JPWO2006019062A1 - Rotary diamond dresser - Google Patents

Rotary diamond dresser Download PDF

Info

Publication number
JPWO2006019062A1
JPWO2006019062A1 JP2006531774A JP2006531774A JPWO2006019062A1 JP WO2006019062 A1 JPWO2006019062 A1 JP WO2006019062A1 JP 2006531774 A JP2006531774 A JP 2006531774A JP 2006531774 A JP2006531774 A JP 2006531774A JP WO2006019062 A1 JPWO2006019062 A1 JP WO2006019062A1
Authority
JP
Japan
Prior art keywords
diamond
groove
crystal orientation
outer peripheral
diamond grains
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006531774A
Other languages
Japanese (ja)
Inventor
智康 今井
智康 今井
寿久 野木森
寿久 野木森
真司 柳沢
真司 柳沢
昇 平岩
昇 平岩
相馬 伸司
伸司 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Van Moppes Ltd
JTEKT Corp
Original Assignee
Toyoda Van Moppes Ltd
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Van Moppes Ltd, JTEKT Corp filed Critical Toyoda Van Moppes Ltd
Publication of JPWO2006019062A1 publication Critical patent/JPWO2006019062A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B53/00Devices or means for dressing or conditioning abrasive surfaces
    • B24B53/12Dressing tools; Holders therefor
    • B24B53/14Dressing tools equipped with rotary rollers or cutters; Holders therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • B24D5/02Wheels in one piece

Abstract

円盤状基本11の外周部のダイヤモンド粒の磨耗が多い高負荷部位13にV溝14を回転方向に刻設し、多数のオクタヘドロンタイプのダイヤモンド粒15を結晶方位(1,1,1)面でV溝14の壁面に結合して円盤状基本の外周部に回転方向に固着し、高負荷部位以外の表面にオクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒20を固着し、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,1,0)面および小粒径のダイヤモンド粒を砥石車と接触してドレッシングする接触面19,21に成形してロータリダイヤモンドドレッサ10を構成する。これにより、製作が容易で耐摩耗性に優れ低コストなロータリダイヤモンドドレッサを提供することができる。A V-shaped groove 14 is formed in a rotational direction in a high load portion 13 where the wear of diamond grains on the outer periphery of the disk-shaped base 11 is large, and a large number of octahedron-type diamond grains 15 are crystallized in the (1,1,1) plane. And bonded to the wall surface of the V-shaped groove 14 and fixed to the outer peripheral portion of the disk-shaped base in the rotational direction, and a large number of small-diameter diamond grains 20 of a type other than the octahedron type are fixed to the surface other than the high-load site. The rotary diamond dresser 10 is formed by forming crystallographic orientation (1, 1, 0) planes of hedron-type diamond grains and diamond grains having a small grain size into contact surfaces 19 and 21 for dressing in contact with a grinding wheel. Accordingly, it is possible to provide a rotary diamond dresser that is easy to manufacture, has excellent wear resistance, and is low in cost.

Description

本発明は、砥石車の研削面をドレッシングするロータリダイヤモンドドレッサに関するものである。  The present invention relates to a rotary diamond dresser for dressing a grinding surface of a grinding wheel.

特開昭53−34193号公報の第2図に示されるように、トラバース形ロータリダイヤモンドドレッサ40を砥石車10の母線と平行にテンプレートに倣って移動させて研削面をドレッシングすると、ドレッサの直線部41と円弧部42の接点Cおよびその近傍のB部分が磨耗し砥石車10の円弧部13の修正形状精度が低下する。そこで、特開昭53−34193号公報では、第5,6図のようにドレッサ40の直線部41と円弧部42の接点Cおよび接点Cの近傍を含む回転軸線43を中心とする環状帯部44に八面体結晶のダイヤモンド45を、その一の結晶面46がドレッサ40の外周に平行に露呈するように埴設されている。
また、特許第3450085号公報に記載されたダイヤモンドドレッサでは、図1,2示されるように金属製シャンク2の先端部に、オクタヘドロンタイプのダイヤモンド粒1の二つの結晶方位(1,1,1)面にて形成される角度に合わせて約110度の開き角度を有するV溝211が複数本設けられ、該V溝211に複数のオクタヘドロンタイプのダイヤモンド粒1が二つの結晶方位(1,1,1)面でV溝に着座して並置され、チタン(Ti)、銅(Cu)、銀(Ag)等を含む合金からなるロー材によってロー付けされている。
しかしながら、特開昭53−34193号公報に記載されたロータリダイヤモンドドレッサは、八面体結晶のオクタヘドロンタイプのダイヤモンド粒を結晶方位(1,1,1)面で雌型50に接着し、雌型50と心金51との間にタングステン等の微粉末を充填し溶融した洋白を注入して一体化しているので、ダイヤモンド粒の設置に時間と労力を要する。この場合、ダイヤモンド粒は略結晶方位(1,1,1)面が雌型の内面にセットされるので、耐摩耗性のある真の結晶方位(1,1,1)面がロータリダイヤモンドドレッサの外周面に露出されることがなく、また、結晶方位(1,1,1)面はへき開面でもあるので、結晶方位(1,1,0)面あるいは結晶方位(1,0,0)面をロータリダイヤモンドドレッサの外周面に露出させてドレッシング作業に関与させる方が好ましい面もある。
特許第3450085号公報に記載のダイヤモンドドレッサでは、約110度の開き角度を有するV溝211にオクタヘドロンタイプのダイヤモンド粒1を二つの結晶方位(1,1,1)面で着座させてロー付けし、結晶方位(1,0,0)面でドレッシング作業を行わせるようにしているが、シャンク2の先端部にオクタヘドロンタイプのダイヤモンド粒1をロー付けしたもので、ロータリダイヤモンドドレッサでないので、ドレッシング作業に関与するダイヤモンド粒1の個数が少なくて磨耗量が多くなり、ダイヤモンドドレッサの先端寸法に誤差が生じて砥石車の研削面を所望形状にドレッシングできなくなる場合がある。また、ダイヤモンドドレッサを高価なオクタヘドロンタイプのダイヤモンド粒のみで構成するので、ダイヤモンドドレッサによる砥石車の研削面のドレッシングが相対的にコスト高になる。
また、回転軸線回りに回転駆動される両側円錐台状基体の外周中央部から多数のダイヤモンド粒が回転軸線と直角方向に外側に突出されたコニカル型ダイヤモンドドレッサにおいては、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面が回転方向を向くように、オクタヘドロンタイプのダイヤモンド粒が先端部を除いて焼結金属に埋没された状態で両側円錐台状基体の外周中央部に焼結されている。しかしながら、焼結金属による結合ではダイヤモンド粒の保持力が弱く、コスト高になるとともに、特に、コニカル型ダイヤモンドドレッサの外周中央部の両側円錐面のなす頂角が、結晶方位(1,1,1)面の対向する2面がなす角度の約70度より小さい鋭角に成形された場合は、ダイヤモンド粒の側面が焼結金属から露出して機械的な保持がなくなり、焼結ではダイヤモンド粒の保持が不可能となる。
本発明は、係る従来の不具合を解消するためになされたもので、製作が容易で耐摩耗性に優れ低コストなロータリダイヤモンドドレッサを提供することである。
As shown in FIG. 2 of Japanese Patent Laid-Open No. 53-34193, when the traverse type rotary diamond dresser 40 is moved along the template parallel to the generatrix of the grinding wheel 10 to dress the grinding surface, the straight portion of the dresser The contact C between 41 and the arc portion 42 and the B portion in the vicinity thereof wear out, and the corrected shape accuracy of the arc portion 13 of the grinding wheel 10 decreases. Therefore, in Japanese Patent Laid-Open No. 53-34193, as shown in FIGS. 5 and 6, an annular belt portion centering on a rotation axis 43 including the linear portion 41 of the dresser 40 and the contact C of the arc portion 42 and the vicinity of the contact C is provided. 44 is provided with an octahedral diamond 45 such that one crystal face 46 is exposed in parallel to the outer periphery of the dresser 40.
Further, in the diamond dresser described in Japanese Patent No. 3450085, two crystal orientations (1, 1, 1) of octahedron-type diamond grains 1 are formed at the tip of the metal shank 2 as shown in FIGS. A plurality of V-grooves 211 having an opening angle of about 110 degrees in accordance with the angle formed on the surface), and a plurality of octahedron-type diamond grains 1 are formed in two crystal orientations (1, 1, 1) is placed side by side in a V-groove and brazed with a brazing material made of an alloy including titanium (Ti), copper (Cu), silver (Ag), and the like.
However, the rotary diamond dresser described in Japanese Patent Laid-Open No. 53-34193 is obtained by bonding octahedron-type octahedron-type diamond grains to the female mold 50 in the crystal orientation (1,1,1) plane. Between the 50 and the mandrel 51, a fine powder such as tungsten is filled and fused, and the powder is integrated. Therefore, it takes time and labor to install the diamond grains. In this case, since the diamond grains have the substantially crystal orientation (1,1,1) plane set on the inner surface of the female mold, the true crystal orientation (1,1,1) plane with wear resistance is the surface of the rotary diamond dresser. Since it is not exposed to the outer peripheral surface and the crystal orientation (1, 1, 1) plane is also a cleavage plane, the crystal orientation (1, 1, 0) plane or the crystal orientation (1, 0, 0) plane In some aspects, it is preferable to expose the surface of the rotary diamond dresser to the dressing operation.
In the diamond dresser described in Japanese Patent No. 3450085, an octahedron type diamond grain 1 is seated in two crystal orientation (1,1,1) planes in a V groove 211 having an opening angle of about 110 degrees and brazed. However, the dressing work is performed on the crystal orientation (1, 0, 0) plane, but the tip of the shank 2 is brazed with octahedron-type diamond grains 1 and is not a rotary diamond dresser. There are cases where the number of diamond grains 1 involved in the dressing operation is small and the amount of wear increases, and an error occurs in the tip size of the diamond dresser, making it impossible to dress the grinding surface of the grinding wheel into a desired shape. Further, since the diamond dresser is composed only of expensive octahedron type diamond grains, dressing of the grinding surface of the grinding wheel with the diamond dresser is relatively expensive.
In a conical diamond dresser in which a large number of diamond grains protrude outwardly in the direction perpendicular to the rotation axis from the central part of the outer periphery of the frustoconical base on both sides rotated around the rotation axis, the octahedron type diamond grains The octahedron-type diamond grains are at the tip such that two of the four crystal orientation (1,1,1) planes that form the apex in the crystal orientation (1,0,0) plane face the rotation direction. Except for the portion, it is sintered at the center of the outer periphery of the frustoconical base on both sides in a state of being buried in the sintered metal. However, the bonding by the sintered metal has a weak diamond grain holding power and increases the cost. In particular, the apex angle formed by the conical surfaces on both sides of the outer peripheral center of the conical diamond dresser is the crystal orientation (1, 1, 1). ) When formed at an acute angle smaller than about 70 degrees of the angle formed by the two opposing surfaces, the side surfaces of the diamond grains are exposed from the sintered metal and there is no mechanical retention. Is impossible.
The present invention has been made to solve the conventional problems, and it is an object of the present invention to provide a rotary diamond dresser that is easy to manufacture, has excellent wear resistance, and is low in cost.

上述した課題を解決し、目的を達成するために、本発明は、回転軸線回りに回転駆動される円盤状基体の外周部に多数のダイヤモンド粒が固着され砥石車をドレッシングするロータリダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面がなす角度だけ開いた壁面を有するV溝が、前記円盤状基体の外周部であってドレッシング作業で前記ダイヤモンド粒が多く磨耗する高負荷部位に前記壁面を回転方向に向けて形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、外周側の結晶方位(1,1,0)面が前記砥石車と接触してドレッシングする接触面に成形され、オクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒が、前記円盤状基体外周部の高負荷部位以外の表面に結合材により固着され、該小粒径のダイヤモンド粒が砥石車と接触してドレッシングする接触面に成形されるようにした。
これによれば、多数のオクタヘドロンタイプのダイヤモンド粒が、結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面で、円盤状基体の高負荷部位に形成されたV溝の壁面に結合され、高負荷部位以外の表面に多数の小粒径ダイヤモンド粒が固着されているので、負荷の高い部分ではオクタヘドロンタイプのダイヤモンド粒が結晶方位(1,1,0)面で砥石車と接触し耐磨耗性に優れた稜線方向に相対移動してドレッシングするので、磨耗量が少なく砥石車の研削面を所望形状に高精度にドレッシングすることができる製造の容易なロータリダイヤモンドドレッサを低コストで提供することができる。
また、本発明は、回転軸線回りに回転駆動される円盤状基体の外周部に多数のダイヤモンド粒が固着され砥石車をドレッシングするロータリダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面と当接する壁面を有するV溝が、前記円盤状基体の外周部であってドレッシング作業で前記ダイヤモンド粒が多く磨耗する高負荷部位に前記壁面を回転方向にまたは回転方向に直角に向けて形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、外周側の結晶方位(1,0,0)面が前記砥石車と接触してドレッシングする接触面に成形され、オクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒が、前記円盤状基体外周部の高負荷部位以外の表面に結合材により固着され、該小粒径のダイヤモンド粒が砥石車と接触してドレッシングする接触面に成形されるようにした。
これによれば、多数のオクタヘドロンタイプのダイヤモンド粒が、結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面で、円盤状基体の高負荷部位に回転方向にまたは回転方向に直角に形成されたV溝の壁面に結合され、高負荷部位以外の表面に多数の小粒径ダイヤモンド粒が固着されているので、負荷の高い部分ではオクタヘドロンタイプのダイヤモンド粒が結晶方位(1,0,0)面で砥石車と接触し耐磨耗性に優れた方向に相対移動してドレッシングするので、磨耗量が少なく砥石車の研削面を所望形状に高精度にドレッシングすることができる製造の容易なロータリダイヤモンドドレッサを低コストで提供することができる。
さらに、本発明は、上述の改良されたロータリダイヤモンドドレッサにおいて、前記V溝が前記円盤状基体の外周部の外周直線部と側端円弧部とが接続する高負荷部位に回転方向に連続して刻設されるようにした。
これによれば、多数のオクタヘドロンタイプのダイヤモンド粒が結晶方位(1,1,1)面で結合材により固着されるV溝を円盤状基体の高負荷部位に回転方向に連続して刻設したので、多数のオクタヘドロンタイプのダイヤモンド粒が砥石車と接触し耐摩耗性の高い方向に相対移動するように高負荷部位に正確に簡単に配置することができ、製作が容易で低コストのロータリダイヤモンドドレッサを提供することができる。
また、本発明は、回転軸線回りに回転駆動される円錐台状基体の大径端面外周縁部から多数のダイヤモンド粒が前記回転軸線に対して傾斜して外側に突出されたカップ型ロータリダイヤモンドドレッサ、または回転軸線回りに回転駆動される両側円錐台状基体の外周中央部から多数のダイヤモンド粒が回転軸線と直角方向に外側に突出されたコニカル型ダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面と当接する壁面を有するV溝が、前記円錐台状基体の大径端面外周縁部に前記V溝の軸線を前記回転軸線に対して外側に傾斜させた状態で、または両側円錐台状基体の外周中央部に前記V溝の軸線を回転軸線と直角方向に向けた状態で、前記壁面を回転方向に、または回転方向に直角に向けて形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、各ダイヤモンド粒の前記V溝から突出した部分の側面が鋭角に成形され、外周側の結晶方位(1,0,0)面が前記砥石車と接触してドレッシングする接触面に成形されるようにした。
これによれば、多数のオクタヘドロンタイプのダイヤモンド粒が、円錐台状基体の大径端面外周縁部に形成されたV溝、または両側円錐台状基体の外周中央部に形成されたV溝の壁面に、結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面で結合材により結合されているので、ダイヤモンド粒の基体への保持力が強く、特に、ダイヤモンド粒の両側面がなす角度を結晶方位(1,1,1)面の対向する2面がなす約70度より小さい鋭角に成形された場合にも強い保持力を維持することができる。これにより、磨耗量が少なく砥石車の研削面を所望形状に高精度にドレッシングすることができる製造の容易なカップ型またはコニカル型ロータリダイヤモンドドレッサを低コストで提供することができる。
さらに、本発明は、回転軸線回りに回転駆動される円錐台状基体の大径端面外周縁部から多数のダイヤモンド粒が前記回転軸線に対して傾斜して外側に突出されたカップ型ロータリダイヤモンドドレッサ、または回転軸線回りに回転駆動される両側円錐台状基体の外周中央部から多数のダイヤモンド粒が回転軸線と直角方向に外側に突出されたコニカル型ダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面がなす角度だけ開いた壁面を有するV溝が、前記円錐台状基体の大径端面外周縁部に前記V溝の軸線を前記回転軸線に対して外側に傾斜させた状態で、または両側円錐台状基体の外周中央部に前記V溝の軸線を回転軸線と直角方向に向けた状態で形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、各ダイヤモンド粒の前記V溝から突出した部分の側面が鋭角に成形され、外周側の結晶方位(1,1,0)面が前記砥石車と接触してドレッシングする接触面に成形されるようにした。
これによれば、多数のオクタヘドロンタイプのダイヤモンド粒が、円錐台状基体の大径端面外周縁部に形成されたV溝、または両側円錐台状基体の外周中央部に形成されたV溝の壁面に、結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面で結合材により結合されているので、ダイヤモンド粒の基体への保持力が強く、特に、ダイヤモンド粒の両側面がなす角度を鋭角に成形された場合にも強い保持力を維持することができる。これにより、磨耗量が少なく砥石車の研削面を所望形状に高精度にドレッシングすることができる製造の容易なカップ型またはコニカル型ロータリダイヤモンドドレッサを低コストで提供することができる。
また、本発明は、上述の改良されたロータリダイヤモンドドレッサにおいて、チタン(Ti)を含む周期律表第4A族の金属、バナジウム(V)を含む周期律表第5A族の金属、およびクロム(Cr)を含む周期律表第6A族の金属のうちのいずれか1つの族の金属と、周期律表第1B族の金属との合金からなるロー材によって前記オクタヘドロンタイプのダイヤモンド粒が前記V溝の壁面にロー付けされるようにした。
これによれば、V溝にロー材により結合される結晶方位(1,1,1)面にチタンカーバイト層が形成され、このチタンカーバイト層は半金属性のメタライジング層であり、これによりロー材に含まれる金属との結合性が良好となりダイヤモンド粒が脱落することなく強固に円盤状基体に固着される。
In order to solve the above-mentioned problems and achieve the object, the present invention provides a rotary diamond dresser for dressing a grinding wheel in which a large number of diamond grains are fixed to the outer peripheral portion of a disc-like substrate that is driven to rotate about a rotation axis. The V-groove having a wall surface opened by an angle formed by two crystal orientation (1,1,1) planes forming a ridge line in the crystal orientation (1,1,0) plane of octahedron type diamond grains is the disk. The outer wall of the substrate is formed in a high-load portion where the diamond grains are often worn by dressing work, with the wall surfaces facing in the rotational direction, and each diamond grain has the two crystal orientation (1,1,1) planes. Are bonded to the wall surface of the V-groove by a binder, and the crystal orientation (1, 1, 0) surface on the outer peripheral side is formed into a contact surface for dressing in contact with the grinding wheel, and octahedron A large number of small-diameter diamond grains of a type other than Ip are fixed to the surface of the outer periphery of the disc-shaped substrate by a binder, and the small-diameter diamond grains come into contact with the grinding wheel for dressing. The contact surface was molded.
According to this, a large number of octahedron-type diamond grains are formed on the two crystal orientation (1,1,1) planes that form ridge lines in the crystal orientation (1,1,0) plane, Since many small-diameter diamond grains are bonded to the surface of the V-groove formed at the load site and fixed to the surface other than the high-load site, the octahedron-type diamond grains have crystal orientation ( Since the dressing is carried out by making contact with the grinding wheel on the (1, 1, 0) surface and moving relative to the ridgeline direction with excellent wear resistance, the grinding surface of the grinding wheel must be dressed in the desired shape with high precision. It is possible to provide a rotary diamond dresser that can be manufactured easily and at a low cost.
Further, the present invention provides a rotary diamond dresser for dressing a grinding wheel in which a large number of diamond grains are fixed to the outer peripheral portion of a disc-like substrate that is driven to rotate about a rotation axis, and the crystal orientation (1, 1, A V-groove having a wall surface in contact with two opposing faces of the four crystal orientation (1,1,1) faces forming the apex on the (0,0) face is an outer peripheral portion of the disc-shaped substrate and is dressed The wall surface is formed in a rotational direction or at a right angle to the rotational direction at a high load site where a large amount of the diamond grains are worn during operation, and each diamond grain has the two crystal orientation (1,1,1) planes as the V Bonded to the wall of the groove by a binder, the crystal orientation (1, 0, 0) surface on the outer peripheral side is molded into a contact surface for dressing in contact with the grinding wheel. A contact surface on which a large number of small-diameter diamond grains of this type are fixed by a binder to a surface other than the high-load portion of the outer periphery of the disc-shaped substrate, and the small-diameter diamond grains come into contact with a grinding wheel for dressing To be molded.
According to this, a large number of octahedron-type diamond grains are formed on two opposing faces among the four crystal orientation (1,1,1) planes that form vertices on the crystal orientation (1,0,0) plane. , Because it is bonded to the wall surface of the V groove formed in the rotation direction or perpendicular to the rotation direction at the high load site of the disc-shaped substrate, and a large number of small-diameter diamond grains are fixed to the surface other than the high load site, In high load parts, octahedron-type diamond grains come in contact with the grinding wheel on the crystal orientation (1, 0, 0) surface and move relatively in the direction with excellent wear resistance, so dressing is performed with less wear. It is possible to provide a rotary diamond dresser that can be easily manufactured and can be dressed in a desired shape with high precision at a low cost.
Furthermore, the present invention is the above-described improved rotary diamond dresser, wherein the V-groove is continuously connected in a rotational direction to a high-load portion where the outer peripheral linear portion and the side end arc portion of the outer periphery of the disk-like base are connected. It was made to be engraved.
According to this, V-grooves, in which a large number of octahedron-type diamond grains are fixed by a binder on the crystal orientation (1,1,1) plane, are continuously engraved in the rotational direction in a high-load portion of the disk-shaped substrate. Therefore, many octahedron-type diamond grains can be placed easily and accurately in a high-load site so that they touch the grinding wheel and move relative to the direction of high wear resistance. A rotary diamond dresser can be provided.
Further, the present invention provides a cup-type rotary diamond dresser in which a large number of diamond grains are inclined outwardly from the outer peripheral edge of the large-diameter end face of a truncated cone-shaped base that is driven to rotate about the rotational axis. In a conical diamond dresser in which a large number of diamond grains protrude outward from the center of the outer periphery of the frustoconical base on both sides of the frustoconical substrate rotated around the axis of rotation, crystals of octahedron type diamond grains A V-groove having a wall surface in contact with two opposing faces of the four crystal orientation (1,1,1) planes forming apexes on the orientation (1,0,0) plane is a large part of the truncated cone-shaped base. In a state where the axis of the V-groove is inclined outward with respect to the rotation axis at the outer peripheral edge of the diameter end surface, or the axis of the V-groove is perpendicular to the rotation axis at the center of the outer periphery of the frustoconical base on both sides Each diamond grain is formed with the two crystal orientation (1,1,1) planes connected to the wall surface of the V-groove. Bonded by the material, the side surface of each diamond grain protruding from the V-groove is formed at an acute angle, and the crystal orientation (1, 0, 0) surface on the outer peripheral side is in contact with the grinding wheel for dressing It was made to be molded.
According to this, a large number of octahedron-type diamond grains are formed in the V-groove formed at the outer peripheral edge of the large-diameter end face of the truncated cone base or the V-groove formed at the outer peripheral center of the both-side truncated cone base. Since it is bonded to the wall surface by a binder on two opposing faces of the four crystal orientation (1,1,1) planes that form the apex on the crystal orientation (1,0,0) plane, Strong holding power to the substrate, especially when the angle formed by both side surfaces of the diamond grains is formed to an acute angle smaller than about 70 degrees formed by two opposing faces of the crystal orientation (1,1,1) plane. The holding force can be maintained. Accordingly, it is possible to provide a cup-type or conical-type rotary diamond dresser that is easy to manufacture and capable of dressing the grinding surface of the grinding wheel in a desired shape with high accuracy with a low amount of wear, at a low cost.
Furthermore, the present invention provides a cup-type rotary diamond dresser in which a large number of diamond grains are inclined outwardly from the outer peripheral edge of the large-diameter end face of a truncated cone-shaped base that is driven to rotate about the rotational axis. In a conical diamond dresser in which a large number of diamond grains protrude outward from the center of the outer periphery of the frustoconical base on both sides of the frustoconical substrate rotated around the axis of rotation, crystals of octahedron type diamond grains A V-groove having a wall surface opened by an angle formed by two crystal orientation (1,1,1) planes forming ridge lines in the orientation (1,1,0) plane is outside the large-diameter end face of the truncated cone-shaped base. In a state where the axis of the V-groove is inclined outward with respect to the rotation axis at the periphery, or the axis of the V-groove is perpendicular to the rotation axis at the center of the outer periphery of the frustoconical base on both sides Each diamond grain is formed in a ditto state, and the two crystal orientation (1, 1, 1) planes are bonded to the wall surface of the V-groove by a binder, and the side surface of the portion of each diamond grain protruding from the V-groove is It was formed at an acute angle, and the crystal orientation (1, 1, 0) surface on the outer peripheral side was formed into a contact surface for dressing in contact with the grinding wheel.
According to this, a large number of octahedron-type diamond grains are formed in the V-groove formed at the outer peripheral edge of the large-diameter end face of the truncated cone base or the V-groove formed at the outer peripheral center of the both-side truncated cone base. Since the two crystal orientation (1,1,1) planes that form ridge lines in the crystal orientation (1,1,0) plane are bonded to the wall surface by the binder, the holding force of the diamond grains to the substrate is increased. In particular, a strong holding force can be maintained even when the angle formed by the both side surfaces of the diamond grains is an acute angle. Accordingly, it is possible to provide a cup-type or conical-type rotary diamond dresser that is easy to manufacture and capable of dressing the grinding surface of the grinding wheel in a desired shape with high accuracy with a low amount of wear, at a low cost.
Further, the present invention provides the above-described improved rotary diamond dresser, wherein the metal of Group 4A of the periodic table containing titanium (Ti), the metal of Group 5A of the periodic table containing vanadium (V), and chromium (Cr The octahedron-type diamond grains are formed into the V-groove by a brazing material made of an alloy of any one of the metals in Group 6A of the periodic table and metals in Group 1B of the periodic table. It was made to be brazed to the wall surface.
According to this, a titanium carbide layer is formed on the crystal orientation (1, 1, 1) plane bonded to the V-groove by the brazing material, and this titanium carbide layer is a semi-metallic metallizing layer. As a result, the bondability with the metal contained in the brazing material is improved, and the diamond grains are firmly fixed to the disk-shaped substrate without dropping off.

第1図は、本発明による第1の実施形態のロータリダイヤモンドドレッサを示す断面図であり、第2図は、ロータリダイヤモンドドレッサの要部拡大断面図であり、第3図は、オクタヘドロンタイプのダイヤモンドを示す斜視図であり、第4図は、円盤状基体の部分拡大断面図であり、第5図は、オクタヘドロンタイプのダイヤモンド粒をV溝にロー付けした状態を示す図であり、第6図は、小粒径のダイヤモンド粒をロー付けした状態を示す図であり、第7図は、CBN砥粒をロー付けした状態を示す図であり、第8図は、オクタヘドロンタイプのダイヤモンド粒を稜線を密着させてV溝に固着した状態を示す図であり、第9図は、オクタヘドロンタイプのダイヤモンド粒を固着するV溝を2本形成した例を示す図であり、第10図は、第2の実施形態のロータリダイヤモンドドレッサの要部拡大断面図であり、第11図は、第3の実施形態のカップ型ロータリダイヤモンドドレッサの要部拡大断面図であり、第12図は、カップ型ロータリダイヤモンドドレッサにより砥石車をドレッシングしている状態を示す図であり、第13図は、第4の実施形態のコニカル型ロータリダイヤモンドドレッサの要部拡大断面図であり、第14図は、コニカル型ロータリダイヤモンドドレッサにより砥石車をドレッシングしている状態を示す図である。FIG. 1 is a cross-sectional view showing a rotary diamond dresser according to a first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of a main part of the rotary diamond dresser, and FIG. 3 is an octahedron type FIG. 4 is a partially enlarged cross-sectional view of a disk-shaped substrate, and FIG. 5 is a view showing a state in which octahedron-type diamond grains are brazed to a V-groove. FIG. 6 is a diagram showing a state in which diamond grains having a small particle size are brazed, FIG. 7 is a diagram showing a state in which CBN abrasive grains are brazed, and FIG. 8 is an octahedron type diamond. FIG. 9 is a view showing a state in which grains are fixed to a V-groove with ridgelines adhered, and FIG. 9 is a view showing an example in which two V-grooves for fixing octahedron-type diamond grains are formed. The second FIG. 11 is an enlarged cross-sectional view of the main part of the rotary diamond dresser of the embodiment, FIG. 11 is an enlarged cross-sectional view of the main part of the cup-type rotary diamond dresser of the third embodiment, and FIG. 12 is a cup-type rotary diamond. FIG. 13 is a diagram showing a state where a grinding wheel is dressed by a dresser, FIG. 13 is an enlarged cross-sectional view of a main part of the conical rotary diamond dresser of the fourth embodiment, and FIG. 14 is a conical rotary diamond. It is a figure which shows the state which is dressing the grinding wheel with a dresser.

以下、本発明に係るロータリダイヤモンドドレッサの第1の実施形態について説明する。ロータリダイヤモンドドレッサ10は、第1図〜第3図に示すように、外周部に多数のダイヤモンド粒が固着された円盤状基体11を備え、円盤状基体11に穿設された中心穴が研削盤に装備されたドレッシング装置の回転軸25に嵌着され回転軸線回りに回転駆動されて砥石車26の研削面をドレッシングするようになっている。
円盤状基体11の外周部12であってドレッシング作業でダイヤモンド粒が多く磨耗する高負荷部位13には、V溝14が回転方向に刻設され、V溝14の両壁面がなす角度は、オクタヘドロンタイプのダイヤモンド粒15の結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面がなす約110度の角度と等しくされている。高負荷部位13は円盤状基体11の外周部12の外周直線部16と側端円弧部17とが接続する部位で、V溝14はこの高負荷部位13に回転方向に連続して刻設されている。
多数のオクタヘドロンタイプのダイヤモンド粒15が、110度開いた二つの結晶方位(1,1,1)面でV溝14の両壁面に結合材18により結合され、円盤状基体11の外周部12に回転方向に固着されている。オクタヘドロンタイプのダイヤモンド粒15の外周側の結晶方位(1,1,0)面は砥石車と接触し耐摩耗性に優れた稜線方向に相対移動して研削面をドレッシングする接触面19に成形されている。結合材18としては、チタン(Ti)を含む周期律表第4A族の金属、バナジウム(V)を含む周期律表第5A族の金属、およびクロム(Cr)を含む周期律表第6A族の金属のうちのいずれか1つの族の金属と、銅(Cu)、銀(Ag)を含む周期律表第1B族の金属との合金からなるロー材が使用され、110度開いた二つの結晶方位(1,1,1)面がV溝14の壁面にロー付けして結合されている。ロー付け部分ではダイヤモンド粒15の結晶方位(1,1,1)面にチタンカーバイト層が形成され、このチタンカーバイト層は半金属性のメタライジング層であるので、ロー材に含まれる金属との結合性が良好となりダイヤモンド粒15は強固に円盤状基体11に固着されている。
円盤状基体11の外周部12の高負荷部位13以外の表面には、オクタヘドロンタイプ以外のタイプの小粒径の多数のダイヤモンド粒20が、結合材18により固着され、ダイヤモンド粒20の外周側は砥石車と接触して研削面をドレッシングする接触面21に成形されている。多数の小粒径のダイヤモンド粒20も、チタン(Ti)を含む周期律表第4A族の金属、バナジウム(V)を含む周期律表第5A族の金属、およびクロム(Cr)を含む周期律表第6A族の金属のうちのいずれか1つの族の金属と、銅(Cu)、銀(Ag)を含む周期律表第1B族の金属との合金からなる結合材18としてのロー材により、円盤状基体11の外周部12の高負荷部位13以外の表面に強固にロー付けして結合されている。
次に、ロータリダイヤモンドドレッサ10の製造方法について説明する。第4図に示すように、円盤状基体11の外周部12の外周直線部16と側端円弧部17とが接続する高負荷部位13に、両壁面が約110度開いたV溝14を回転方向に連続して刻設する(第1工程)。チタン(Ti)を含む周期律表第4A族の金属、バナジウム(V)を含む周期律表第5A族の金属、及びクロム(Cr)を含む周期律表第6A族の金属のうちいずれか一つの族の金属粒と、銅(Cu)、銀(Ag)等の周期律表第1B族の金属粒とを適当な有機バインダを加えて粘着性を有する状態に混合し、粘着性粒状物質22を調合する。この粘着性粒状物質22に含まれる金属は後述する焼成により合金となって結合材18であるロー材になるものである。このような粘着性粒状物質22をV溝14の両壁面に、ブラシなどにより適当な厚さに塗布する(第2工程)。60〜80個/ctsのオクタヘドロンタイプのダイヤモンド粒15をV溝14に約1.2mm間隔で多数嵌めこみ、結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面を粘着性粒状物質22の上からV溝14の両壁面に着座させる(第3工程)。
次に、粘着性粒状物質22によりダイヤモンド粒15をV溝14に保持した円盤状基体11を焼成炉内に入れ、アルゴンガス等の不活性ガスまたは真空状態の雰囲気で840〜940℃の焼成温度で焼成する。この焼成においてダイヤモンド粒15の二つの結晶方位(1,1,1)面にはチタン(Ti)との間にチタンカーバイド(TiC)等からなるメタライジング層が形成され、これらのメタライジング層と銅(Cu)、銀(Ag)を含む周期律表第1B族の金属とは融合し易く、メタライジング層を介してダイヤモンド粒15とロー材との濡れ性がよくなる。これにより第5図に示すように、ダイヤモンド粒15は二つの結晶方位(1,1,1)面が円盤状基体11のV溝14の両壁面に強い保持力でロー付けされ円盤状基体11の外周部12に固着される(第4工程)。
円盤状基体11の外周部12の高負荷部位13以外の外周直線部16と側端円弧部17の表面に、粘着性粒状物質22をブラシなどにより適当な厚さに塗布する(第5工程)。予め所定粒度に篩い分けしたオクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒20、例えば#20(平均粒径0.427mm)の人造ダイヤモンド粒を、塗布した粘着性粒状物質22に所定の集中度となるように略均一配置で単層に植え込み、円盤状基体11の外周部12の高負荷部位13以外の外周直線部16と側端円弧部17の表面に各小粒径ダイヤモンド粒20を着座させる(第6工程)。次に、小粒径ダイヤモンド粒20を外周部12に粘着性粒状物質22により保持した円盤状基体11を焼成炉内に入れ、アルゴンガス等の不活性ガスまたは真空状態の雰囲気で焼成する。これにより第6図に示すように、ダイヤモンド粒20は円盤状基体11の高負荷部位13以外の外周部12である外周直線部16と側端円弧部17の表面に強い保持力でロー付けされる(第7工程)。
円盤状基体11のオクタヘドロンタイプのダイヤモンド粒15および小粒径ダイヤモンド粒20がロー付けされた外周部12の全体に、粘着性粒状物質22をブラシなどにより塗布する(第8工程)。#140/170(平均粒径0.107mm)のCBN砥粒(六方晶窒化硼素)27を外周部12の全体に散布する(第9工程)。外周部12に散布されたCBN砥粒が粘着性粒状物質22により保持された円盤状基体11を焼成炉内に入れ、アルゴンガス等の不活性ガスまたは真空状態の雰囲気で焼成する(第10工程、第7図)。二つの結晶方位(1,1,1)面がV溝14の両壁面にロー付けされたオクタヘドロンタイプのダイヤモンド粒15の外周側の結晶方位(1,1,0)面、および円盤状基体11外周部12の高負荷部位13以外の表面にロー付けされた小粒径のダイヤモンド粒20を砥石車と接触してドレッシングする接触面19,21に成形する(第11工程、第2図)。このとき、ダイヤモンド粒15,20は接触面19,21が外周部12の表面から0.3mm程度突出するように成形される。
このようにして製造されたロータリダイヤモンドドレッサ10は、研削盤のドレッシング装置に砥石車26の回転軸と平行に軸承された回転軸25に嵌着され、モータにより回転軸25とともに回転駆動される。ロータリダイヤモンドドレッサ10と砥石車26とが砥石車26の研削面の形状に基づいて相対的に移動され、例えば砥石車26の外周面に直線状に、両端に円弧状に形成された研削面が、ロータリダイヤモンドドレッサ10の円盤状基体11の外周直線部16、側端円弧部17に固着された小粒径ダイヤモンド粒20および高負荷部位13に固着されたオクタヘドロンタイプのダイヤモンド粒15によりドレッシングされる。ロータリダイヤモンドドレッサ10が砥石車26の回転軸線方向にトラバースするとき、外周直線部16と側端円弧部17とが接続する高負荷部位13がリーディングエッジとなって砥石車26外周面の直線状研削面をドレッシングするので負荷が大きくなるが、高負荷部位13ではオクタヘドロンタイプのダイヤモンド粒15が結晶方位(1,1,0)面で砥石車と接触し耐摩耗性に優れた稜線方向に相対移動してドレッシングするので、局部的に磨耗することがなく、砥石車26の研削面を所望形状に高精度にドレッシングすることができる。
上記実施形態では、60〜80個/ctsの多数のオクタヘドロンタイプのダイヤモンド粒15を、隣接するダイヤモンド粒15の結晶方位(1,1,0)面の稜線が密着するように約1.2mmのピッチ間隔でV溝14に嵌め込んでいるが、150〜200個/ctsのオクタヘドロンタイプのダイヤモンド粒15を密着させて約0.75mmのピッチ間隔でV溝14に嵌め込んでもよい(第8図)。このように、隣接するダイヤモンド粒15の結晶方位(1,1,0)面の稜線が密着するようにV溝14に整然と嵌め込むことができるので、V溝14に多数のオクタヘドロンタイプのダイヤモンド粒15を配置して高負荷部位13の耐磨耗性を向上することができる。高価なオクタヘドロンタイプのダイヤモンド粒15のピッチ間隔を広くする方がコスト的に有利であるが、オクタヘドロンタイプのダイヤモンド粒15のピッチ間隔は、高い耐磨耗性を維持するために、0.5〜10mmピッチ間隔でV溝14に配置するのが好ましい。
上記実施形態では、高負荷部位13に1本のV溝14を刻設しているが、複数本、第9図に示す例では2本のV溝14を刻設し、ロータリダイヤモンドドレッサ10の円周方向の各位置におけるダイヤモンド粒15の接触面19の母線方向の合計長さが略均等になるように、各V溝14にオクタヘドロンタイプのダイヤモンド粒15を円周方向に位相をずらせて配置し固着するようにしてもよい。
また、上記実施形態では、第8乃至10工程でオクタヘドロンタイプのダイヤモンド粒15および小粒径ダイヤモンド粒20がロー付けされた円盤状基体11の外周部12に、#140/170の人造ダイヤモンド粒を散布してロー付けして、ロー材表面の耐摩耗性をより向上させているが、第8乃至10工程は省略してもよい。
さらに、上記実施形態では、V溝14を円周方向に連続して刻設しているので加工が容易であるが、V溝14は押し込み加工等により、円盤状基体11の外周部であってドレッシング作業でダイヤモンド粒が多く磨耗する高負荷部位13に壁面を回転方向に向けて円周方向に断続的に形成してもよい。
次に、第2の実施形態について説明する。第2の実施形態は、第1の実施形態では、オクタヘドロンタイプのダイヤモンド粒15が結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面でV溝14に結合されているのに対し、オクタヘドロンタイプのダイヤモンド粒が結晶方位(1,0,0)面で頂点を形成する四つの結晶方位(1,1,1)面のうち対向する2面でV溝24に結合されている点が第1の実施形態と相違し、他の部分および製造方法は同様であるので、相違点について説明し、同じ構成部分には第1の実施形態と同じ参照番号を付して詳細な説明を省略する。
第10図に示すように、円盤状基体11の外周部12であってドレッシング作業でダイヤモンド粒が多く磨耗する高負荷部位13には、V溝24が回転方向に刻設され、V溝24の両壁面がなす角度は、オクタヘドロンタイプのダイヤモンド粒15の結晶方位(1,0,0)面で頂点を形成する四つの結晶方位(1,1,1)面のうち対向する2面がなす約70度の角度と等しくされている。高負荷部位13は円盤状基体11の外周部12の外周直線部16と側端円弧部17とが接続する部位で、V溝24はこの高負荷部位13に回転方向に連続して刻設されている。多数のオクタヘドロンタイプのダイヤモンド粒15が、70度開いた二つの結晶方位(1,1,1)面でV溝24の両壁面に結合材18により結合され、円盤状基体11の外周部12に回転方向に固着されている。オクタヘドロンタイプのダイヤモンド粒15の外周側の結晶方位(1,0,0)面は砥石車26と接触し研削面をドレッシングする接触面23に成形されている。これにより、オクタヘドロンタイプのダイヤモンド粒15は、外周側の結晶方位(1,0,0)面で砥石車26と接触し結晶方位(1,1,0)面と直角な耐摩耗性に優れた方向に相対移動してドレッシングするので、局部的に磨耗することがなく、砥石車26の研削面を所望形状に高精度にドレッシングすることができる。
次に、第3の実施形態について説明する。第2の実施形態では、円盤状基体11の外周部12の高負荷部位13に形成されたV溝14,24に、多数のオクタヘドロンタイプのダイヤモンド粒15を結合材18により結合し、円盤状基体外周部12の高負荷部位以外の表面にオクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒20を結合材により固着しているのに対し、第3の実施形態では、円錐台状基体の大径端面外周縁部に形成されたV溝に多数のダイヤモンド粒のみを結合材により結合してカップ型ロータリダイヤモンドドレッサを構成しているので、係る相違点のみについて説明し、同じ構成部分には第2の実施形態と同じ参照番号を付して詳細な説明を省略する。
第11図に示すようにカップ型ロータリダイヤモンドドレッサ34では、回転軸線回りに回転駆動される円錐台状基体30の大径端面31の外周縁部32に、V溝33がその軸線を回転軸線に対して外側に傾斜させた状態で、回転方向に連続して刻設されている。V溝33の両壁面がなす角度は、オクタヘドロンタイプのダイヤモンド粒15の結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面がなす約70度の角度と等しくされている。多数のオクタヘドロンタイプのダイヤモンド粒15が、70度開いた結晶方位(1,1,1)面でV溝33の両壁面に結合材18により結合され、円錐台状基体30の大径端面外周縁部32から回転軸線に対して傾斜して外側に突出されている。各ダイヤモンド粒15のV溝33から突出した部分の側面が鋭角に成形され、先端側の結晶方位(1,0,0)面が砥石車26と接触してドレッシングする接触面に成形されている。
カップ型ロータリダイヤモンドドレッサ34は、第12図に示すように研削盤のドレッシング装置に砥石車26の回転軸線に対し傾斜して軸承された回転軸35に嵌着され、モータにより回転軸35とともに回転駆動される。カップ型ロータリダイヤモンドドレッサ34と砥石車26とが砥石車26の研削面の形状に基づいて相対的に移動され、円錐台状基体30の大径端面外周縁部32から回転軸線に対して傾斜して外側に突出された多数のオクタヘドロンタイプのダイヤモンド粒15の先端側の結晶方位(1,0,0)面が砥石車26と接触し、例えば砥石車26の側面と外周面を直線状にドレッシングする。
次に、第4の実施形態について説明する。第4の実施形態は、基体の形状を両側円錐台状にした点のみが第3の実施形態と異なる。第13図に示すようにコニカル型ロータリダイヤモンドドレッサ44では、回転軸線回りに回転駆動される両側円錐台状基体40の外周中央部42に、V溝43がその軸線を回転軸線と直角方向に向けた状態で、回転方向に連続して刻設されている。V溝43の両壁面がなす角度は、約70度で、多数のオクタヘドロンタイプのダイヤモンド粒15が、70度開いた結晶方位(1,1,1)面でV溝43の両壁面に結合材18により結合され、両側円錐台状基体40の外周中央部から回転軸線と直角方向に外側に突出されている。各ダイヤモンド粒15のV溝43から突出した部分の側面が鋭角に成形され、先端側の結晶方位(1,0,0)面が砥石車26と接触してドレッシングする接触面に成形されている。
コニカル型ロータリダイヤモンドドレッサ44は、第14図に示すように砥石車の両側面をドレッシングするときは、砥石車26の回転軸線に近い側の外周が砥石車26の側面に接近するように回転軸線が砥石車26の回転軸線に対して傾斜して支承され、砥石車26の外周面を直線状にドレッシングするときは、回転軸線が砥石車26の回転軸線と平行になるように支承された状態で、コニカル型ロータリダイヤモンドドレッサ44と砥石車26とが砥石車26の研削面の形状に基づいて相対的に移動され、両側円錐台状基体40の外周中央部42から回転軸線に対して直角方向に外側に突出された多数のオクタヘドロンタイプのダイヤモンド粒15の先端側の結晶方位(1,0,0)面が砥石車26と接触し、例えば砥石車26の両側面と外周面を直線状の研削面にドレッシングする。
なお、第3、第4の実施形態では、V溝33,43の両壁面がなす角度を約70度としているが、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面がなす約110度の角度と等しくし、多数のオクタヘドロンタイプのダイヤモンド粒15を約110度開いた結晶方位(1,1,1)面でV溝33,43の両壁面に結合材18により結合するようにしてもよい。
上記第2乃至4の実施形態では、V溝24,33,43が回転方向に連続して刻設されているが、V溝24は円盤状基体11の外周部であってドレッシング作業でダイヤモンド粒が多く磨耗する高負荷部位13、V溝33は円錐台状基体30の大径端面外周縁部32、V溝43は両側円錐台基体40の外周中央部42に、両壁面を回転方向に、または回転方向に直角に向けて断続的に形成してもよい。
上記実施の形態では、オクタヘドロンタイプのダイヤモンド粒15、小粒径ダイヤモンド粒20およびCBN砥粒27をロー材を結合材18としてロー付けしているが、電気メッキまたは無電解メッキにより固着するようにしてもよい。
Hereinafter, a first embodiment of a rotary diamond dresser according to the present invention will be described. As shown in FIGS. 1 to 3, the rotary diamond dresser 10 includes a disk-shaped base 11 having a large number of diamond particles fixed to the outer peripheral portion, and a center hole drilled in the disk-shaped base 11 has a grinding machine. It is fitted on the rotary shaft 25 of the dressing device equipped in the above and is driven to rotate around the rotary axis so as to dress the grinding surface of the grinding wheel 26.
A V-groove 14 is engraved in the rotational direction at a high load portion 13 on the outer peripheral portion 12 of the disc-like substrate 11 where a large amount of diamond particles are worn by dressing work, and the angle formed by both wall surfaces of the V-groove 14 is an octave. An angle of about 110 degrees formed by two crystal orientation (1,1,1) planes forming a ridge line in the crystal orientation (1,1,0) plane of the hedron-type diamond grains 15 is set. The high load portion 13 is a portion where the outer peripheral straight portion 16 of the outer peripheral portion 12 of the disk-like base body 11 and the side end arc portion 17 are connected, and the V-groove 14 is continuously engraved in the high load portion 13 in the rotation direction. ing.
A large number of octahedron-type diamond grains 15 are bonded to both wall surfaces of the V-groove 14 by two bonding directions 18 in two crystal orientation (1,1,1) planes opened at 110 degrees, and the outer peripheral portion 12 of the disk-shaped substrate 11 is formed. Is fixed in the rotational direction. The crystal orientation (1, 1, 0) surface on the outer peripheral side of the octahedron-type diamond grains 15 contacts the grinding wheel and moves relative to the ridge line direction with excellent wear resistance to form a contact surface 19 that dresses the ground surface. Has been. As the binder 18, a metal of group 4A of the periodic table containing titanium (Ti), a metal of group 5A of the periodic table containing vanadium (V), and a group 6A of the periodic table containing chromium (Cr). A brazing material made of an alloy of a metal of any one of the metals and a metal of Group 1B of the periodic table containing copper (Cu) and silver (Ag) is used, and two crystals opened at 110 degrees The azimuth (1, 1, 1) surface is joined to the wall surface of the V-groove 14 by brazing. In the brazed portion, a titanium carbide layer is formed on the crystal orientation (1,1,1) plane of the diamond grains 15, and this titanium carbide layer is a semi-metallic metallizing layer. The diamond grains 15 are firmly fixed to the disc-like substrate 11.
A large number of diamond grains 20 of a small particle size other than the octahedron type are fixed to the surface of the outer peripheral portion 12 of the disc-shaped substrate 11 other than the high load portion 13 by a binder 18, Is formed on a contact surface 21 that contacts the grinding wheel and dresses the ground surface. A large number of diamond grains 20 having a small particle size also have a periodic table group 4A metal containing titanium (Ti), a periodic table group 5A metal containing vanadium (V), and a periodic table containing chromium (Cr). By a brazing material as a binding material 18 made of an alloy of a metal of any one of the metals in Table 6A and a metal of Group 1B of the periodic table containing copper (Cu) and silver (Ag) The outer periphery 12 of the disc-like substrate 11 is firmly brazed to the surface other than the high-load portion 13.
Next, a method for manufacturing the rotary diamond dresser 10 will be described. As shown in FIG. 4, the V-shaped groove 14 whose both wall surfaces are opened at about 110 degrees is rotated in the high load portion 13 where the outer peripheral straight portion 16 of the outer peripheral portion 12 of the disc-like substrate 11 and the side end arc portion 17 are connected. Engrave continuously in the direction (first step). Any one of the metals of Group 4A of the periodic table containing titanium (Ti), metals of Group 5A of the periodic table containing vanadium (V), and metals of Group 6A of the periodic table containing chromium (Cr) One group of metal particles and the metal particles of Group 1B of the periodic table such as copper (Cu), silver (Ag), etc. are mixed in a state having adhesiveness by adding an appropriate organic binder, and the adhesive granular material 22 Formulate. The metal contained in the adhesive granular material 22 becomes an alloy by firing, which will be described later, and becomes a brazing material that is the binder 18. Such an adhesive granular material 22 is applied to both wall surfaces of the V-groove 14 to an appropriate thickness by a brush or the like (second step). A large number of octahedron-type diamond grains 15 of 60 to 80 pieces / cts are fitted into the V-groove 14 at intervals of about 1.2 mm, and two crystal orientations that form ridge lines in the crystal orientation (1, 1, 0) plane ( The 1,1,1) surface is seated on both wall surfaces of the V-groove 14 from above the adhesive granular material 22 (third step).
Next, the disk-shaped substrate 11 in which the diamond particles 15 are held in the V-groove 14 by the adhesive granular material 22 is placed in a firing furnace, and a firing temperature of 840 to 940 ° C. in an inert gas such as argon gas or in a vacuum state. Bake with. In this firing, a metallizing layer made of titanium carbide (TiC) or the like is formed between the two crystal orientations (1, 1, 1) of the diamond grains 15 and titanium (Ti). It is easy to fuse with the metals of Group 1B of the periodic table containing copper (Cu) and silver (Ag), and the wettability between the diamond grains 15 and the brazing material is improved through the metalizing layer. As a result, as shown in FIG. 5, the diamond grains 15 have two crystal orientation (1, 1, 1) planes brazed to both wall surfaces of the V-shaped grooves 14 of the disk-shaped substrate 11 with a strong holding force. Is fixed to the outer peripheral portion 12 (fourth step).
An adhesive granular material 22 is applied to the surface of the outer peripheral straight line portion 16 and the side end circular arc portion 17 other than the high load portion 13 of the outer peripheral portion 12 of the disc-like substrate 11 with a brush or the like (fifth step). . A large number of small-diameter diamond grains 20 of a type other than the octahedron type that have been sieved in advance to a predetermined grain size, for example, # 20 (average grain diameter 0.427 mm) of artificial diamond grains are applied to the coated adhesive granular material 22 in a predetermined manner. Implanted into a single layer in a substantially uniform arrangement so as to be concentrated, and each small-diameter diamond particle 20 on the surface of the outer peripheral linear portion 16 and the side end arc portion 17 other than the high load portion 13 of the outer peripheral portion 12 of the disc-like substrate 11. Is seated (sixth step). Next, the disk-shaped substrate 11 holding the small-diameter diamond particles 20 on the outer peripheral portion 12 with the adhesive granular material 22 is placed in a firing furnace and fired in an inert gas such as argon gas or in an atmosphere of a vacuum state. As a result, as shown in FIG. 6, the diamond grains 20 are brazed with a strong holding force to the surfaces of the outer peripheral straight line portion 16 and the side end circular arc portion 17, which are the outer peripheral portions 12 other than the high-load portion 13 of the disc-like substrate 11. (Seventh step).
An adhesive granular material 22 is applied by brush or the like to the entire outer peripheral portion 12 on which the octahedron type diamond particles 15 and the small-diameter diamond particles 20 of the disk-shaped substrate 11 are brazed (eighth step). CBN abrasive grains (hexagonal boron nitride) 27 of # 140/170 (average particle diameter 0.107 mm) is dispersed over the entire outer peripheral portion 12 (9th step). The disc-like substrate 11 in which the CBN abrasive grains sprayed on the outer peripheral portion 12 are held by the adhesive granular material 22 is placed in a firing furnace and fired in an inert gas such as argon gas or in a vacuum atmosphere (Tenth step). FIG. 7). Two crystal orientation (1, 1, 1) faces brazed to both wall surfaces of the V-groove 14 and the crystal orientation (1, 1, 0) face on the outer peripheral side of the octahedron-type diamond grains 15, and a disc-like substrate 11 Diamond particles 20 having a small particle size brazed onto the surface of the outer peripheral portion 12 other than the high load portion 13 are formed on contact surfaces 19 and 21 for dressing in contact with the grinding wheel (11th step, FIG. 2). . At this time, the diamond grains 15 and 20 are formed such that the contact surfaces 19 and 21 protrude from the surface of the outer peripheral portion 12 by about 0.3 mm.
The rotary diamond dresser 10 manufactured in this way is fitted to a rotating shaft 25 supported in parallel with the rotating shaft of the grinding wheel 26 in a dressing device of a grinding machine, and is rotationally driven together with the rotating shaft 25 by a motor. The rotary diamond dresser 10 and the grinding wheel 26 are relatively moved based on the shape of the grinding surface of the grinding wheel 26. For example, grinding surfaces formed linearly on the outer peripheral surface of the grinding wheel 26 and arcuate at both ends are formed. Dressing is performed with the small-diameter diamond particles 20 fixed to the outer peripheral linear portion 16 and the side end arc portion 17 of the rotary diamond dresser 10 and the octahedron-type diamond particles 15 fixed to the high load portion 13. The When the rotary diamond dresser 10 traverses in the direction of the rotation axis of the grinding wheel 26, the high load portion 13 where the outer peripheral straight line portion 16 and the side end circular arc portion 17 are connected becomes a leading edge to linearly grind the outer peripheral surface of the grinding wheel 26. Although the load is increased because the surface is dressed, the octahedron-type diamond grains 15 come into contact with the grinding wheel on the crystal orientation (1, 1, 0) surface in the high load region 13 and are relatively in the ridge line direction with excellent wear resistance. Since it is moved and dressed, the ground surface of the grinding wheel 26 can be dressed in a desired shape with high accuracy without being locally worn.
In the above embodiment, a large number of octahedron type diamond grains 15 of 60 to 80 pieces / cts are about 1.2 mm so that the ridgelines of the crystal orientation (1, 1, 0) plane of the adjacent diamond grains 15 are in close contact with each other. Is inserted into the V-groove 14 at a pitch interval of 150 to 200 / cts, and may be fitted into the V-groove 14 at a pitch interval of about 0.75 mm by closely contacting octahedron-type diamond grains 15 of 150 to 200 pieces / cts. Fig. 8). As described above, since the ridgelines of the crystal orientation (1, 1, 0) planes of the adjacent diamond grains 15 can be closely fitted into the V groove 14, a large number of octahedron type diamonds can be inserted into the V groove 14. The wear resistance of the high load site 13 can be improved by arranging the grains 15. Although it is advantageous in terms of cost to widen the pitch interval of the expensive octahedron type diamond grains 15, the pitch interval of the octahedron type diamond grains 15 is set to 0. 0 in order to maintain high wear resistance. It is preferable to arrange in the V-groove 14 at a pitch interval of 5-10 mm.
In the above embodiment, one V-groove 14 is engraved in the high load portion 13, but in the example shown in FIG. 9, two V-grooves 14 are engraved, and the rotary diamond dresser 10 is The octahedron-type diamond grains 15 are shifted in phase in the circumferential direction so that the total length in the generatrix direction of the contact surface 19 of the diamond grains 15 at each position in the circumferential direction is substantially uniform. It may be arranged and fixed.
Further, in the above embodiment, the # 140/170 artificial diamond grains are formed on the outer peripheral portion 12 of the disc-shaped substrate 11 to which the octahedron type diamond grains 15 and the small grain diameter diamond grains 20 are brazed in the eighth to tenth steps. In order to further improve the wear resistance of the brazing material surface, the eighth to tenth steps may be omitted.
Further, in the above embodiment, the V-groove 14 is continuously engraved in the circumferential direction, so that the processing is easy. However, the V-groove 14 is formed on the outer peripheral portion of the disk-shaped substrate 11 by pressing or the like. You may form a wall surface intermittently in the circumferential direction in the high load site | part 13 where many diamond grains are worn by a dressing operation | work toward a rotation direction.
Next, a second embodiment will be described. In the second embodiment, in the first embodiment, two crystal orientation (1,1,1) planes in which octahedron-type diamond grains 15 form ridge lines in the crystal orientation (1,1,0) plane. The octahedron-type diamond grains face each other out of the four crystal orientation (1,1,1) planes that form vertices on the crystal orientation (1,0,0) plane. The two surfaces are different from those of the first embodiment in that they are coupled to the V-groove 24, and the other parts and the manufacturing method are the same. Therefore, the differences will be described, and the same components will be described in the first embodiment. The same reference numerals as those of the embodiment are attached and detailed description is omitted.
As shown in FIG. 10, a V-groove 24 is engraved in the rotational direction in the high-load portion 13 on the outer peripheral portion 12 of the disc-shaped substrate 11 where a large amount of diamond particles are worn by dressing work. The angle formed by the two wall surfaces is formed by two opposing faces among the four crystal orientation (1,1,1) planes that form vertices on the crystal orientation (1,0,0) plane of the octahedron type diamond grains 15. It is made equal to an angle of about 70 degrees. The high load portion 13 is a portion where the outer peripheral straight portion 16 of the outer peripheral portion 12 of the disk-shaped base 11 and the side end arc portion 17 are connected, and the V groove 24 is continuously engraved in the high load portion 13 in the rotation direction. ing. A large number of octahedron-type diamond grains 15 are bonded to both wall surfaces of the V-groove 24 with two crystal orientations (1, 1, 1) planes opened by 70 degrees by the bonding material 18, and the outer peripheral portion 12 of the disc-shaped substrate 11. Is fixed in the rotational direction. The crystal orientation (1, 0, 0) surface on the outer peripheral side of the octahedron type diamond grain 15 is formed into a contact surface 23 that contacts the grinding wheel 26 and dresses the ground surface. Thereby, the octahedron-type diamond grains 15 are in contact with the grinding wheel 26 on the crystal orientation (1, 0, 0) surface on the outer peripheral side and are excellent in wear resistance perpendicular to the crystal orientation (1, 1, 0) surface. Therefore, the grinding surface of the grinding wheel 26 can be dressed in a desired shape with high accuracy without causing local wear.
Next, a third embodiment will be described. In the second embodiment, a large number of octahedron-type diamond grains 15 are bonded to the V grooves 14 and 24 formed in the high load portion 13 of the outer peripheral portion 12 of the disk-shaped substrate 11 by the bonding material 18 to form a disk shape. While a large number of small-diameter diamond grains 20 of a type other than the octahedron type are fixed to the surface of the base outer peripheral portion 12 other than the high load portion by a binder, in the third embodiment, the truncated cone base is used. Since a cup-type rotary diamond dresser is configured by binding only a large number of diamond grains to a V-groove formed on the outer peripheral edge of the large-diameter end surface with a binder, only such differences will be described, and the same components will be described. Are denoted by the same reference numerals as in the second embodiment, and detailed description thereof is omitted.
As shown in FIG. 11, in the cup-type rotary diamond dresser 34, the V-groove 33 has its axis as the rotation axis on the outer peripheral edge 32 of the large-diameter end surface 31 of the truncated cone-shaped base 30 that is driven to rotate about the rotation axis. On the other hand, it is continuously engraved in the direction of rotation while being inclined outward. The angle formed by both wall surfaces of the V-groove 33 is the opposite of the four crystal orientation (1,1,1) planes that form apexes on the crystal orientation (1,0,0) plane of the octahedron type diamond grains 15. It is made equal to the angle of about 70 degrees formed by the two surfaces. A large number of octahedron-type diamond grains 15 are bonded to both wall surfaces of the V-groove 33 by a bonding material 18 in a crystal orientation (1, 1, 1) plane opened by 70 degrees, and are outside the large-diameter end surface of the truncated cone-shaped substrate 30. Inclined with respect to the rotation axis from the peripheral edge 32 and protrudes outward. The side surface of each diamond grain 15 protruding from the V-groove 33 is formed at an acute angle, and the crystal orientation (1, 0, 0) surface on the tip side is formed as a contact surface for dressing in contact with the grinding wheel 26. .
As shown in FIG. 12, the cup-type rotary diamond dresser 34 is fitted to a rotating shaft 35 that is supported by a grinding machine dressing device at an inclination with respect to the rotational axis of the grinding wheel 26, and is rotated together with the rotating shaft 35 by a motor. Driven. The cup-type rotary diamond dresser 34 and the grinding wheel 26 are moved relative to each other based on the shape of the grinding surface of the grinding wheel 26, and are inclined with respect to the rotation axis from the outer peripheral edge 32 of the large-diameter end surface of the truncated cone base 30. The crystal orientation (1, 0, 0) surface on the tip side of a large number of octahedron-type diamond grains 15 projecting outward is in contact with the grinding wheel 26, and for example, the side surface and outer peripheral surface of the grinding wheel 26 are linear. Dress up.
Next, a fourth embodiment will be described. The fourth embodiment is different from the third embodiment only in that the shape of the base is a truncated cone shape on both sides. As shown in FIG. 13, in the conical rotary diamond dresser 44, the V-groove 43 has its axial line oriented in a direction perpendicular to the rotational axis at the outer peripheral central part 42 of the frustoconical base 40 rotated around the rotational axis. In this state, it is continuously engraved in the rotational direction. The angle formed by both wall surfaces of the V-groove 43 is about 70 degrees, and a large number of octahedron-type diamond grains 15 are bonded to both wall surfaces of the V-groove 43 by crystal orientation (1, 1, 1) planes opened by 70 degrees. It is joined by the material 18 and protrudes outward from the central part of the outer periphery of the frustoconical base 40 on both sides in the direction perpendicular to the rotational axis. The side surface of each diamond grain 15 protruding from the V-groove 43 is formed with an acute angle, and the crystal orientation (1, 0, 0) surface on the tip side is formed into a contact surface for dressing in contact with the grinding wheel 26. .
As shown in FIG. 14, the conical rotary diamond dresser 44 has a rotation axis line so that the outer periphery of the grinding wheel 26 close to the rotation axis approaches the side surface of the grinding wheel 26 when dressing both sides of the grinding wheel. Is supported while being inclined with respect to the rotational axis of the grinding wheel 26, and when the outer peripheral surface of the grinding wheel 26 is linearly dressed, the rotational axis is supported in parallel with the rotational axis of the grinding wheel 26. Thus, the conical rotary diamond dresser 44 and the grinding wheel 26 are relatively moved on the basis of the shape of the grinding surface of the grinding wheel 26, and are perpendicular to the rotation axis from the outer peripheral central portion 42 of the both-side frustoconical base 40. The crystal orientation (1,0,0) surface on the tip side of a large number of octahedron type diamond grains 15 projecting outward is in contact with the grinding wheel 26, for example, both side surfaces of the grinding wheel 26. Dressing the outer peripheral surface in a straight line of the grinding surface.
In the third and fourth embodiments, the angle formed by both wall surfaces of the V-grooves 33 and 43 is about 70 degrees, but within the crystal orientation (1, 1, 0) plane of octahedron-type diamond grains. The crystal orientation (1,1,1) is the same as the angle of about 110 degrees formed by the two crystal orientation (1,1,1) planes forming the ridge line, and a large number of octahedron-type diamond grains 15 are opened about 110 degrees. ) Surface may be bonded to both wall surfaces of the V grooves 33 and 43 by the bonding material 18.
In the second to fourth embodiments, the V-grooves 24, 33, 43 are continuously engraved in the rotation direction. The V-groove 24 is an outer peripheral portion of the disk-shaped base 11, and diamond grains are formed by a dressing operation. The high-load portion 13 where a lot of wear occurs, the V-groove 33 is the outer peripheral edge portion 32 of the large-diameter end surface of the truncated cone base 30, the V-groove 43 is at the outer peripheral center portion 42 of the both-side truncated cone base 40, Or you may form intermittently toward a right angle to a rotation direction.
In the above embodiment, the octahedron-type diamond grains 15, the small-diameter diamond grains 20, and the CBN abrasive grains 27 are brazed using the brazing material as the binder 18, but are fixed by electroplating or electroless plating. It may be.

本発明にかかるロータリダイヤモンドドレッサは、回転駆動される砥石車により工作物を研削加工する研削盤において、砥石車の研削面を所望形状に高精度にドレッシングするロータリダイヤモンドドレッサとして用いるのに適している。  The rotary diamond dresser according to the present invention is suitable for use as a rotary diamond dresser for dressing a grinding surface of a grinding wheel in a desired shape with high accuracy in a grinding machine that grinds a workpiece by a grinding wheel that is rotationally driven. .

Claims (6)

回転軸線回りに回転駆動される円盤状基体の外周部に多数のダイヤモンド粒が固着され砥石車をドレッシングするロータリダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面がなす角度だけ開いた壁面を有するV溝が、前記円盤状基体の外周部であってドレッシング作業で前記ダイヤモンド粒が多く磨耗する高負荷部位に前記壁面を回転方向に向けて形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、外周側の結晶方位(1,1,0)面が前記砥石車と接触してドレッシングする接触面に成形され、オクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒が、前記円盤状基体外周部の高負荷部位以外の表面に結合材により固着され、該小粒径のダイヤモンド粒が砥石車と接触してドレッシングする接触面に成形されたことを特徴とするロータリダイヤモンドドレッサ。In a rotary diamond dresser that dresses a grinding wheel with a large number of diamond grains fixed to the outer periphery of a disc-shaped substrate that is driven to rotate about the rotation axis, in the crystal orientation (1, 1, 0) plane of octahedron type diamond grains A V-groove having a wall surface opened by an angle formed by two crystal orientation (1,1,1) planes forming a ridge line is an outer peripheral portion of the disc-shaped substrate, and a large amount of the diamond grains are worn during dressing. The diamond wall is formed at a high load site with the wall surface facing the rotation direction, and each diamond grain has the two crystal orientation (1,1,1) faces bonded to the wall surface of the V-groove by a binder, and the crystal orientation on the outer peripheral side The (1, 1, 0) surface is formed into a contact surface for dressing in contact with the grinding wheel, and a large number of small-diameter diamond grains other than the octahedron type are Disk-shaped on the surface other than the high-load region of the base outer circumference is fixed by the binding member, the rotary diamond dresser diamond particles of the small particle size is characterized by being formed into a contact surface for dressing in contact with the grinding wheel. 回転軸線回りに回転駆動される円盤状基体の外周部に多数のダイヤモンド粒が固着され砥石車をドレッシングするロータリダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面と当接する壁面を有するV溝が、前記円盤状基体の外周部であってドレッシング作業で前記ダイヤモンド粒が多く磨耗する高負荷部位に前記壁面を回転方向にまたは回転方向に直角に向けて形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、外周側の結晶方位(1,0,0)面が前記砥石車と接触してドレッシングする接触面に成形され、オクタヘドロンタイプ以外のタイプの多数の小粒径ダイヤモンド粒が、前記円盤状基体外周部の高負荷部位以外の表面に結合材により固着され、該小粒径のダイヤモンド粒が砥石車と接触してドレッシングする接触面に成形されたことを特徴とするロータリダイヤモンドドレッサ。In a rotary diamond dresser that dresses a grinding wheel with a large number of diamond grains fixed to the outer periphery of a disc-shaped substrate that is driven to rotate about a rotation axis, the crystal orientation (1,0,0) plane of octahedron type diamond grains A V-groove having a wall surface in contact with two opposing faces of the four crystal orientation (1,1,1) faces forming the apex is the outer peripheral portion of the disk-shaped substrate, and the diamond grains are formed by a dressing operation. The wall surface is formed in a rotational direction or at a right angle to the rotational direction at a high load site that wears a lot, and each diamond grain has the two crystal orientation (1,1,1) planes as a binding material to the wall surface of the V-groove. And the crystal orientation (1, 0, 0) surface on the outer peripheral side is formed into a contact surface that contacts with the grinding wheel and dresses, and many types other than the octahedron type are formed. The small-diameter diamond particles were fixed to the surface of the outer periphery of the disc-shaped substrate by a binder, and the small-diameter diamond particles were formed on the contact surface for dressing in contact with the grinding wheel. A rotary diamond dresser characterized by 請求の範囲第1項または第2項に記載のロータリダイヤモンドドレッサにおいて、前記V溝が前記円盤状基体の外周部の外周直線部と側端円弧部とが接続する高負荷部位に回転方向に連続して刻設されたことを特徴とするロータリダイヤモンドドレッサ。3. The rotary diamond dresser according to claim 1, wherein the V-groove is continuous in a rotational direction with a high-load portion where an outer peripheral straight line portion and a side end arc portion of the outer peripheral portion of the disk-shaped base are connected to each other. This is a rotary diamond dresser characterized by being engraved. 回転軸線回りに回転駆動される円錐台状基体の大径端面外周縁部から多数のダイヤモンド粒が前記回転軸線に対して傾斜して外側に突出されたカップ型ロータリダイヤモンドドレッサ、または回転軸線回りに回転駆動される両側円錐台状基体の外周中央部から多数のダイヤモンド粒が回転軸線と直角方向に外側に突出されたコニカル型ダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,0,0)面に頂点を形成する四つの結晶方位(1,1,1)面のうちの対向する2面と当接する壁面を有するV溝が、前記円錐台状基体の大径端面外周縁部に前記V溝の軸線を前記回転軸線に対して外側に傾斜させた状態で、または両側円錐台状基体の外周中央部に前記V溝の軸線を回転軸線と直角方向に向けた状態で、前記壁面を回転方向に、または回転方向に直角に向けて形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、各ダイヤモンド粒の前記V溝から突出した部分の側面が鋭角に成形され、外周側の結晶方位(1,0,0)面が前記砥石車と接触してドレッシングする接触面に成形されたことを特徴とするロータリダイヤモンドドレッサ。A cup-type rotary diamond dresser in which a large number of diamond grains are inclined from the outer peripheral edge of the large-diameter end face of the frustoconical base that is driven to rotate about the rotation axis and protrudes outward from the rotation axis, or around the rotation axis In a conical diamond dresser in which a large number of diamond grains protrude outwardly in the direction perpendicular to the rotation axis from the center of the outer periphery of a double-sided frustoconical base, the crystal orientation of the octahedron type diamond grains (1, 0, 0) A V-groove having a wall surface in contact with two opposing faces of the four crystal orientation (1, 1, 1) faces forming the apex on the face is formed on the outer peripheral edge of the large-diameter end face of the truncated cone base. A state in which the axis of the V-groove is inclined outward with respect to the rotational axis, or a state in which the axis of the V-groove is oriented in a direction perpendicular to the rotational axis at the center of the outer periphery of the both-side frustoconical base Each of the diamond grains is bonded to the wall surface of the V-groove by a binder, and each diamond grain is formed in a direction perpendicular to the rotation direction. The side surface of the portion of the diamond grain protruding from the V-groove is formed at an acute angle, and the crystal orientation (1, 0, 0) surface on the outer peripheral side is formed as a contact surface for dressing in contact with the grinding wheel. Rotary diamond dresser. 回転軸線回りに回転駆動される円錐台状基体の大径端面外周縁部から多数のダイヤモンド粒が前記回転軸線に対して傾斜して外側に突出されたカップ型ロータリダイヤモンドドレッサ、または回転軸線回りに回転駆動される両側円錐台状基体の外周中央部から多数のダイヤモンド粒が回転軸線と直角方向に外側に突出されたコニカル型ダイヤモンドドレッサにおいて、オクタヘドロンタイプのダイヤモンド粒の結晶方位(1,1,0)面内で稜線を形成する二つの結晶方位(1,1,1)面がなす角度だけ開いた壁面を有するV溝が、前記円錐台状基体の大径端面外周縁部に前記V溝の軸線を前記回転軸線に対して外側に傾斜させた状態で、または両側円錐台状基体の外周中央部に前記V溝の軸線を回転軸線と直角方向に向けた状態で形成され、各ダイヤモンド粒は前記二つの結晶方位(1,1,1)面が前記V溝の壁面に結合材により結合され、各ダイヤモンド粒の前記V溝から突出した部分の側面が鋭角に成形され、外周側の結晶方位(1,1,0)面が前記砥石車と接触してドレッシングする接触面に成形されたことを特徴とするロータリダイヤモンドドレッサ。A cup-type rotary diamond dresser in which a large number of diamond grains are inclined from the outer peripheral edge of the large-diameter end face of the frustoconical base that is driven to rotate about the rotation axis and protrudes outward from the rotation axis, or around the rotation axis In a conical diamond dresser in which a large number of diamond grains are projected outwardly from the central part of the outer periphery of both sides of the frustoconical base that is driven to rotate, the crystal orientation of the octahedron type diamond grains (1, 1, 1, 0) A V-groove having a wall surface opened by an angle formed by two crystal orientation (1,1,1) planes forming a ridge line in the plane is formed on the outer peripheral edge portion of the large-diameter end surface of the frustoconical base. With the axis of the V-groove inclined outward with respect to the axis of rotation, or with the axis of the V-groove oriented perpendicularly to the axis of rotation at the center of the outer periphery of the frustoconical base on both sides. In each diamond grain, the two crystal orientation (1, 1, 1) planes are bonded to the wall surface of the V-groove by a binder, and the side surface of each diamond grain protruding from the V-groove is formed at an acute angle. A rotary diamond dresser characterized in that a crystal orientation (1, 1, 0) surface on the outer peripheral side is formed into a contact surface for dressing in contact with the grinding wheel. 請求の範囲第1項乃至第5項のいずれか1項に記載のロータリダイヤモンドドレッサおいて、チタン(Ti)を含む周期律表第4A族の金属、バナジウム(V)を含む周期律表第5A族の金属、およびクロム(Cr)を含む周期律表第6A族の金属のうちのいずれか1つの族の金属と、周期律表第1B族の金属との合金からなるロー材によって前記オクタヘドロンタイプのダイヤモンド粒が前記V溝の壁面にロー付けされたことを特徴とするロータリダイヤモンドドレッサ。The rotary diamond dresser according to any one of claims 1 to 5, wherein the periodic table 5A includes vanadium (V), a metal of group 4A of the periodic table containing titanium (Ti). The octahedron is produced by a brazing material made of an alloy of a metal of any one of the metals in Group 6A and metals in Group 6A of the periodic table containing chromium (Cr) and a metal in Group 1B of the Periodic Table. A rotary diamond dresser characterized in that diamond particles of the type are brazed to the wall surface of the V-groove.
JP2006531774A 2004-08-16 2005-08-05 Rotary diamond dresser Withdrawn JPWO2006019062A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004236416 2004-08-16
JP2004236416 2004-08-16
PCT/JP2005/014858 WO2006019062A1 (en) 2004-08-16 2005-08-05 Rotary diamond dresser

Publications (1)

Publication Number Publication Date
JPWO2006019062A1 true JPWO2006019062A1 (en) 2008-05-08

Family

ID=35907450

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006531774A Withdrawn JPWO2006019062A1 (en) 2004-08-16 2005-08-05 Rotary diamond dresser

Country Status (5)

Country Link
US (1) US20080041354A1 (en)
EP (1) EP1779973A4 (en)
JP (1) JPWO2006019062A1 (en)
CN (1) CN101001720A (en)
WO (1) WO2006019062A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE502007004211D1 (en) * 2007-12-19 2010-08-05 Agathon Ag Maschf Grinding machine with a device for conditioning a grinding wheel and method therefor
BR112013026817A2 (en) * 2011-04-18 2017-01-10 3M Innovative Properties Co resin bonded grinding wheel
JP6591237B2 (en) * 2015-09-02 2019-10-16 株式会社ノリタケカンパニーリミテド Diamond dresser
JP2017071026A (en) * 2015-10-07 2017-04-13 株式会社ディスコ Form type grindstone tool
US11819979B2 (en) 2016-02-22 2023-11-21 A.L.M.T. Corp. Abrasive tool
US11123841B2 (en) * 2016-05-27 2021-09-21 A.L.M.T. Corp. Super-abrasive grinding wheel
CN106311868B (en) * 2016-07-20 2018-11-02 长春理工大学 A method of reducing diamond penetrator nanoimprint unilateral side pore-forming deviation from circular from
JP6705910B2 (en) * 2016-11-16 2020-06-03 豊田バンモップス株式会社 Electrodeposited diamond dresser for forming screw-shaped grindstone for gear grinding and manufacturing method thereof
JP6203980B1 (en) * 2017-06-09 2017-09-27 日本精工株式会社 Total rotary dresser and dressing method
CN113319740A (en) * 2021-07-27 2021-08-31 郑州大学 Roller for dressing grinding wheel

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591555B2 (en) * 1977-12-23 1984-01-12 豊田バンモツプス株式会社 rotary diamond dresser
US5022895A (en) * 1988-02-14 1991-06-11 Wiand Ronald C Multilayer abrading tool and process
US4968326A (en) * 1989-10-10 1990-11-06 Wiand Ronald C Method of brazing of diamond to substrate
US5453106A (en) * 1993-10-27 1995-09-26 Roberts; Ellis E. Oriented particles in hard surfaces
JP3450085B2 (en) * 1995-02-16 2003-09-22 豊田バンモップス株式会社 Diamond dresser
WO1998016347A1 (en) * 1996-10-15 1998-04-23 Nippon Steel Corporation Semiconductor substrate polishing pad dresser, method of manufacturing the same, and chemicomechanical polishing method using the same dresser
KR19990081117A (en) * 1998-04-25 1999-11-15 윤종용 CMP Pad Conditioning Disc and Conditioner, Manufacturing Method, Regeneration Method and Cleaning Method of the Disc
US7201645B2 (en) * 1999-11-22 2007-04-10 Chien-Min Sung Contoured CMP pad dresser and associated methods
US6669745B2 (en) * 2001-02-21 2003-12-30 3M Innovative Properties Company Abrasive article with optimally oriented abrasive particles and method of making the same
US6945857B1 (en) * 2004-07-08 2005-09-20 Applied Materials, Inc. Polishing pad conditioner and methods of manufacture and recycling

Also Published As

Publication number Publication date
EP1779973A1 (en) 2007-05-02
EP1779973A4 (en) 2010-10-27
US20080041354A1 (en) 2008-02-21
CN101001720A (en) 2007-07-18
WO2006019062A1 (en) 2006-02-23

Similar Documents

Publication Publication Date Title
JPWO2006019062A1 (en) Rotary diamond dresser
US8579681B2 (en) Rotary dressing tool containing brazed diamond layer
JP2002537136A (en) Grinding wheel
JP4771811B2 (en) Both end surface truing device and both end surface truing tool
JP2004025401A (en) Disc-shaped diamond grinding wheel
KR20110050587A (en) Drill head manufacturing method, and drill head
JPH0317624B2 (en)
US5443417A (en) On edge honing devices
JP2019059020A (en) Working grindstone
KR20020068171A (en) A Machining Tip And Cutting Wheel, Grinding Wheel, Punching Wheel Thatwith
JPH11239979A (en) Rotary grinding wheel
JP2007167997A (en) Truing tool
JP4393143B2 (en) Truing tool and manufacturing method thereof
JP2006321006A (en) Manufacturing method of grinding chip body and rotating grinding wheel for peeling coating film
JP2001009733A (en) Diamond tool
JP3664706B2 (en) Grinding wheel
JP2018034290A (en) Disc-shaped grind stone and grinder
KR200344159Y1 (en) Diamond grinding cup wheel
JP3594073B2 (en) Super abrasive grain lap surface plate
JP2002066922A (en) Dressing method and dresser of grinding surface of grinding wheel
JPS63216676A (en) Abrasive grain body
JP4976053B2 (en) Whetstone
JPH0241875A (en) Cutter
JP2004202603A (en) Rotary tool and its constituting method
JPH05285841A (en) Grinding tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080707

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20101104