JPWO2005105398A1 - Indoor wooden magnetic wave absorption board - Google Patents

Indoor wooden magnetic wave absorption board Download PDF

Info

Publication number
JPWO2005105398A1
JPWO2005105398A1 JP2006512839A JP2006512839A JPWO2005105398A1 JP WO2005105398 A1 JPWO2005105398 A1 JP WO2005105398A1 JP 2006512839 A JP2006512839 A JP 2006512839A JP 2006512839 A JP2006512839 A JP 2006512839A JP WO2005105398 A1 JPWO2005105398 A1 JP WO2005105398A1
Authority
JP
Japan
Prior art keywords
wood
magnetic
wave absorption
impregnated
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006512839A
Other languages
Japanese (ja)
Other versions
JP4371426B2 (en
Inventor
英夫 岡
英夫 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Publication of JPWO2005105398A1 publication Critical patent/JPWO2005105398A1/en
Application granted granted Critical
Publication of JP4371426B2 publication Critical patent/JP4371426B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0001Rooms or chambers
    • H05K9/0003Shielded walls, floors, ceilings, e.g. wallpaper, wall panel, electro-conductive plaster, concrete, cement, mortar
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B2001/925Protection against harmful electro-magnetic or radio-active radiations, e.g. X-rays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Building Environments (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Dry Formation Of Fiberboard And The Like (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

塗布型磁性木材、含浸型磁性木材、粉体型磁性木材、積層型磁性木材のいずれかからなり、木質材の表面構造又は内部構造を変えることによって磁気吸着機能と電波吸収機能双方の機能を併せ持ったことを特徴とする室内用木質系磁性電波吸収ボード。具体的には、表面構造が平行線、格子、又は円柱状の凹凸の溝を付けこの溝に磁性塗料又は磁性接着剤を塗布又は接着した塗布型磁性木材からなるもの、表面構造が単板の繊維方向に垂直方向に筋状の傷(インサイジング)を付けて含浸した含浸型磁性木材からなるもの、である。It is made of coated magnetic wood, impregnated magnetic wood, powder magnetic wood, or laminated magnetic wood, and has both magnetic adsorption function and electromagnetic wave absorption function by changing the surface structure or internal structure of wood material. An indoor wooden magnetic wave absorption board that is characterized by Specifically, the surface structure is a parallel line, a grid, or a columnar concave and convex groove, and a magnetic paint or a magnetic adhesive is applied to or adhered to the groove. The impregnated magnetic wood is impregnated with streaks (insizing) in the direction perpendicular to the fiber direction.

Description

本発明は、木質材と磁性材で構成され、磁気機能、木質機能、及び電波吸収機能をあわせ有する室内用木質系磁性電波吸収ボードに関する。   The present invention relates to an indoor wooden magnetic wave absorption board which is composed of a wood material and a magnetic material and has a magnetic function, a wood function, and an electromagnetic wave absorption function.

建材用電波吸収体は主にセラミックやセメント板などが利用されている。また、情報通信機器用としてプラスチック及びゴムなどと複合化された電波吸収シートが開発されている。従来、木質系電波吸収材としては、微細化した電磁波シールド材を接着剤と併用して木質材料を接合させたもの(特許文献1)、カーボン粉末や炭素繊維を木材チップと混合したもの(特許文献2〜4)などが知られている。さらに、アルカリ水溶液と鉄イオン含有水溶液とに順次木材を浸漬して木材中に鉄化合物を形成させ磁性特性を有する木材とする方法も知られている(特許文献5)。本発明者は、先に、磁気的な吸着力や電波遮蔽などの機能を有する新しい建材である磁性木材を開発した(非特許文献1〜4)。これまでに本発明者らが開発した磁性木材としては、含浸型磁性木材、粉体型磁性木材、塗布型磁性木材がある。図1に、3種類の磁性木材とその製作方法の概念図を示す。本発明者は、この他に積層型磁性木材を開発した(特許文献6)。   Ceramics and cement boards are mainly used as the electromagnetic wave absorber for building materials. In addition, an electromagnetic wave absorption sheet compounded with plastic and rubber has been developed for information communication equipment. Conventionally, as a wood-based electromagnetic wave absorbing material, one in which a miniaturized electromagnetic wave shielding material is used together with an adhesive to join wood materials (patent document 1), one in which carbon powder or carbon fiber is mixed with wood chips (patent) Documents 2 to 4) are known. Further, a method is also known in which wood is sequentially immersed in an alkaline aqueous solution and an iron ion-containing aqueous solution to form an iron compound in the wood to obtain wood having magnetic properties (Patent Document 5). The present inventor previously developed magnetic wood, which is a new building material having functions such as magnetic attraction and electromagnetic wave shielding (Non-Patent Documents 1 to 4). The magnetic woods developed by the present inventors so far include impregnated magnetic wood, powder magnetic wood, and coated magnetic wood. FIG. 1 shows a conceptual diagram of three types of magnetic wood and a method of manufacturing the same. In addition to this, the present inventor has developed a laminated magnetic wood (Patent Document 6).

特開昭61−269399号公報Japanese Patent Laid-Open No. 61-269399 特開平01−191500号公報Japanese Patent Laid-Open No. 01-191500 特公平6−82943号公報Japanese Patent Publication No. 6-82943 特公平6−85472号公報Japanese Examined Patent Publication No. 6-85472 特開平7−40311号公報JP, 7-40311, A 特開2001−118711号公報JP, 2001-118711, A 岡、磁性木材の基礎特性、日本応用磁気学会誌、Vol.23,No.3,pp.757-762(1999)Oka, Basic Properties of Magnetic Wood, Journal of Japan Society of Applied Magnetics, Vol.23, No.3, pp.757-762 (1999) 成田幸一 他、磁性木材を用いたGHz帯用電波吸収体の作製に関する実験的検討、電気学会電磁環境研究会資料、2000.01.18,EMC-00-1〜17,pp.121-127Koichi Narita, et al., Experimental study on fabrication of electromagnetic wave absorber using GHz band for GHz band, IEEJ electromagnetic environment research group, 2000.01.18, EMC-00-1 to 17, pp.121-127 「Journal of Applied Physics」Vol.91,No.10,Parts2 and 3,15 May pp.7008-7010(2002)``Journal of Applied Physics'' Vol.91,No.10,Parts2 and 3,15 May pp.7008-7010 (2002) 「New Scientist」29,June,p.20(2002)"New Scientist" 29, June, p.20 (2002)

磁性木材は、磁気・木質双方の機能を有するため磁気応用・木質建材・電磁環境分野など様々な分野で注目されている。従来の磁性木材は、主に軟磁性材料の磁性粉体を木材に付与することにより磁気・木質双方の機能を有する建材・家具材としていた。しかし、木材に磁気的機能を積極的に付与し、木質機能に加えて磁性機能と電波吸収機能の双方の機能が調和性を有する木質建材用電波吸収ボード技術については十分確立されてはいない。また、電波吸収特性を用途に合わせて手軽に調整できることが望まれている。さらに、建材・家具材として磁性木材を曲面部へ用いる場合など柔軟性を有し曲面に手軽に接着又は設置できる磁性木材シートの要求がなされている。   Magnetic wood has attracted attention in various fields such as magnetic applications, wood building materials, and electromagnetic environment fields because it has both magnetic and wood functions. Conventionally, magnetic wood has been used as a building material/furniture material having both magnetic and wood functions by mainly applying magnetic powder of soft magnetic material to the wood. However, the electromagnetic wave absorption board technology for wooden building materials, which positively imparts a magnetic function to the wood and has both the magnetic function and the electromagnetic wave absorption function in addition to the wooden function, is not well established. Further, it is desired that the electromagnetic wave absorption characteristics can be easily adjusted according to the application. Further, there is a demand for a magnetic wood sheet that has flexibility and can be easily adhered to or installed on a curved surface such as when using magnetic wood as a building material or furniture material on a curved surface.

本発明者は、磁性木材の構成要素である木質材、磁性材及びバインダと磁気特性及び電波吸収特性及び木質機能について解明し、本発明を完成した。   The present inventor has clarified the woody material, the magnetic material and the binder, which are the constituent elements of the magnetic wood, the magnetic characteristics, the radio wave absorption characteristics, and the woody function, and completed the present invention.

すなわち、本発明は、塗布型磁性木材、含浸型磁性木材、粉体型磁性木材、積層型磁性木材のいずれかからなり、木質材の表面構造又は内部構造を変えることによって磁気吸着機能と電波吸収機能双方の機能を併せ持ったことを特徴とする室内用木質系磁性電波吸収ボード、である。   That is, the present invention comprises any one of coating type magnetic wood, impregnating type magnetic wood, powder type magnetic wood and laminated type magnetic wood, and by changing the surface structure or internal structure of the wood material, the magnetic adsorption function and the electromagnetic wave absorption. An indoor wood-based magnetic wave absorption board, which has both functions.

また、本発明は、表面構造が平行線、格子、又は円柱状の凹凸の溝を付けこの溝に磁性塗料又は磁性接着剤を塗布又は接着した塗布型磁性木材からなることを特徴とする上記の木質系磁性電波吸収ボード、である。   Further, the present invention is characterized in that the surface structure is made of a coated magnetic wood coated or adhered with a magnetic paint or a magnetic adhesive in which grooves having concaves and convexes in parallel lines, lattices or columns are provided. A wooden magnetic wave absorption board.

また、本発明は、表面構造が単板の繊維方向に垂直方向に筋状の傷(インサイジング)を付けて含浸した含浸型磁性木材からなることを特徴とする上記の木質系磁性電波吸収ボード、である。さらに、前記含浸型磁性木材を厚み方向に圧縮加工したことを特徴とする木質系磁性電波吸収ボード、である。   Further, the present invention is characterized in that the surface structure is made of an impregnated type magnetic wood impregnated with streaky scratches (insizing) in a direction perpendicular to the fiber direction of the veneer, and the above-mentioned wood-based magnetic wave absorption board is characterized. ,. Further, a wood-based magnetic wave absorption board is obtained by compressing the impregnated magnetic wood in the thickness direction.

また、本発明は、天然木材、加工木材、複合木材、化粧板、又は化粧シートが積層された磁性木材からなることを特徴とする上記の木質系磁性電波吸収ボード、である。   Further, the present invention is the above-mentioned wood-based magnetic wave absorption board, which is made of a natural wood, a processed wood, a composite wood, a decorative board, or a magnetic wood laminated with a decorative sheet.

また、本発明は、木質材がコルク材又は柔軟性のある木質材であることを特徴とする上記の木質系磁性電波吸収ボード、である。   Further, the present invention is the above-mentioned wood-based magnetic wave absorption board, wherein the wood material is a cork material or a flexible wood material.

また、本発明は、マグネット板、ゴム磁石、プラスチック磁石などのボンデッドマグネット(bonded magnet)又はマグネットワイヤ、マグネット粉末・薄膜・微粒子など硬質磁性材料と組合せたことを特徴とする上記の木質系磁性電波吸収ボード、である。   Further, the present invention is characterized by combining with a bonded magnet such as a magnet plate, a rubber magnet, a plastic magnet or a magnet wire, a hard magnetic material such as magnet powder/thin film/fine particles, and the above wood-based magnetic material. It is a radio wave absorption board.

また、木材ボード又は木質ボードにキズ又は穴を施し、磁性微粒子又は磁性粉体を注入した磁気吸着機能と電波吸収機能双方の機能を併せ持ったことを特徴とする室内用木質系磁性電波吸収ボード、である。   Further, a wood board or a wood board is provided with scratches or holes, and magnetic fine particles or magnetic powders are injected to have both a magnetic adsorption function and a radio wave absorption function. Is.

本発明の室内用木質系磁性電波吸収ボードは、電磁波抑制機能と磁気吸着機能を併せ持っているので、例えば、パソコンなど電磁波を発生する情報機器のための木質系ボードパネルとして使用することにより、電磁波抑制機能があり、長時間パソコン利用者にとって健康上有用であり さらにキーボードを打つための原稿等をマグネットで電波吸収用木質パネルに吸着させることができ、原稿を見ながら打つことができる利便性をもつ。その他、電波吸収機能+磁気吸着機能の双方の機能を効果的に活用して、台所用電磁レンジ漏洩電磁波吸収および掲示用紙固定機能ボード、オフィス用磁気吸着機能付き電磁波吸収用パーティションなど、磁気吸着・電波吸収・木質調和機能を有する木質建材としての有効な面材ボードとして活用できる。   The indoor magnetic wood electromagnetic wave absorption board of the present invention has both an electromagnetic wave suppression function and a magnetic adsorption function. Therefore, by using it as a wooden board panel for an information device that generates electromagnetic waves, such as a personal computer, It has a suppression function and is useful for the health of PC users for a long time. Furthermore, the manuscript for hitting the keyboard etc. can be attracted to the wood panel for electromagnetic wave absorption with a magnet, so that it is convenient to hit while looking at the manuscript. Hold. In addition, by effectively utilizing both the electromagnetic wave absorption function and the magnetic adsorption function, the electromagnetic absorption of the electromagnetic range leak for the kitchen and the board fixing function board, the electromagnetic absorption partition with the magnetic absorption function for the office, etc. It can be used as an effective face material board as a wooden building material that has the function of absorbing radio waves and harmony with wood.

本発明の木質系室内用磁性電波吸収ボードは、下記のような利点を有する。
(a) 木材の加工容易性を生かすことにより磁性塗料面の木質表面形状・寸法を任意に変えることにより任意に電波吸収特性を調整できる。
(b)木質機能と電波吸収機能双方の機能が調和性を持ったGHz帯域室内用電波吸収ボードとして手軽に木質建材として活用できる。
(c)電波吸収機能の他に加工容易性・低比重・ぬくもりなど木質感・吸音性・調湿性・断熱性などを有する。
(d)磁性木材であるため、壁材、天井材、床材に手軽に着脱できる木質系電波吸収ボードが可能になる。
(e)電磁波による磁性木材の電波吸収特性の測定により建材として使用した磁性木材の応力、曲げ、ねじれ、強度、たわみ、そりが診断できるので磁性木材の保全計測ができる。
The wooden indoor magnetic wave absorption board of the present invention has the following advantages.
(A) By taking advantage of the ease of processing of wood, the electromagnetic wave absorption characteristics can be arbitrarily adjusted by arbitrarily changing the wood surface shape and size of the magnetic paint surface.
(B) It can be easily used as a wooden building material as a GHz band indoor electromagnetic wave absorption board having both the wooden function and the electromagnetic wave absorption function in harmony.
(C) In addition to the function of absorbing electromagnetic waves, it has the ease of processing, low specific gravity, warmth and other wood textures, sound absorption, humidity control, and heat insulation.
(D) Since it is magnetic wood, a wood-based electromagnetic wave absorption board that can be easily attached to and detached from wall materials, ceiling materials, and floor materials becomes possible.
(E) Since the stress, bending, twisting, strength, deflection, and warp of the magnetic wood used as a building material can be diagnosed by measuring the electromagnetic wave absorption characteristics of the magnetic wood by electromagnetic waves, the maintenance measurement of the magnetic wood can be performed.

本発明者らは、これまでに、塗布型磁性木材、含浸型磁性木材、粉体型磁性木材、積層型磁性木材を開発した。塗布型磁性木材は、磁性粉末とラッカーや接着剤を混合してなる磁性塗料を木材やチップ材などの木質系材料の表面に塗布したものである。含浸型磁性木材は、減圧加圧含浸装置を用いて磁性流体を木質系材料の内部に強制的に含浸させたものである。粉体型磁性木材は、木粉と磁性粉を混合してプレス成形したものである。積層型磁性木材は、木質系板材から2枚の板の間に、磁性粉末と接着剤の混合材料を塗布して、次いで2枚の板を圧着したものである。   The present inventors have developed a coating type magnetic wood, an impregnating type magnetic wood, a powder type magnetic wood and a laminated type magnetic wood. The coating type magnetic wood is a magnetic coating material prepared by mixing magnetic powder with a lacquer or an adhesive, which is applied to the surface of wood-based materials such as wood and chips. The impregnated magnetic wood is obtained by forcibly impregnating a wood-based material with a magnetic fluid using a depressurization/pressure impregnation device. The powder type magnetic wood is obtained by mixing wood powder and magnetic powder and press-molding. The laminated magnetic wood is obtained by applying a mixed material of magnetic powder and an adhesive between two wooden plates and then press-bonding the two plates.

磁性木材の電波吸収特性(中心周波数・周波数帯域・反射減衰量など)は、その構成材料、形状寸法、構成法などにより決定される。木質系室内用磁性電波吸収ボードとしては、下記に示す木質構成要素、磁性材料要素、バインダ要素による磁性木材の電磁特性・電波吸収特性と調湿性・断熱性・強度・色差など木質機能に関係する調和性が必要になる。   The electromagnetic wave absorption characteristics (center frequency, frequency band, return loss, etc.) of magnetic wood are determined by its constituent materials, shape dimensions, and construction method. As a wooden indoor magnetic wave absorbing board, it is related to the wooden function such as the electromagnetic characteristics and electromagnetic wave absorption characteristics of magnetic wood and humidity control, heat insulation, strength, and color difference due to the following wooden constituent elements, magnetic material elements, and binder elements. Harmony is needed.

木質構成要素
(1)木質材は加工容易性を有する。そこで、木質材の表面構造を変えることにより塗布型磁性木材を、また、内部構造を変えることにより粉体型磁性木材を作製すると、磁性木材の磁気特性及び電波吸収特性を手軽に調整できる。例えば、塗布型磁性木材の場合は木材表面に凹凸を形成する。凹凸は、深さ1〜5mm程度の平行線状、格子状、または円柱状に溝を機械加工により設けて形成する。平行線状、格子状の溝の幅、円柱状の溝の直径は1〜10mm程度、好ましくは3〜6mm程度とする。木質材の面積に対して溝の面積の占める割合は20〜50%程度が好ましい。溝面積が増えることにより、ピーク周波数はそれに伴い高くなっていく。
Wood component (1) Wood material is easy to process. Therefore, when the coating type magnetic wood is manufactured by changing the surface structure of the wood material and the powder type magnetic wood is manufactured by changing the internal structure, the magnetic characteristics and the electromagnetic wave absorption characteristics of the magnetic wood can be easily adjusted. For example, in the case of coating type magnetic wood, unevenness is formed on the wood surface. The unevenness is formed by providing grooves in a parallel line shape, a grid shape, or a column shape having a depth of about 1 to 5 mm by machining. The width of the parallel line-shaped or grid-shaped groove and the diameter of the columnar groove are about 1 to 10 mm, preferably about 3 to 6 mm. The ratio of the area of the groove to the area of the wood material is preferably about 20 to 50%. As the groove area increases, the peak frequency increases accordingly.

電波吸収特性は、5GHzまでの低周波領域では塗布型磁性木材は良好であるが、10GHz以上では、深さ1〜5mm程度の平行線、円柱状、または格子状の凹凸の溝を機械加工により設け、この溝に磁性塗料又は磁性接着剤を塗布又は接着した塗布型磁性木材は溝を設けない塗布型磁性木材を上回る透過減衰量を示す。   As for the electromagnetic wave absorption characteristics, the coating type magnetic wood is good in the low frequency region up to 5 GHz, but at 10 GHz or more, parallel lines, cylindrical or lattice-shaped grooves with a depth of about 1 to 5 mm are machined. The coated magnetic wood provided with the magnetic paint or the magnetic adhesive or adhered to the groove exhibits a larger amount of transmission attenuation than the coated magnetic wood having no groove.

粉体型磁性木材の場合は、木粉形状又は磁性粉と木粉割合比率を調整することで内部構造が変わる。任意形状の磁性層を構成できることから磁気特性及び磁気異方性さらに電波吸収特性を付与及び調整できる。また、従来の塗布型磁性木材は経年変化による剥離や外部からの力や衝撃により磁性層に亀裂が入る問題や曲面への利用が難しい問題があったが、このような問題を軽減できる。   In the case of powder type magnetic wood, the internal structure is changed by adjusting the shape of wood powder or the ratio of magnetic powder to wood powder. Since the magnetic layer having an arbitrary shape can be formed, magnetic properties, magnetic anisotropy, and radio wave absorption properties can be imparted and adjusted. Further, the conventional coating type magnetic wood has a problem that the magnetic layer is cracked due to peeling due to aging and external force or impact, and it is difficult to use for a curved surface, but such a problem can be mitigated.

(2)木質材は加工容易性を有する。そこで、木質材の表面部にインサイジング(incising)、すなわち人工的に筋状の傷を施すことにより磁性流体又は磁性微粒子の含浸量、方向及び均一性などを任意に調整した含浸型磁性木材を作製する。従来の含浸型磁性木材の作製手法では磁性流体の注入量及び均一性の他、磁気特性など様々な問題を有していたが、これにより磁性木材の磁気特性の向上、磁気異方性、及び電波吸収特性を調整できる。板材の表面、例えば板目面に木材繊維に垂直な切込みを施すことによって木材繊維に平行な断面を作って磁性流体の含浸を均一化して均一な磁気特性とした磁性木材を作製できる。切り込みの間隔や得られた含浸板の積層方向を直交させるなどにより大きさ全体にわたり均一な磁気特性を有する磁性木材を提供できる。 (2) Woody materials are easy to process. Therefore, the insizing of the surface of the wood material (incising), that is, the impregnation type magnetic wood in which the impregnation amount, direction and uniformity of the magnetic fluid or the magnetic fine particles are arbitrarily adjusted by artificially making streaky scratches Create. Conventional impregnation-type magnetic wood production methods have various problems such as magnetic fluid injection amount and uniformity, as well as magnetic properties, which can improve the magnetic properties of magnetic wood, magnetic anisotropy, and The radio wave absorption characteristics can be adjusted. It is possible to produce a magnetic wood having uniform magnetic characteristics by making a cross section parallel to the wood fiber by making a cut perpendicular to the wood fiber on the surface of the plate material, for example, the grain surface, to make the impregnation of the magnetic fluid uniform. Magnetic wood having uniform magnetic properties over the entire size can be provided by making the intervals of cuts and the stacking direction of the obtained impregnated plates orthogonal.

天然木材の木口(木材繊維の垂直断面が表れる面、すなわち木材の年輪が見える面)からは磁性流体が含浸されやすいので、天然木材の場合、インサイジングは板目面に行う。木質材の表面部にインサイジングを施し、磁性流体を含浸させることにより、含浸量をほぼ倍増させることができるが、さらに、含浸後の木質材を厚み方向に圧縮加工することにより、圧縮率にほぼ比例して比重が増加する。圧縮率は好ましくは10〜60%程度とする。複素透磁率及び電波吸収特性は、インサイジングと圧縮の両加工を施すことにより、特性が大幅に向上する。電波吸収特性は、10〜15GHzで透過減衰量が−2dB〜−3dB程度となる。   Since the magnetic fluid is easily impregnated from the mouth of the natural wood (the surface where the vertical cross section of the wood fiber appears, that is, the surface where the annual rings of the wood can be seen), in the case of natural wood, the insizing is performed on the grain surface. By impregnating the surface of the wood with the magnetic fluid and impregnating it with the magnetic fluid, the amount of impregnation can be almost doubled.Furthermore, by compressing the wood after impregnation in the thickness direction, the compressibility is improved. Specific gravity increases almost in proportion. The compression rate is preferably about 10 to 60%. The complex magnetic permeability and the electromagnetic wave absorption characteristics are significantly improved by performing both insizing and compression processing. The radio wave absorption characteristic is such that the transmission attenuation amount is about −2 dB to −3 dB at 10 to 15 GHz.

(3)木材ボード又は木質ボードにキズ又は穴を施し磁性微粒子又は磁性粉体が注入しやすいようにしてもよい。木材加工器械やレーザ光で微細な小穴をあけ薬剤注入を行う。防腐剤・虫害防止・難燃剤・木材強度増強剤などと磁性微粒子(磁性流体も含む)を混合した液体を含浸してもよい。 (3) The wood board or the wood board may be provided with scratches or holes so that the magnetic fine particles or the magnetic powder can be easily injected. A small hole is made with a wood processing machine or laser light to inject a drug. You may impregnate a liquid in which magnetic particles (including magnetic fluid) are mixed with an antiseptic/insect-damage/flame retardant/wood strength enhancer.

(4)上記の各磁性木材に天然木材、加工木材、複合木材、化粧板又は化粧シートを積層すると、電波吸収特性に影響を与えず調湿機能・断熱機能・吸音機能及びぬくもり・やすらぎ・色差などの木質感及び芸術性を付与できる。磁性木材にマグネット板を重ねると電波透過量を制御可能となる。
(5)上記の各磁性木材を柔軟性・弾性及び低比重の特性を有するコルク材又は柔軟性のある木質材で構成すると、建築物の曲面などにも接着又は設置できる貼り付け可能な磁性電波吸収シートとすることができる。
(6)磁性木材にマグネット板、ゴム磁石、プラスチック磁石などのボンデッドマグネット又はマグネットワイヤ、マグネット粉末・薄膜・微粒子など硬質磁性材料と組合せると電波透過量を制御可能となる。
(4) When natural wood, processed wood, composite wood, decorative board or decorative sheet is laminated on each of the above magnetic wood, the humidity control function, heat insulation function, sound absorption function and warmth, peace of mind, and color difference do not affect the electromagnetic wave absorption characteristics. Wood texture and artistry. When a magnet plate is placed on top of magnetic wood, the amount of radio wave transmission can be controlled.
(5) When each of the above magnetic woods is made of cork material having flexibility/elasticity and low specific gravity or wood material having flexibility, it can be attached or installed on a curved surface of a building. It can be an absorbent sheet.
(6) The amount of radio wave transmission can be controlled by combining magnetic wood with a hard magnet material such as a bonded magnet or magnet wire such as a magnet plate, rubber magnet, or plastic magnet, magnet powder/thin film/fine particles.

磁性材料要素
(1)永久磁石、マグネットシート、マグネット薄膜、マグネットワイヤ、マグネット粉体、マグネット微粒子又は木材磁石を磁性木材表面又は内部に構成する。これにより磁気特性又は電波吸収特性を可変又は制御など調整可能な磁性木材とすることができる。硬質磁性材料(永久磁石材料)と磁性木材を組み合わせることにより電波吸収特性を手軽に制御できる。
(2)磁性体の体積含有率、磁性粉の混合比率を調整する。これにより電波吸収特性を調整できる。
Magnetic Material Element (1) A permanent magnet, a magnet sheet, a magnet thin film, a magnet wire, a magnet powder, magnet particles or a wood magnet is formed on the surface of or inside the magnetic wood. This makes it possible to obtain magnetic wood whose magnetic characteristics or radio wave absorption characteristics can be adjusted or varied. By combining a hard magnetic material (permanent magnet material) and magnetic wood, the electromagnetic wave absorption characteristics can be easily controlled.
(2) The volume content of the magnetic material and the mixing ratio of the magnetic powder are adjusted. This makes it possible to adjust the radio wave absorption characteristics.

バインダ要素
(1)バインダ又は塗料(ex.木工用ボンド、漆、他)の導電性・複素誘電性及び複素透磁率を変える。これにより磁性木材の電波吸収特性を調整できる。
(2)導電性接着剤又は導電性塗料を用いる。作製した磁性木材の導電性接着剤又は導電性塗料により磁性木材の電磁特性及び電波吸収特性を調整できる。
Binder element (1) Change the conductivity, complex dielectric property and complex permeability of the binder or paint (ex. woodworking bond, lacquer, etc.). This makes it possible to adjust the electromagnetic wave absorption characteristics of the magnetic wood.
(2) A conductive adhesive or conductive paint is used. The electromagnetic properties and electromagnetic wave absorption properties of the magnetic wood can be adjusted by the conductive adhesive or conductive paint of the magnetic wood thus produced.

Mn−Znフェライトをタモ(ash)材、フェノール樹脂ラッカーに混合、攪拌し、100℃、150kgf/mで20分間熱圧縮して粉体型磁性木材を作製した。加圧し終えたら常温に冷却した。表1に作製した試料の構成を示す。Mn-Zn ferrite was mixed with ash material and phenol resin lacquer, stirred, and heat-compressed at 100° C. and 150 kgf/m 3 for 20 minutes to prepare powder-type magnetic wood. After pressurizing, it was cooled to room temperature. Table 1 shows the configuration of the prepared sample.

Figure 2005105398
Figure 2005105398

作製した磁性木材を環状に加工し、インピーダンス・マテリアル・アナライザHP4291Aを用い表2に示す条件で磁気特性を測定した。また、フリースペース法を用いて表3に示す条件で電波吸収量を測定した。   The produced magnetic wood was processed into a ring shape, and the magnetic characteristics were measured under the conditions shown in Table 2 using an impedance material analyzer HP4291A. In addition, the amount of radio wave absorption was measured under the conditions shown in Table 3 using the free space method.

Figure 2005105398
Figure 2005105398

Figure 2005105398
Figure 2005105398

図2に、複素透磁率実部を、図3に、複素透磁率虚部を、図4に、ヤチダモ(ash)パーティクルボードと比較した電波吸収特性を示す。粉体型磁性木材は磁気特性に優れ、電波吸収特性は広帯域での周波数で20dBとなり電波吸収材として優れていることがわかる。   2 shows the complex magnetic permeability real part, FIG. 3 shows the complex magnetic permeability imaginary part, and FIG. 4 shows the electromagnetic wave absorption characteristics in comparison with the Yachidamo (ash) particle board. It can be seen that the powder-type magnetic wood has excellent magnetic characteristics, and the electric wave absorption characteristic is 20 dB in a wide band frequency, and is excellent as an electric wave absorber.

図5に示すように、磁性塗料の塗布を行う木材面に円柱状、平行線状、格子状の凹凸の溝をつけた。円柱状の溝は、木材の縁から直径10mm、深さ5mmの溝を15mmの地点より10mmおきに14列14行の溝を設けた。平行線状の溝は、幅6mm、深さ4mmの溝を木材の縁から17mmの地点より20mmおきに11本付けた。格子状の溝は、平行線状に溝を付けた木材を90度回転させ、同様に溝を付け、溝同士が直角となり、溝全体の形状が格子状になるように加工した。塗布型と同様にMn−Znフェライトとラッカーを混合、攪拌しクラフトテープ(craft tape)で四方側面を囲んで枠を作ったスターウッド(北進産業商品名)に塗布を行い常温で24時間乾燥させた。   As shown in FIG. 5, columnar, parallel-line, and grid-like concave and convex grooves were formed on the surface of the wood to which the magnetic paint was applied. As the columnar groove, a groove having a diameter of 10 mm and a depth of 5 mm from the edge of the wood was provided in 14 columns and 14 rows at intervals of 10 mm from a point of 15 mm. As the parallel line-shaped grooves, 11 grooves each having a width of 6 mm and a depth of 4 mm were provided at intervals of 20 mm from a point 17 mm from the edge of the wood. The grid-like grooves were formed by rotating wood having parallel-lined grooves by 90 degrees and forming grooves in the same manner so that the grooves are at right angles and the entire shape of the grooves is a grid. Similar to the coating type, Mn-Zn ferrite and lacquer are mixed, stirred and coated on Starwood (Hokushin Sangyo brand name), which is framed on all sides with craft tape, and dried at room temperature for 24 hours. It was

図6、7、8にそれぞれの電波吸収特性を示す。以下に示す比較例と比較して優れた電波吸収特性を示すことが分かる。本実験結果より1GHzから7GHzまでの電波吸収特性には化粧板による影響が殆ど見られないことが認められた。よって、磁性木材ボードの上に断熱・吸音・調湿・ぬくもり・木質感などの機能を活かした木材又は木質材を積層しても磁性木材の電波吸収特性には影響をおよぼさないと考えられる。これらの3種類の埋め込み型磁性木材の比較結果より1GHz〜10GHzまでの電波吸収特性測定結果において格子状埋め込み型磁性木材の電波吸収特性結果が最も優れていることが了解された。   6, 7 and 8 show respective radio wave absorption characteristics. It can be seen that the electromagnetic wave absorption characteristics are excellent as compared with the comparative examples shown below. From the results of this experiment, it was confirmed that there was almost no effect of the decorative plate on the electromagnetic wave absorption characteristics from 1 GHz to 7 GHz. Therefore, it is considered that the electromagnetic wave absorption characteristics of magnetic wood will not be affected even if wood or wood materials that utilize the functions of heat insulation, sound absorption, humidity control, warmth, wood texture, etc. are laminated on top of magnetic wood boards. Be done. From the comparison result of these three types of embedded magnetic wood, it was understood that the electromagnetic absorption result of the lattice-shaped embedded magnetic wood is the best in the measurement result of the electromagnetic absorption property from 1 GHz to 10 GHz.

赤松(japanese red pine)単板(veneer)材(長さL=90mm,幅T=90mm,厚みR=2mm)の板目面に、図9に示すように、木材繊維と垂直にピッチ幅20mmの深さ1mm、幅0.4mmの三角形溝形状のインサイジングを施した。表と裏のインサイジングの位置は互いに10mmずれるように形成した。磁性材料として水ベース磁性流体(W−35)を用い、磁性流体と木材試料を真空加熱含浸装置へ挿入し、減圧を約5.3kPaで2時間半、加圧を約882kPaで2時間半行った。含浸工程終了後、全乾燥工程を経て含浸型磁性木材を完成した。比較試料としてインサイジングを施さない赤松単板積層型磁性木材、赤松挽板(lumber)材、杉挽板材を用いた含浸型磁性木材を用いた。   A Japanese red pine veneer wood (length L=90mm, width T=90mm, thickness R=2mm) has a pitch width of 20mm perpendicular to the wood fiber, as shown in Fig. 9. 1 mm deep and 0.4 mm wide in the shape of a triangular groove. The front and back insizing positions were formed so as to be offset from each other by 10 mm. Using a water-based magnetic fluid (W-35) as the magnetic material, the magnetic fluid and the wood sample were inserted into a vacuum heating impregnation apparatus, and depressurization was performed at about 5.3 kPa for 2 and a half hours and pressurization at about 882 kPa for 2 and a half hours. It was After the impregnation step was completed, the impregnation type magnetic wood was completed through the entire drying step. As a comparative sample, non-insulated red pine veneer laminated magnetic wood, impregnated magnetic wood using red pine lumber and cedar lumber were used.

得られた磁性木材を木材繊維方向に対して平行方向積層と、垂直方向積層した。木口(butt end)部分から10mmごとに切り出した試料の比重測定の結果から、磁性流体の含浸量、含浸状況を評価した。図10に、各含浸型磁性木材の比重を平均し、磁性流体含浸後の比重から磁性流体含浸前の木材の比重を減算した結果を示す。これは、磁性流体の含浸量の木口部分からの推移を示しており、浸潤長を示している。含浸型磁性木材において、単板積層型にすることで磁性流体の含浸量の増加、均一性が向上した。図11に、木口部(a)と中心部(b)の複素透磁率の評価結果を示す。インサイジングを施し、垂直積層の試料が比較的高い磁気特性と均一性を示した。   The obtained magnetic wood was laminated in the direction parallel to the wood fiber direction and in the direction perpendicular to the wood fiber direction. The impregnation amount and the impregnation state of the magnetic fluid were evaluated from the results of the measurement of the specific gravity of the sample cut out every 10 mm from the butt end part. FIG. 10 shows the results of averaging the specific gravities of the impregnated magnetic woods and subtracting the specific gravity of the wood before the magnetic fluid impregnation from the specific gravity after the magnetic fluid impregnation. This shows the transition from the ostium of the magnetic fluid impregnation amount, and shows the infiltration length. In the impregnated type magnetic wood, the single plate laminated type improved the impregnation amount and uniformity of the magnetic fluid. FIG. 11 shows the evaluation results of the complex magnetic permeability of the wood mouth part (a) and the central part (b). After insizing, the vertically laminated samples showed relatively high magnetic properties and uniformity.

杉板単板材(長さL=300mm,幅T=90mm)8枚を用意した。4枚の板材の板目面に、図13に示すように、木材繊維と垂直にピッチ幅10mmの平行線状のインサイジングを施した。インサイジングの開始位置は表側が木材の端から10mm、裏側が木材の端から5mmの位置である。インサイジングの幅は0.85mm,深さは2mmの四角形の溝形状とした。残り4枚はインサイジングを施さずに比較例試料とした。板材の厚みは、加熱圧縮しないものを10mmとし、加熱圧縮による圧縮率(%=[圧縮前の板厚−圧縮後の板厚]×100/圧縮前の板厚)が10%、20%、58%のいずれも試料の仕上がりの厚さが10mmになる厚さとした。   Eight cedar veneer materials (length L=300 mm, width T=90 mm) were prepared. As shown in FIG. 13, parallel-line-shaped insizing with a pitch width of 10 mm was applied perpendicularly to the wood fibers on the grain surfaces of the four plate materials. The starting position of insizing is 10 mm from the edge of the wood on the front side and 5 mm from the edge of the wood on the back side. The insizing had a rectangular groove shape with a width of 0.85 mm and a depth of 2 mm. The remaining 4 sheets were used as comparative sample without insizing. The thickness of the plate material is 10 mm without heating and compression, and the compression ratio (%=[thickness before compression−thickness after compression]×100/thickness before compression) by heat compression is 10%, 20%, In all of the 58%, the finished thickness of the sample was 10 mm.

磁性材料として水ベース磁性流体(W−35)を用い、磁性流体と8枚の木材試料を真空加熱含浸装置へ挿入し、減圧を約50Torrで2時間半、加圧を約9.8kPaで1時間半行った。含浸工程終了後、全乾燥工程を経て含浸型磁性木材を完成した。
次に、ホットプレート付圧縮試料機(VC-1000S-HP)を用い、含浸型磁性木材の上下をステンレス鋼板で挟み、試料の仕上がりの厚さを10mmに制御し、200℃で20分保持して6枚の木材試料を加熱圧縮した。各2枚の圧縮率(%)をそれぞれ10%、20%、58%とした。
Using a water-based magnetic fluid (W-35) as the magnetic material, the magnetic fluid and eight wood samples were inserted into a vacuum heating impregnation apparatus, and the depressurization was about 50 Torr for 2 hours and a half, and the pressurization was about 9.8 kPa. I went half an hour. After the impregnation step was completed, the impregnation type magnetic wood was completed through the entire drying step.
Next, using a compression sampler with a hot plate (VC-1000S-HP), the top and bottom of the impregnated magnetic wood are sandwiched between stainless steel plates, the finished thickness of the sample is controlled to 10 mm, and the sample is held at 200°C for 20 minutes. 6 wood samples were heat pressed. The compression ratio (%) of each two sheets was set to 10%, 20%, and 58%, respectively.

含浸前後の試料の質量を測定し、含浸量を計算し、比重を計算し、含浸前後を比較した結果を表4に示す。インサイジングを施すことにより含浸量が大幅に増加し、圧縮率にほぼ比例して比重が増加したことが分かる。   Table 4 shows the results of measuring the mass of the sample before and after the impregnation, calculating the impregnation amount, calculating the specific gravity, and comparing before and after the impregnation. It can be seen that the amount of impregnation increased significantly by applying insizing, and the specific gravity increased almost in proportion to the compressibility.

Figure 2005105398
Figure 2005105398

インサイジングを施し、圧縮率20%で加熱圧縮した試料、インサイジングを施し、加熱圧縮しない試料、インサイジングを施さずに、圧縮率20%で加熱圧縮した試料、の3種類の試料について各々10枚を並べて長さ300mm、幅300mm、厚み10mmの電波吸収測定用ボードを作成した。それぞれの電波吸収測定用ボードについて、実施例1と同じフリースペース法により電波吸収特性を測定した。図14に、測定結果を示す。インサイジングと圧縮の両加工を施した試料の電波吸収特性が他の試料に比べ最も高い値を示した。各試料とも、高周波(10GHz以降)に透過減衰量が高くなる傾向が表れた。さらに、図15に、透過減衰量のインサイジング効果と圧縮効果を示す。10〜15GHzの高周波における透過減衰量は、圧縮効果、インサイジング効果いずれにおいても、それぞれ150%以上向上する効果が得られた。
(比較例1)
10 samples for each of three types of samples, that is, insizing and heat-compressed at a compression rate of 20%, insizing and not heat-compressed, and insizing-free and heat-compressed at a compression rate of 20% The electromagnetic absorption measurement board having a length of 300 mm, a width of 300 mm and a thickness of 10 mm was prepared by arranging the sheets. The radio wave absorption characteristics of each of the radio wave absorption measurement boards were measured by the same free space method as in Example 1. FIG. 14 shows the measurement result. The electromagnetic wave absorption characteristics of the sample subjected to both insizing and compression showed the highest value compared to other samples. For each sample, the transmission attenuation tended to increase at high frequencies (10 GHz and above). Further, FIG. 15 shows the insizing effect and the compression effect of the transmission attenuation amount. The transmission attenuation amount at a high frequency of 10 to 15 GHz was improved by 150% or more in each of the compression effect and the insizing effect.
(Comparative Example 1)

Mn−Znフェライトとラッカーを体積比1:4の割合で混合、攪拌しクラフトテープで四方側面を囲んで枠を作ったスターウッド(北進産業商品名)に塗布を行い常温で24時間乾燥させて塗布型磁性木材を作製した。実施例1と同じ条件で測定した磁気特性を図2、図3に示す。粉体型磁性木材の内部構造は木材と磁性体で分離しているが、塗布型磁性木材では、磁性層が単一層であるため複素透磁率が高い値となっていると考えられる。図12に、実施例1と同じ条件で測定した電波吸収量を示す。   Mn-Zn ferrite and lacquer were mixed at a volume ratio of 1:4, stirred, and applied to Starwood (Hokushin Sangyo brand name) framed around the four sides with kraft tape and dried at room temperature for 24 hours. A coated magnetic wood was prepared. The magnetic characteristics measured under the same conditions as in Example 1 are shown in FIGS. The internal structure of the powder type magnetic wood is separated from the wood by the magnetic substance, but it is considered that the coated magnetic wood has a high complex magnetic permeability because the magnetic layer is a single layer. FIG. 12 shows the amount of radio wave absorption measured under the same conditions as in Example 1.

本発明の木質系室内用電波吸収ボードは下記のような各種の用途に適用可能である。音楽ホール用(携帯電話対策・吸音機能)、病院用(医療機器電磁波防護対策・緊急電話使用可能)、情報セキリテュー用(無線LAN・携帯端末用の近距離無線通信技術)、木造建材用(介護・医療・ロボット防護対策、デジタル家電対応)、デジタル家電・情報機器用(デジタル家電機器・情報機器ボード・キャビネット)、オフィス用(パーテション、家具)、文具用(木質系パネル)   INDUSTRIAL APPLICABILITY The wood-based indoor radio wave absorption board of the present invention can be applied to various uses as described below. For music halls (cell phone measures/sound absorption function), hospitals (medical device electromagnetic wave protection measures/emergency phone can be used), information security (wireless LAN/short-range wireless communication technology for mobile terminals), wooden construction materials (nursing care)・Medical/robot protection measures, compatible with digital home appliances, digital home appliances/information equipment (digital home appliances/information equipment board/cabinet), office (partition, furniture), stationery (wood panel)

3種類の磁性木材とその製作方法を示す概念図である。It is a conceptual diagram which shows three types of magnetic wood and its manufacturing method. 実施例1及び比較例1の磁気特性測定結果を示す複素透磁率実部のグラフである。5 is a graph of a real part of complex magnetic permeability showing the results of measuring magnetic properties of Example 1 and Comparative Example 1. 実施例1及び比較例1の磁気特性測定結果を示す複素透磁率虚部のグラフである。3 is a graph of an imaginary part of a complex magnetic permeability showing a result of measuring magnetic properties of Example 1 and Comparative Example 1. ヤチダモパーティクルボードと比較した実施例1の電波吸収特性を示すグラフである。It is a graph which shows the electromagnetic wave absorption characteristic of Example 1 compared with Yachidamo particle board. 実施例2の木材面に円柱状、平行線状、格子状の凹凸の溝をつけた形態を示す斜視図である。FIG. 8 is a perspective view showing a form in which cylindrical, parallel line-shaped, and grid-shaped concave and convex grooves are formed on the wood surface of Example 2; 実施例2の木材面に円柱状の凹凸の溝をつけた塗布型磁性木材の電波吸収特性を示すグラフである。5 is a graph showing the electromagnetic wave absorption characteristics of the coated magnetic wood of Example 2 in which a cylindrical concave and convex groove is formed on the wood surface. 実施例2の木材面に平行線状の凹凸の溝をつけた塗布型磁性木材の電波吸収特性を示すグラフである。9 is a graph showing the electromagnetic wave absorption characteristics of the coated magnetic wood of Example 2 in which parallel line-shaped concave and convex grooves are formed on the wood surface. 実施例2の木材面に格子状の凹凸の溝をつけた塗布型磁性木材の電波吸収特性を示すグラフである。7 is a graph showing the electromagnetic wave absorption characteristics of the coated magnetic wood of Example 2 in which the grooves of the grid-like irregularities are formed on the wood surface. 実施例3の木材面に平行線状のインサイジングを施した試料を示す説明図である。It is explanatory drawing which shows the sample which carried out the parallel line-shaped insizing on the wood surface of Example 3. 実施例3の磁性流体含浸量の木口部からの推移(浸潤長)を示すグラフである。9 is a graph showing a transition (infiltration length) from the opening of the magnetic fluid impregnated amount of Example 3. 実施例3の木口部(a)と中心部(b)の磁気特性測定結果を示す複素透磁率のグラフである。9 is a graph of complex magnetic permeability showing the results of measuring the magnetic characteristics of the throat (a) and the center (b) of Example 3. 比較例1の電波吸収量を示すグラフである。9 is a graph showing the amount of radio wave absorption in Comparative Example 1. 実施例4の木材面に平行線状のインサイジングを施した試料を示す説明図である。It is explanatory drawing which shows the sample which performed the parallel line-shaped insizing on the wood surface of Example 4. 実施例4の木材面に平行線状のインサイジングを施した含浸型磁性木材の電波吸収特性を示すグラフである。9 is a graph showing the radio wave absorption characteristics of impregnated magnetic wood in which the wood surface of Example 4 is subjected to parallel-line insizing. 実施例4の木材面に平行線状のインサイジングを施した含浸型磁性木材の透過減衰量のインサイジング効果と圧縮効果を示すグラフである。9 is a graph showing the insizing effect and the compression effect of the transmission attenuation of the impregnated type magnetic wood in which the wood surface of Example 4 is subjected to parallel sizing.

【0008】
ことがわかる。
【実施例2】
[0032] 図5に示すように、磁性塗料の塗布を行う木材面に円柱状、平行線状、格子状の凹凸の溝をつけた。円柱状の溝は、木材の縁から直径10mm、深さ5mmの溝を15mmの地点より10mmおきに14列14行の溝を設けた。平行線状の溝は、幅6mm、深さ4mmの溝を木材の縁から17mmの地点より20mmおきに11本付けた。格子状の溝は、平行線状に溝を付けた木材を90度回転させ、同様に溝を付け、溝同士が直角となり、溝全体の形状が格子状になるように加工した。塗布型と同様にMn−Znフェライトとラッカーを混合、攪拌しクラフトテープ(craft tape)で四方側面を囲んで枠を作ったスターウッド(北進産業商品名)に塗布を行い常温で24時間乾燥させた。
[0033] 図6、7、8にそれぞれの電波吸収特性を示す。以下に示す比較例と比較して優れた電波吸収特性を示すことが分かる。本実験結果より1GHzから7GHzまでの電波吸収特性には化粧板による影響が殆ど見られないことが認められた。よって、磁性木材ボードの上に断熱・吸音・調湿・ぬくもり・木質感などの機能を活かした木材又は木質材を積層しても磁性木材の電波吸収特性には影響をおよぼさないと考えられる。これらの3種類の埋め込み型磁性木材の比較結果より1GHz〜10GHzまでの電波吸収特性測定結果において格子状埋め込み型磁性木材の電波吸収特性結果が最も優れていることが了解された。
【実施例3】
[0034] 赤松(japanese red pine)単板(veneer)材(長さ L=90mm,幅 T=90mm,厚み R=2mm)の板目面に、図9に示すように、木材繊維と垂直にピッチ幅20mmの深さ1mm、幅0.4mmの三角形溝形状のインサイジングを施した。表と裏のインサイジングの位置は互いに10mmずれるように形成した。磁性材料として水ベース磁性流体(W−35)を用い、磁性流体と木材試料を真空加熱含浸装置へ挿入し、減圧を約5.3kPaで2時間半、加圧を約882kPaで2時間半行った。含浸工程終了後、全乾燥工程を経て含浸型磁性木材を完成した。比較試料としてインサイジングを施さない、2枚の板の間に、磁性粉末と接着剤の混合材料を塗布して、次いで2枚の板を圧着した赤松単板積層型磁性木材(PP)、赤松挽板(lumber)材を用いた含浸型磁性木材(Pd)、杉挽板材を用いた含浸型磁性木材(Cj)を用いた。
[0035] 得られた含浸型磁性木材を木材繊維方向に対して平行方向に積層した平行積層試料(PPinc//)と、垂直方向に積層した垂直積層試料(PPinc⊥)を作成した。インサイジングを施さない赤松単板積層型磁性木材(PP)も平行積層試料(PP//)と垂直積層試料(PP⊥)を作成した。


8/1
[0008]
I understand.
Example 2
[0032] As shown in FIG. 5, columnar, parallel-line, and grid-shaped irregular grooves were formed on the surface of the wood to which the magnetic paint was applied. As the columnar groove, a groove having a diameter of 10 mm and a depth of 5 mm from the edge of the wood was provided in 14 columns and 14 rows at intervals of 10 mm from a point of 15 mm. As the parallel line-shaped grooves, 11 grooves each having a width of 6 mm and a depth of 4 mm were provided at intervals of 20 mm from a point 17 mm from the edge of the wood. The grid-like grooves were formed by rotating wood having parallel-lined grooves by 90 degrees and forming grooves in the same manner so that the grooves are at right angles and the entire shape of the grooves is a grid. Similar to the coating type, Mn-Zn ferrite and lacquer are mixed, stirred, and coated on Starwood (Hokushin Sangyo brand name) that is framed on all four sides with craft tape and dried at room temperature for 24 hours. It was
[0033] FIGS. 6, 7, and 8 show respective radio wave absorption characteristics. It can be seen that the electromagnetic wave absorption characteristics are excellent as compared with the comparative examples shown below. From the results of this experiment, it was confirmed that there was almost no effect of the decorative plate on the electromagnetic wave absorption characteristics from 1 GHz to 7 GHz. Therefore, it is considered that the electromagnetic wave absorption characteristics of magnetic wood will not be affected even if wood or wood materials that utilize the functions of heat insulation, sound absorption, humidity control, warmth, wood texture, etc. are laminated on top of magnetic wood boards. Be done. From the comparison result of these three types of embedded magnetic wood, it was understood that the electromagnetic absorption result of the lattice-shaped embedded magnetic wood is the best in the measurement result of the electromagnetic absorption property from 1 GHz to 10 GHz.
Example 3
[0034] As shown in FIG. 9, on the wood grain surface of the Japanese red pine veneer material (length L=90 mm, width T=90 mm, thickness R=2 mm), as shown in FIG. A triangular groove shape with a pitch width of 20 mm and a depth of 1 mm and a width of 0.4 mm was subjected to insizing. The front and back insizing positions were formed so as to be offset from each other by 10 mm. Using a water-based magnetic fluid (W-35) as the magnetic material, the magnetic fluid and the wood sample were inserted into a vacuum heating impregnation apparatus, and depressurization was performed at about 5.3 kPa for 2 and a half hours and pressurization at about 882 kPa for 2 and a half hours. It was After the impregnation step was completed, the impregnation type magnetic wood was completed through the entire drying step. As a comparison sample, a red pine veneer laminated magnetic wood (PP), a red pine sawn plate, in which a mixed material of magnetic powder and an adhesive is applied between two plates without insizing, and then the two plates are pressure bonded. The impregnation type magnetic wood (Pd) using the (lumber) material and the impregnation type magnetic wood (Cj) using the cedar ground plate material were used.
A parallel laminated sample (PPinc//) in which the obtained impregnated magnetic wood was laminated in the direction parallel to the wood fiber direction and a vertical laminated sample (PPinc⊥) in which the impregnated magnetic wood was laminated in the vertical direction were prepared. A red pine veneer laminated type magnetic wood (PP) without insizing was also prepared as a parallel laminated sample (PP//) and a vertical laminated sample (PP⊥).


8/1

【0009】
木口(butt end)部分から10mmごとに切り出した試料の比重測定の結果から、磁性流体の含浸量、含浸状況を評価した。図10に、各含浸型磁性木材の比重を平均し、磁性流体含浸後の比重から磁性流体含浸前の木材の比重を減算した結果を示す。これは、磁性流体の含浸量の木口部分からの推移を示しており、浸潤長を示している。含浸型磁性木材において、赤松単板の板目面に木材繊維と垂直にインサイジングを施すことで磁性流体の含浸量の増加、均一性が赤松含浸型磁性木材(Pd)や杉含浸型磁性木材(Cj)と比べて大幅に向上し、赤松単板積層型磁性木材を垂直積層したもの(PP⊥)と同等になった。図11に、木口部(a)と中心部(b)の複素透磁率の評価結果を示す。インサイジングを施した垂直積層試料(PPinc⊥)と平行積層試料(PP//)、及び赤松単板積層型磁性木材(PP//及びPP⊥)は赤松含浸型磁性木材(Pd)や杉含浸型磁性木材(Cj)と比べて複素透磁率が相当大きく、特に垂直積層の試料(PPinc⊥)が赤松単板積層型磁性木材の垂直積層試料(PP⊥)と比べても比較的高い磁気特性とその均一性を示した。
【実施例4】
[0036] 杉板単板材(長さ L=300mm,幅 T=90mm)8枚を用意した。4枚の板材の板目面に、図13に示すように、木材繊維と垂直にピッチ幅10mmの平行線状のインサイジングを施した。インサイジングの開始位置は表側が木材の端から10mm、裏側が木材の端から5mmの位置である。インサイジングの幅は0.85mm,深さは2mmの四角形の溝形状とした。残り4枚はインサイジングを施さずに比較例試料とした。板材の厚みは、加熱圧縮しないものを10mmとし、加熱圧縮による圧縮率(%=[圧縮前の板厚−圧縮後の板厚]×100/圧縮前の板厚)が10%、20%、58%のいずれも試料の仕上がりの厚さが10mmになる厚さとした。
[0037] 磁性材料として水ベース磁性流体(W−35)を用い、磁性流体と8枚の木材試料を真空加熱含浸装置へ挿入し、減圧を約50Torrで2時間半、加圧を約9.8kPaで1時間半行った。含浸工程終了後、全乾燥工程を経て含浸型磁性木材を完成した。
次に、ホットプレート付圧縮試料機(VC−1000S−HP)を用い、含浸型磁性木材の上下をステンレス鋼板で挟み、試料の仕上がりの厚さを10mmに制御し、200℃で20分保持して6枚の木材試料を加熱圧縮した。各2枚の圧縮率(%)をそれぞれ10%、20%、58%とした。
[0038] 含浸前後の試料の質量を測定し、含浸量を計算し、比重を計算し、含浸前後を比較した結果を表4に示す。インサイジングを施すことにより含浸量が大幅に増加し、圧縮率にほぼ比例して比重が増加したことが分かる。
[0039]
【表4】


9/1
[0009]
The amount of impregnation of the magnetic fluid and the state of impregnation were evaluated from the results of the measurement of the specific gravity of the sample cut out every 10 mm from the butt end portion. FIG. 10 shows the results of averaging the specific gravities of the impregnated magnetic woods and subtracting the specific gravity of the wood before the magnetic fluid impregnation from the specific gravity after the magnetic fluid impregnation. This shows the transition from the ostium of the magnetic fluid impregnation amount, and shows the infiltration length. In the impregnated type magnetic wood, the amount of impregnation of the magnetic fluid is increased and the uniformity is increased by incising the grain surface of the red pine veneer perpendicularly to the wood fibers, and the uniformity of the red pine impregnated type magnetic wood (Pd) and cedar impregnated type magnetic wood Compared with (Cj), it was significantly improved and became equivalent to the one in which Akamatsu veneer laminated magnetic wood was vertically laminated (PP⊥). FIG. 11 shows the evaluation results of the complex magnetic permeability of the wood mouth part (a) and the central part (b). Vertically laminated samples (PPinc⊥) and parallel laminated samples (PP//) that have been subjected to insizing, and Akamatsu single plate laminated magnetic wood (PP// and PP⊥) are Akamatsu-impregnated magnetic wood (Pd) and cedar-impregnated Type magnetic wood (Cj) has a considerably higher complex magnetic permeability, and in particular, the vertically laminated sample (PPinc⊥) has a relatively higher magnetic property than the vertically laminated sample (PP⊥) of Akamatsu veneer laminated magnetic wood. And its uniformity.
Example 4
[0036] Eight cedar board single plate materials (length L = 300 mm, width T = 90 mm) were prepared. As shown in FIG. 13, parallel-line insizing with a pitch width of 10 mm was performed perpendicularly to the wood fibers on the grain surfaces of the four plate materials. The starting position of insizing is 10 mm from the edge of the wood on the front side and 5 mm from the edge of the wood on the back side. The insizing had a rectangular groove shape with a width of 0.85 mm and a depth of 2 mm. The remaining 4 sheets were used as comparative sample without insizing. The thickness of the plate material is 10 mm without heating and compression, and the compression ratio by heating and compression (%=[plate thickness before compression−plate thickness after compression]×100/plate thickness before compression) is 10%, 20%, In all of the 58%, the finished thickness of the sample was 10 mm.
[0037] Using a water-based magnetic fluid (W-35) as the magnetic material, the magnetic fluid and eight wood samples were inserted into a vacuum heating impregnation apparatus, and the pressure was reduced to about 50 Torr for two and a half hours and the pressure was increased to about 9. It was carried out at 8 kPa for 1.5 hours. After the impregnation step was completed, the impregnation type magnetic wood was completed through the entire drying step.
Next, using a compression sampler with a hot plate (VC-1000S-HP), the upper and lower sides of the impregnated magnetic wood were sandwiched between stainless steel plates, the finished thickness of the sample was controlled to 10 mm, and the sample was held at 200° C. for 20 minutes. 6 wood samples were heat pressed. The compression ratio (%) of each two sheets was set to 10%, 20%, and 58%, respectively.
[0038] Table 4 shows the results of measuring the mass of the sample before and after the impregnation, calculating the impregnation amount, calculating the specific gravity, and comparing the before and after the impregnation. It can be seen that the amount of impregnation increased significantly by applying insizing, and the specific gravity increased almost in proportion to the compressibility.
[0039]
[Table 4]


9/1

【0010】

Figure 2005105398
[0040] インサイジングを施し、圧縮率20%で加熱圧縮した試料(5)、インサイジングを施し、加熱圧縮しない試料(1)、インサイジングを施さずに、圧縮率20%で加熱圧縮した試料(6)、の3種類の試料について各々10枚を並べて長さ300mm、幅300mm、厚み10mmの電波吸収測定用ボードを作成した。それぞれの電波吸収測定用ボードについて、実施例1と同じフリースペース法により電波吸収特性を測定した。図14に、測定結果を示す。インサイジングと圧縮の両加工を施した試料(5)の電波吸収特性が他の試料(1),(6)に比べ最も高い値を示した。各試料とも、高周波(10GHz以降)に透過減衰量が高くなる傾向が表れた。さらに、図15に、試料(5)と試料(6)を対比して得られる透過減衰量のインサイジング効果(上側の図)と試料(5)と試料(1)を対比して得られ圧縮効果(下側の図)を示す。10〜15GHzの高周波における透過減衰量は、圧縮効果、インサイジング効果いずれにおいても、それぞれ150%以上向上する効果が得られた。
(比較例1)
[0041] Mn−Znフェライトとラッカーを体積比1:4の割合で混合、攪拌しクラフトテープで四方側面を囲んで枠を作ったスターウッド(北進産業商品名)に塗布を行い常温で24時間乾燥させて塗布型磁性木材を作製した。実施例1と同じ条件で測定した磁気特性を図2、図3に示す。粉体型磁性木材の内部構造は木材と磁性体で分離しているが、塗布型磁性木材では、磁性層が単一層であるため複素透磁率が高い値となっていると考えられる。図12に、実施例1と同じ条件で測定した電波吸収量を示す。
【産業上の利用可能性】
[0042] 本発明の木質系室内用電波吸収ボードは下記のような各種の用途に適用可能で


10[0010]
Figure 2005105398
[0040] Sample (5) that was subjected to insizing and heated and compressed at a compression rate of 20%, sample (1) that was subjected to insizing and not subjected to heat compression, and sample that was heated and compressed at a compression rate of 20% without insizing. For each of the three types of samples of (6), 10 sheets were arranged side by side to prepare a radio wave absorption measurement board having a length of 300 mm, a width of 300 mm and a thickness of 10 mm. The radio wave absorption characteristics of each of the radio wave absorption measurement boards were measured by the same free space method as in Example 1. FIG. 14 shows the measurement result. The electromagnetic wave absorption characteristics of the sample (5) which was subjected to both insizing and compression processing showed the highest value as compared with the other samples (1) and (6). For each sample, the transmission attenuation tended to increase at high frequencies (10 GHz and higher). Further, in FIG. 15, the insizing effect of the transmission attenuation amount obtained by comparing the sample (5) and the sample (6) (upper diagram) and the compression obtained by comparing the sample (5) and the sample (1) are shown. The effect (lower figure) is shown. The transmission attenuation amount at a high frequency of 10 to 15 GHz was improved by 150% or more in each of the compression effect and the insizing effect.
(Comparative Example 1)
[0041]Mn-Zn ferrite and lacquer were mixed in a volume ratio of 1:4, stirred, and applied to Starwood (trade name of Hokushin Sangyo Co., Ltd.) framed on four sides by kraft tape for 24 hours at room temperature. The coated magnetic wood was prepared by drying. The magnetic characteristics measured under the same conditions as in Example 1 are shown in FIGS. The internal structure of the powder type magnetic wood is separated from the wood by the magnetic substance, but it is considered that the coated magnetic wood has a high complex magnetic permeability because the magnetic layer is a single layer. FIG. 12 shows the amount of radio wave absorption measured under the same conditions as in Example 1.
[Industrial availability]
[0042] The wood-based indoor radio wave absorption board of the present invention can be applied to various uses as described below.


10

Claims (8)

塗布型磁性木材、含浸型磁性木材、粉体型磁性木材、積層型磁性木材のいずれかからなり、木質材の表面構造又は内部構造を変えることによって磁気吸着機能と電波吸収機能双方の機能を併せ持ったことを特徴とする室内用木質系磁性電波吸収ボード。   It is made of coated magnetic wood, impregnated magnetic wood, powder magnetic wood, or laminated magnetic wood, and has both magnetic adsorption function and electromagnetic wave absorption function by changing the surface structure or internal structure of wood material. An indoor wooden magnetic wave absorption board that is characterized by 表面構造が平行線、格子、又は円柱状の凹凸の溝を付けこの溝に磁性塗料又は磁性接着剤を塗布又は接着した塗布型磁性木材からなることを特徴とする請求の範囲第1項記載の木質系磁性電波吸収ボード。   2. The coating structure according to claim 1, wherein the surface structure is a parallel type, a lattice, or a groove of convexo-concave having a columnar shape, and a magnetic paint or a magnetic adhesive is applied to or adhered to the groove. Wooden magnetic wave absorption board. 表面構造が単板の繊維方向に垂直方向に筋状の傷(インサイジング)を付けて含浸した含浸型磁性木材からなることを特徴とする請求の範囲第1項記載の木質系磁性電波吸収ボード。   2. A wood-based magnetic wave absorption board according to claim 1, wherein the surface structure is made of impregnated magnetic wood impregnated with streak-like scratches (insizing) perpendicular to the fiber direction of the veneer. .. 前記含浸型磁性木材を厚み方向に圧縮加工したことを特徴とする請求の範囲第3項記載の木質系磁性電波吸収ボード。   4. The wood-based magnetic wave absorption board according to claim 3, wherein the impregnated magnetic wood is compressed in the thickness direction. 天然木材、加工木材、複合木材、化粧板、又は化粧シートが積層された磁性木材からなることを特徴とする請求の範囲第1項記載の木質系磁性電波吸収ボード。   2. The wood-based magnetic wave absorption board according to claim 1, which is made of natural wood, processed wood, composite wood, decorative board, or magnetic wood laminated with decorative sheets. 木質材がコルク材又は柔軟性のある木質材であることを特徴とする請求の範囲第1項記載の木質系磁性電波吸収ボード。   The wood-based magnetic wave absorbing board according to claim 1, wherein the wood-based material is cork material or flexible wood-based material. マグネット板、ゴム磁石、プラスチック磁石などのボンデッドマグネット又はマグネットワイヤ、マグネット粉末・薄膜・微粒子など硬質磁性材料と組合せたことを特徴とする請求の範囲第1項記載の木質系磁性電波吸収ボード。   The wood-based magnetic wave absorption board according to claim 1, which is combined with a bonded magnet such as a magnet plate, a rubber magnet, a plastic magnet or a magnet wire, and a hard magnetic material such as magnet powder/thin film/fine particles. 木材ボード又は木質ボードにキズ又は穴を施し、磁性微粒子又は磁性粉体を注入した磁気吸着機能と電波吸収機能双方の機能を併せ持ったことを特徴とする室内用木質系磁性電波吸収ボード。   An indoor wooden magnetic wave absorption board characterized by having both a magnetic adsorption function and a radio wave absorption function by injecting magnetic fine particles or magnetic powder into a wood board or wood board that is scratched or perforated.
JP2006512839A 2004-04-30 2005-04-28 Indoor wood-based magnetic wave absorption board Expired - Fee Related JP4371426B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004136931 2004-04-30
JP2004136931 2004-04-30
PCT/JP2005/008159 WO2005105398A1 (en) 2004-04-30 2005-04-28 Woody magnetic radio wave absorption board for indoor use

Publications (2)

Publication Number Publication Date
JPWO2005105398A1 true JPWO2005105398A1 (en) 2008-07-31
JP4371426B2 JP4371426B2 (en) 2009-11-25

Family

ID=35241502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006512839A Expired - Fee Related JP4371426B2 (en) 2004-04-30 2005-04-28 Indoor wood-based magnetic wave absorption board

Country Status (3)

Country Link
JP (1) JP4371426B2 (en)
TW (1) TWI261643B (en)
WO (1) WO2005105398A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007245419A (en) * 2006-03-14 2007-09-27 Iwate Univ Magnetic wood
JP2008069613A (en) * 2006-09-16 2008-03-27 Wood One:Kk Radiowave absorbing wooden board and its manufacturing method
FR3048974B1 (en) * 2016-03-21 2019-07-12 Universite De Rennes 1 NEW MATERIALS THAT ABSORB ELECTROMAGNETIC WAVES FOR VARIOUS APPLICATIONS
CN105922413B (en) * 2016-04-21 2017-04-26 东北林业大学 Preparation method of magnetic wood material for absorbing electromagnetic wave
CN106313221B (en) * 2016-10-14 2017-10-10 东北林业大学 A kind of preparation method of fluorescent transparent magnetic timber
CN115213995A (en) * 2021-09-27 2022-10-21 江门市尚逸家居用品有限公司 Process for manufacturing jigsaw puzzle component

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01191500A (en) * 1988-01-27 1989-08-01 Kajima Corp Radio-wave absorber
JP2849364B2 (en) * 1996-05-02 1999-01-20 株式会社日阪製作所 Wood compaction method
JP2001118711A (en) * 1999-10-15 2001-04-27 Japan Science & Technology Corp Laminated magnetic wood
JP2002180568A (en) * 2000-12-12 2002-06-26 Yokohama Rubber Co Ltd:The Electromagnetic wave absorptive object and its execution method
JP4547849B2 (en) * 2001-12-10 2010-09-22 洋司 小塚 How to change the characteristics of radio wave absorber

Also Published As

Publication number Publication date
JP4371426B2 (en) 2009-11-25
TWI261643B (en) 2006-09-11
WO2005105398A1 (en) 2005-11-10
TW200535306A (en) 2005-11-01

Similar Documents

Publication Publication Date Title
JP4371426B2 (en) Indoor wood-based magnetic wave absorption board
CN103709451B (en) A kind of ceiling with electromagnetic wave absorption functions and preparation method thereof
Fu et al. Electricity functional composite for building construction
CN209794776U (en) high-strength cupboard plate structure
CN209082874U (en) Sawing decorative pattern panel
JP2006200226A (en) Woody interior-finishing material having radio absorptive performance
JPS61269399A (en) Improved wood for shielding electromagnetic shield
US20210115603A1 (en) Textile structure based on glass fibers for acoustic ceiling or acoustic wall panel
JP2008069613A (en) Radiowave absorbing wooden board and its manufacturing method
TW200525558A (en) Wooden material for radiowave absorber
CN207842222U (en) A kind of interior sound insulating sheet material
CN211640271U (en) Composite artificial board with electromagnetic shielding function
CN208197043U (en) A kind of flame-retardant plywood for public place
CN209911421U (en) Novel structure for improving performance of anechoic chamber
CN206870495U (en) A kind of decoration high-density plate
CN206015930U (en) A kind of composite silencing plate
JP3388613B2 (en) Manufacturing method of carbonaceous material
CN215858763U (en) Novel composite board with air-purifying effect
CN215406675U (en) Fire protection system board
JP2659113B2 (en) Method for producing modified wood material
CN207829286U (en) A kind of composite plate for building
Zhang et al. Manufacture and Properties of Metasequoia-Based Three-Layer Parquet Flooring
JPH05285904A (en) Wooden material having magnetic characteristics
JP2007245419A (en) Magnetic wood
KR200402737Y1 (en) Wood wool cement board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090831

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees