JP4547849B2 - How to change the characteristics of radio wave absorber - Google Patents

How to change the characteristics of radio wave absorber Download PDF

Info

Publication number
JP4547849B2
JP4547849B2 JP2002103095A JP2002103095A JP4547849B2 JP 4547849 B2 JP4547849 B2 JP 4547849B2 JP 2002103095 A JP2002103095 A JP 2002103095A JP 2002103095 A JP2002103095 A JP 2002103095A JP 4547849 B2 JP4547849 B2 JP 4547849B2
Authority
JP
Japan
Prior art keywords
radio wave
wave absorber
wave absorption
absorption characteristics
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002103095A
Other languages
Japanese (ja)
Other versions
JP2003243876A (en
Inventor
洋司 小塚
Original Assignee
洋司 小塚
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 洋司 小塚 filed Critical 洋司 小塚
Priority to JP2002103095A priority Critical patent/JP4547849B2/en
Publication of JP2003243876A publication Critical patent/JP2003243876A/en
Application granted granted Critical
Publication of JP4547849B2 publication Critical patent/JP4547849B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の属する技術分野】
本発明は電波吸収体に関する。
【従来の技術および発明が解決しようとする課題】
従来、既存の電波吸収体材料を使って,本来持っている電波吸収体の周波数特性を他の周波数帯に変更したり、また電波吸収特性そのものを改善する方法として、磁性材料に全面的に静磁界を印加したり、電波吸収体に微小な空孔を設けたりする方法等が公知である。これらの方法のうち,前者の磁界を印加する方法においては、磁性電波吸収体に静磁界を印加すると,磁界が強まるにつれ電波吸収特性は(以後電波吸収特性と整合特性は同義であるが、電波吸収特性と称する),高周波領域に移行してゆく。また,後者の微小空孔を設ける方法も、微小空孔の寸法を調節することによって、電波吸収特性は高周波領域に移行する特性を示し、これらの方法では、低周波領域に電波吸収特性を変更することが出来ないという問題があった。また高周波領域に電波吸収特性を変更するために、より簡便な方法が求められている。さらに、とくに電波暗室を構成している電波吸収体の基板にしているフェライトに対しては、広帯域化を改善するために電波吸収特性が双峰特性を持つものが求められている。
これらの問題を解決するために、本願では,電波吸収体材料の表層面に電波吸収体材料とは異なった材料を部分的に装着して電波吸収特性を効果的に変更する方法を提供している。
まず請求項1に関しては、FDTD (Finite−difference time−domain method)法による理論解析で見出したものを実験で実証した発明で、例えば、電波吸収体材料の表層面に、電波吸収体材料とは異なる材料から成る素子を部分的に装着し、この素子の占有率を変えて、電波吸収特性を変更する方法に関するものである。ここで,素子を部分的に装着するとは、導体や磁性体や誘電体を線状,の形態で周期的、あるいは非周期的に、すなわちランダムに配置することを意味している。例えば、線状の導体を環状、つまりループ状に装着したり、線状の導体格子や、十文字構造、同心的多重円などを装着したりすることに相当する。また装着とは、導体などからなる素子を電波吸収体材料の表面に接着、またはスプレーで素子を描いたり、塗布、蒸着、印刷したりする手段を意味している。また、素子とは、電波吸収体を構成している電波吸収体材料とは異なった材料から構成され、導体や誘電体や磁性体などから構成されているもので、電波吸収体材料表面に部分的に装着して、電波吸収特性を変更する作用を持つものを意味している。
また、一参考例として他の問題解決手段として、例えば、電磁波的に誘導的な性質を有する環状素子を電波吸収体に二層にして装着し、本来単峰特性の電波吸収特性を双峰特性に変更するという問題を解決している.
以上のような技術を用いて、電波吸収体の特性改善および周波数特性の変更の問題を解決することが、本発明の主な解決すべき課題である。以下の課題を解決するための手段において、各請求項に関し具体的記す。
【課題を解決するための手段】
本願の目的を実現するための解決手段について、以下に記すが、各請求項全体に共通している用語について、はじめに明記しておく。
ここで、本願の素子とは、導体や誘電体や磁性体から構成されているもので電波吸収体材料とは異なる材料からなり、表層面に部分的に装着し,電波吸収特性を変更する作用を持つものを意味している。また、部分的とは,形態的には線状の導体や誘電体および磁性体で構成されるか、または、これらのいずれかの選択の組み合わせからなり、電波吸収体材料表面に装着する個々の素子が、周期的や非周期的、すなわちランダムに配置されることを意味している。また,これらの素子の一部を表面に残しその一部が電波吸収体材料に内部に挿入されていることを意味している。したがって、表層面とは、表面だけの場合と表面と深さ方向の近傍を含む領域を意味している。また、個々の素子は、独立している場合と、素子同士が互いに連結されて電気的に結合している場合とに分類され、独立に素子を配置した場合は、主として入射波の波長に依存して電波吸収体に容量性が付与されたり、誘導性が付与されたり、これら両方の効果が現れ、これらが電波吸収特性に反映される。
また、導体、誘電体や磁性体から構成する電波吸収体材料表面に装着する個々の素子が独立して周期的や非周期的に配置されているものを電気的に連結すれば、電波吸収体には、主として誘導性が付与され、これらが電波吸収特性に反映される。
また装着するとは、電波吸収体材料表面に接着、またはスプレー、塗布、蒸着、印刷するなどの手段で,導体などの素子を形成することや、電波吸収体材料表層面に窪みを設け、個々の素子を表面に一部残し埋め込む手段を含んでいる。
後者の個々の素子を一部埋め込む手段によって、電波吸収体の周波数変更特性は一層効果的に広帯域に変更でき,この手段はとくに低周波領域への変更に有効である。ここで本願の電波吸収体材料とは、一般に定義されている磁性体電波吸収体材料,誘電体電波吸収体材料、導電性電波吸収体材料を意味している.以下では、これを電波吸収材や電波吸収体材料などと略して使う。また、電波吸収体とは、その構成形態が平板状、山形、ピラッミド型と称されるものなどを意味しており、これらに線状の導体や誘電体および磁性体から成る素子を装着して電波吸収特性を変更する手段を用いている。
これらの課題を解決するための解決手段を以下に詳述する。
まず、本発明の請求項1は、FDTD理論解析で見出したものを実験で実証したもので、電波吸収体材料の表面に部分的に素子を装着し、電波吸収体を構成し,素子の占有率を変えるという手段で、電波を吸収する周波数(以下電波吸収周波数特性ともいう)を、この電波吸収体が本来持っている電波吸収周波数より低い周波数領域や高い周波数領域で電波吸収できるように解決するものである。この場合、電波吸収体材料として,とくに磁性電波吸収体材料を用いる場合に有効で、比透磁率の実部および虚部がともに大きく、比誘電率の実部が大きい材料を用いて効果的に低周波側に電波吸収特性を変更する手段を取っている。
請求項2は,後述の一実施例に示すように、請求項1記載の電波吸収体の構成において、電波吸収体材料表層面に装着した素子部分の一部を表面に残し,その一部を電波吸収体背面の導体板と接触しないように電波吸収体材料内の表層面に挿入し、導体素子と導体板を電気的には絶縁した構造を保つ手段で、電波吸収特性を変更する。また、これは電波吸収体材料表層面に窪みを設け、個々の素子を表面に一部残し埋め込む手段を含んでいる。この手段によって、電波吸収周波数特性をより大きく変更でき,とくに低周波領域への変更に有効である。
以上述べたように本発明の電波吸収周波数特性の変更方法は、主として電波吸収体の材料定数を変えることを目指すのではなく、あらかじめ選択した単一の材料に対して、付与する素子の外部的な形態だけをコンピュータ支援設計法によって割り出し変更するという手段で、電波吸収特性を変更するものである。このため調節し得る寸法や形状が多数存在する。したがって、電波吸収体の電波吸収周波数を変更するだけでなく、これらの寸法や形状を調節して電波吸収特性そのものを改善することが出来る。
【発明の実施形態】
上述のように、本発明による請求項記載の電波吸収体の形態は、電波吸収体材料の表層面に、導体や誘電体や磁性体を部分的、または薄くスプレーしたり、接着や塗布および蒸着、印刷する構成であって、これによって電波吸収周波数特性をこの電波吸収体が本来持っている電波吸収周波数より低周波領域や高周波領域に変更させたり、電波吸収特性を改善するものである。以下実施例を持って具体的に構成方法について述べる。
【実施例】
〔参考実施例〕
図1は、本発明におけるに関連する参考実施例で、電波吸収体の構成法と各部の名称を示している。この例では電波吸体収材料(1)を背面導体板(2)に密着させてある。この構成において、電波吸収体材料(1)の表面、つまり電波入射面に導電性材料(3)つまり導体素子が一定の間隔を空けて配列し装着してある。図1は、導電性材料(3)をストライプ状に配列した場合であり、図2は面状格子の導電性材料(3),つまり導体素子を周期的に配列した場合の参考実施例である。
FDTD法による理論解析によれば、図1のように、隣接導電性材料間の間隔b(4)を一定の1mmとし、かつフェライト厚を6,25mmの一定に保ち、ストライプ状の導電性材料の幅a(5)をパラメータに取り2mmから16mmまで変化させて電波吸収特性を算出すると、図3に示すよう、ストライプ状の導電性材料(3)無装荷時の本来の電波吸収特性に対し、電波吸収周波数特性がストライプ状の導電性材料の幅a(5)が増加することによって、低周波領域に移行してゆく特性を示す。同図で縦軸はデシベル表示の反射減衰量(電波吸収量と等価である)を横軸が周波数であり,導電性材料としてテープ状のアルミ材を用い、このストライプ状の導電性材料の幅a(5)をパラメータにとった例である。この参考図1の参考実施例は、入射波の偏波面に依存する構成例である。図4はこの場合の理論解析値と実験値を比較したものである。本参考実施例では,導電性材料として銀ドータイトやアルミ材を用いており、図3、4はアルミ材を用いた場合である。
〔実施例〕
次に、請求項1,2に関連する実施例を図5、図6、図7に示す。図5に示す十文字型導体素子(6)の先端部(7)を折り曲げ、これを図6の断面図に示すように、電波吸収体材料の中に一部挿入した、かん合型素子を電波吸収材に装着した場合で、電波吸収特性を低周波領域に変更する実施例である.ここでは、厚さ6.25mmのゴムフェライト電波吸収材を用いている。
十文字型導体素子(6)の寸法は、長さbが5mm、導体幅aが2mmの線状素子における場合の実施例である.図7はこの実施例の電波吸収特性を示したもので、実線が本発明の場合で点線が先端部を電波吸収材内部に挿入しない場合である.この実施例から明らかなように、十文字型導体素子(6)の先端部(7)を折り曲げ電波吸収体材料(1)内の一部に挿入することによって、電波吸収周波数を低周波領域へ大きく移動させることが出来る。この場合、電波吸収体材料として磁性材料を用いた本実施例では,比透磁率の実部および虚部が共に大きく、かつ比誘電率の実部が大きい電波吸収体材料を用いる手段とを併用することによって、より効果的に電波吸収特性を低周波側に変更させている。この実施例では,素子の先端部だけを電波吸収体材料の内部に埋め込んでいるが、この考え方から明らかなように電波吸収体材料の表層面に一定の形状の溝を設け、ここに一定の形状をした素子部を表面に一部出して埋め込み、素子の残りの部分を背面導体板に接触しないように埋め込んでも同じ特性が得られる。
〔参考実施例〕
次に、閉じた形状の線状素子を用いた参考実施例を図8,図9および図10に示す。図8に示す誘導性の環状導体の素子(8)を電波吸収体材料(1)の表面に周期的に装着することによって、電波吸収体材料(1)が本来持っている電波吸収特性を低周波域と高周波域で同時に双峰特性をもつように変更する参考実施例である。図10に示す電波吸収特性は、環状導体の素子(8)としてアルミ箔を用い、これを誘電体基板上に周期的に構成したものを図9に示すように重ね、2層構造の環状導体素子(9)を構成している。この基板つまりスペーサーとしては、厚さ1mm、比誘電率2の無損失性の誘電体基板(10)を用い、また電波吸収体材料(1)として、厚さ6.25mmのゴムフェライトを用い、この表面に2層構造の環状導体素子(9)を密着して電波吸収特性を変更した参考実施例である。この参考実施例では、環状導体の素子(8)として、正方形の一辺が12mm、導体幅aが4mmを有する一定の大きさの環状素子を用い,隣接環状導体素子間隔は16mmのものをコンピュータ解析から割り出し採用している。この図10の双峰特性は、特に電波暗室を構成している電波吸収体の基板フェライトに応用して、広帯域化を改善することに役立つ。この場合、2層構造の環状導体素子(9)を装荷した誘電体基板(10)と電波吸収体材料(1)との間に空気層を設けると、電波吸収特性が一段と改善される。さらに、この場合,環状の素子(8)を同心的に2重,3重のように平面的に描いたものを多重化することによって広帯域化が図れる。環状導体の素子(8)はミリ波領域では細い線となるため集積回路技術を使うことで解決している。
なお、本参考実施例の環状導体の素子(8)を誘電体基板上に周期的または非周期的に構成したものを電波吸収体材料(1)の中間や電波吸収体材料(1)と背面短絡板(2)との間に介在させることによって、電波吸収特性を変更することが出来る。この参考実施例では、環状素子として正方形のものを示したが、円形、多角形なども用いることが出来る。さらに、これら環状素子を相互に電気的に連結した素子を電波吸収体表層面に装着して実施すれば、電波吸収体材料に誘導性が大きく付与され、効果的に電波吸収特性変更できる。
〔参考実施例〕
次に他の参考実施例を図11、図12に示す。同図11に示すように、電磁波的には誘導性を示す線状格子の導体素子(11)つまり線状の導体素子を、電波吸収体材料(1)の表面に装着し、電波吸収体材料が本来持っている電波吸収特性を高周波域に変更する実施例である。本来0.7GHz領域で電波吸収が得られている材料の電波吸収周波数が導体間隔bを図12に示すように調節することによって、高周波領域に変更できることを示している。なお、線状格子の線状導体素子(11)の幅aは、1mmであり、電波吸収体材料としては、焼結フェライトを用いた場合の参考実施例である。
〔参考実施例〕
次に他の参考実施例を図13に示す.これは、電波吸収体材料の表面に一定の形状の誘電体を部分的に装着し、この誘電体の占有率および誘電率を変えて、電波吸収特性を低周波領域に変更する方法である。図13は,一例として比誘電率1000の強誘電体を一辺16mmの正方形の薄片に作り,これをゴムフェライトの電波吸収体材料(1)の表面に周期的に配列させて電波吸収特性を変更した参考実施例である。この参考実施例では、強誘電体の正方形薄片の隣接間隔を図13に示すように、20mmから4mmまで変化している。この場合,強誘電体の比誘電率および正方形薄片の寸法を大きくしてゆくと、さらに低周波域に電波吸収特性を変更できる。
〔参考実施例〕
次に他の参考実施例を図14,図15に示す。これは、請求項1における電波吸収体材料表面に装着する導体や誘電体、磁性体を多重周期構造に配置して、電波吸収特性を変更するものである。すなわち、図14に示すように、これら材料による微小な素子(12)を周期的に構成し,一定の形状を形成し、この微小な周期構造から形成されるものを基本素子(13)とし,この基本素子をさらに周期的に電波吸収体材料(1)上に構成するという手段で、電波吸収特性を変更するというものである。これは電波吸収体上に装着する誘電体の誘電率と占有率をあらかじめ決定し,所定の電波吸収特性が得られたものを,等価的に導体で実現するために有効である。つまり、一定の導電率を有する導体の微小な周期的な集合から成る基本素子(13)の中の導体分布割合を調節して、一つの誘電体素子と等価な電気定数を持つ基本素子を構成する手段を提供するものである。一般に理論的に割り出された電気定数を持つ材料を実際に実現することは困難な場合が多い。本参考実施例は、電気定数を変更せず,一定の導電率を持つものの形態を変化させて等価な電気定数を実現して、この種の電波吸収体を構成するという発明である。なお、この基本素子を構成する材料の分布は、必ずしも周期的でなく点状に材料を装着したランダムな構成であってもよい。図15は導体による一辺10mmの正方形の微小素子(12)の隣接間隔を0.5mmとし、正方形基本素子(13)の一辺を約31mmに形成し、その隣接間隔は2mmとした電波吸収特性例で、電波吸収周波数特性を本来のゴムフェライトの持つ1.8GHzから低周波域に変更している。
【発明の効果】
本発明は、電波吸収体の電波吸収特性を変更する発明であり,その変更法は電波吸収体材料そのものの材料定数を変更するのではなく、電波吸収体材料に装着する上述の各種素子の形態や電気定数を調節する手段で電波吸収特性を変更することに主眼に置いたものである。
このため所望の電波吸収特性を持つ電波吸収体材料を新たに製造する必要がなく、既存の電波吸収材に所定の素子パターンを装着するという簡単な方法が適用でき、電波吸収体材料が有効に利用できるという効果がある。さらに、フェライト材を用いた実施例から明らかなように、低周波域と高周波域で双峰特性や多峰特性の電波吸収特性が得られることから、フェライトを基板材料とする電波暗室内において、低周波域の特性と高周波域で電波吸収特性を改善出来るという効果がある。また、本願の電波吸収特性変更方法は、材料定数を精密に制御する必要がなく、単に電波吸収体材料上に装着する素子の形状パターン寸法を変更するだけであることから,とくにミリ波領域の電波吸収体設計に応用して効果的である。さらに、電波吸収体材料表層面に装着する素子は線状や面状に描くことが出来ることから、着色して素子パターンに装飾機能を与えて描くことも出来、室内用電波吸収体として有効となる。また、集積回路基板やEMC対策部品としても応用出来実施してその効果は大きい。また、本願では一実施例を記述したもので、本発明の原理に従い、低周波からミリ波領域での電波吸収体への応用や、相互の組み合わせによる種々の変形実施も可能である。
【図面の簡単な説明】
【図1】電波吸収体材料表面に導体を装荷した場合の一構成例を示す参考図。
【図2】電波吸収体材料表面に導体を装荷した別の構成例を示す参考図。
【図3】図1の構成例における電波吸収体の理論解析特性の参考図。
【図4】図1の構成例における電波吸収体の実測値と理論値の比較を示す参考図。
【図5】十文字素子を装着した電波吸収体の一実施例。
【図6】十文字素子の先端部の一部を電波吸収材に挿入した実施例の断面図。
【図7】十文字素子を装着した場合の電波吸収特性の実施例。
【図8】環状導体素子を用いて電波吸収体を構成した構成例を示す参考図。
【図9】二層構造の環状導体素子を用いた電波吸収体の参考実施例を示す断図。
【図10】双方特性を示す電波吸収特性例を示す参考図。
【図11】格子状の導体素子を装着した電波吸収体の構成例を示す参考図。
【図12】格子状の導体素子を装着した場合の電波吸収特性の参考実施例を示す参考図。
【図13】誘電体素子を装着した場合の電波吸収特性を示す参考図。
【図14】多重周期素子からなる電波吸収体の構成例を示す参考図。
【図15】多重周期素子からなる電波吸収体の電波吸収特性を示す参考図。
【符号の説明】
1――電波吸収体材料、 2――背面導体板、
3――導電性材料、 4――隣接導電性材料間の間隔b、
5――ストライプ状の導電性材料の幅a
6――十文字型導体素子
7――十文字型導体素子の先端部、
8――環状導体素子、
9――二層構造の環状導体素子、
10――誘電体基板
11――線状格子の導体素子、
12――微小な素子、
13――基本素子、
BACKGROUND OF THE INVENTION
The present invention relates to a radio wave absorber.
[Background Art and Problems to be Solved by the Invention]
Conventionally, using existing radio wave absorber materials, the frequency characteristics of the original radio wave absorbers can be changed to other frequency bands, or as a method of improving the radio wave absorption characteristics themselves, the magnetic material is completely static. A method of applying a magnetic field or providing minute holes in a radio wave absorber is known. Among these methods, in the former method in which a magnetic field is applied, when a static magnetic field is applied to the magnetic wave absorber, the radio wave absorption characteristics are increased as the magnetic field is strengthened (hereinafter, the radio wave absorption characteristics and the matching characteristics are synonymous. (Referred to as absorption characteristics) and move to the high frequency region. In addition, the latter method of providing minute holes also shows that the wave absorption characteristics shift to the high frequency range by adjusting the size of the minute holes, and these methods change the wave absorption characteristics to the low frequency range. There was a problem that I could not do it. In order to change the radio wave absorption characteristics in the high frequency region, a simpler method is required. Furthermore, in particular, for ferrite used as a substrate of an electromagnetic wave absorber constituting an electromagnetic wave anechoic chamber, there is a demand for an electromagnetic wave absorption characteristic having a bimodal characteristic in order to improve the broadband.
In order to solve these problems, the present application provides a method for effectively changing the radio wave absorption characteristics by partially mounting a material different from the radio wave absorber material on the surface of the radio wave absorber material. Yes.
First of all, with respect to claim 1, it is an invention that has been experimentally proved by a theoretical analysis by the FDTD (Finite-difference time-domain method) method. For example, on the surface layer of a radio wave absorber material, The present invention relates to a method of changing radio wave absorption characteristics by partially mounting elements made of different materials and changing the occupation ratio of the elements. Here, “partly mounting an element” means that conductors, magnetic bodies, and dielectrics are arranged periodically or aperiodically in a linear form, that is, randomly. For example, this corresponds to mounting a linear conductor in a ring shape, that is, in a loop, or mounting a linear conductor grid, a cross structure, concentric multiple circles, or the like. The mounting means means for adhering an element made of a conductor or the like to the surface of the radio wave absorber material, or drawing the element by spraying, coating, vapor deposition, or printing. The element is composed of a material different from the radio wave absorber material that constitutes the radio wave absorber, and is composed of a conductor, dielectric, magnetic material, etc. It means something that has the effect of changing the electromagnetic wave absorption characteristics.
Also, as another problem solving means as a reference example, for example, an annular element having electromagnetically inductive properties is attached to a radio wave absorber in two layers, so that the original single wave characteristic radio wave absorption characteristic is changed to a bimodal characteristic. The problem of changing to is solved.
It is a main problem to be solved by the present invention to solve the problems of the improvement of the characteristics of the radio wave absorber and the change of the frequency characteristics by using the technique as described above. In the means for solving the following problems, each claim is specifically described.
[Means for Solving the Problems]
Solution means for realizing the object of the present application will be described below, but terms common to all claims will be described first.
Here, the element of the present application is composed of a conductor, a dielectric, or a magnetic material, and is made of a material different from the radio wave absorber material, and is partially attached to the surface layer to change the radio wave absorption characteristics. Means something with In addition, the term “partial” is composed of a linear conductor, a dielectric and a magnetic material, or a combination of any one of these. This means that the elements are arranged periodically or aperiodically, that is, randomly. Further, it means that a part of these elements is left on the surface and a part thereof is inserted into the radio wave absorber material. Therefore, the surface layer means a region including only the surface and the vicinity of the surface and the depth direction. In addition, each element is classified into the case where it is independent and the case where the elements are connected to each other and electrically coupled. When the elements are arranged independently, it depends mainly on the wavelength of the incident wave. As a result, the electromagnetic wave absorber is given capacitance or inductivity, and both effects appear, which are reflected in the radio wave absorption characteristics.
In addition, if each element to be mounted on the surface of a radio wave absorber material composed of a conductor, a dielectric or a magnetic body is electrically connected to each other, which is independently arranged periodically or aperiodically, the radio wave absorber Is mainly given inductivity, and these are reflected in the radio wave absorption characteristics.
In addition, mounting means that an element such as a conductor is formed by adhesion, spraying, coating, vapor deposition, or printing on the surface of the radio wave absorber material, or a depression is provided on the surface of the radio wave absorber material. Means for embedding part of the element on the surface.
By means of embedding part of the individual elements, the frequency change characteristic of the radio wave absorber can be changed to a wider band more effectively, and this means is particularly effective for changing to a low frequency region. Here, the electromagnetic wave absorber material in this application means generally defined magnetic wave absorber material, dielectric wave absorber material, and conductive wave absorber material. In the following, this is abbreviated as a radio wave absorber or a radio wave absorber material. In addition, the term “wave absorber” means that the configuration is called a flat plate shape, a mountain shape, or a pyramid type, and a device composed of a linear conductor, dielectric or magnetic material is attached to these. A means for changing the radio wave absorption characteristics is used.
Solution means for solving these problems will be described in detail below.
First, claim 1 of the present invention has been experimentally verified what was found by FDTD theoretical analysis. A device is partially mounted on the surface of a radio wave absorber material to constitute a radio wave absorber, and the occupation of the device Resolve so that the frequency of absorbing radio waves (hereinafter also referred to as radio wave absorption frequency characteristics) can be absorbed in a frequency range lower or higher than the radio wave absorption frequency inherent to this radio wave absorber by changing the rate. To do. In this case, it is effective especially when using a magnetic wave absorber material as a radio wave absorber material, and it is effective to use a material having a large real part and imaginary part of relative permeability and a large real part of relative permittivity. A means for changing the radio wave absorption characteristics to the low frequency side is taken.
According to a second aspect of the present invention, as shown in one embodiment to be described later, in the configuration of the radio wave absorber according to claim 1, a part of the element part mounted on the surface layer of the radio wave absorber material is left on the surface, and a part thereof is The electromagnetic wave absorption characteristics are changed by means of maintaining the structure in which the conductor element and the conductive plate are electrically insulated by inserting them into the surface layer surface of the electromagnetic wave absorber material so as not to come into contact with the conductive plate on the back side of the electromagnetic wave absorber. This also includes means for embedding a recess in the surface layer of the radio wave absorber material and embedding some of the individual elements on the surface. By this means, the radio wave absorption frequency characteristic can be changed greatly, and it is particularly effective for changing to the low frequency region.
As described above, the method for changing the radio wave absorption frequency characteristic of the present invention is not mainly intended to change the material constant of the radio wave absorber, but externally applied to a single material selected in advance. The radio wave absorption characteristic is changed by means of indexing and changing only a specific form by a computer-aided design method. For this reason, there are many dimensions and shapes that can be adjusted. Therefore, not only the radio wave absorption frequency of the radio wave absorber can be changed, but also the radio wave absorption characteristics themselves can be improved by adjusting their dimensions and shape.
DETAILED DESCRIPTION OF THE INVENTION
As described above, the form of the radio wave absorber according to the present invention is such that a conductor, a dielectric, or a magnetic material is sprayed partially or thinly on the surface of the radio wave absorber material, or adhesion, application, and vapor deposition are performed. In this configuration, the radio wave absorption frequency characteristic is changed to a lower frequency region or a higher frequency region than the original radio wave absorption frequency of the radio wave absorber, or the radio wave absorption property is improved. The configuration method will be specifically described below with examples.
【Example】
[Reference Example]
FIG. 1 is a reference embodiment related to the present invention and shows a configuration method of radio wave absorbers and names of respective parts. In this example, the radio wave absorber collecting material (1) is adhered to the back conductor plate (2). In this configuration, the conductive material (3), that is, the conductor element, is arranged and mounted at a certain interval on the surface of the radio wave absorber material (1), that is, the radio wave incident surface. FIG. 1 shows a case where conductive materials (3) are arranged in stripes, and FIG. 2 shows a reference embodiment in which conductive materials (3) of a planar lattice, that is, conductor elements are periodically arranged. .
According to the theoretical analysis by the FDTD method, as shown in FIG. 1, the distance b (4) between adjacent conductive materials is constant 1 mm, the ferrite thickness is kept constant at 6,25 mm, and the striped conductive material When the radio wave absorption characteristics are calculated by taking the width a (5) of the above as a parameter and changing from 2 mm to 16 mm, as shown in FIG. 3, the striped conductive material (3) with respect to the original radio wave absorption characteristics when not loaded The radio wave absorption frequency characteristic shows a characteristic of shifting to a low frequency region as the width a (5) of the stripe-shaped conductive material increases. In the figure, the vertical axis is the decibel display return loss (equivalent to the amount of radio wave absorption), the horizontal axis is the frequency, tape-like aluminum material is used as the conductive material, and the width of the stripe-like conductive material. This is an example in which a (5) is taken as a parameter. The reference embodiment of FIG. 1 is a configuration example depending on the polarization plane of the incident wave. FIG. 4 compares the theoretical analysis value and the experimental value in this case. In this embodiment, silver dotite or aluminum material is used as the conductive material, and FIGS. 3 and 4 show the case where aluminum material is used.
〔Example〕
Next, the Example relevant to Claim 1, 2 is shown in FIG.5, FIG.6, FIG.7. The cross-section of the cross-shaped conductor element (6) shown in FIG. 5 is bent, and as shown in the cross-sectional view of FIG. This is an example in which the radio wave absorption characteristic is changed to the low frequency region when it is attached to the absorber. Here, a rubber ferrite electromagnetic wave absorber having a thickness of 6.25 mm is used.
The dimension of the cross-shaped conductor element (6) is an example in the case of a linear element having a length b of 5 mm and a conductor width a of 2 mm. FIG. 7 shows the radio wave absorption characteristics of this embodiment, where the solid line is the case of the present invention and the dotted line is the case where the tip is not inserted into the radio wave absorber. As is apparent from this embodiment, the radio wave absorption frequency is increased to a low frequency region by bending the tip (7) of the cross-shaped conductor element (6) into a part of the folded radio wave absorber material (1). It can be moved. In this case, in the present embodiment using a magnetic material as the radio wave absorber material, a means for using the radio wave absorber material having both a large real part and an imaginary part of relative permeability and a large real part of relative permittivity is used in combination. By doing so, the radio wave absorption characteristic is changed to the low frequency side more effectively. In this embodiment, only the tip of the element is embedded in the radio wave absorber material, but as is apparent from this idea, a groove having a certain shape is provided on the surface layer of the radio wave absorber material, and a constant groove is provided here. The same characteristics can be obtained by embedding part of the shaped element part on the surface and embedding the remaining part of the element so as not to contact the back conductor plate.
[Reference Example]
Next, reference examples using closed linear elements are shown in FIG. 8, FIG. 9 and FIG. By periodically mounting the inductive annular conductor element (8) shown in FIG. 8 on the surface of the radio wave absorber material (1), the radio wave absorber material (1) originally has low radio wave absorption characteristics. This is a reference embodiment that is modified to have a bimodal characteristic at the same time in the frequency range and the high frequency range. The radio wave absorption characteristics shown in FIG. 10 are obtained by using an aluminum foil as an annular conductor element (8) and periodically stacking it on a dielectric substrate as shown in FIG. Element (9) is configured. As this substrate, that is, a spacer, a lossless dielectric substrate (10) having a thickness of 1 mm and a relative dielectric constant of 2 is used, and as a radio wave absorber material (1), a rubber ferrite having a thickness of 6.25 mm is used. This is a reference example in which the two-layered annular conductor element (9) is brought into close contact with this surface to change the radio wave absorption characteristics. In this reference example, as the annular conductor element (8), an annular element having a constant size having a square side of 12 mm and a conductor width a of 4 mm is used, and the adjacent annular conductor element interval is 16 mm. The index is adopted from. The bimodal characteristic shown in FIG. 10 is particularly useful for improving the broadband by applying to the substrate ferrite of the radio wave absorber constituting the anechoic chamber. In this case, if an air layer is provided between the dielectric substrate (10) loaded with the two-layered annular conductor element (9) and the radio wave absorber material (1), the radio wave absorption characteristics are further improved. Furthermore, in this case, the bandwidth can be increased by multiplexing the elements (8) that are concentrically drawn in a plane such as double or triple. The ring conductor element (8) is a thin line in the millimeter wave region, and is solved by using integrated circuit technology.
An annular conductor element (8) according to the present embodiment is formed periodically or aperiodically on a dielectric substrate, and is intermediate between the wave absorber material (1) and the wave absorber material (1). By interposing between the short-circuit plate (2), the radio wave absorption characteristics can be changed. In this reference embodiment, a square element is shown as an annular element, but a circular shape, a polygonal shape, or the like can also be used. Furthermore, when the elements in which these annular elements are electrically connected to each other are mounted on the surface of the radio wave absorber, the inductivity is greatly imparted to the radio wave absorber material, and the radio wave absorption characteristics can be effectively changed.
[Reference Example]
Next, another reference embodiment is shown in FIGS. As shown in FIG. 11, a linear grid conductor element (11) that is electromagnetically inductive, that is, a linear conductor element is mounted on the surface of the radio wave absorber material (1), and the radio wave absorber material This is an embodiment in which the radio wave absorption characteristics inherent in the are changed to a high frequency range. It shows that the radio wave absorption frequency of the material that originally obtained radio wave absorption in the 0.7 GHz region can be changed to the high frequency region by adjusting the conductor interval b as shown in FIG. In addition, the width | variety a of the linear conductor element (11) of a linear lattice is 1 mm, and is a reference Example at the time of using sintered ferrite as a wave absorber material.
[Reference Example]
Next, another reference embodiment is shown in FIG. This is a method in which a dielectric having a certain shape is partially attached to the surface of a radio wave absorber material, and the radio wave absorption characteristics are changed to a low frequency region by changing the occupancy and dielectric constant of the dielectric. FIG. 13 shows an example in which a ferroelectric material having a relative dielectric constant of 1000 is formed into a square piece having a side of 16 mm, and this is periodically arranged on the surface of a rubber ferrite wave absorber material (1) to change the wave absorption characteristics. This is a reference example. In this reference example, as shown in FIG. 13, the interval between adjacent ferroelectric square slices varies from 20 mm to 4 mm. In this case, if the relative permittivity of the ferroelectric and the size of the square flakes are increased, the radio wave absorption characteristics can be changed to a lower frequency range.
[Reference Example]
Next, another reference embodiment is shown in FIGS. This is to change the radio wave absorption characteristics by arranging conductors, dielectrics, and magnetic bodies mounted on the surface of the radio wave absorber material in claim 1 in a multi-period structure. That is, as shown in FIG. 14, minute elements (12) made of these materials are periodically formed to form a fixed shape, and the element formed from this minute periodic structure is a basic element (13). The basic element is further periodically formed on the radio wave absorber material (1) to change the radio wave absorption characteristics. This is effective for predetermining the dielectric constant and occupancy of the dielectric mounted on the radio wave absorber, and achieving a predetermined radio wave absorption characteristic with a conductor equivalently. That is, a basic element having an electric constant equivalent to one dielectric element is configured by adjusting the conductor distribution ratio in the basic element (13) composed of a minute periodic set of conductors having a constant conductivity. It provides a means to do. In general, it is often difficult to actually realize a material having a theoretically determined electrical constant. The present embodiment is an invention in which this type of radio wave absorber is configured by changing the form of a material having a constant conductivity without changing the electrical constant to realize an equivalent electrical constant. Note that the distribution of the material constituting the basic element is not necessarily periodic but may be a random configuration in which the material is mounted in the form of dots. FIG. 15 shows an example of a radio wave absorption characteristic in which an adjacent interval of a square microelement (12) having a side of 10 mm by a conductor is 0.5 mm, one side of a square basic element (13) is formed to be about 31 mm, and the adjacent interval is 2 mm. Thus, the radio wave absorption frequency characteristic is changed from 1.8 GHz, which is the inherent property of rubber ferrite, to a low frequency range.
【The invention's effect】
The present invention is an invention for changing the radio wave absorption characteristics of the radio wave absorber, and the changing method does not change the material constant of the radio wave absorber material itself, but the form of the above-described various elements attached to the radio wave absorber material. The main focus is on changing the radio wave absorption characteristics by means of adjusting the electrical constant.
For this reason, it is not necessary to newly manufacture a radio wave absorber material having desired radio wave absorption characteristics, and a simple method of attaching a predetermined element pattern to an existing radio wave absorber can be applied. There is an effect that it can be used. Furthermore, as is clear from the examples using the ferrite material, since the electromagnetic absorption characteristics of the bimodal characteristics and the multimodal characteristics can be obtained in the low frequency range and the high frequency range, There is an effect that the characteristics of the low frequency region and the radio wave absorption property can be improved in the high frequency region. In addition, the method for changing radio wave absorption characteristics of the present application does not require precise control of material constants, and simply changes the shape pattern dimensions of elements mounted on the radio wave absorber material. It is effective when applied to electromagnetic wave absorber design. In addition, since the element to be mounted on the surface layer of the radio wave absorber material can be drawn in a linear or planar shape, it can be colored and given a decorative function to the element pattern, which is effective as an indoor radio wave absorber. Become. In addition, it can be applied as an integrated circuit board or an EMC countermeasure part and has a great effect. Also, one embodiment has been described in the present application, and various modifications may be made by applying to a radio wave absorber in the low frequency to millimeter wave region and in combination with each other in accordance with the principle of the present invention.
[Brief description of the drawings]
FIG. 1 is a reference diagram showing a configuration example when a conductor is loaded on the surface of a radio wave absorber material.
FIG. 2 is a reference diagram showing another configuration example in which a conductor is loaded on the surface of a radio wave absorber material.
3 is a reference diagram of theoretical analysis characteristics of a radio wave absorber in the configuration example of FIG. 1. FIG.
4 is a reference diagram showing a comparison between measured values and theoretical values of a radio wave absorber in the configuration example of FIG. 1;
FIG. 5 shows an embodiment of a radio wave absorber equipped with a cross element.
FIG. 6 is a cross-sectional view of an embodiment in which a part of a tip portion of a cross element is inserted into a radio wave absorber.
FIG. 7 shows an example of radio wave absorption characteristics when a cross element is attached.
FIG. 8 is a reference diagram illustrating a configuration example in which a radio wave absorber is configured using an annular conductor element.
FIG. 9 is a cross-sectional view showing a reference example of a radio wave absorber using an annular conductor element having a two-layer structure.
FIG. 10 is a reference diagram showing an example of radio wave absorption characteristics showing both characteristics.
FIG. 11 is a reference diagram showing a configuration example of a radio wave absorber equipped with a grid-like conductor element.
FIG. 12 is a reference diagram showing a reference example of radio wave absorption characteristics when a grid-like conductor element is mounted.
FIG. 13 is a reference diagram showing radio wave absorption characteristics when a dielectric element is mounted.
FIG. 14 is a reference diagram showing a configuration example of a radio wave absorber composed of multiple periodic elements.
FIG. 15 is a reference diagram showing radio wave absorption characteristics of a radio wave absorber composed of multiple periodic elements.
[Explanation of symbols]
1—Radio wave absorber material, 2—Back conductor plate,
3-conductive material, 4-spacing b between adjacent conductive materials,
5—Width a of striped conductive material
6-Cross-shaped conductor element 7-Tip of the cross-shaped conductor element,
8--annular conductor element,
9--annular conductor element with a two-layer structure,
10—Dielectric substrate 11—Conductive element with a linear lattice,
12--Small elements
13-Basic elements

Claims (2)

電波吸収体の表層面に該電波吸収体とは異なる材料からなる線状素子を部分的に装着し、前記素子は先端部を一部折り曲げて該電波吸収体内に挿入してなる電波吸収体。A radio wave absorber formed by partially mounting a linear element made of a material different from the radio wave absorber on the surface layer of the radio wave absorber, and bending the tip part of the element into the radio wave absorber. 前記請求項1の素子は、十文字型導体を折り曲げてなる電波吸収体。The element of claim 1 is a radio wave absorber formed by bending a cross-shaped conductor.
JP2002103095A 2001-12-10 2002-02-27 How to change the characteristics of radio wave absorber Expired - Fee Related JP4547849B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002103095A JP4547849B2 (en) 2001-12-10 2002-02-27 How to change the characteristics of radio wave absorber

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001402579 2001-12-10
JP2001-402579 2001-12-10
JP2002103095A JP4547849B2 (en) 2001-12-10 2002-02-27 How to change the characteristics of radio wave absorber

Publications (2)

Publication Number Publication Date
JP2003243876A JP2003243876A (en) 2003-08-29
JP4547849B2 true JP4547849B2 (en) 2010-09-22

Family

ID=27790901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002103095A Expired - Fee Related JP4547849B2 (en) 2001-12-10 2002-02-27 How to change the characteristics of radio wave absorber

Country Status (1)

Country Link
JP (1) JP4547849B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005084097A1 (en) 2004-02-27 2005-09-09 Mitsubishi Gas Chemical Company, Inc. Radio wave absorber and radio wave absorber manufacturing method
CN1926933B (en) 2004-03-01 2010-12-08 新田株式会社 Electromagnetic wave absorbent
JP4833571B2 (en) * 2004-03-31 2011-12-07 ニッタ株式会社 Electromagnetic wave absorber
WO2005105398A1 (en) * 2004-04-30 2005-11-10 Japan Science And Technology Agency Woody magnetic radio wave absorption board for indoor use
JP4461970B2 (en) * 2004-09-06 2010-05-12 三菱瓦斯化学株式会社 Radio wave absorber
WO2006035912A1 (en) * 2004-09-29 2006-04-06 Nitta Corporation Electromagnetic wave absorber
JP4549265B2 (en) * 2005-09-06 2010-09-22 三菱瓦斯化学株式会社 Radio wave absorber
JP5085026B2 (en) * 2005-09-27 2012-11-28 ニッタ株式会社 Electromagnetic wave absorber
WO2007046527A1 (en) * 2005-10-21 2007-04-26 Nitta Corporation Sheet body for improving communication, antenna device provided with such sheet body and electronic information transmitting apparatus
JP4528318B2 (en) * 2007-07-30 2010-08-18 ニッタ株式会社 Electromagnetic wave absorber and electromagnetic wave absorbing method
JP5162424B2 (en) * 2007-12-17 2013-03-13 藤森工業株式会社 Electromagnetic wave absorber
JP5493132B2 (en) * 2010-12-07 2014-05-14 防衛省技術研究本部長 Radio wave absorber and design method thereof
US10403981B2 (en) 2016-07-01 2019-09-03 Hyundai Motor Company Electromagnetic wave absorber
JP2023019268A (en) 2021-07-29 2023-02-09 Tdk株式会社 noise suppression sheet

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392003A (en) * 1989-09-05 1991-04-17 Toshiba Corp Radio wave reflection suppressing structure for travelling object
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JPH07283578A (en) * 1994-04-08 1995-10-27 Tdk Corp Wave absorber
JPH10190279A (en) * 1996-12-20 1998-07-21 Tokai Univ Radio wave absorber
JPH10275997A (en) * 1997-03-31 1998-10-13 Nippon Sheet Glass Co Ltd Radio absorbent panel
JPH1117380A (en) * 1997-05-01 1999-01-22 Tokai Univ Radiowave absorber
JPH1168374A (en) * 1997-08-08 1999-03-09 Ii M Techno:Kk Electromagnetic-wave shielding body, panel and blind
JPH11163585A (en) * 1997-11-27 1999-06-18 Tokin Corp Electromagnetic control board
JPH11204984A (en) * 1998-01-14 1999-07-30 Nippon Paint Co Ltd Frequency selective electromagnetic wave shield material
JP2000151178A (en) * 1998-11-05 2000-05-30 Hitachi Metals Ltd Ferrite unit for absorbing radio wave and radio wave absorbing panel
JP2000174481A (en) * 1998-12-01 2000-06-23 Yoji Kozuka Electronic wave absorber
JP2000349541A (en) * 1999-06-04 2000-12-15 Tokin Corp Electromagnetic wave filter and electromagnetic wave enhancer
JP2001177293A (en) * 1999-12-16 2001-06-29 Nippon Paint Co Ltd Frequency selective electromagnetic wave shielding material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0392003A (en) * 1989-09-05 1991-04-17 Toshiba Corp Radio wave reflection suppressing structure for travelling object
JPH06235281A (en) * 1993-02-09 1994-08-23 Yoji Kozuka Radio wave shielding body and absorber
JPH07283578A (en) * 1994-04-08 1995-10-27 Tdk Corp Wave absorber
JPH10190279A (en) * 1996-12-20 1998-07-21 Tokai Univ Radio wave absorber
JPH10275997A (en) * 1997-03-31 1998-10-13 Nippon Sheet Glass Co Ltd Radio absorbent panel
JPH1117380A (en) * 1997-05-01 1999-01-22 Tokai Univ Radiowave absorber
JPH1168374A (en) * 1997-08-08 1999-03-09 Ii M Techno:Kk Electromagnetic-wave shielding body, panel and blind
JPH11163585A (en) * 1997-11-27 1999-06-18 Tokin Corp Electromagnetic control board
JPH11204984A (en) * 1998-01-14 1999-07-30 Nippon Paint Co Ltd Frequency selective electromagnetic wave shield material
JP2000151178A (en) * 1998-11-05 2000-05-30 Hitachi Metals Ltd Ferrite unit for absorbing radio wave and radio wave absorbing panel
JP2000174481A (en) * 1998-12-01 2000-06-23 Yoji Kozuka Electronic wave absorber
JP2000349541A (en) * 1999-06-04 2000-12-15 Tokin Corp Electromagnetic wave filter and electromagnetic wave enhancer
JP2001177293A (en) * 1999-12-16 2001-06-29 Nippon Paint Co Ltd Frequency selective electromagnetic wave shielding material

Also Published As

Publication number Publication date
JP2003243876A (en) 2003-08-29

Similar Documents

Publication Publication Date Title
JP4547849B2 (en) How to change the characteristics of radio wave absorber
US8179298B2 (en) Multi-directional resonant-type electromagnetic wave absorber, method for adjusting electromagnetic wave absorption performance using the same and manufacturing method of the same
US8013777B2 (en) Electromagnetic wave absorber using resistive material
US9035817B2 (en) Electromagnetic wave reverberation chamber
KR100753830B1 (en) High impedance surface structure using artificial magnetic conductor, and antenna and electromagnetic device using the same structure
KR102129386B1 (en) Ultrawide Bandwidth Electromagnetic Wave Absorbers Using High-Capacitive Spiral Frequency Selective Surfaces
EP2693860B1 (en) Wave-absorbing metamaterial
KR20070046936A (en) Wave absorber
US10784574B2 (en) Antenna
WO2007080368A1 (en) Absorber
US6864843B2 (en) Conformal frequency-agile tunable patch antenna
JP3030453B2 (en) Broadband radio wave absorber
CN110048237B (en) Electrically adjustable X-waveband wave-absorbing material
JP5085026B2 (en) Electromagnetic wave absorber
JP4751674B2 (en) Planar antenna
CN212257701U (en) Dual-band magnetic material wave-absorbing structure
KR101756816B1 (en) Scalable frequency selective surface with miniaturized unit cell
KR100791227B1 (en) Single frequency band pass/rejection filter using frequency selective surface technique
MXPA05003836A (en) Slot-type antennas employing a photonic bandgap structure.
CN102820552B (en) A kind of broadband circular polarizer and antenna system
CN110600885A (en) Frequency selective surface with absorption-reflection-absorption characteristics
CN107706526B (en) High-power embedded polarization conversion radome
CN115473051A (en) Electromagnetic wave absorbing structure
Karmakar Theoretical investigations into binomial distributions of photonic bandgaps in microstripline structures
Kretly et al. The influence of the height variation on the frequency bandgap in an amc, artificial magnetic conductor, for wireless applications: an em experimental design approach

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees