JPWO2006019047A1 - Method and apparatus for producing recycled foundry sand - Google Patents

Method and apparatus for producing recycled foundry sand Download PDF

Info

Publication number
JPWO2006019047A1
JPWO2006019047A1 JP2006531759A JP2006531759A JPWO2006019047A1 JP WO2006019047 A1 JPWO2006019047 A1 JP WO2006019047A1 JP 2006531759 A JP2006531759 A JP 2006531759A JP 2006531759 A JP2006531759 A JP 2006531759A JP WO2006019047 A1 JPWO2006019047 A1 JP WO2006019047A1
Authority
JP
Japan
Prior art keywords
sand
foundry sand
roasting
roasting chamber
foundry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006531759A
Other languages
Japanese (ja)
Other versions
JP4377916B2 (en
Inventor
浩作 日高
浩作 日高
英幸 桂川
英幸 桂川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Yukizai Corp
Original Assignee
Asahi Organic Chemicals Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Organic Chemicals Industry Co Ltd filed Critical Asahi Organic Chemicals Industry Co Ltd
Publication of JPWO2006019047A1 publication Critical patent/JPWO2006019047A1/en
Application granted granted Critical
Publication of JP4377916B2 publication Critical patent/JP4377916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C5/00Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose
    • B22C5/10Machines or devices specially designed for dressing or handling the mould material so far as specially adapted for that purpose by dust separating

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

高品質の再生鋳物砂を製造する方法。本発明の方法では、鋳物砂は焙焼室で焙焼されながら、空気流により焙焼室の上部に吹き上げられる。鋳物砂の粒は焙焼室の上部に浮上して、互いに衝突して研磨される。空気流の風速が0.8m/s以上であるときに、鋳物砂から不要成分が効果的に除去されて、高品質の再生鋳物砂が得られる。一実施形態では、大部分の鋳物砂が空気流によって焙焼室の上部に浮上され、浮上した鋳物砂の一部は、焙焼室の上部から焙焼室の外部の循環経路を通って焙焼室の下部に戻される。A method of producing high quality recycled foundry sand. In the method of the present invention, the foundry sand is blown to the upper part of the roasting chamber by the air flow while being roasted in the roasting chamber. Grains of foundry sand float above the roasting chamber and collide with each other to be ground. When the wind velocity of the air flow is 0.8 m/s or more, unnecessary components are effectively removed from the foundry sand, and high quality reclaimed foundry sand is obtained. In one embodiment, most of the foundry sand is levitated by the air flow to the upper part of the roasting chamber and a part of the foundry sand is roasted from the upper part of the roasting chamber through a circulation path outside the roasting chamber. Returned to the bottom of the baking chamber.

Description

本発明は、再生鋳物砂を製造する方法及び装置に関する。   The present invention relates to a method and apparatus for producing recycled foundry sand.

一般に、鉄やアルミニウム製の鋳物部品は、砂から形成された砂鋳型を用いる砂型鋳造によって製造される。鋳型に使用された鋳物砂は、回収して再生することにより砂鋳型に再使用される。   Generally, iron or aluminum casting parts are manufactured by sand casting using a sand mold made of sand. The foundry sand used in the mold is reused in the sand mold by recovering and regenerating it.

鋳物砂には、粘結性を有する樹脂等の有機粘結剤が添加されることがある。有機粘結剤の添加により、鋳物砂から成形された鋳型の形状は好適に保持される。   An organic binder such as a resin having a caking property may be added to the foundry sand. By adding the organic binder, the shape of the mold formed from the foundry sand is preferably maintained.

中子に使用される鋳物砂に有機粘結剤を用い、外鋳型として生型砂を使用した場合、当該中子を構成する鋳物砂だけを回収することは困難である。そのため、回収した鋳物砂には、ベントナイト等の無機成分を含んだ生型砂が混入してしまう。   When an organic binder is used for the molding sand used for the core and green sand is used for the outer mold, it is difficult to recover only the molding sand constituting the core. Therefore, raw sand containing an inorganic component such as bentonite is mixed in the recovered foundry sand.

従来の鋳物砂は、焙焼炉において鋳物砂を焙焼する工程と、焙焼された鋳物砂を研磨する工程によって再生される。焙焼工程では、鋳物砂は600℃以上に加熱される。加熱により、鋳物砂の粒の表面に付着した樹脂等の有機成分が除去される。研磨工程では、焙焼工程で除去されずに鋳物砂の粒の表面に残った有機成分や無機成分が剥離されるとともに、鋳物砂の粒の形状が整えられる。   Conventional foundry sand is regenerated by a step of roasting the foundry sand in a roasting furnace and a step of polishing the roasted foundry sand. In the roasting process, the foundry sand is heated to 600°C or higher. By heating, organic components such as resin adhering to the surface of the grains of the foundry sand are removed. In the polishing step, the organic and inorganic components remaining on the surface of the molding sand particles not removed in the roasting step are peeled off, and the shape of the molding sand particles is adjusted.

従来の鋳物砂の再生方法の一例として、焙焼炉内で鋳物砂を焙焼するときに、鋳物砂の焙焼熱で焙焼炉内の空気流を継続的に加熱することが提案されている(特許文献1参照)。この再生方法によれば、空気流の温度低下が抑制されて、鋳物砂中の有機成分の燃焼を促進することができる。
特開昭63−180340号公報
As an example of a conventional method for reclaiming foundry sand, when roasting the foundry sand in a roasting furnace, it has been proposed to continuously heat the air flow in the roasting furnace with the roasting heat of the foundry sand. (See Patent Document 1). According to this regeneration method, it is possible to suppress the temperature decrease of the air flow and accelerate the combustion of the organic component in the foundry sand.
JP-A-63-180340

ところが、上記従来の鋳物砂の再生方法では、鋳物砂に混入した無機成分(ベントナイト)は焙焼で除去されず、無機成分の残留した再生鋳物砂が回収される。再生鋳物砂に残留した無機成分はその再生鋳物砂で形成された砂鋳型の強度を低下させる一因である。そのため、鋳物砂の焙焼後に、鋳物砂の粒を研磨する工程を別途行なうことが不可欠であり、再生効率が低かった。   However, in the above-described conventional method for reclaiming foundry sand, the inorganic component (bentonite) mixed in the foundry sand is not removed by roasting, and the reclaimed foundry sand in which the inorganic component remains is recovered. The inorganic component remaining in the reclaimed molding sand is one of the factors that reduce the strength of the sand mold made of the reclaimed molding sand. Therefore, it is indispensable to separately perform the step of polishing the grains of the foundry sand after the roasting of the foundry sand, and the regeneration efficiency was low.

本発明の目的は、効率的で品質の高い再生鋳物砂を製造する方法及び装置を提供することにある。   It is an object of the present invention to provide a method and apparatus for producing efficient and high quality reclaimed foundry sand.

本発明の一態様は、鋳物砂を用意する工程と、前記鋳物砂を再生する工程とを備える再生鋳物砂の製造方法を提供する。前記再生する工程は、前記鋳物砂を炉に搬入する工程と、前記鋳物砂を焙焼しつつ、0.8m/s以上の風速の空気流で前記鋳物砂を前記炉内の上部に吹き上げる工程とを含む。   One aspect of the present invention provides a method for producing reclaimed molding sand, which includes a step of preparing the molding sand and a step of regenerating the molding sand. The step of regenerating is a step of loading the molding sand into a furnace, and a step of blowing the molding sand to an upper part of the furnace with an airflow of 0.8 m/s or more while roasting the molding sand. Including and

一実施形態では、前記炉は循環流動炉である。   In one embodiment, the furnace is a circulating fluidized furnace.

本発明の別の態様は、鋳物砂を用意する工程と、前記鋳物砂を再生する工程とを備える再生鋳物砂の製造方法を提供する。前記再生する工程は、前記鋳物砂を焙焼室を有する炉に搬入する工程と、前記鋳物砂を600℃以上で焙焼しつつ、前記焙焼室に0.8m/s以上の風速の空気流を供給して、前記鋳物砂の大部分を前記焙焼室内の上部に吹き上げる工程と、吹き上げられた前記鋳物砂を前記空気流とともに前記焙焼室から分離装置に移送する工程とを含む。   Another aspect of the present invention provides a method for producing a reclaimed molding sand, which includes a step of preparing the molding sand and a step of regenerating the molding sand. In the step of regenerating, the step of carrying the foundry sand into a furnace having a roasting chamber, and the process of roasting the foundry sand at 600° C. or more while air having a wind speed of 0.8 m/s or more in the roasting chamber Supplying a flow to blow most of the foundry sand above the roasting chamber, and transferring the blown foundry sand from the roasting chamber to a separator along with the air flow.

一実施形態では、前記再生する工程は更に、吹き上げられた前記鋳物砂を前記焙焼室内で発生した燃焼ガスから分離する工程と、分離された前記鋳物砂を前記分離装置から前記焙焼室に移送する工程とを含み、前記吹き上げる工程、前記分離装置に移送する工程、前記分離する工程、及び前記焙焼室に移送する工程を繰り返す工程とを更に備える。   In one embodiment, the step of regenerating further comprises a step of separating the blown molding sand from combustion gas generated in the roasting chamber, and the separated molding sand from the separating device to the roasting chamber. And a step of repeating the step of transferring, the step of blowing, the step of transferring to the separation device, the step of separating, and the step of transferring to the roasting chamber.

前記空気流の風速は1.5m/s以上であることが好ましい。   The wind velocity of the air flow is preferably 1.5 m/s or more.

一実施形態では、前記鋳物砂は、鋳造に使用された使用済み鋳物砂、規格外の品質を有する鋳物砂、不要な鋳物砂、または造型に失敗した砂鋳型に使用された鋳物砂である。   In one embodiment, the foundry sand is used foundry sand used for casting, foundry sand having substandard quality, unwanted foundry sand, or foundry sand used in a sand mold that has failed to be molded.

本発明の更なる態様は、鋳物砂を焙焼する焙焼室を有する焙焼装置と、前記鋳物砂の焙焼中に、0.8m/s以上の風速の空気流で前記鋳物砂の大部分を前記焙焼室内の上部に吹き上げるブロアとを備える再生鋳物砂の製造装置である。   A further aspect of the present invention is a roasting device having a roasting chamber for roasting the foundry sand, and a large amount of the foundry sand during the roasting of the foundry sand with an airflow of a wind speed of 0.8 m/s or more. It is an apparatus for producing reclaimed molding sand, which comprises a blower for blowing up a portion above the roasting chamber.

一実施形態の製造装置は、吹き上げられた前記鋳物砂の一部を、前記焙焼室の上部から前記焙焼室の外部を通って前記焙焼室の下部に戻す循環経路を更に備える。前記循環経路は、前記焙焼室の上部に接続された連通管と、前記連通管に接続され、吹き上げられた前記鋳物砂を前記焙焼室内で発生した燃焼ガスから分離する分離装置と、前記分離装置と前記焙焼室の下部とを接続し、前記分離装置で分離された前記鋳物砂を前記焙焼室へ戻す送出管とを含む。   The manufacturing apparatus of one embodiment further includes a circulation path for returning a part of the blown molding sand from the upper part of the roasting chamber to the outside of the roasting chamber to the lower part of the roasting chamber. The circulation path, a communication pipe connected to the upper portion of the roasting chamber, a separation device connected to the communication pipe, for separating the blown molding sand from the combustion gas generated in the roasting chamber, A delivery pipe is provided which connects the separating device to the lower portion of the roasting chamber and returns the foundry sand separated by the separating device to the roasting chamber.

一実施形態では、前記焙焼室は下部と、前記下部よりも広い上部とを有する。   In one embodiment, the roasting chamber has a lower portion and an upper portion that is wider than the lower portion.

本発明の第1実施形態に従う再生鋳物砂の製造装置の概略図。1 is a schematic diagram of an apparatus for manufacturing recycled foundry sand according to a first embodiment of the present invention. 本発明の第2実施形態に従う再生鋳物砂の製造装置の概略図。The schematic diagram of the manufacturing device of recycled casting sand according to a 2nd embodiment of the present invention. 図1及び2の再生鋳物砂の製造装置を使用して製造された再生鋳物砂の粒度指数と、焙焼中の空気流の風速との関係を示すグラフ。The graph which shows the relationship between the particle size index of the reclaimed molding sand manufactured using the manufacturing apparatus of the reclaimed molding sand of FIGS. 1 and 2, and the wind speed of the air flow during roasting. 図1及び2の再生鋳物砂の製造装置を使用して製造された再生鋳物砂の強熱減量及び曲げ強度と、焙焼中の空気流の風速との関係を示すグラフ。3 is a graph showing the relationship between the ignition loss and bending strength of the reclaimed molding sand manufactured using the reclaimed molding sand manufacturing apparatus of FIGS. 1 and 2, and the wind speed of the air flow during roasting. 再生鋳物砂の粒度指数−風速曲線の砂量による変化を示すグラフ。The graph which shows the change of the particle size index-wind velocity curve of recycled casting sand with the amount of sand. 再生鋳物砂の強熱減量−風速曲線の砂量による変化を示すグラフ。The graph which shows the change in ignition loss-wind velocity curve of the reclaimed foundry sand according to the amount of sand. 再生鋳物砂の曲げ強度−風速曲線の砂量による変化を示すグラフ。The graph which shows the change of the bending strength-wind velocity curve of recycled casting sand with the amount of sands.

(第1実施形態)
以下、本発明の第1実施形態に従う再生鋳物砂の製造方法を説明する。
(First embodiment)
Hereinafter, a method for manufacturing reclaimed molding sand according to the first embodiment of the present invention will be described.

鋳物砂は鋳造の鋳型(砂鋳型)に使用される砂である。鋳造に使用された砂鋳型を構成する鋳物砂(使用済み鋳物砂)は、回収されて再生される。使用済み鋳物砂は、水分をほとんど含有せず、0.1〜10質量%の有機成分を含有している。鋳物砂に含まれる粘結剤は、フェノール系の有機粘結剤、水ガラスやベントナイト等の無機粘結剤、及び粘土等の一般的な粘結剤であり、特に限定されない。第1実施形態の再生鋳物砂の製造方法は、有機粘結剤を含んだ鋳物砂を再生するのに好適である。第1実施形態の再生鋳物砂の製造方法は、シェルモールド法のような熱硬化性造型法や、鋳物砂を常温で自硬化させるコールドボックス法のような自硬性造型法によって形成された砂鋳型に使用された鋳物砂を再生するのに好適である。第1実施形態の再生鋳物砂の製造方法は、コールドボックス法及びシェルモールド法以外の方法で形成された砂鋳型に使用された鋳物砂の再生に使用することができる。   Foundry sand is sand used for casting molds (sand molds). The foundry sand (used foundry sand) that composes the sand mold used for casting is recovered and regenerated. The used foundry sand contains almost no water and contains 0.1 to 10 mass% of organic components. The binder contained in the foundry sand is a phenolic organic binder, an inorganic binder such as water glass or bentonite, and a common binder such as clay, and is not particularly limited. The method for producing reclaimed molding sand of the first embodiment is suitable for reclaiming molding sand containing an organic binder. The method for producing the reclaimed molding sand of the first embodiment is a sand mold formed by a thermosetting molding method such as a shell molding method or a self-hardening molding method such as a cold box method in which the molding sand is self-cured at room temperature. It is suitable for reclaiming foundry sand used in. The method for producing reclaimed molding sand of the first embodiment can be used for reclaiming molding sand used in a sand mold formed by a method other than the cold box method and the shell molding method.

以下、シェルモールド法によって形成された砂鋳型に使用された鋳物砂を説明する。   Hereinafter, the molding sand used in the sand mold formed by the shell molding method will be described.

シェルモールド法では、砂鋳型を形成するのに、添加成分の混合された鋳物砂、いわゆるレジンコーテッドサンドが用いられる。添加成分の例は、フェノールレジン等の粘結剤、ヘキサメチレンテトラミン等の硬化促進剤、及び、ステアリン酸カルシウム等の滑剤である。レジンコーテッドサンドは、水分をほとんど含有せず、0.1〜10質量%の有機成分を含有している。   In the shell mold method, molding sand in which additive components are mixed, so-called resin coated sand, is used to form a sand mold. Examples of the additive component are a binder such as phenol resin, a hardening accelerator such as hexamethylenetetramine, and a lubricant such as calcium stearate. The resin coated sand contains almost no water and contains 0.1 to 10 mass% of organic components.

シェルモールド法による鋳型の形成を説明する。200〜300℃の金型内にレジンコーテッドサンドを充填する。金型内でレジンコーテッドサンドを硬化させることにより鋳型が形成される。レジンコーテッドサンドは主に中子の材料として使用される。外鋳型の材料としては、ベントナイトのような粘結剤を含有する生型砂が使用される。   The formation of the mold by the shell mold method will be described. A resin coated sand is filled in a mold of 200 to 300°C. A mold is formed by curing the resin coated sand in the mold. Resin coated sand is mainly used as a core material. As the material for the outer mold, green sand containing a binder such as bentonite is used.

本明細書では、鋳物砂の再生は、鋳造に使用された鋳物砂を砂鋳型の形成に再利用可能な状態に再活性化させることを意味するだけでなく、未使用の鋳物砂を砂鋳型の形成に利用可能な鋳物砂に調製することも意味する。未使用の鋳物砂の例は、規格外の品質を有するレジンコーテッドサンド、不要なレジンコーテッドサンド、及び造型に失敗した砂鋳型に使用されたレジンコーテッドサンドである。規格外の品質を有するレジンコーテッドサンドの例は、強度不良のレジンコーテッドサンドである。本発明の再生工程によって、砂鋳型の形成に使用された粘結剤や、使用済み鋳型砂の回収時に混入した無機成分の除去された再生鋳物砂が得られる。この再生鋳物砂は、新しい砂鋳型の形成に好適に再使用することができる。   As used herein, reclaiming foundry sand not only means reactivating the foundry sand used for casting into a reusable state for formation of the sand mold, but also reusing unused foundry sand in the sand mold. It also means preparing into a molding sand that can be used to form Examples of virgin foundry sand are resin-coated sands with substandard qualities, unwanted resin-coated sands, and resin-coated sands used in sand molds that have failed to make. An example of a resin coated sand having a nonstandard quality is a resin coated sand having poor strength. According to the regenerating process of the present invention, the binder used for forming the sand mold and the regenerated foundry sand from which the inorganic components mixed during the recovery of the used mold sand are removed can be obtained. This recycled foundry sand can be suitably reused to form a new sand mold.

以下に、第1実施形態の再生鋳物砂の製造方法について説明する。   Below, the manufacturing method of the recycled casting sand of 1st Embodiment is demonstrated.

第1実施形態の再生鋳物砂の製造方法は、鋳物砂を焙焼させつつ、炉内に空気流(吹き上げ空気)を供給して鋳物砂を炉内の上部に吹き上げる再生工程を含む。炉内に搬入される鋳物砂の量は、特に限定されないが、鋳物砂の大部分が焙焼室の上部に吹き上げられて、鋳物砂が焙焼室の底に堆積しない程度の量に調整されるのが好ましい。鋳物砂の再生工程は、バッチ式や連続式で行なうことができる。一般的には連続的に再生工程を行なうのが効率的である。   The method for producing reclaimed molding sand of the first embodiment includes a regenerating step of supplying an air flow (blowing air) into the furnace to blow the molding sand to the upper part of the furnace while roasting the molding sand. The amount of the foundry sand carried into the furnace is not particularly limited, but is adjusted to such an amount that most of the foundry sand is not blown up to the upper part of the roasting chamber and the foundry sand is not deposited on the bottom of the roasting chamber. Is preferred. The process of reclaiming foundry sand can be performed in a batch system or a continuous system. Generally, it is efficient to carry out the regeneration process continuously.

鋳物砂は600℃以上で焙焼される。好ましい焙焼温度は700℃以上であり、さらに好ましい焙焼温度は800℃以上である。焙焼温度(鋳物砂の温度)が600℃未満の場合には、鋳物砂の粒の表面に付着した粘結剤等の不要成分の不完全燃焼が生じ、不要成分は十分に燃焼されない。この場合、低品質の黒化した再生砂が得られることがある。鋳物砂の温度を直接測定できない場合、炉内の雰囲気温度を鋳物砂の温度とみなしてもよい。   Foundry sand is roasted at 600°C or higher. A preferable roasting temperature is 700°C or higher, and a more preferable roasting temperature is 800°C or higher. When the roasting temperature (the temperature of foundry sand) is less than 600° C., incomplete combustion of unnecessary components such as a binder adhering to the surface of the grains of the foundry sand occurs, and the unnecessary components are not sufficiently burned. In this case, low quality blackened recycled sand may be obtained. When the temperature of the foundry sand cannot be directly measured, the ambient temperature in the furnace may be regarded as the temperature of the foundry sand.

風速は鋳物砂の大部分の粒を焙焼室の上部に浮上させて、鋳物砂が焙焼室の底に堆積しないように決められる。第1実施形態では、鋳物砂は、0.8m/s以上の風速を有する空気流により炉内で吹き上げられる。吹き上げられた鋳物砂の粒同士は互いに激しく衝突し合うことで研磨される。これにより、鋳物砂の粒の表面に付着した粘結剤等の不要成分が剥離され、また、鋳物砂の粒の形状や寸法が整えられる。空気流の風速は、好ましくは1m/s以上、さらに好ましくは1.5m/s以上である。空気流の風速が0.8m/s未満の場合には、鋳物砂の粒同士の衝突頻度が低くなり、鋳物砂の粒の表面の研磨が不十分になることがある。空気流の風速が高いほど鋳物砂の研磨効果は向上する。空気流の風速に上限はないが、鋳物砂の再生装置の構造上、15m/sを超える風速の空気流は実用的でない。   The wind speed is determined so that most of the grains of the foundry sand float above the roasting chamber so that the foundry sand does not accumulate at the bottom of the roasting chamber. In the first embodiment, the foundry sand is blown up in the furnace by an air flow having a wind speed of 0.8 m/s or more. The particles of the foundry sand blown up are polished by violently colliding with each other. As a result, unnecessary components such as a binder adhering to the surface of the molding sand particles are peeled off, and the shape and size of the molding sand particles are adjusted. The wind velocity of the air flow is preferably 1 m/s or more, more preferably 1.5 m/s or more. When the wind velocity of the airflow is less than 0.8 m/s, the frequency of collision between the particles of the foundry sand is low, and the surface of the particles of the foundry sand may be insufficiently polished. The higher the wind speed of the air flow, the more effective the polishing effect of the foundry sand. Although there is no upper limit to the wind speed of the air flow, an air flow with a wind speed exceeding 15 m/s is not practical due to the structure of the foundry sand recycling apparatus.

以下、図1を参照して、本発明の第1実施形態に従う鋳物砂の再生装置すなわち再生鋳物砂の製造装置を説明する。   Hereinafter, with reference to FIG. 1, an apparatus for reclaiming foundry sand, that is, an apparatus for producing reclaimed molding sand according to the first embodiment of the present invention will be described.

再生装置は、鋳物砂を循環させながら焙焼する循環流動炉11を備える。   The regenerating apparatus includes a circulating fluidized furnace 11 that roasts foundry sand while circulating it.

循環流動炉11は、例えば円筒状の焙焼室を有する焙焼装置12と、分離装置13(例えばサイクロン構造)と、送出管14と、焙焼装置12の底に接続された送風管を含むブロア16とを備える。ブロア16は送風管を通して焙焼室に空気流を供給する。焙焼装置12の側部には焙焼室に鋳物砂を搬入するための搬入口15が設けられている。鋳物砂はバーナ(図示略)によって焙焼室で焙焼される。連通管17は焙焼室の上部と分離装置13とを連通する。分離装置13は鋳物砂の焙焼によって発生する燃焼ガスと鋳物砂とを分離する。送出管14は分離装置13の下部と焙焼室の下部とを連通する。分離装置13にて燃焼ガスから分離された鋳物砂の粒は送出管14を通って焙焼室に戻される。連通管17、分離装置13、及び送出管14は、焙焼室の外部に設けられた循環経路として機能する。   The circulating fluidized furnace 11 includes, for example, a roasting device 12 having a cylindrical roasting chamber, a separating device 13 (for example, a cyclone structure), a delivery pipe 14, and a blower pipe connected to the bottom of the roasting device 12. And a blower 16. The blower 16 supplies an air flow to the roasting chamber through a blower pipe. A side of the roasting device 12 is provided with a carry-in port 15 for carrying the foundry sand into the roasting chamber. The foundry sand is roasted in a roasting chamber by a burner (not shown). The communication pipe 17 connects the upper part of the roasting chamber and the separating device 13. The separation device 13 separates the combustion gas generated by roasting the foundry sand from the foundry sand. The delivery pipe 14 connects the lower part of the separation device 13 and the lower part of the roasting chamber. The grains of the foundry sand separated from the combustion gas by the separator 13 are returned to the roasting chamber through the delivery pipe 14. The communication pipe 17, the separation device 13, and the delivery pipe 14 function as a circulation path provided outside the roasting chamber.

循環流動炉11を用いて鋳物砂を再生する場合には、まず、鋳型に使用された鋳物砂を回収する。中子に使用される鋳物砂の粘結剤として有機粘結剤が用いられ、外鋳型として生型砂が使用された場合、中子だけを回収しようとしても当該中子を構成する鋳物砂に、焙焼で除去できない無機成分(ベントナイト)を含んだ生型砂が混入してしまう。   When the foundry sand is reclaimed using the circulating fluidized furnace 11, first, the foundry sand used for the mold is recovered. An organic binder is used as a binder for the foundry sand used for the core, and when the green sand is used as the outer mold, the foundry sand that constitutes the core even if only the core is to be recovered, Raw sand containing inorganic components (bentonite) that cannot be removed by roasting is mixed.

鋳物砂を回収した後、この鋳物砂を予め焼炉(図示せず)内において100℃以上で予備焙焼する。次に、所定量の鋳物砂を搬入口15を通じて焙焼装置12内へ搬入する。鋳物砂は焙焼装置12内へ連続的にまたは間欠的に搬入してもよい。一実施形態の鋳物砂の投入量は1時間当たり10tである。焙焼装置12内に搬入された鋳物砂はバーナの熱により焙焼装置12内で焙焼されつつ、ブロア16から供給される空気流により吹き上げられる。   After the foundry sand is collected, the foundry sand is pre-baked in a baking furnace (not shown) at 100° C. or higher. Next, a predetermined amount of foundry sand is carried into the roasting device 12 through the carry-in port 15. The foundry sand may be carried into the roasting device 12 continuously or intermittently. In one embodiment, the amount of foundry sand input is 10 tons per hour. The foundry sand carried into the roasting device 12 is blown up by the air flow supplied from the blower 16 while being roasted in the roasting device 12 by the heat of the burner.

鋳物砂に付着した粘結剤等の不要成分は焙焼によって燃焼され、燃焼ガスが発生する。粘結剤等の不要成分のうち除去できなかった一部の有機成分が鋳物砂の粒の表面に残存することがある。回収した鋳物砂に生型砂が混入している場合には、生型砂に含まれるベントナイトは焙焼によって除去されずに残る。   Unnecessary components such as a binder adhering to foundry sand are burned by roasting to generate combustion gas. A part of the organic components that cannot be removed among the unnecessary components such as the binder may remain on the surface of the grains of the foundry sand. When green sand is mixed in the recovered foundry sand, bentonite contained in the raw sand remains without being removed by roasting.

第1実施形態では、鋳物砂の粒は、所定の風速(0.8m/s以上)の空気流によって焙焼室の上部に浮上して、互いに激しく衝突し合ったり、焙焼装置12の壁面に衝突したりして研磨される。この衝突により、鋳物砂に残留するベントナイト等の不要成分は鋳物砂の粒の表面から剥がれる。   In the first embodiment, the grains of the foundry sand float to the upper part of the roasting chamber by an air flow of a predetermined wind speed (0.8 m/s or more), collide violently with each other, or the wall surface of the roasting device 12. It collides with and is polished. Due to this collision, unnecessary components such as bentonite remaining in the foundry sand are peeled off from the surface of the grains of the foundry sand.

空気流の風速は、焙焼室内に風速センサを設置して直接に測定することができるが、次式で算出することもできる。   The wind velocity of the air flow can be directly measured by installing a wind velocity sensor in the roasting chamber, but can also be calculated by the following formula.

空気流の風速=V1×A1/B
V1はブロア16の送風管の計測位置Aで測定された空気流の速度である。A1はブロア16の送風管の計測位置Aにおける断面積である。Bは焙焼室の底部の面積である。
Wind velocity of airflow = V1 x A1/B
V1 is the velocity of the air flow measured at the measurement position A of the blower tube of the blower 16. A1 is a cross-sectional area at the measurement position A of the blower pipe of the blower 16. B is the area of the bottom of the roasting chamber.

上記のように鋳物砂が吹き上げられた場合、焙焼により除去しきれなかった有機成分も鋳物砂の粒の表面から剥がされる。鋳物砂の粒同士が擦れ合う結果、鋳物砂の粒が削られて粒径が小さくなる。このようにして、形状の改善された高品質の再生鋳物砂が得られる。   When the molding sand is blown up as described above, the organic components that cannot be completely removed by roasting are also peeled off from the surface of the grains of the molding sand. As a result of the particles of the foundry sand rubbing against each other, the particles of the foundry sand are shaved and the particle size becomes smaller. In this way, a high quality reclaimed foundry sand with improved shape is obtained.

焙焼装置12にて鋳物砂を吹き上げた空気流の一部は、焙焼装置12から分離装置13及び送出管14を経て再び焙焼装置12内に供給される。   A part of the air flow in which the molding sand is blown up by the roasting device 12 is supplied again from the roasting device 12 into the roasting device 12 via the separating device 13 and the delivery pipe 14.

一部の鋳物砂は、焙焼装置12内で吹き上げられた後、燃焼ガスとともに連通管17を通じて分離装置13に送られる。分離装置13は鋳物砂と燃焼ガスとを分離させる。分離された燃焼ガスは処理装置(図示略)を通じて大気に放散され、分離された鋳物砂は、送出管14を通じて焙焼装置12に送られる。   After a part of the foundry sand is blown up in the roasting device 12, it is sent to the separating device 13 through the communication pipe 17 together with the combustion gas. The separating device 13 separates the foundry sand and the combustion gas. The separated combustion gas is released to the atmosphere through a processing device (not shown), and the separated foundry sand is sent to the roasting device 12 through a delivery pipe 14.

第1実施形態では、鋳物砂の粒は、焙焼室内だけで研磨されるのではなく、連通管17、分離装置13及び送出管14を移動するときにも互いに衝突し合うことで研磨される。また、鋳物砂の粒は連通管17、分離装置13及び送出管14の内面に衝突しながら移動する。よって、循環流動炉11は鋳物砂を連続的に研磨することで、再生鋳物砂を効率的に製造することができる。   In the first embodiment, the grains of the foundry sand are not only polished in the roasting chamber, but are also polished by colliding with each other when moving the communication pipe 17, the separating device 13 and the delivery pipe 14. . Further, the grains of the foundry sand move while colliding with the inner surfaces of the communication pipe 17, the separating device 13 and the delivery pipe 14. Therefore, the circulating fluidized furnace 11 can efficiently produce the reclaimed molding sand by continuously polishing the molding sand.

焙焼装置12内に搬入された鋳物砂の粒は、循環流動炉11の内部を循環する空気流により、連続的に相互衝突して研磨されながら流動し、焙焼装置12内に送られる。鋳物砂は、循環流動炉11内を少なくとも1回循環することで再生される。第1実施形態によれば、粘結剤等の不要成分の焙焼とともに研磨処理が好適に施された高品質の再生鋳物砂が得られる。   Grains of the foundry sand carried into the roasting device 12 flow into the roasting device 12 while continuously colliding with each other and being polished by the air flow circulating inside the circulating fluidized furnace 11. The foundry sand is regenerated by circulating it in the circulating fluidized furnace 11 at least once. According to the first embodiment, it is possible to obtain a high-quality regenerated foundry sand that is preferably subjected to a baking treatment along with roasting of unnecessary components such as a binder.

第1実施形態によれば、以下の利点が得られる。   According to the first embodiment, the following advantages can be obtained.

第1実施形態の再生工程は、焙焼装置12内に搬入された鋳物砂を焙焼させつつ、0.8m/s以上の風速を有する空気流により鋳物砂を吹き上げることを含む。空気流により吹き上げられた鋳物砂の粒は、粒同士の衝突及び焙焼装置12の内壁面との衝突により十分に研磨される。これにより、鋳物砂の粒の表面に付着した粘結剤等の不要成分を剥離することができるとともに、鋳物砂の粒の形状を改善することができる。   The regenerating step of the first embodiment includes blowing the foundry sand by an air flow having a wind speed of 0.8 m/s or more while roasting the foundry sand carried into the toasting device 12. The grains of the foundry sand blown up by the air flow are sufficiently polished by the collision between the grains and the collision with the inner wall surface of the roasting device 12. As a result, unnecessary components such as a binder adhering to the surface of the molding sand particles can be removed, and the shape of the molding sand particles can be improved.

第1実施形態の再生鋳物砂の製造方法によれば、鋳物砂は焙焼されながら、鋳物砂の粒の表面が研磨される。従来の再生方法のように鋳物砂を焙焼した後に鋳物砂を研磨する工程を別途行なう必要はない。すなわち、第1実施形態では、焙焼工程と、研磨工程とが同時に行なわれる。このため、作業工程は簡略化され、作業時間は短縮される。   According to the method for producing recycled foundry sand of the first embodiment, the surface of the grains of the foundry sand is polished while the foundry sand is roasted. It is not necessary to separately perform the step of polishing the foundry sand after roasting the foundry sand as in the conventional regenerating method. That is, in the first embodiment, the roasting step and the polishing step are performed at the same time. Therefore, the working process is simplified and the working time is shortened.

焙焼室の内部で空気流が循環する循環流動炉11を用いて鋳物砂は再生される。空気流によって、鋳物砂の粒は互いに研磨されながら循環流動炉11内を少なくとも1回は循環する。従って、循環流動炉11は鋳物砂を効率良く研磨することができる。   The foundry sand is regenerated using the circulating fluidized furnace 11 in which the air flow circulates inside the roasting chamber. Due to the air flow, the grains of the foundry sand are circulated at least once in the circulating fluidized furnace 11 while being polished together. Therefore, the circulating fluidized furnace 11 can efficiently polish the foundry sand.

鋳物砂は600℃以上の高温で焙焼される。このため、鋳物砂の粒の表面に付着した粘結剤等の有機成分はほぼ完全に燃焼され、鋳物砂から除去される。   Foundry sand is roasted at a high temperature of 600° C. or higher. Therefore, the organic components such as the binder adhering to the surface of the grains of the foundry sand are almost completely burned and removed from the foundry sand.

(第2実施形態)
以下、本発明の第2実施形態に従う再生鋳物砂の製造方法及び装置を説明する。
(Second embodiment)
Hereinafter, a method and an apparatus for manufacturing recycled foundry sand according to the second embodiment of the present invention will be described.

まず、図2を参照して、第2実施形態の鋳物砂の再生装置すなわち再生鋳物砂の製造装置を説明する。再生装置は焙焼炉21を含む。焙焼炉21は、例えば円筒状の焙焼室を有する焙焼装置22と、焙焼室に0.8m/s以上の風速の空気流を供給する、焙焼装置22の下部に接続された送風管を含むブロア16とを含む。再生装置は分離装置13(図1参照)を備えていない。焙焼装置22の側部には、焙焼室に鋳物砂を搬入するための搬入口15が形成されている。焙焼装置22の側部には、鋳物砂を焙焼するためのバーナ(図示略)が配置されている。第2実施形態の焙焼炉21では、鋳物砂の粒は焙焼室の上部に吹き上げられた後、分離装置13(図1参照)に送られることなく、焙焼室の底に落下する。焙焼室は比較的広い上部と、比較的狭い下部とを有する。比較的広い上部を有する焙焼室は、鋳物砂の浮上と拡散を容易にし、鋳物砂の粒の衝突効率を高める作用を有する。   First, with reference to FIG. 2, an apparatus for reclaiming foundry sand, that is, an apparatus for producing reclaimed foundry sand according to the second embodiment will be described. The regeneration device includes a roasting furnace 21. The roasting furnace 21 is connected to, for example, a roasting device 22 having a cylindrical roasting chamber and a lower part of the roasting device 22 that supplies an air flow of a wind speed of 0.8 m/s or more to the roasting chamber. And a blower 16 including a blower tube. The regenerator does not include the separator 13 (see FIG. 1). At a side portion of the roasting device 22, a carry-in port 15 for carrying the foundry sand into the roasting chamber is formed. A burner (not shown) for roasting the foundry sand is arranged on the side of the roasting device 22. In the roasting furnace 21 of the second embodiment, the grains of the foundry sand are blown up to the upper part of the roasting chamber and then fall to the bottom of the roasting chamber without being sent to the separating device 13 (see FIG. 1 ). The roasting chamber has a relatively wide top and a relatively narrow bottom. The roasting chamber having a relatively wide upper part has an effect of facilitating the floating and diffusion of the foundry sand and enhancing the collision efficiency of the particles of the foundry sand.

焙焼炉21を用いた鋳物砂の再生例を説明する。   An example of reclaiming foundry sand using the roasting furnace 21 will be described.

鋳物砂を1時間当たり10tの割合で搬入口15から焙焼室内へ搬入する。ブロア16から0.8m/s以上の風速の空気流を焙焼室に供給しながら、鋳物砂をバーナの熱により焙焼する。大部分の鋳物砂の粒は空気流によって焙焼室内の上部に吹き上げられる。空気流の風速は第1実施形態で説明したようにして測定あるいは算出される。   The foundry sand is carried into the roasting chamber from the carry-in port 15 at a rate of 10 tons per hour. The casting sand is roasted by the heat of the burner while supplying an air flow having a wind speed of 0.8 m/s or more from the blower 16 to the roasting chamber. Most of the foundry sand grains are blown up by the air flow to the upper part of the roasting chamber. The wind velocity of the air flow is measured or calculated as described in the first embodiment.

鋳物砂の粒は焙焼室の上部で互いに激しく衝突し、また、焙焼室の内面にも衝突する。鋳物砂に残留する粘結剤等の不要成分は鋳物砂から剥離されて除かれる。鋳物砂の粒の相互衝突により、鋳物砂の粒の形状と寸法が整えられ、形状の改善された高品質の再生鋳物砂が得られる。   The grains of foundry sand violently collide with each other in the upper part of the roasting chamber and also with the inner surface of the roasting chamber. Unnecessary components such as a binder remaining in the foundry sand are peeled off and removed from the foundry sand. The mutual collision of the foundry sand particles results in a high quality reclaimed foundry sand with an improved shape, with the shape and size of the foundry sand particles being adjusted.

実施例1
(再生鋳物砂の製造)
鋳造に使用された砂鋳型から鋳物砂を回収した。処理能力2t/hの循環流動炉11及び焙焼炉21の各々に鋳物砂1tを搬入した。循環流動炉11及び焙焼炉21の各々において、鋳物砂を空気流で浮上させながら、700℃で1時間焙焼し、再生鋳物砂を製造した。
Example 1
(Production of recycled casting sand)
Foundry sand was recovered from the sand mold used for casting. 1 t of molding sand was carried into each of the circulating fluidized furnace 11 and the roasting furnace 21 having a processing capacity of 2 t/h. In each of the circulating fluidized furnace 11 and the roasting furnace 21, regenerated foundry sand was manufactured by roasting the foundry sand at 700° C. for 1 hour while floating the foundry sand.

(再生鋳物砂の物性)
焙焼中の空気流の風速と、再生鋳物砂の物性との関係を調べた。結果を図3及び図4に示す。
(Physical properties of recycled casting sand)
The relationship between the wind velocity of the air flow during roasting and the physical properties of the recycled foundry sand was investigated. The results are shown in FIGS. 3 and 4.

(粒度指数)
粒度指数は鋳物砂の粒の大きさの指標である。JACT試験法S−1(鋳物砂の粒度試験法)に定められたAFS系数基準に従って粒度指数を算出した。粒度指数が高いほど研磨が良くされているため再生鋳物砂の品質は高い。
(Particle size index)
The grain size index is an index of the grain size of the foundry sand. The particle size index was calculated according to the AFS system number standard defined in JACT test method S-1 (particle size test method for foundry sand). The higher the particle size index, the better the polishing and the higher the quality of the reclaimed foundry sand.

(強熱減量)
強熱減量は、熱分解及び燃焼したときに生じる鋳物砂の質量変化の程度を示す指標である。強熱減量が小さいほど再生鋳物砂に付着した異物は少ない。JACT試験法S−2(鋳物砂の強熱減量試験法)に準拠して強熱減量を測定した。具体的には、鋳物砂の遊離水分をJIS Z 2601に準拠して除去する。正確に秤量した鋳物砂10g(W1)をるつぼに入れる。このるつぼを、予め1000℃に加熱した電気炉で15分間放置する。引き続き、るつぼを45分間強熱する。電気炉から取り出したるつぼをデシケータ内で室温まで放冷する。その後、鋳物砂の質量(W2)を測定する。強熱減量を次式に従って算出した。
(Loss on ignition)
Ignition loss is an index showing the degree of mass change of foundry sand that occurs when pyrolysis and combustion occur. The smaller the loss on ignition, the less foreign matter adhered to the reclaimed molding sand. The ignition loss was measured according to JACT test method S-2 (Test method for ignition loss of foundry sand). Specifically, the free water of the foundry sand is removed according to JIS Z 2601. Place 10 g (W 1 ) of accurately weighed foundry sand in a crucible. This crucible is left for 15 minutes in an electric furnace preheated to 1000°C. The crucible is subsequently ignited for 45 minutes. Let the crucible taken out of the electric furnace cool to room temperature in a desiccator. Then, the mass (W 2 ) of the foundry sand is measured. Loss on ignition was calculated according to the following formula.

強熱減量(%)=(W1-W2)/W1×100
(曲げ強度)
150℃に予熱した再生鋳物砂7kgと、ノボラック型フェノール樹脂(旭有機材工業製、商品名SP610)175gとをワールミキサー(遠州鉄工株式会社製)内に入れ、40秒間混練した。ヘキサメチレンテトラミン26.3gと水105gとを含む水溶液をワールミキサー内の混練物に追加した。ブロワーで送風しながら混練物の塊が崩れるまで混練を継続した。ステアリン酸カルシウム7gをワールミキサー内へ追加し、さらに5秒間混練し、レジンコーテッドサンドを得た。このレジンコーテッドサンドからJIS K 6910で規定される試験片を作製した。JACT試験法SM−1(曲げ強さ試験法)に準拠して、試験片の曲げ強度を測定した。試験片の曲げ強度が高いほど、鋳型の曲げ強度は高い。
Loss on ignition (%)=(W 1 -W 2 )/W 1 ×100
(Bending strength)
7 kg of reclaimed molding sand preheated to 150° C. and 175 g of novolac type phenol resin (manufactured by Asahi Organic Materials Co., Ltd., trade name SP610) were put into a whirl mixer (manufactured by Enshu Iron Works Co., Ltd.) and kneaded for 40 seconds. An aqueous solution containing 26.3 g of hexamethylenetetramine and 105 g of water was added to the kneaded product in the whirl mixer. Kneading was continued while blowing air with a blower until the mass of the kneaded material collapsed. 7 g of calcium stearate was added into the whirl mixer and kneaded for 5 seconds to obtain a resin coated sand. A test piece defined by JIS K 6910 was produced from this resin coated sand. The bending strength of the test piece was measured according to JACT test method SM-1 (bending strength test method). The higher the bending strength of the test piece, the higher the bending strength of the mold.

図3に示すように、図2の焙焼炉21で再生鋳物砂を製造した場合、空気流の風速が0.8m/s以上のときに、粒度指数は急激に向上した。すなわち、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼することで、鋳物砂の粒は十分に研磨されて、高品質の再生鋳物砂が得られることが分かった。風速が1.5〜3m/sの範囲内では、焙焼炉21よりも循環流動炉11を用いる方が、好ましい粒度指数を有する再生鋳物砂が得られることがわかった。この理由は、循環流動炉11内での鋳物砂の粒同士の衝突力が焙焼炉21のものよりも高いため、粘結剤等の不要成分が好適に除去されたからであると推測される。   As shown in FIG. 3, in the case of producing the reclaimed molding sand in the roasting furnace 21 of FIG. 2, when the wind velocity of the air flow was 0.8 m/s or more, the particle size index was sharply improved. That is, it was found that by roasting the foundry sand while levitating the foundry sand with an air flow of 0.8 m/s or more, the grains of the foundry sand were sufficiently polished to obtain a high quality reclaimed foundry sand. .. It has been found that when the wind speed is in the range of 1.5 to 3 m/s, the use of the circulating fluidized furnace 11 rather than the roasting furnace 21 makes it possible to obtain reclaimed molding sand having a preferred particle size index. It is presumed that this is because the collision force between the grains of the foundry sand in the circulating fluidized furnace 11 is higher than that in the roasting furnace 21, so that unnecessary components such as a binder are preferably removed. ..

図4から明らかなように、図2の焙焼炉21で再生鋳物砂を製造した場合、風速が0.8m/s以上のときに、強熱減量は急激に低下した。すなわち、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼することで、その表面に粘結剤等の不要成分のほとんど付着していない高品質の再生鋳物砂が得られることが分かった。風速が1.5〜3m/sの範囲内では、焙焼炉21よりも循環流動炉11を用いる方が、強熱原料の小さい再生鋳物砂が得られることがわかった。この理由は、循環流動炉11内での鋳物砂の粒同士の衝突力が焙焼炉21のものよりも高いため、粘結剤等の不要成分が好適に除去されたからであると推測される。   As is clear from FIG. 4, when the reclaimed molding sand was manufactured in the roasting furnace 21 of FIG. 2, the loss on ignition decreased sharply when the wind speed was 0.8 m/s or higher. That is, by roasting the foundry sand while floating it with an airflow of 0.8 m/s or more, a high quality reclaimed foundry sand with almost no unnecessary components such as a binder adhering to its surface is obtained. I found out that It was found that when the wind speed was within the range of 1.5 to 3 m/s, the use of the circulating fluidized furnace 11 rather than the roasting furnace 21 yielded regenerated foundry sand with a smaller ignition source. It is presumed that this is because the collision force between the grains of the foundry sand in the circulating fluidized furnace 11 is higher than that in the roasting furnace 21, so that unnecessary components such as a binder are preferably removed. ..

曲げ強度は、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼することで、急激に向上した。すなわち、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼された再生鋳物砂から製造されたレジンコーテッドサンドは、良好な強度を有する鋳型を製造するのに適している。風速が1.5〜3m/sの範囲内では、焙焼炉21よりも循環流動炉11を用いる方が、曲げ強度の高い鋳型を製造することのできる再生鋳物砂が得られることがわかった。この理由は、循環流動炉11内での鋳物砂の粒同士の衝突力が焙焼炉21のものよりも高いため、粒度が小さく揃った再生鋳物砂が得られるからであると推測される。   The bending strength was drastically improved by roasting the foundry sand while floating the foundry sand with an airflow of 0.8 m/s or more. That is, the resin coated sand produced from the regenerated foundry sand roasted while floating the foundry sand with the air flow of 0.8 m/s or more is suitable for producing a mold having good strength. .. It was found that when the wind speed is in the range of 1.5 to 3 m/s, the use of the circulating fluidized furnace 11 rather than the roasting furnace 21 provides reclaimed molding sand capable of producing a mold having high bending strength. .. It is presumed that this is because the collision force between the grains of the foundry sand in the circulating fluidized furnace 11 is higher than that in the roasting furnace 21, so that reclaimed foundry sand having a small grain size can be obtained.

実施例2
容積が40m3の焙焼室を有する焙焼炉21を用意した。焙焼室内に搬入する鋳物砂の量を変更(0.5t、1t、1.5t)して、鋳物砂を再生した。再生鋳物砂の物性を実施例1と同様に測定した。
Example 2
A roasting furnace 21 having a roasting chamber with a volume of 40 m 3 was prepared. The amount of foundry sand carried into the roasting chamber was changed (0.5t, 1t, 1.5t) to regenerate the foundry sand. The physical properties of the reclaimed foundry sand were measured in the same manner as in Example 1.

1tの鋳物砂を搬入した際に得られた再生鋳物砂の物性は、実施例1の測定値を引用した。結果を図5〜図7に示す。   Regarding the physical properties of the reclaimed molding sand obtained when 1 t of the molding sand was carried in, the measurement values of Example 1 were cited. The results are shown in FIGS.

図6に示すように、焙焼室に搬入する鋳物砂の量を変更した場合であっても、0.8m/s以上の風速の空気流を供給すれば、強熱減量が急激に低下した再生鋳物砂が得られた。   As shown in FIG. 6, even when the amount of foundry sand carried into the roasting chamber was changed, the loss on ignition decreased sharply when an air flow of 0.8 m/s or higher was supplied. Reclaimed foundry sand was obtained.

図5及び図7に示すように、焙焼室に搬入する鋳物砂の量を変更した場合であっても、0.8m/s以上の風速の空気流を供給すれば、粒度指数及び曲げ強度が急激に向上した再生鋳物砂が得られた。   As shown in FIG. 5 and FIG. 7, even when the amount of foundry sand carried into the roasting chamber is changed, if the airflow with a wind speed of 0.8 m/s or more is supplied, the grain size index and the bending strength are increased. A reclaimed foundry sand having a sharply improved value was obtained.

実施例3
図1の循環流動炉11及び図2の焙焼炉21を用いて、鋳物砂を900℃で焙焼した。再生鋳物砂の物性を測定した。鋳物砂の焙焼温度が再生鋳物砂の物性に与える影響について評価した。その結果を以下の表1に示す。表1の炉内砂温は、循環流動炉11及び焙焼炉21内の鋳物砂の温度である。炉内砂量は、循環流動炉11及び焙焼炉21に搬入した鋳物砂の質量である。
Example 3
The casting sand was roasted at 900° C. using the circulating fluidized furnace 11 of FIG. 1 and the roasting furnace 21 of FIG. 2. The physical properties of the reclaimed foundry sand were measured. The effect of the roasting temperature of the foundry sand on the physical properties of the reclaimed foundry sand was evaluated. The results are shown in Table 1 below. The sand temperature in the furnace in Table 1 is the temperature of the foundry sand in the circulating fluidized furnace 11 and the roasting furnace 21. The amount of sand in the furnace is the mass of foundry sand carried into the circulating fluidized furnace 11 and the roasting furnace 21.

Figure 2006019047
比較例1では、0.8m/s未満の風速の空気流を供給した。鋳物砂を900℃で焙焼した場合、0.8m/sを大幅に超える風速(6m/s)を使用した試験例1,2では、良好な物性を有する再生鋳物砂が得られた。
Figure 2006019047
In Comparative Example 1, an air flow having a wind speed of less than 0.8 m/s was supplied. When the foundry sand was roasted at 900° C., in Test Examples 1 and 2 using a wind speed (6 m/s) significantly exceeding 0.8 m/s, regenerated foundry sand having good physical properties was obtained.

試験例3より高い炉内砂温の試験例1では、物性の僅かな向上がみられた。この理由は、鋳物砂を900℃で焙焼することにより、700℃では除去することができなかった粘結剤等の不要成分を除去することができたものと推測される。   In Test Example 1 in which the furnace sand temperature was higher than that in Test Example 3, a slight improvement in physical properties was observed. The reason for this is presumed to be that by roasting the foundry sand at 900° C., unnecessary components such as a binder, which could not be removed at 700° C., could be removed.

各実施形態は、次のように変更してもよい。   Each embodiment may be modified as follows.

ブロア16の送風管は、焙焼室の底に限らず、焙焼装置12,22の上部又は中央部に接続してもよい。この場合、鋳物砂の粒は、焙焼室内において、様々な方向から供給された空気流によって、より高頻度でより高い衝突力で互いに衝突する。よって、研磨効果が向上する。   The blower pipe of the blower 16 is not limited to the bottom of the roasting chamber, and may be connected to the upper part or the central part of the roasting devices 12 and 22. In this case, the grains of the foundry sand collide with each other in the roasting chamber more frequently and with a higher collision force by the air flows supplied from various directions. Therefore, the polishing effect is improved.

以上詳述した実施形態及び実施例は本発明の趣旨を説明するためのものであり、本発明の趣旨は請求の範囲に規定されており、実施形態及び実施例の記載に限定解釈されるべきではない。   The embodiments and examples detailed above are for explaining the gist of the present invention, and the gist of the present invention is defined in the claims and should be construed as limited to the description of the embodiments and examples. is not.

【0010】
製、商品名SP610)175gとをワールミキサー(遠州鉄工株式会社製)内に入れ、40秒間混練した。ヘキサメチレンテトラミン26.3gと水105gとを含む水溶液をワールミキサー内の混練物に追加した。ブロワーで送風しながら混練物の塊が崩れるまで混練を継続した。ステアリン酸カルシウム7gをワールミキサー内へ追加し、さらに5秒間混練し、レジンコーテッドサンドを得た。このレジンコーテッドサンドからJIS K 6910で規定される試験片を作製した。JACT試験法SM−1(曲げ強さ試験法)に準拠して、試験片の曲げ強度を測定した。試験片の曲げ強度が高いほど、鋳型の曲げ強度は高い。
[0058] 図3に示すように、図2の焙焼炉21で再生鋳物砂を製造した場合、空気流の風速が0.8m/s以上のときに、粒度指数は急激に向上した。すなわち、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼することで、鋳物砂の粒は十分に研磨されて、高品質の再生鋳物砂が得られることが分かった。風速が1.5〜3m/sの範囲内では、焙焼炉21よりも循環流動炉11を用いる方が、好ましい粒度指数を有する再生鋳物砂が得られることがわかった。この理由は、循環流動炉11内での鋳物砂の粒同士の衝突力が焙焼炉21のものよりも高いため、粘結剤等の不要成分が好適に除去されたからであると推測される。
[0059] 図4から明らかなように、図2の焙焼炉21で再生鋳物砂を製造した場合、風速が0.8m/s以上のときに、強熱減量は急激に低下した。すなわち、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼することで、その表面に粘結剤等の不要成分のほとんど付着していない高品質の再生鋳物砂が得られることが分かった。風速が1.5〜3m/sの範囲内では、焙焼炉21よりも循環流動炉11を用いる方が、強熱減量の小さい再生鋳物砂が得られることがわかった。この理由は、循環流動炉11内での鋳物砂の粒同士の衝突力が焙焼炉21のものよりも高いため、粘結剤等の不要成分が好適に除去されたからであると推測される。
[0060] 曲げ強度は、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼することで、急激に向上した。すなわち、0.8m/s以上の風速の空気流で鋳物砂を浮上させながら焙焼された再生鋳物砂から製造されたレジンコーテッドサンドは、良好な強度を有する鋳型を製造するのに適している。風速が1.5〜3m/sの範囲内では、
[0010]
And 175 g of trade name SP610) were placed in a whirl mixer (manufactured by Enshu Iron Works Co., Ltd.) and kneaded for 40 seconds. An aqueous solution containing 26.3 g of hexamethylenetetramine and 105 g of water was added to the kneaded product in the whirl mixer. Kneading was continued while blowing air with a blower until the mass of the kneaded material collapsed. 7 g of calcium stearate was added into the whirl mixer and kneaded for 5 seconds to obtain a resin coated sand. A test piece defined by JIS K 6910 was produced from this resin coated sand. The bending strength of the test piece was measured according to JACT test method SM-1 (bending strength test method). The higher the bending strength of the test piece, the higher the bending strength of the mold.
[0058] As shown in Fig. 3, in the case of producing the reclaimed molding sand in the roasting furnace 21 of Fig. 2, when the wind velocity of the air flow was 0.8 m/s or more, the particle size index was sharply improved. That is, it was found that by roasting the foundry sand while levitating the foundry sand with an air flow of 0.8 m/s or more, the grains of the foundry sand were sufficiently polished to obtain a high quality reclaimed foundry sand. .. It has been found that when the wind speed is in the range of 1.5 to 3 m/s, the use of the circulating fluidized furnace 11 rather than the roasting furnace 21 makes it possible to obtain reclaimed molding sand having a preferred particle size index. It is presumed that this is because the collision force between the grains of the foundry sand in the circulating fluidized furnace 11 is higher than that in the roasting furnace 21, so that unnecessary components such as a binder are preferably removed. ..
As is clear from FIG. 4, in the case of producing the reclaimed molding sand in the roasting furnace 21 of FIG. 2, the loss on ignition decreased sharply when the wind speed was 0.8 m/s or higher. That is, by roasting the foundry sand while floating it with an airflow of 0.8 m/s or more, a high quality reclaimed foundry sand with almost no unnecessary components such as a binder adhering to its surface is obtained. I found out that It was found that, when the wind speed is within the range of 1.5 to 3 m/s, the use of the circulating fluidized furnace 11 rather than the roasting furnace 21 yields a reclaimed molding sand with a smaller ignition loss. It is presumed that this is because the collision force between the grains of the foundry sand in the circulating fluidized furnace 11 is higher than that in the roasting furnace 21, so that unnecessary components such as a binder are preferably removed. ..
[0060] The bending strength was drastically improved by roasting the molding sand while levitating the molding sand with an air flow of 0.8 m/s or more. That is, the resin coated sand produced from the regenerated foundry sand roasted while floating the foundry sand with the airflow of 0.8 m/s or more is suitable for producing a mold having good strength. .. When the wind speed is within the range of 1.5 to 3 m/s,

【0012】

Figure 2006019047
比較例1では、0.8m/s未満の風速の空気流を供給した。鋳物砂を900℃で焙焼した場合、0.8m/sを大幅に超える風速(6m/s)を使用した試験例1,2では、良好な物性を有する再生鋳物砂が得られた。
[0067] 試験例3より高い炉内砂温の試験例1では、物性の僅かな向上がみられた。この理由は、鋳物砂を900℃で焙焼することにより、700℃では除去することができなかった粘結剤等の不要成分を除去することができたものと推測される。
[0068] 各実施形態は、次のように変更してもよい。
[0069] ブロア16の送風管は、焙焼室の底に限らず、焙焼装置12,22の上部又は中央部に接続してもよい。この場合、鋳物砂の粒は、焙焼室内において、様々な方向から供給された空気流によって、より高頻度でより高い衝突力で互いに衝突する。よって、研磨効果が向上する。
[0070] 以上詳述した実施形態及び実施例は本発明の趣旨を説明するためのものであり、本発明の趣旨は請求の範囲に規定されており、実施形態及び実施例の記載に限定解釈されるべきではない。[0012]
Figure 2006019047
In Comparative Example 1, an air flow having a wind speed of less than 0.8 m/s was supplied. When the foundry sand was roasted at 900° C., in Test Examples 1 and 2 using a wind speed (6 m/s) significantly exceeding 0.8 m/s, regenerated foundry sand having good physical properties was obtained.
[0067] In Test Example 1 in which the in-furnace sand temperature was higher than in Test Example 3, a slight improvement in physical properties was observed. The reason for this is presumed to be that by roasting the foundry sand at 900° C., unnecessary components such as a binder, which could not be removed at 700° C., could be removed.
[0068] Each embodiment may be modified as follows.
[0069] The blower pipe of the blower 16 is not limited to the bottom of the roasting chamber, and may be connected to the upper portion or the central portion of the roasting devices 12 and 22. In this case, the grains of the foundry sand collide with each other in the roasting chamber more frequently and with a higher collision force by the air flows supplied from various directions. Therefore, the polishing effect is improved.
[0070] The embodiments and examples described in detail above are for explaining the gist of the present invention, and the gist of the present invention is defined in the claims and limited interpretation to the description of the embodiments and examples. Should not be done.

Claims (9)

再生鋳物砂の製造方法であって、
鋳物砂を用意する工程と、
前記鋳物砂を再生する工程とを備え、前記再生する工程が、
前記鋳物砂を炉に搬入する工程と、
前記鋳物砂を焙焼しつつ、0.8m/s以上の風速の空気流で前記鋳物砂を前記炉内の上部に吹き上げる工程を含むことを特徴とする再生鋳物砂の製造方法。
A method of manufacturing recycled foundry sand,
The process of preparing foundry sand,
And a step of regenerating the molding sand, the regenerating step,
Carrying the molding sand into the furnace,
A method for producing a reclaimed molding sand, which comprises a step of blowing the molding sand to an upper part of the furnace with an airflow of 0.8 m/s or more while roasting the molding sand.
前記炉は循環流動炉であることを特徴とする請求項1に記載の再生鋳物砂の製造方法。 The method for producing reclaimed molding sand according to claim 1, wherein the furnace is a circulating fluidized furnace. 再生鋳物砂の製造方法であって、
鋳物砂を用意する工程と、
前記鋳物砂を再生する工程とを備え、前記再生する工程が、
前記鋳物砂を焙焼室を有する炉に搬入する工程と、
前記鋳物砂を600℃以上で焙焼しつつ、前記焙焼室に0.8m/s以上の風速の空気流を供給して、前記鋳物砂の大部分を前記焙焼室内の上部に吹き上げる工程と、
吹き上げられた前記鋳物砂を前記空気流とともに前記焙焼室から分離装置に移送する工程とを含むことを特徴とする再生鋳物砂の製造方法。
A method of manufacturing recycled foundry sand,
The process of preparing foundry sand,
And a step of regenerating the molding sand, the regenerating step,
Carrying the casting sand into a furnace having a roasting chamber,
While roasting the foundry sand at 600° C. or higher, supplying an air flow of 0.8 m/s or more to the roasting chamber to blow up most of the foundry sand to the upper part of the roasting chamber. When,
And a step of transferring the blown foundry sand together with the airflow from the roasting chamber to a separator.
前記再生する工程は更に、
吹き上げられた前記鋳物砂を前記焙焼室内で発生した燃焼ガスから分離する工程と、
分離された前記鋳物砂を前記分離装置から前記焙焼室に移送する工程とを含み、
前記吹き上げる工程、前記分離装置に移送する工程、前記分離する工程、及び前記焙焼室に移送する工程を繰り返す工程とを更に備えることを特徴とする請求項3に記載の再生鋳物砂の製造方法。
The step of regenerating further includes
Separating the blown molding sand from the combustion gas generated in the roasting chamber,
Including a step of transferring the separated molding sand from the separation device to the roasting chamber,
The method for producing reclaimed molding sand according to claim 3, further comprising: a step of repeating the step of blowing up, a step of transferring to the separating device, a step of separating, and a step of transferring to the roasting chamber. ..
前記空気流の風速は1.5m/s以上であることを特徴とする請求項1または3に記載の再生鋳物砂の製造方法。 The method for producing reclaimed molding sand according to claim 1 or 3, wherein the wind velocity of the air flow is 1.5 m/s or more. 前記鋳物砂は、鋳造に使用された使用済み鋳物砂、規格外の品質を有する鋳物砂、不要な鋳物砂、または造型に失敗した砂鋳型に使用された鋳物砂である請求項1または3に記載の再生鋳物砂の製造方法。 The casting sand is used casting sand used for casting, casting sand having a nonstandard quality, unnecessary casting sand, or casting sand used in a sand mold that has failed to be molded. A method for producing the reclaimed foundry sand described. 再生鋳物砂の製造装置であって、
前記鋳物砂を焙焼する焙焼室を有する焙焼装置と、
前記鋳物砂の焙焼中に、0.8m/s以上の風速の空気流で前記鋳物砂の大部分を前記焙焼室内の上部に吹き上げるブロアとを備えることを特徴とする再生鋳物砂の製造装置。
A manufacturing device for recycled foundry sand,
A roasting device having a roasting chamber for roasting the foundry sand;
A blower for blowing up most of the molding sand to the upper part of the roasting chamber with an airflow of 0.8 m/s or more during roasting of the molding sand. apparatus.
前記焙焼室の上部に吹き上げられた前記鋳物砂の一部を、前記焙焼室の上部から前記焙焼室の外部を通って前記焙焼室の下部に戻す循環経路を更に備え、
前記循環経路は、前記焙焼室の上部に接続された連通管と、
前記連通管に接続され、吹き上げられた前記鋳物砂を前記焙焼室内で発生した燃焼ガスから分離する分離装置と、
前記分離装置と前記焙焼室の下部とを接続し、前記分離装置で分離された前記鋳物砂を前記焙焼室へ戻す送出管とを含む請求項7の再生鋳物砂の製造装置。
A part of the casting sand blown to the upper part of the roasting chamber is further provided with a circulation path for returning from the upper part of the roasting chamber to the lower part of the roasting chamber through the outside of the roasting chamber,
The circulation path, a communication pipe connected to the upper portion of the roasting chamber,
A separation device which is connected to the communication pipe and separates the blown up molding sand from the combustion gas generated in the roasting chamber,
8. The apparatus for producing reclaimed molding sand according to claim 7, further comprising a delivery pipe that connects the separating device to a lower portion of the roasting chamber and returns the molding sand separated by the separating device to the roasting chamber.
前記焙焼室は下部と、前記下部よりも広い上部とを有することを特徴とする請求項7の再生鋳物砂の製造装置。 8. The apparatus for producing recycled foundry sand according to claim 7, wherein the roasting chamber has a lower portion and an upper portion wider than the lower portion.
JP2006531759A 2004-08-20 2005-08-12 Method and apparatus for producing recycled foundry sand Expired - Fee Related JP4377916B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004240313 2004-08-20
JP2004240313 2004-08-20
PCT/JP2005/014821 WO2006019047A1 (en) 2004-08-20 2005-08-12 Method and apparatus for producing regenerated foundry sand

Publications (2)

Publication Number Publication Date
JPWO2006019047A1 true JPWO2006019047A1 (en) 2008-07-31
JP4377916B2 JP4377916B2 (en) 2009-12-02

Family

ID=35907435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006531759A Expired - Fee Related JP4377916B2 (en) 2004-08-20 2005-08-12 Method and apparatus for producing recycled foundry sand

Country Status (5)

Country Link
JP (1) JP4377916B2 (en)
CN (1) CN100558486C (en)
MY (1) MY146740A (en)
TW (1) TW200618890A (en)
WO (1) WO2006019047A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102788501A (en) * 2012-08-31 2012-11-21 无锡锡南铸造机械有限公司 Energy-saving environment-friendly type high-temperature fluidized bed calcinator
KR20180018569A (en) * 2015-06-11 2018-02-21 신토고교 가부시키가이샤 Method and apparatus for regeneration of main criminal
JP6406207B2 (en) * 2015-10-20 2018-10-17 マツダ株式会社 How to recycle foundry sand
CN111468673B (en) * 2020-04-24 2021-06-25 南阳仁创砂业科技有限公司 Regeneration method of used foundry sand
JP7364762B1 (en) 2022-10-07 2023-10-18 旭有機材株式会社 Recycled sand raw material composition and method for producing the same, and method for producing recycled sand and resin-coated sand

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53106385A (en) * 1977-02-28 1978-09-16 Hitachi Metals Ltd Method and apparatus for fluidizedly baking powder
JPS63180340A (en) * 1987-01-22 1988-07-25 Nippon Kokan Keishiyu Kk Method for regenerating molding sand
JP2905089B2 (en) * 1994-05-27 1999-06-14 川崎重工業株式会社 Casting sand recycling method
JPH11285779A (en) * 1998-03-31 1999-10-19 Osaka Gas Co Ltd Method for reproducing molding sand

Also Published As

Publication number Publication date
WO2006019047A1 (en) 2006-02-23
MY146740A (en) 2012-09-14
TW200618890A (en) 2006-06-16
JP4377916B2 (en) 2009-12-02
CN101005909A (en) 2007-07-25
CN100558486C (en) 2009-11-11

Similar Documents

Publication Publication Date Title
CN101663112B (en) Thermal regeneration of foundry sand
JP5297731B2 (en) Recycled casting sand manufacturing method
CN107983907A (en) The method of recycling cast waste sand
JP5110984B2 (en) Recycled casting sand manufacturing method
CN110421113A (en) A kind of ceramsite sand prepared by regenerating used waste and the precoated sand prepared by the ceramsite sand
JP5916789B2 (en) Method for producing casting sand mold
CN103934411B (en) The moulding of PEPSET resin and sand recycle clean casting technique
JP4377916B2 (en) Method and apparatus for producing recycled foundry sand
JP2003251434A (en) Sand for mold and production method thereof
JP6354728B2 (en) Reuse method and reuse device for core sand
CN103990760A (en) Lost foam casting process of aluminum alloy cylinder body or cylinder cover
CN114080284B (en) Foundry sand regeneration method
KR100824100B1 (en) A method for making sand covered with bentonite, the sand, and a method for recycling molding sand for a mold using the sand covered by bentonite
JP6873548B2 (en) Manufacturing method of foundry sand
JP2010075937A (en) Method for manufacturing regenerated molding sand
JPH06154941A (en) Reconditioning method for molding sand and production of casting mold
US4449566A (en) Foundry sand reclamation
JP6458846B2 (en) Reusing core sand
CN108367338B (en) Foundry sand containing binder and method for producing same
JPH0647479A (en) Artificial molding sand and its production
JP7142563B2 (en) How to recycle recovered sand
JP5212842B2 (en) Shell mold molding system using artificial sand and shell sand used in the system.
CN206936276U (en) A kind of resin sand regeneration system
JPH0413438A (en) Method and system for regenerating used sand at foundry
WO2011082464A1 (en) Treatment process for surplus sand from casting for use in core making and molding

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090908

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090911

R150 Certificate of patent or registration of utility model

Ref document number: 4377916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees