有する消毒設備 (equipment)と; 下水を臭素系消毒剤によって消毒する臭素下水処理装置 (device)と;  A disinfection facility with a disinfection tank that disinfects sewage with chlorine or UV; and a bromine sewage treatment device that disinfects sewage with a bromine-based disinfectant;
入口と出口 1及び出口 2を有し、最初沈殿池からの流出水を入口に受容して出口 1 及び出口 2に分ける分岐装置であって、流入水量が所定値以下の場合には流入水 量の全量を出口 1に流し、流入水量が所定値以上の場合には、所定値の水量を出 口 1に流し、流入水量力 所定値の水量を除いた水量を出口 2に流す分岐装置 (devi ce)と;からなり、  A branch device that has an inlet, outlet 1 and outlet 2 and receives the effluent from the first sedimentation basin at the inlet and divides it into outlet 1 and outlet 2. If the amount of inflow water is greater than or equal to the predetermined value, the diverter (devi) flows the predetermined amount of water to the outlet 1 and flows the amount of water excluding the predetermined amount of water to the outlet 2. ce) and;
下水処理装置の導入部に最初沈殿池の下水導入部が接続され、最初沈殿池の出 口が分岐装置の入口に接続され、分岐装置の出口 1がばつき槽の下水導入部に接 続され、ばつき槽の出口が最終沈殿池の下水導入部に接続され、最終沈殿池の出 口が消毒設備の下水導入部に接続されて、分岐装置の出口 2が臭素下水処理装置 の下水導入部に接続されていることを特徴とする下水処理装置。 The sewage introduction part of the first sedimentation basin is connected to the introduction part of the sewage treatment device, the outlet of the first sedimentation basin is connected to the entrance of the branching device, and the outlet 1 of the branching device is in contact with the sewage introduction part of the flapping tank. The outlet of the batting tank is connected to the sewage introduction part of the final sedimentation basin, the exit of the final sedimentation basin is connected to the sewage introduction part of the disinfection facility, and the outlet 2 of the branching device is the sewage of the bromine sewage treatment equipment. A sewage treatment apparatus characterized by being connected to an introduction section.
[14] 臭素下水処理装置が、固体臭素系消毒剤の貯留 ·供給装置と、該固体臭素系消毒 剤の貯留 ·供給装置から供給される固体臭素系消毒剤を、被処理水に添加 ·混合す る消毒剤添加'混合装置とを具備することを特徴とする請求項 1〜13のいずれかに 記載の下水処理装置。  [14] Bromine sewage treatment equipment adds and mixes solid bromine-based disinfectant storage / supply device and solid bromine-based disinfectant storage / supply device into the treated water. The sewage treatment apparatus according to any one of claims 1 to 13, further comprising a disinfectant addition and mixing apparatus.
[15] 固体臭素系消毒剤の貯留 '供給装置が、固体臭素系消毒剤の貯槽と、貯槽内の固 体臭素系消毒剤を所定の量計量して排出する定量供給機とを備え、該貯槽及び定 量供給機は、圧縮空気をその内部に噴射する複数個の噴射口で構成された固体臭 素系消毒剤の撹拌手段を備えている請求項 14に記載の下水処理装置。  [15] Storage of solid bromine-based disinfectant 'Supply device comprises a storage tank for solid bromine-based disinfectant and a quantitative feeder for measuring and discharging a predetermined amount of solid bromine-based disinfectant in the storage tank. 15. The sewage treatment apparatus according to claim 14, wherein the storage tank and the constant volume feeder are provided with a stirrer for solid odor disinfectant composed of a plurality of injection ports for injecting compressed air therein.
[16] 定量供給機が、計量手段を有する回転テーブルを備えた請求項 15に記載の下水処 理装置。  16. The sewage treatment apparatus according to claim 15, wherein the fixed amount feeder comprises a rotary table having a weighing means.
[17] 消毒剤添加'混合装置が、被処理水の一部を受容して固体臭素系消毒剤を混合'溶 解する消毒水調製装置と、消毒水を被処理水に投入する手段とを備えた請求項 14 に記載の下水処理装置。  [17] Disinfectant addition 'Disinfection water preparation device in which the mixing device receives a part of the treated water and mixes and dissolves the solid bromine-based disinfectant; and means for introducing the disinfecting water into the treated water The sewage treatment apparatus according to claim 14, further comprising:
[18] 消毒剤添加 ·混合装置力 被処理水が流れる流路内に設置されている請求項 17に 記載の消毒装置。  [18] Disinfectant addition · mixing device force The disinfection device according to claim 17, which is installed in a flow path through which water to be treated flows.
[19] 固体臭素系消毒剤の貯留,混合装置及び添加 ·混合装置が、固体臭素系消毒剤を 貯留する貯留槽、貯留槽に接続されており、消毒剤を固体のままで注入点まで移送 するための消毒剤移送配管、消毒剤移送配管に接続されており、配管内を移送され てきた固体臭素系消毒剤を消毒対象の被処理水に加える消毒剤注入装置、力ゝら構 成される請求項 14に記載の消毒装置。  [19] Solid bromine-based disinfectant storage, mixing device and addition · The mixing device is connected to a storage tank for storing the solid bromine-based disinfectant and the storage tank, and the disinfectant remains solid and is transferred to the injection point. The disinfectant transfer pipe is connected to the disinfectant transfer pipe and the disinfectant injecting device that adds the solid bromine-based disinfectant transferred through the pipe to the water to be disinfected. The disinfection device according to claim 14.
[20] 消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解す る請求項 14に記載の消毒装置。  [20] The disinfection device according to claim 14, wherein the disinfectant completely dissolves from the addition position to the discharge point of the water to be treated.
[21] 更に、被処理水のサンプルを採取するための分取ラインと、サンプリングされた被処 理水サンプルに消毒剤を添加するための消毒剤供給手段と、消毒剤が添加された 被処理水サンプルの有効ハロゲン濃度を測定する有効ハロゲン濃度測定装置と、を 備え、有効ハロゲン濃度測定装置によって測定された消毒剤添加後の被処理水サ ンプル中の有効ハロゲン濃度の減少程度に応じて消毒剤添加 ·混合装置によって被 処理水中に加えられる消毒剤の添加量を制御する消毒剤添加量制御手段を備えた 請求項 14に記載の下水処理装置。 [21] Further, a preparative line for collecting a sample of water to be treated, a disinfectant supply means for adding a disinfectant to the sampled sample of water to be treated, and a treatment to which a disinfectant has been added. An effective halogen concentration measuring device for measuring the effective halogen concentration of a water sample; Disinfectant added according to the degree of decrease in the effective halogen concentration in the sample of water to be treated after the addition of the disinfectant measured by an effective halogen concentration measuring device ・ Amount of disinfectant added to the water to be treated by the mixing device 15. A sewage treatment apparatus according to claim 14, further comprising a disinfectant addition amount control means for controlling the amount of the disinfectant.
[22] 更に、消毒剤を添加した後の被処理水中に還元剤を添加する還元剤供給装置と、 消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定する有効ハロゲン濃 度測定装置と、測定された消毒剤添加後の被処理水中の有効ハロゲン濃度に応じ て還元剤の添加量を制御する還元剤添加量制御装置を備えた請求項 14に記載の 下水処理装置。 [22] Furthermore, a reducing agent supply device for adding a reducing agent to the water to be treated after the addition of the disinfectant, and an effective halogen concentration measuring device for measuring the effective halogen concentration in the water to be treated after the addition of the disinfecting agent. 15. The sewage treatment apparatus according to claim 14, further comprising a reducing agent addition amount control device that controls the addition amount of the reducing agent according to the measured effective halogen concentration in the treated water after the addition of the disinfectant.
[23] 下水を消毒処理する方法であって、 [23] A method of disinfecting sewage,
流入下水を、流入下水量が所定値以下の場合には流入下水量の全量を塩素又は Inflow sewage, if the inflow sewage volume is less than the specified value,
UVによって消毒し、流入下水量が所定値以上の場合には、所定値の下水量を塩素 又は UVによって消毒し、同時に流入下水量から所定値の下水量を除!、た下水量を 臭素系消毒剤によって消毒することを特徴とする下水処理方法。 If the amount of sewage is sterilized by UV and the amount of sewage is greater than the predetermined value, the amount of sewage is sterilized by chlorine or UV, and at the same time, the amount of sewage is removed from the amount of inflow sewage! A sewage treatment method comprising disinfecting with a disinfectant.
[24] 塩素又は UVによる消毒によって下水中の大腸菌群数を下水 lccあたり 3000個以 下にする請求項 23に記載の方法。 24. The method according to claim 23, wherein the number of coliforms in the sewage is reduced to 3000 or less per lcc of sewage by disinfection with chlorine or UV.
[25] 塩素又は UVによる消毒によって下水中の大腸菌数を下水 lOOccあたり 200個以下 にする請求項 23に記載の方法。 [25] The method according to claim 23, wherein the number of E. coli in sewage is reduced to 200 or less per sewage lOOcc by disinfection with chlorine or UV.
[26] 処理対象の下水が合流式下水道の下水である請求項 23に記載の方法。 26. The method according to claim 23, wherein the sewage to be treated is sewage from a combined sewer.
[27] 臭素系消毒剤による消毒によって下水中の大腸菌群数を下水 lccあたり 3000個以 下にする請求項 23に記載の方法。 27. The method according to claim 23, wherein the number of coliforms in sewage is reduced to 3000 or less per lcc of sewage by disinfection with a bromine-based disinfectant.
[28] 臭素系消毒剤による消毒によって下水中の大腸菌数を下水 lOOccあたり 200個以 下にする請求項 23に記載の方法。 28. The method according to claim 23, wherein the number of Escherichia coli in the sewage is reduced to 200 or less per sewage lOOcc by disinfection with a bromine-based disinfectant.
[29] 塩素又は UVによって消毒された下水及び Z又は臭素系消毒剤によって消毒された 下水を公共水域に流す請求項 23に記載の方法。 [29] The method according to claim 23, wherein sewage sterilized by chlorine or UV and sewage sterilized by Z or bromine-based disinfectant are passed to public water bodies.
[30] 臭素系消毒剤による消毒処理の時間が 3分以内である請求項 23に記載の方法。 [30] The method according to claim 23, wherein the time for the disinfection treatment with the bromine-based disinfectant is 3 minutes or less.
[31] 臭素系消毒剤として固体の臭素系消毒剤を被処理水に添加 '混合して消毒を行う請 求項 23に記載の方法。 [31] The method according to claim 23, wherein a solid bromine-based disinfectant is added to the water to be treated as a bromine-based disinfectant and mixed to disinfect.
[32] 臭素系消毒剤として、固体の臭素系系消毒剤を被処理水の一部に混合'溶解して消 毒水を調製し、調製された消毒水を被処理水に投入することによって消毒を行う請求 項 23に記載の方法。 [32] As a bromine-based disinfectant, a solid bromine-based disinfectant is mixed and dissolved in a part of the water to be treated to prepare disinfecting water, and the prepared disinfecting water is poured into the water to be treated. 24. The method of claim 23, wherein sterilization is performed.
[33] 消毒剤が、添加位置から被処理水の放流箇所へ流れ着くまでの間に完全に溶解す る請求項 23に記載の方法。  [33] The method according to claim 23, wherein the disinfectant completely dissolves from the addition position to the discharge point of the water to be treated.
[34] 被処理水の一部をサンプリングして臭素系消毒剤を添加し、臭素系消毒剤が添加さ れた被処理水サンプルの有効ハロゲン濃度を測定して、測定された臭素系消毒剤 添加後の被処理水サンプル中の有効ハロゲン濃度の減少程度に応じて被処理水に 加える臭素系消毒剤の添加量を制御することを更に含む請求項 23に記載の方法。  [34] A bromine-based disinfectant was measured by sampling a part of the water to be treated, adding a bromine-based disinfectant, and measuring the effective halogen concentration of the sample-treated water to which the bromine-based disinfectant was added. 24. The method according to claim 23, further comprising controlling the amount of bromine-based disinfectant added to the treated water in accordance with the degree of reduction in the effective halogen concentration in the treated water sample after the addition.
[35] 臭素系消毒剤を添加した後の被処理水中の有効ハロゲン濃度を測定し、測定された 消毒剤添加後の被処理水中の有効ハロゲン濃度に応じて、臭素系消毒剤を添加し た後の被処理水中に還元剤を添加する請求項 23に記載の方法。  [35] The effective halogen concentration in the treated water after adding the bromine-based disinfectant was measured, and the bromine-based disinfectant was added according to the measured effective halogen concentration in the treated water after adding the disinfectant. The method according to claim 23, wherein a reducing agent is added to the water to be treated later.
PCT/JP2005/009959 2004-11-19 2005-05-31 Sewage treatment plant and method WO2006054373A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006544781A JPWO2006054373A1 (en) 2004-11-19 2005-05-31 Sewage treatment apparatus and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2004/017232 2004-11-19
PCT/JP2004/017232 WO2006054351A1 (en) 2004-11-19 2004-11-19 Sewerage system

Publications (1)

Publication Number Publication Date
WO2006054373A1 true WO2006054373A1 (en) 2006-05-26

Family

ID=36406899

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2004/017232 WO2006054351A1 (en) 2004-11-19 2004-11-19 Sewerage system
PCT/JP2005/009959 WO2006054373A1 (en) 2004-11-19 2005-05-31 Sewage treatment plant and method

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/017232 WO2006054351A1 (en) 2004-11-19 2004-11-19 Sewerage system

Country Status (2)

Country Link
JP (1) JPWO2006054373A1 (en)
WO (2) WO2006054351A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072718A (en) * 2017-08-10 2019-05-16 水ing株式会社 Disinfection method of ammoniacal nitrogen-containing discharge water
JP2020131049A (en) * 2019-02-13 2020-08-31 水ing株式会社 Disinfection apparatus and disinfection method of waste water containing ammonia nitrogen

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110531A (en) * 2009-11-30 2011-06-09 Mitsubishi Heavy Ind Ltd Desalination apparatus and desalination method
CN108967126A (en) * 2018-09-05 2018-12-11 上海市绿化管理指导站 Rainwater irrigation system and method under overpass
CN115806345B (en) * 2022-12-14 2023-09-12 中国长江三峡集团有限公司 Composite microorganism system and method for runoff sewage in-situ treatment

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623374A (en) * 1992-02-27 1994-02-01 Ebara Infilco Co Ltd Method and apparatus for reductive treatment of oxidizing agent-containing waste water
JP2000167563A (en) * 1998-09-28 2000-06-20 Ebara Corp Method and apparatus for disinfecting waste water
JP2002346571A (en) * 2001-05-21 2002-12-03 Ebara Corp Method and apparatus for disinfecting wastewater
JP2003012425A (en) * 2001-06-28 2003-01-15 Ebara Corp Disinfectant solution for wastewater and method and apparatus for disinfecting wastewater using the same
JP2003033771A (en) * 2001-07-24 2003-02-04 Ebara Corp Drainage disinfection apparatus having abnormarity detection mechanism
JP2003071462A (en) * 2001-08-31 2003-03-11 Ebara Corp Chemical injection and mixing method in sewerage drainage plant of rainwater combined sewer system and disinfection equipment
JP2003116971A (en) * 2001-10-16 2003-04-22 Ebara Corp Disinfection method and disinfection device for waste water
JP2003121431A (en) * 2001-10-19 2003-04-23 Tokyo Metropolis Disinfection treatment method and device of wet-weather sewage in combined sewerage
JP2003128506A (en) * 2001-10-19 2003-05-08 Tokyo Metropolis Antiseptic solution, and method and apparatus for disinfecting wastewater by using the same
JP2003147844A (en) * 2001-11-13 2003-05-21 Ebara Corp Method and device for controlling drain sterilizer
JP2004018013A (en) * 2002-06-14 2004-01-22 Akatake Engineering Kk Powder feeding equipment
JP2004136229A (en) * 2002-10-18 2004-05-13 Ebara Corp Waste water disinfectant supply control center and waste water disinfectant supply control system equipped with the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623374A (en) * 1992-02-27 1994-02-01 Ebara Infilco Co Ltd Method and apparatus for reductive treatment of oxidizing agent-containing waste water
JP2000167563A (en) * 1998-09-28 2000-06-20 Ebara Corp Method and apparatus for disinfecting waste water
JP2002346571A (en) * 2001-05-21 2002-12-03 Ebara Corp Method and apparatus for disinfecting wastewater
JP2003012425A (en) * 2001-06-28 2003-01-15 Ebara Corp Disinfectant solution for wastewater and method and apparatus for disinfecting wastewater using the same
JP2003033771A (en) * 2001-07-24 2003-02-04 Ebara Corp Drainage disinfection apparatus having abnormarity detection mechanism
JP2003071462A (en) * 2001-08-31 2003-03-11 Ebara Corp Chemical injection and mixing method in sewerage drainage plant of rainwater combined sewer system and disinfection equipment
JP2003116971A (en) * 2001-10-16 2003-04-22 Ebara Corp Disinfection method and disinfection device for waste water
JP2003121431A (en) * 2001-10-19 2003-04-23 Tokyo Metropolis Disinfection treatment method and device of wet-weather sewage in combined sewerage
JP2003128506A (en) * 2001-10-19 2003-05-08 Tokyo Metropolis Antiseptic solution, and method and apparatus for disinfecting wastewater by using the same
JP2003147844A (en) * 2001-11-13 2003-05-21 Ebara Corp Method and device for controlling drain sterilizer
JP2004018013A (en) * 2002-06-14 2004-01-22 Akatake Engineering Kk Powder feeding equipment
JP2004136229A (en) * 2002-10-18 2004-05-13 Ebara Corp Waste water disinfectant supply control center and waste water disinfectant supply control system equipped with the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019072718A (en) * 2017-08-10 2019-05-16 水ing株式会社 Disinfection method of ammoniacal nitrogen-containing discharge water
JP2020131049A (en) * 2019-02-13 2020-08-31 水ing株式会社 Disinfection apparatus and disinfection method of waste water containing ammonia nitrogen

Also Published As

Publication number Publication date
JPWO2006054373A1 (en) 2008-05-29
WO2006054351A1 (en) 2006-05-26

Similar Documents

Publication Publication Date Title
US20060108270A1 (en) Sewage treatment apparatus and method thereof
JP3451959B2 (en) Tap water quality management system
US20050249631A1 (en) Method and apparatus for ozone disinfection of water supply pipelines
KR100950100B1 (en) Malodor reducing system for drain pipe
EP2258663A1 (en) Grey water regeneration system
US6221257B1 (en) Apparatus and method for treatment of discharged water and other fluids
WO2006054373A1 (en) Sewage treatment plant and method
JP2003305454A (en) Intake water quality controller
US20060108294A1 (en) Sewer system
CN108474202A (en) Sewage-treatment plant
JP2008008752A (en) Abnormality detection method for water quality
JP3668071B2 (en) Method and apparatus for disinfecting waste water
US20040050798A1 (en) Method and apparatus for ozone disinfection of liquid-carrying conduits
JP4628132B2 (en) Method and apparatus for disinfecting waste water
JP6622432B1 (en) Disinfecting apparatus and disinfecting method for waste water containing ammonia nitrogen
JP3908927B2 (en) Sewage disinfection method
JP2019034893A (en) Disinfection method and disinfectant of ammoniacal nitrogen-containing discharge water
KR101833173B1 (en) Chlorine feeding apparatus
KR100659252B1 (en) Method and apparatus for disinfecting drainage
JP4029719B2 (en) Waste water disinfection method and apparatus
JP2019072718A (en) Disinfection method of ammoniacal nitrogen-containing discharge water
JP3884638B2 (en) Method and apparatus for disinfecting sewage in rainy weather in combined sewers
JP2003071462A (en) Chemical injection and mixing method in sewerage drainage plant of rainwater combined sewer system and disinfection equipment
CN209428348U (en) Based on cloud service intelligent control sewage disposal system and sewage disposal device used
JP2003128506A (en) Antiseptic solution, and method and apparatus for disinfecting wastewater by using the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006544781

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05746058

Country of ref document: EP

Kind code of ref document: A1