JPH11204984A - Frequency selective electromagnetic wave shield material - Google Patents

Frequency selective electromagnetic wave shield material

Info

Publication number
JPH11204984A
JPH11204984A JP557998A JP557998A JPH11204984A JP H11204984 A JPH11204984 A JP H11204984A JP 557998 A JP557998 A JP 557998A JP 557998 A JP557998 A JP 557998A JP H11204984 A JPH11204984 A JP H11204984A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
frequency
wave shielding
resonance
shielding material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP557998A
Other languages
Japanese (ja)
Inventor
Toshiki Takaso
利記 高祖
Seiichi Matsuo
誠一 松尾
Mitsuyuki Oda
光之 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP557998A priority Critical patent/JPH11204984A/en
Publication of JPH11204984A publication Critical patent/JPH11204984A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To shield a plurality of electromagnetic waves simultaneously without requiring any grounding by specifying the thickness of a spacer for a plurality of resonant frequency selective electromagnetic wave shielding planar bodies and the electric length of an electromagnetic wave having a frequency to be shielded. SOLUTION: When a resonant frequency selective electromagnetic wave shielding planar body having a capacitor and an inductor is directed vertically to the advancing direction of an electromagnetic wave, a unit 102, 102', 112, 112' of a conductive pattern formed on the surface of an insulating basic material 101, 111 becomes an inductor and a broken conductivity part 103, 113 becomes a capacitor. Resonance frequency preferably matches the frequency of an electromagnetic wave to be shielded. The conductive pattern 102, 102', 112, 112' has a profile, dimensions and a line width dependent on the frequency to be shielded, a desired shielding power, and the like, and a spacer for keeping a thickness of 1/160 of the electric length of lowest frequency electromagnetic wave or above with accuracy of ±10% is preferably employed.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、特定範囲の周波数
の電磁波を反射する電磁波シールド材に関し、特に、周
波数が異なる複数の電磁波を反射することが可能な電磁
波シールド材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic wave shielding material for reflecting electromagnetic waves in a specific range of frequencies, and more particularly to an electromagnetic wave shielding material capable of reflecting a plurality of electromagnetic waves having different frequencies.

【0002】[0002]

【従来の技術】近年、携帯電話、無線LAN等の通信シ
ステムの発達により、オフィス情報保護、及び通信混線
を防止する必要が生じている。不必要な電磁波の進入及
び漏洩を抑制し通信を快適に行う環境を整備する為、建
物等を接地された導電性材料で囲み、内外の電磁波を遮
断する事が通常行われている。
2. Description of the Related Art In recent years, with the development of communication systems such as mobile phones and wireless LANs, it has become necessary to protect office information and prevent communication crosstalk. In order to suppress the intrusion and leakage of unnecessary electromagnetic waves and maintain an environment in which communication can be performed comfortably, it is common practice to surround buildings and the like with a grounded conductive material to block internal and external electromagnetic waves.

【0003】一般に使用されている金属製ネット、金属
箔、金属蒸着製品、さらに窓等の透明部に使用されるI
TOなどの透明導電膜を用いた接地を要する電磁波シー
ルド材では、壁面等にシールド材を施工する場合、シー
ルド材間の継ぎ目の隙間は電磁波の波長以下に制御する
必要がある。この隙間が電磁波の波長を上回ると遮蔽力
が極端に低下するからである。さらに、電磁波シールド
材同士を電気的に導通させる必要がある。
[0003] Generally used metal nets, metal foils, metal deposition products, and I used for transparent parts such as windows.
In the case of an electromagnetic wave shielding material that requires grounding using a transparent conductive film such as TO, when a shielding material is applied to a wall surface or the like, the gap between seams between the shielding materials needs to be controlled to be equal to or less than the wavelength of the electromagnetic wave. This is because if this gap exceeds the wavelength of the electromagnetic wave, the shielding power is extremely reduced. Further, it is necessary to make the electromagnetic shielding materials electrically conductive.

【0004】例えば、壁面に電磁波シールド材を設ける
場合、ネット状電磁波シールド材の端部を重ね合わせた
状態で継ぎ合わせ、その上から表皮材を被覆する作業が
行われる。また窓部に電磁波シールド材を設ける場合
は、ITOなどで導電化したシールドガラスをあらかじ
め接続端子を出した特殊な窓枠に挿入したものを隣接シ
ールド材と電気的に導通させる作業が行われる。その様
なシールド工事は手間と膨大な経費がかかる。
For example, when an electromagnetic wave shielding material is provided on a wall surface, an operation is performed in which the ends of the net-shaped electromagnetic wave shielding material are joined in a state of being overlapped, and a skin material is covered from above. In the case where an electromagnetic wave shielding material is provided in the window portion, an operation is performed in which a shield glass made conductive by ITO or the like is inserted into a special window frame in which connection terminals are previously provided to electrically conduct with an adjacent shielding material. Such a shield construction is time-consuming and enormous.

【0005】他方、共振型周波数選択性電磁波シールド
材は、絶縁性基材の表面上に複数の導電性模様が規則性
をもって集合して成る材料である。そして各々の導電性
部分は互い電気的に導通していない。このような材料
は、その導電性部分の形状、導電性部分間の相対位置、
導電性部分を構成する材料及び導電性部分が存在する空
間の電気的性質により決定される特定範囲の周波数の電
磁波に対しLC共振する。その結果特定電磁波のみを選
択的に反射し、その他の電磁波を透過する。
On the other hand, a resonance type frequency selective electromagnetic wave shielding material is a material in which a plurality of conductive patterns are regularly gathered on the surface of an insulating base material. And each conductive part is not electrically conducting with each other. Such materials include the shape of the conductive portions, the relative positions between the conductive portions,
LC resonance occurs for electromagnetic waves in a specific range of frequencies determined by the material constituting the conductive portion and the electrical properties of the space in which the conductive portion exists. As a result, only specific electromagnetic waves are selectively reflected, and other electromagnetic waves are transmitted.

【0006】例えば、特開平8−330783号には、
PHS周波数の約半波長の長さの導電性線を組み合わせ
た十字、X字、Y字金属形状を、PHS周波数の約半波
長の間隔で透明なシートに配置した、PHSの電波をシ
ールドする電磁波シールド材が記載されている。199
7年9月度(関東)日本建築学会大会学術梗概集には、
ガラス表面に受信端短絡ダイポールアンテナを焼成印刷
したPHS周波数用の電磁波シールド材が記載されてい
る。また、特願平9−22675号には、絶縁性基材上
に規則的に配置された複数の導電性模様から成る導電性
ループパターンを有する電磁波シールド材が記載されて
いる。
For example, Japanese Patent Application Laid-Open No. 8-330783 discloses that
An electromagnetic wave that shields PHS radio waves by arranging a cross, X-shaped, or Y-shaped metal shape that combines conductive lines about half the wavelength of the PHS frequency on a transparent sheet at an interval of about half the PHS frequency. Shield material is described. 199
In the September 2007 (Kanto) Annual Meeting of the Architectural Institute of Japan,
An electromagnetic wave shielding material for a PHS frequency in which a receiving end short-circuited dipole antenna is printed on a glass surface by firing is described. Also, Japanese Patent Application No. 9-22675 describes an electromagnetic wave shielding material having a conductive loop pattern composed of a plurality of conductive patterns regularly arranged on an insulating base material.

【0007】このような共振型電磁波シールド材は電磁
波シールド材同士を電気的に導通させる必要がなく、建
築物の壁面等に設ける際にシールド材間に小さな隙間が
生じても電磁波を遮断する性能は低下しない。
[0007] Such a resonance type electromagnetic wave shielding material does not require electrical conduction between the electromagnetic wave shielding materials, and is capable of shielding electromagnetic waves even when a small gap is formed between the shielding materials when it is provided on a wall of a building or the like. Does not drop.

【0008】しかしながら、共振型電磁波シールド材に
は周波数選択性があるため、遮断できる周波数帯域は狭
く、周波数が異なる複数の電磁波を同時に遮断すること
は困難である。例えば、共に今日幅広く用いられている
PHS(1.9GHz)電磁波と中速無線LAN(2.
45GHz)電磁波とを同時に遮断することは、従来の
共振型電磁波シールド材では困難である。
However, since the resonance type electromagnetic wave shielding material has frequency selectivity, the frequency band that can be cut off is narrow, and it is difficult to simultaneously cut off a plurality of electromagnetic waves having different frequencies. For example, PHS (1.9 GHz) electromagnetic waves and medium-speed wireless LANs (2.
(45 GHz) It is difficult to block electromagnetic waves at the same time with a conventional resonance type electromagnetic wave shielding material.

【0009】[0009]

【発明が解決しようとする課題】本発明は上記従来の問
題を解決するものであり、その目的とするところは、接
地の必要なく電磁波シールド工事を行うことができ、周
波数が異なる複数の電磁波を同時に遮断することができ
る共振型電磁波シールド材を提供することにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above-mentioned conventional problems. It is an object of the present invention to perform electromagnetic wave shielding work without the need for grounding, and to reduce a plurality of electromagnetic waves having different frequencies. An object of the present invention is to provide a resonance type electromagnetic wave shielding material which can be cut off at the same time.

【0010】[0010]

【課題を解決するための手段】本発明は、複数の共振型
周波数選択性電磁波遮断性面状体がスペーサ材を介して
重ねられた電磁波シールド材において、該スペーサ材の
厚さがシールドしようとする周波数の電磁波の電気長の
1/160以上である電磁波シールド材を提供するもの
であり、そのことにより上記目的が達成される。
SUMMARY OF THE INVENTION According to the present invention, there is provided an electromagnetic wave shielding material in which a plurality of resonance type frequency-selective electromagnetic wave shielding sheet members are stacked via a spacer material, and the thickness of the spacer material is to be shielded. The present invention provides an electromagnetic wave shielding material having an electric length of 1/160 or more of an electromagnetic wave having a frequency to be used.

【0011】共振型周波数選択性電磁波遮断性面状体と
は、導電性薄膜でなる模様が容量とインダクタを形成し
ており、電磁波に共振して共振領域の電磁波のみを反射
し、非共振領域の電磁波を透過せしめる性質をもつ面状
体をいう。一般には、共振型周波数選択性電磁波遮断性
面状体は絶縁性基材の表面上に複数の導電性模様が規則
性をもって集合して成る電磁波シールド材である。
The resonance-type frequency-selective electromagnetic wave blocking sheet has a pattern formed of a conductive thin film forming a capacitor and an inductor, resonates with an electromagnetic wave, reflects only an electromagnetic wave in a resonance region, and forms a non-resonance region. Refers to a planar body that has the property of transmitting electromagnetic waves. In general, a resonance-type frequency-selective electromagnetic wave shielding sheet is an electromagnetic wave shielding material in which a plurality of conductive patterns are regularly gathered on the surface of an insulating base material.

【0012】本発明で用いる共振型周波数選択性電磁波
遮断性面状体において、容量とインダクタは直列に繋が
っている。一般には、互いに電気的絶縁性を保ちつつ規
則的に一定の間隔で配列されている導電性模様の一単位
は、インダクタとして機能する可能性を有する。そし
て、これらの内で、近接したもの同士は、その間に容量
単位を形成する可能性を有する。
In the resonance type frequency-selective electromagnetic wave blocking sheet used in the present invention, the capacitance and the inductor are connected in series. Generally, one unit of a conductive pattern regularly arranged at regular intervals while maintaining electrical insulation from each other has a possibility of functioning as an inductor. Among these, those that are close to each other have a possibility of forming a capacitance unit between them.

【0013】図1A及びBは、容量とインダクタが形成
されている共振型周波数選択性電磁波遮断性面状体の一
例を示す模式断面図である。図1A及びBの断面は電磁
波の電界方向Eと平行である。このように、電磁波の進
行方向に対して共振型周波数選択性電磁波遮断性面状体
を垂直に向けた場合は、絶縁性基材101、111の表
面上に設けられた導電性模様の一単位102、10
2’、112、112’はインダクタとなり、導電性が
途切れた部分103、113が容量となる。
FIGS. 1A and 1B are schematic cross-sectional views showing an example of a resonance-type frequency-selective electromagnetic wave shielding sheet having a capacitor and an inductor formed thereon. 1A and 1B are parallel to the electric field direction E of the electromagnetic wave. As described above, when the resonance-type frequency-selective electromagnetic wave shielding sheet is oriented perpendicular to the traveling direction of the electromagnetic wave, one unit of the conductive pattern provided on the surface of the insulating base materials 101 and 111 is used. 102, 10
2 ′, 112 and 112 ′ become inductors, and the portions 103 and 113 where the conductivity is interrupted become capacitors.

【0014】導電性模様の一単位102、102’、1
12、112’のインダクタとしての性質は、電界方向
Eと平行な方向におけるその寸法が大きいほど、また細
いほど(電界方向と垂直な面で切った断面積が小さいほ
ど)強くなる。また、導電性が途切れた部分103、1
13の容量としての性質は電界方向Eと平行な方向にお
けるその寸法が小さいほど、また、導電性模様の一単位
102、102’、112、112’を電界方向と垂直
な面で切った断面積が大きいほど強くなる。
One unit 102, 102 ', 1 of the conductive pattern
The properties of the inductors 12, 112 'as the inductors in the direction parallel to the electric field direction E are larger and thinner (the smaller the cross-sectional area taken along a plane perpendicular to the electric field direction), the stronger. In addition, the portions 103 where the conductivity is interrupted, 1
The capacity of the capacitor 13 is such that its dimension in the direction parallel to the electric field direction E is smaller and the cross-sectional area of one unit 102, 102 ', 112, 112' of the conductive pattern cut by a plane perpendicular to the electric field direction. The larger is the stronger.

【0015】容量とインダクタの直列素子の共振周波数
rsは、容量の大きさCとインダクタの大きさLとを用
いて以下の式で示される。
The resonance frequency f rs of the series element of the capacitor and the inductor is expressed by the following equation using the size C of the capacitor and the size L of the inductor.

【0016】frs=1/{2π(LC)1/2F rs = 1 / {2π (LC) 1/2 }

【0017】周波数fの電磁波が進行している空間に周
波数fで共振する容量とインダクタの直列回路を形成し
た共振型周波数選択性電磁波遮断性面状体を電界方向E
と平行に(電磁波の進行方向に対して垂直に)置くと、
この面状体が置かれた場所のインピーダンスがほぼ0Ω
となり、その場所を進行する電磁波は反射される。
A resonance-type frequency-selective electromagnetic wave blocking sheet having a series circuit of a capacitor and an inductor that resonates at a frequency f in a space where an electromagnetic wave of a frequency f travels is moved to an electric field direction E.
Parallel to (perpendicular to the direction of the electromagnetic wave)
The impedance at the place where this sheet is placed is almost 0Ω
, And the electromagnetic waves traveling at that location are reflected.

【0018】つまり、共振型周波数選択性電磁波遮断性
面状体の表面上に形成する導電性模様の形状及び配置を
適当に選択して容量及びインダクタとしての強度を調節
すれば、上記面状体の共振周波数を任意に調節すること
ができる。
That is, if the shape and arrangement of the conductive pattern formed on the surface of the resonance-type frequency-selective electromagnetic wave shielding sheet is appropriately selected to adjust the strength as a capacitor and an inductor, Can be arbitrarily adjusted.

【0019】共振型周波数選択性電磁波遮断性面状体の
共振周波数はシールドしようとする電磁波の周波数と接
近させることが好ましく、一致させることがより好まし
い。得られる周波数選択性電磁波シールド材のシールド
能が増大するからである。
It is preferable that the resonance frequency of the resonance-type frequency-selective electromagnetic-wave-blocking planar body is close to, and more preferably equal to, the frequency of the electromagnetic wave to be shielded. This is because the shielding ability of the obtained frequency selective electromagnetic wave shielding material is increased.

【0020】具体的には、共振型周波数選択性電磁波遮
断性面状体は、絶縁性基材と、その一平面又は表裏両面
上に規則的に配置された複数の導電性模様とから構成す
ることができる。絶縁性基材としてはPETフィルム、
ポリプロピレンフィルム、アクリル板、塩化ビニル板、
尿素樹脂板、ガラス板、石膏ボード、ケイカル板、紙及
び木製板等を用いうる。PETフィルムのような有機樹
脂フィルムを用いることが好ましい。絶縁性及び強度に
優れ、柔軟性があるからである。
Specifically, the resonance type frequency-selective electromagnetic wave shielding sheet is composed of an insulating base material and a plurality of conductive patterns regularly arranged on one plane or on both front and back surfaces. be able to. PET film as the insulating substrate,
Polypropylene film, acrylic board, vinyl chloride board,
A urea resin plate, a glass plate, a gypsum board, a calcical plate, a paper and a wooden plate can be used. It is preferable to use an organic resin film such as a PET film. This is because it has excellent insulation properties and strength and has flexibility.

【0021】導電性模様は、導電性材料、一般には通電
能力がある金属を用いて形成される。遮断性能に優れた
電磁波シールド材を提供するためには体積固有抵抗が小
さい導電性材料を用いることが好ましい。導電性材料の
体積固有抵抗が、例えば、10Ωcmを越えると20d
Bを越えるシールド性能を発揮させることが困難とな
る。
The conductive pattern is formed by using a conductive material, generally a metal having a current-carrying ability. In order to provide an electromagnetic shielding material having excellent shielding performance, it is preferable to use a conductive material having a small volume resistivity. If the volume resistivity of the conductive material exceeds, for example, 10 Ωcm, 20 d
It becomes difficult to exhibit shielding performance exceeding B.

【0022】例えば、鉄、アルミニウム、銅、金、銀、
タンタル、クロム及びニッケルのような導電性金属、I
TO、酸化錫等の導電性金属化物等を用いうる。銀ペー
スト、銅ペースト、ニッケルペースト及び銅銀メッキペ
ーストのような導電性インキを用いてもよい。
For example, iron, aluminum, copper, gold, silver,
Conductive metals such as tantalum, chromium and nickel, I
Conductive metalized materials such as TO and tin oxide can be used. A conductive ink such as a silver paste, a copper paste, a nickel paste, and a copper-silver plating paste may be used.

【0023】導電性模様は種々の方法により樹脂フィル
ム上に形成できる。例えば、導電性インキを用いて印刷
する方法、樹脂フィルム上に積層された金属膜を選択的
に除去して導電性模様を残す方法等が挙げられる。
The conductive pattern can be formed on the resin film by various methods. For example, there are a method of printing using a conductive ink, a method of selectively removing a metal film laminated on a resin film to leave a conductive pattern, and the like.

【0024】好ましい方法は、まず、樹脂フィルム上に
導電性金属薄膜層を全面に形成し、この金属薄膜を適当
な方法(例えば、リソグラフィ法等)で部分的に除去し
てパターンを形成する方法である。
A preferred method is to first form a conductive metal thin film layer on the entire surface of a resin film and partially remove the metal thin film by an appropriate method (eg, lithography method) to form a pattern. It is.

【0025】導電性金属薄膜層を樹脂フィルム上に形成
する方法は従来公知の方法でよい。例えば導電性金属箔
のラミネート方法や、金属薄膜の蒸着やスパッタリング
または無電界メッキ方法等が一般的である。好ましくは
金属薄膜の蒸着(具体的には、真空蒸着)方法である。
The method for forming the conductive metal thin film layer on the resin film may be a conventionally known method. For example, a method of laminating a conductive metal foil, a method of depositing a metal thin film, sputtering, or an electroless plating method are generally used. Preferably, a metal thin film deposition method (specifically, vacuum deposition) is used.

【0026】導電性模様の形状、寸法及び線幅等はシー
ルドしようとする周波数及び望まれる遮断力等に依存し
て適宜決定される。一般には、絶縁された一つの導電性
模様を一単位としたとき、シールドしようとする周波数
が高いほど導電性模様一単位の寸法は小さくなり、シー
ルドしようとする周波数が低いほど導電性模様一単位の
寸法は大きくなる。
The shape, size, line width, and the like of the conductive pattern are appropriately determined depending on the frequency to be shielded, the desired breaking force, and the like. Generally, when one insulated conductive pattern is taken as one unit, the higher the frequency to be shielded, the smaller the size of one unit of the conductive pattern becomes, and the lower the frequency to be shielded, the smaller the conductive pattern becomes one unit. Becomes larger.

【0027】導電性模様一単位は通常複数の有限直線を
組み合わせて構成される。その場合、導電性模様一単位
構成する線の長さはシールドしようとする電磁波の波長
より小さいことが好ましい。共振周波数の制御が容易で
あり、シールドしようとする周波数と共振周波数を一致
させることができるからである。
One unit of the conductive pattern is usually constituted by combining a plurality of finite straight lines. In that case, it is preferable that the length of the line constituting one unit of the conductive pattern is smaller than the wavelength of the electromagnetic wave to be shielded. This is because the resonance frequency can be easily controlled, and the frequency to be shielded can be matched with the resonance frequency.

【0028】導電性模様の厚さは厚いほど電気抵抗が小
さくなり遮断性能を確保し易い。しかしながら、厚くし
すぎると得られた電磁波シールド材の表面が凸凹になる
ため取扱いが不便となる。一般には用いる導電性材料の
体積固有抵抗が小さいほど薄い厚さで良好な遮断性能を
提供できる。例えば、アルミニウムを蒸着して形成した
導電性模様のように体積固有抵抗が小さい場合は30n
m以上の厚さがあれば足りるが、金属酸化物や導電性イ
ンキで形成した導電性模様のように体積固有抵抗が大き
い場合は数μm以上の厚さが必要である。
The greater the thickness of the conductive pattern, the lower the electrical resistance and the easier it is to ensure the breaking performance. However, if the thickness is too large, the surface of the obtained electromagnetic wave shielding material becomes uneven, so that handling becomes inconvenient. Generally, the smaller the volume resistivity of the conductive material used, the better the blocking performance can be provided with a thinner thickness. For example, when the volume resistivity is small, such as a conductive pattern formed by evaporating aluminum, 30 n
A thickness of at least m is sufficient, but a thickness of several μm or more is required when the volume resistivity is large, such as a conductive pattern formed of a metal oxide or a conductive ink.

【0029】導電性模様の配置の態様はシールドしよう
とする周波数及び望まれる遮断力等に依存して適宜決定
される。例えば、等間隔格子状や雁行状の配置を用いう
る。
The arrangement of the conductive pattern is appropriately determined depending on the frequency to be shielded, the desired breaking force, and the like. For example, an equally-spaced lattice-like or echelon-like arrangement can be used.

【0030】導電性模様同士は図2A、距離d、に示す
ように2次元的に接近させてもよく、図2B、距離d、
に示すように3次元的に接近させてもよい。例えば、図
2Bに示すような導電性模様が、樹脂フィルムの両面に
規則的に形成されているような場合は、相互に絶縁され
た導電性模様が規則的に配置された面が2面あるように
もみえる。しかしながら、両面の導電性模様が共振して
特定周波数の電磁波をシールドするものであるため、本
発明では、共振型周波数選択性電磁波遮断性面状体とし
てこれらを一体として考える。
The conductive patterns may be made to approach each other two-dimensionally as shown in FIG. 2A, distance d, and FIG.
As shown in FIG. For example, when the conductive patterns as shown in FIG. 2B are regularly formed on both surfaces of the resin film, there are two surfaces on which the mutually insulated conductive patterns are regularly arranged. Looks like. However, since the conductive patterns on both surfaces resonate to shield electromagnetic waves of a specific frequency, in the present invention, these are considered integrally as a resonance-type frequency-selective electromagnetic wave blocking sheet.

【0031】具体的には、特願平9−22675号に例
示された導電性模様の配置を用いてよい。また、形成さ
れた電磁波シールド材をその平面と垂直な方向からみた
場合、導電性薄膜で成る模様が等間隔の格子を形成する
ものとすることが好ましい。絶縁性基材やスペーサーに
透光性の材料を用いて、透視性のシールド材を作る時、
透視性に優れたシールド材が得られるからである。
Specifically, the arrangement of the conductive patterns exemplified in Japanese Patent Application No. 9-22675 may be used. When the formed electromagnetic wave shielding material is viewed from a direction perpendicular to the plane thereof, it is preferable that the pattern made of the conductive thin film forms a grid at equal intervals. When making a transparent shielding material using a translucent material for the insulating base material and the spacer,
This is because a shield material having excellent transparency can be obtained.

【0032】本発明で用いるスペーサー材は、所定の厚
さを実質的に保つことができる絶縁体であれば特に限定
されない。本発明でスペーサー材として用いる材料の例
には、アクリル板及び塩化ビニルのようなプラスチック
板、尿素樹脂板のような熱硬化性樹脂板、ガラス、石膏
ボード、スレート板、石綿パーライト板及び炭酸カルシ
ウム板のような無機建築材料等がある。透視性のアクリ
ル板やガラスを用いれば、透視性のシールド材が得られ
る。
The spacer material used in the present invention is not particularly limited as long as it is an insulator capable of substantially maintaining a predetermined thickness. Examples of the material used as the spacer material in the present invention include a plastic plate such as an acrylic plate and vinyl chloride, a thermosetting resin plate such as a urea resin plate, a glass, a gypsum board, a slate plate, an asbestos pearlite plate and calcium carbonate. There are inorganic building materials such as boards. If a transparent acrylic plate or glass is used, a transparent shielding material can be obtained.

【0033】所定の厚さとは、シールドしようとする周
波数の電磁波、好ましくはシールドしようとする最低周
波数の電磁波の電気長の1/160以上である。その厚
さを精度±10%で保つことができるスペーサー材が特
に好ましい。
The predetermined thickness is not less than 1/160 of the electrical length of the electromagnetic wave of the frequency to be shielded, preferably the lowest frequency of the electromagnetic wave to be shielded. A spacer material that can maintain its thickness with an accuracy of ± 10% is particularly preferable.

【0034】ここで、シールドしようとする周波数の電
磁波は単一でも複数でもよい。
Here, the electromagnetic wave of the frequency to be shielded may be single or plural.

【0035】シールドしようとする周波数の電磁波が複
数の場合は、共振周波数が近い2つの共振型周波数選択
性電磁波遮断性面状体を比較した場合に高い方の共振周
波数と低い方の共振周波数との差が高い方の共振周波数
の1/5以上である複数の共振型周波数選択性電磁波遮
断性面状体を用いる。
When there are a plurality of electromagnetic waves of the frequency to be shielded, a comparison between two resonance-type frequency-selective electromagnetic-wave-blocking planar bodies having close resonance frequencies indicates that the higher resonance frequency and the lower resonance frequency are different. Are used. More than one-fifth of the resonance frequency of the higher resonance frequency is used.

【0036】そのことにより、複数の周波数を選択的に
シールドする複数周波数選択性電磁波シールド材が得ら
れる。
Thus, a multi-frequency selective electromagnetic wave shielding material for selectively shielding a plurality of frequencies can be obtained.

【0037】シールドしようとする周波数の電磁波が単
一の場合は、シールドしようとする周波数と同じか、で
きるだけ近い共振周波数を有する共振型周波数選択性電
磁波遮断性面状体を用いる。
When the electromagnetic wave of the frequency to be shielded is single, a resonance-type frequency-selective electromagnetic wave blocking sheet having a resonance frequency equal to or as close as possible to the frequency to be shielded is used.

【0038】そのことにより、シールドしようとする周
波数の電磁波のシールド能が向上した単一周波数選択性
電磁波シールド材が得られる。
As a result, a single-frequency-selective electromagnetic wave shielding material having an improved electromagnetic wave shielding ability at the frequency to be shielded can be obtained.

【0039】電磁波の電気長とはスペーサー材の内部を
進行する電磁波の波長をいう。
The electric length of the electromagnetic wave means the wavelength of the electromagnetic wave traveling inside the spacer material.

【0040】用いるスペーサー材の比誘電率ε[−]、
厚さL[m]及びシールドしようとする電磁波の周波数
s[GHz]は以下の式で示す関係を満たさなければな
らない。
The relative permittivity ε [-] of the spacer material used,
The thickness L [m] and the frequency f s [GHz] of the electromagnetic wave to be shielded must satisfy the relationship represented by the following equation.

【0041】[0041]

【数1】 (Equation 1)

【0042】例えば、シールドしようとする電磁波の最
低周波数が2GHzであり、スペーサー材としてPET
フィルム(ε=4)を用いる場合、上記式により、その
厚さは500μm以上とする必要がある。また、スペー
サー材として厚さ5mmのガラス(ε=7)を用いる場
合はシールドしようとする電磁波の最低周波数は152
MHzとなる。
For example, the lowest frequency of an electromagnetic wave to be shielded is 2 GHz, and PET is used as a spacer material.
When a film (ε = 4) is used, the thickness needs to be 500 μm or more according to the above equation. When 5 mm thick glass (ε = 7) is used as the spacer material, the minimum frequency of the electromagnetic wave to be shielded is 152
MHz.

【0043】特に、PHSと中速無線LANの通信セル
確保の用途に好ましい本発明の周波数選択性電磁波シー
ルド材の一態様として、複数の共振型周波数選択性電磁
波遮断性面状体が窓用ガラスを介して重ねられた電磁波
シールド材において、窓用ガラス屋内面の共振型周波数
選択性電磁波遮断性面状体の共振周波数が窓用ガラス屋
外面の共振型周波数選択性電磁波遮断性面状体の共振周
波数よりも1.29倍以上高いものが挙げられる。
In particular, as one mode of the frequency selective electromagnetic wave shielding material of the present invention, which is preferably used for securing communication cells for PHS and medium-speed wireless LAN, a plurality of resonance type frequency selective electromagnetic wave shielding sheet members are used for window glass. In the electromagnetic wave shielding material superimposed via the, the resonance frequency of the resonance type frequency selective electromagnetic wave shielding sheet on the indoor surface of the window glass is the resonance type frequency selective electromagnetic wave shielding sheet on the outdoor surface of the window glass. One that is 1.29 times or more higher than the resonance frequency is given.

【0044】本発明の電磁波シールド材では、2以上の
共振型周波数選択性電磁波遮断性面状体がスペーサ材を
介して重ねられるが、通常これらは積層した状態で固定
される。
In the electromagnetic wave shielding material of the present invention, two or more resonance-type frequency-selective electromagnetic wave shielding sheet bodies are stacked via a spacer material, but these are usually fixed in a stacked state.

【0045】固定の方法は当業者に周知である。例え
ば、絶縁性樹脂でなる接着剤を用いても良く、絶縁性基
材やスペーサー材を溶融して接合してもよい。
The fixing method is well known to those skilled in the art. For example, an adhesive made of an insulating resin may be used, or an insulating base material or a spacer material may be melted and joined.

【0046】[0046]

【実施例】以下の実施例により本発明を更に詳細に説明
するが、本発明はこれらに限定されない。
The present invention will be described in more detail with reference to the following Examples, but it should not be construed that the present invention is limited thereto.

【0047】調製例1 導電性模様の形成 尾池工業製アルミニウム蒸着PETフィルム(蒸着膜厚
500Å、PET厚38μm又は100μm)上に日本ペ
イント製ポジ型液状レジスト「オプトER P−60
0」を乾燥膜厚0.5μになるように塗布し、熱風オー
ブンで乾燥せしめた。
Preparation Example 1 Formation of Conductive Pattern Nippon Paint's positive type liquid resist "OPTO ER P-60" was formed on an aluminum-deposited PET film (deposited film thickness: 500 °, PET thickness: 38 μm or 100 μm) manufactured by Oike Kogyo.
“0” was applied to a dry film thickness of 0.5 μm, and dried in a hot-air oven.

【0048】レジスト膜の上にマスクを重ね、30mJ
/cm2の光強度で露光した。露光したレジストを1%苛
性ソーダ水で現像し、アルミニウム蒸着膜の露出された
部分をエッチングした。表1に示す寸法を有する、図3
〜6に示す形状および配置の導電性模様No.1〜9を
それぞれ得た。
A mask is placed on the resist film, and the
/ Cm 2 . The exposed resist was developed with 1% sodium hydroxide solution, and the exposed portions of the aluminum deposition film were etched. FIG. 3 having the dimensions shown in Table 1.
The conductive pattern Nos. Of the shapes and arrangements shown in FIGS. 1 to 9 were obtained respectively.

【0049】[0049]

【表1】 模様 形状 寸法(mm) PET厚No. 配置 a b c e f g w (μm) 1 図3 37 0.3 2.5 100 2 図3 26 0.3 2.5 100 3 図4 8.5 0.5 0.3 38 4 図4 7.3 0.5 0.3 38 5 図4 10.1 0.5 0.3 38 6 図5 42 0.2 3.0 38 7 図5 20 1.1 3.0 38 8 図6 18 15 15 0.5 389 図6 12 9 9 0.5 38 [Table 1] Pattern Shape Dimension (mm) PET thickness No. Arrangement abcefgw (μm) 1 Fig. 3 37 0.3 2.5 100 2 Fig. 3 26 0.3 2.5 100 3 Fig. 4 8.5 0.5 0.3 38 4 Fig. 4 7.3 0.5 0.3 38 5 Fig. 4 10.1 0.5 0.3 38 6 Fig. 5 42 0.2 3.0 38 7 Fig. 5 20 1.1 3.0 38 8 Fig. 6 18 15 15 0.5 38 9 Fig. 6 12 9 9 0.5 38

【0050】調製例2 表2に示す共振型周波数選択性電磁波遮断性面状体N
o.1〜9を調製した。上記面状体No.1、2、6及
び7については調製例1表1の導電性模様No.1、
2、6及び7をそのまま用いた。
Preparation Example 2 Resonant frequency-selective electromagnetic wave shielding sheet N shown in Table 2
o. 1-9 were prepared. The above-mentioned sheet body No. The conductive patterns Nos. 1, 2, 6 and 7 in Preparation Example 1 Table 1 1,
2, 6 and 7 were used as is.

【0051】面状体No.3は、調製例1表1の導電性
模様No.3の2枚を、図7に示すように、平面と垂直
な方向からみて導電性模様が一部重複するように表裏交
互に格子状に配置されるように積層して得た。面状体N
o.4及び5も同様にして調製した。図7において、実
線は上側の導電性模様を示し、破線はPETフィルムを
挟んだ下側の導電性模様を示す。
The sheet body No. No. 3 is the conductive pattern No. of Preparation Example 1 Table 1. As shown in FIG. 7, two sheets of No. 3 were obtained by laminating them so that the conductive patterns were arranged alternately in a grid pattern so that the conductive patterns partially overlapped when viewed from a direction perpendicular to the plane. Planar N
o. 4 and 5 were similarly prepared. In FIG. 7, the solid line indicates the upper conductive pattern, and the broken line indicates the lower conductive pattern with the PET film interposed therebetween.

【0052】面状体No.8は、調製例1表1の導電性
模様No.8の2枚を、図8に示すように、平面と垂直
な方向からみて導電性模様が一部重複するように表裏交
互に格子状に配置されるように積層して得た。面状体N
o.9も同様にして調製した。図8において、実線は上
側の導電性模様を示し、破線はPETフィルムを挟んだ
下側の導電性模様を示す。
The sheet body No. 8 is the conductive pattern No. of Preparation Example 1 Table 1. As shown in FIG. 8, two sheets of No. 8 were obtained by laminating them so that the conductive patterns were arranged alternately in a grid pattern so that the conductive patterns partially overlapped when viewed from a direction perpendicular to the plane. Planar N
o. 9 was similarly prepared. 8, the solid line indicates the upper conductive pattern, and the broken line indicates the lower conductive pattern with the PET film interposed therebetween.

【0053】[0053]

【表2】 面状体 形状 模様 積層No. 配置 No. 構造 1 図3 1 Al/PET 2 図3 2 Al/PET 3 図7 3 Al/PET/Al/PET 4 図7 4 Al/PET/Al/PET 5 図7 5 Al/PET/Al/PET 6 図5 6 Al/PET 7 図5 7 Al/PET 8 図8 8 Al/PET/Al/PET9 図8 9 Al/PET/Al/PET [Table 2] Planar object Shape Pattern Lamination No. Arrangement No. Structure 1 Fig. 3 1 Al / PET 2 Fig. 3 2 Al / PET 3 Fig. 7 3 Al / PET / Al / PET 4 Fig. 7 4 Al / PET / Al / PET 5 Fig. 7 5 Al / PET / Al / PET 6 Fig. 5 6 Al / PET 7 Fig. 57 7 Al / PET 8 Fig. 8 8 Al / PET / Al / PET 9 Fig. 8 9 Al / PET / Al / PET

【0054】EMCO社製のダブルリッジドガイドアン
テナ「HP−11966E」を1.5mの距離で対向さ
せ、受信側アンテナの開口面に得られた共振型周波数選
択性電磁波遮断性面状体を密着させた。この状態で、ヒ
ューレットパッカード社製のネットワークアナライザー
「HP−8510B」を用いてS21を測定した。
A double ridged guide antenna “HP-11966E” manufactured by EMCO is opposed at a distance of 1.5 m, and the obtained resonance-type frequency-selective electromagnetic wave shielding sheet is closely attached to the opening of the receiving antenna. I let it. In this state, S 21 was measured using a network analyzer “HP-8510B” manufactured by Hewlett-Packard Company.

【0055】このS21のdB値から、受信側アンテナの
開口面に共振型周波数選択性電磁波遮断性面状体を置か
ずに測定したS21のdB値を差し引いた。得られたdB
値を共振型周波数選択性電磁波遮断性面状体のシールド
能とした。測定結果を表3に示す。通信波として用いら
れる代表的な周波数におけるシールド能も同時に表3に
示す。
[0055] From the dB value of the S 21, minus the dB value of S 21 measured without placing the resonant frequency selective electromagnetic wave blocking planar element to the opening surface of the receiving antenna. Obtained dB
The value was defined as the shielding ability of the resonance type frequency selective electromagnetic wave shielding sheet. Table 3 shows the measurement results. Table 3 also shows the shielding performance at typical frequencies used as communication waves.

【0056】尚、このシールド能は、電磁波シールド材
を壁材に用い、MIL STD−285に準拠した方法
により得られるシールド能とほぼ一致する。
Note that this shielding ability substantially coincides with the shielding ability obtained by a method based on MIL STD-285 using an electromagnetic wave shielding material as a wall material.

【0057】[0057]

【表3】 面状体 共振点 シールド能 通信周波数(GHz)におけるシールド能No. 周波数(Hz) (dB) 1.5 1.9 2.45 5.7 1 1.4 28 (23) (9) 2 2.3 28 (8) (21) 3 1.9 23 (23) 4 2.45 24 (24) 5 1.5 22 (22) 6 3.0 25 (10) 7 7.0 22 (6) 8 1.9 21 (21)9 2.45 21 (21) [Table 3] Planar body Resonant point Shielding ability Shielding ability at communication frequency (GHz) No. Frequency (Hz) (dB) 1.5 1.9 2.45 5.7 1 1.4 28 (23) (9) 2 2.3 28 (8) (21) 3 1.9 23 (23) 4 2.45 24 (24) 5 1.5 22 (22) 6 3.0 25 (10) 7 7.0 22 (6) 8 1.9 21 (21) 9 2.45 21 (21)

【0058】実施例1 スペーサー材として厚さ5mmの窓用ガラスを準備し
た。3M社製のスプレーのりを用いてこの窓用ガラスの
片面に調製例2表3の共振型周波数選択性電磁波遮断性
面状体No.1を貼り付けた。次いで、窓用ガラスの他
方の面に調製例2表3の面状体No.2を貼り付けて周
波数選択性電磁波シールド材を得た。
Example 1 A window glass having a thickness of 5 mm was prepared as a spacer material. Preparation Example 2 Resonant frequency-selective electromagnetic wave shielding sheet No. 3 shown in Table 3 on one surface of this window glass using a spray paste manufactured by 3M. 1 was pasted. Then, on the other side of the window glass, the sheet-shaped body No. of Preparation Example 2 Table 3 was applied. 2 was attached to obtain a frequency-selective electromagnetic shielding material.

【0059】調製例2と同様にして、得られた周波数選
択性電磁波シールド材のシールド能を測定した。測定結
果を表5に示す。通信波として用いられる代表的な周波
数におけるシールド能も同時に表5に示す。
In the same manner as in Preparation Example 2, the shielding ability of the obtained frequency-selective electromagnetic wave shielding material was measured. Table 5 shows the measurement results. Table 5 also shows the shielding performance at typical frequencies used as communication waves.

【0060】実施例2〜8及び比較例1〜4 表4に示す共振型周波数選択性電磁波遮断性面状体及び
スペーサー材を用いること以外は実施例1と同様にして
周波数選択性電磁波シールド材を得、シールド能を測定
した。結果を表5に示す。通信波として用いられる代表
的な周波数におけるシールド能も同時に表5に示す。
Examples 2 to 8 and Comparative Examples 1 to 4 The frequency-selective electromagnetic wave shielding material was the same as in Example 1 except that the resonance type frequency-selective electromagnetic wave shielding sheet and the spacer shown in Table 4 were used. And the shielding ability was measured. Table 5 shows the results. Table 5 also shows the shielding performance at typical frequencies used as communication waves.

【0061】[0061]

【表4】 実施例 積層構造No. 面状体No./スヘ゜―サ―材[厚さ]/面状体No. スヘ゜―サ―材厚/電気長 1 1/ガラス[5mm]/2 1/23 2 3/ガラス[5mm]/4 1/12 3 2/ガラス[5mm]/2 1/12 4 3/石膏ボード[9.5mm]/4 1/20 5 3/PET[0.5mm]/4 1/158 6 3/ガラス[5mm]/5 1/15 7 6/PET[0.4mm]/7 1/153 8 8/ガラス[5mm]/9 1/15 比較1 3/PET[0.4mm]/4 1/197 比較2 2/ガラス[5mm] − 比較3 3/ガラス[5mm] −比較4 5/ガラス[5mm] − [Table 4] Example Laminated structure No. Plane body No./spacer material [thickness] / planar body No. spacer material thickness / electrical length 1 1 / glass [5 mm] / 2 1 / 23 23 / glass [5 mm] / 4 1/13 2 / glass [5 mm] / 2 1/124 3 / gypsum board [9.5 mm] / 4 1/205 3 / PET [0.5 mm] / 4 1/158 6 3 / glass [5 mm] / 5 1/157 76 / PET [0.4 mm] / 7 1/153 88 / glass [5 mm] / 9 1/15 Comparison 13 / PET [0 .4 mm] / 4 1/197 Comparison 2 2 / Glass [5 mm]-Comparison 33 / Glass [5 mm]-Comparison 45 / Glass [5 mm]-

【0062】[0062]

【表5】 実施例 共振点 シールド能 通信周波数(GHz)におけるシールド能No. 周波数(Hz) (dB) 1.5 1.9 2.45 5.7 1 1.4 28 (23) (10) (21) (3) 2.3 28 2 1.9 23 (2) (24) (24) (2) 2.45 24 3 2.3 (1) (25) (1) (1) 4 1.9 23 (2) (24) (24) (2) 2.45 24 5 1.9 23 (2) (23) (23) (2) 2.45 24 6 1.5 22 (27) (27) (2) (2) 1.9 23 7 3.0 25 (1) (1) (25) (24) 7.0 22 8 1.9 21 (21) (21) (1) (1) 2.45 21 比較1 (2) (19) (12) (2) 比較2 (1) (21) (1) (1) 比較3 (2) (23) (2) (2) 比較4 (22) (2) (2) (2) [Table 5] Example Resonance point Shielding performance Shielding performance at communication frequency (GHz) No. Frequency (Hz) (dB) 1.5 1.9 2.45 5.7 1 1.4 28 (23) (10) (21) (3) 2.3 28 2 1.9 23 (2) (24) (24) (2) 2.45 24 3 2.3 (1) (25) (1) (1) 4 1.9 23 (2) (24) (24) (2) 2.45 24 5 1.9 23 ( 2) (23) (23) (2) 2.45 24 6 1.5 22 (27) (27) (2) (2) 1.9 23 7 3.0 25 (1) (1) (25) (24) 7.0 22 8 1.9 21 (21) (21) (1) (1) 2.45 21 Comparison 1 (2) (19) (12) (2) Comparison 2 (1) (21) (1) (1) Comparison 3 (2) (23) (2) (2) Comparison 4 (22) (2) (2) (2)

【0063】[0063]

【発明の効果】接地の必要なく電磁波シールド工事を行
うことができ、周波数が異なる複数の電磁波を同時に遮
断することができる共振型電磁波シールド材が提供され
た。特に、構内無線データ通信システムとして現在運用
されているPHS(1.9GHz)と中速無線LAN
(2.45GHz)を周波数選択的にシールドすること
が可能となる。また、そのことにより、外部からの不要
な電磁波による通信障害を排除しつつ、同一場所で携帯
無線電話(0.8GHzおよび1.5GHz)による公衆
回線の通話が可能となる。
According to the present invention, there is provided a resonance type electromagnetic wave shielding material which can perform electromagnetic wave shielding work without the need for grounding and can simultaneously block a plurality of electromagnetic waves having different frequencies. In particular, PHS (1.9 GHz) currently used as a private wireless data communication system and medium-speed wireless LAN
(2.45 GHz) can be shielded in a frequency-selective manner. In addition, this makes it possible to perform public line calls using portable wireless telephones (0.8 GHz and 1.5 GHz) at the same location while eliminating communication disturbance due to unnecessary external electromagnetic waves.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 容量とインダクタが形成されている共振型周
波数選択性電磁波遮断性面状体の一例を示す模式断面図
である。
FIG. 1 is a schematic cross-sectional view showing an example of a resonance-type frequency-selective electromagnetic wave shielding sheet having a capacitance and an inductor formed thereon.

【図2】 導電性模様同士の接近の例を示す斜視図であ
る。
FIG. 2 is a perspective view showing an example of approach between conductive patterns.

【図3】 導電性模様の配置態様の例を示す上面図であ
る。
FIG. 3 is a top view illustrating an example of an arrangement of conductive patterns.

【図4】 導電性模様の配置態様の例を示す上面図であ
る。
FIG. 4 is a top view showing an example of an arrangement of conductive patterns.

【図5】 導電性模様の配置態様の例を示す上面図であ
る。
FIG. 5 is a top view illustrating an example of an arrangement of conductive patterns.

【図6】 導電性模様の配置態様の例を示す上面図であ
る。
FIG. 6 is a top view illustrating an example of an arrangement of conductive patterns.

【図7】 導電性模様の配置態様の例を示す上面図であ
る。
FIG. 7 is a top view illustrating an example of an arrangement of conductive patterns.

【図8】 導電性模様の配置態様の例を示す上面図であ
る。
FIG. 8 is a top view illustrating an example of an arrangement of conductive patterns.

【符号の説明】[Explanation of symbols]

101、111…絶縁性基材、 102、102’、112、112’…導電性模様の一
単位、 103、113…導電性が途切れた部分。
101, 111: an insulating base material; 102, 102 ', 112, 112': a unit of a conductive pattern; 103, 113: a portion where conductivity is interrupted.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 複数の共振型周波数選択性電磁波遮断性
面状体がスペーサ材を介して重ねられた電磁波シールド
材において、 該スペーサ材の厚さがシールドしようとする周波数の電
磁波の電気長の1/160以上である電磁波シールド
材。
1. An electromagnetic wave shielding material comprising a plurality of resonance type frequency-selective electromagnetic wave shielding sheet members superposed via a spacer material, wherein the thickness of the spacer material is equal to the electrical length of the electromagnetic wave of the frequency to be shielded. An electromagnetic wave shielding material that is 1/160 or more.
【請求項2】 前記複数の共振型周波数選択性電磁波遮
断性面状体のうち、共振周波数が近い2つの共振型周波
数選択性電磁波遮断性面状体を比較した場合に高い方の
共振周波数と低い方の共振周波数との差が高い方の共振
周波数の1/5以上である請求項1記載の電磁波シール
ド材。
2. The two resonance type frequency-selective electromagnetic wave shielding sheet members having the same resonance frequency among the plurality of resonance type frequency selective electromagnetic wave shielding member sheets have a higher resonance frequency. The electromagnetic wave shielding material according to claim 1, wherein a difference from the lower resonance frequency is 1/5 or more of the higher resonance frequency.
【請求項3】 複数の共振型周波数選択性電磁波遮断性
面状体がスペーサ材を介して重ねられた電磁波シールド
材において、 該スペーサ材の厚さがシールドしようとする最低周波数
の電磁波の電気長の1/160以上である電磁波シール
ド材。
3. An electromagnetic wave shielding material comprising a plurality of resonance-type frequency-selective electromagnetic wave-blocking planar bodies stacked on each other with a spacer material interposed therebetween, wherein the thickness of the spacer material is such that the electrical length of the electromagnetic wave having the lowest frequency to be shielded. The electromagnetic shielding material is 1/160 or more of the above.
【請求項4】 前記共振型周波数選択性電磁波遮断性面
状体が規則的に配置された複数の容量とインダクタとを
有する請求項1又は3記載の電磁波シールド材。
4. The electromagnetic wave shielding material according to claim 1, wherein the resonance type frequency-selective electromagnetic wave shielding sheet has a plurality of capacitors and inductors regularly arranged.
【請求項5】 前記共振型周波数選択性電磁波遮断性面
状体が、絶縁性基材とその一表面上に規則的に配置され
た複数の導電性薄膜でなる模様とを有するものであっ
て、該模様一単位の線長が共振周波数の電磁波の波長よ
り短く、かつ相互に絶縁しているものである、請求項4
記載の電磁波シールド材。
5. The resonance-type frequency-selective electromagnetic-wave-blocking planar body has an insulating substrate and a pattern of a plurality of conductive thin films regularly arranged on one surface thereof. 5. The pattern according to claim 4, wherein a line length of one unit of the pattern is shorter than a wavelength of the electromagnetic wave having the resonance frequency and is insulated from each other.
The described electromagnetic wave shielding material.
【請求項6】 前記共振型周波数選択性電磁波遮断性面
状体が、絶縁性基材とその表裏両面上に規則的に配置さ
れた複数の導電性薄膜でなる模様とを有するものであっ
て、該模様一単位の線長が共振周波数の電磁波の波長よ
り短く、かつ相互に絶縁しているものである、請求項4
記載の電磁波シールド材。
6. The resonance-type frequency-selective electromagnetic-wave-blocking planar body has an insulating base material and a pattern of a plurality of conductive thin films regularly arranged on both front and back surfaces thereof. 5. The pattern according to claim 4, wherein a line length of one unit of the pattern is shorter than a wavelength of the electromagnetic wave having the resonance frequency and is insulated from each other.
The described electromagnetic wave shielding material.
【請求項7】 前記絶縁性基材が有機樹脂フィルムであ
る請求項5又は6記載の電磁波シールド材。
7. The electromagnetic shielding material according to claim 5, wherein the insulating base is an organic resin film.
【請求項8】 前記有機樹脂フィルムの厚さが25〜1
00μmである請求項7記載の電磁波シールド材。
8. The organic resin film having a thickness of 25 to 1
The electromagnetic wave shielding material according to claim 7, which has a thickness of 00 µm.
【請求項9】 形成された電磁波シールド材をその平面
と垂直な方向からみた場合、導電性薄膜で成る模様が等
間隔の格子を形成するものである請求項5又は6記載の
電磁波シールド材。
9. The electromagnetic wave shielding material according to claim 5, wherein when the formed electromagnetic wave shielding material is viewed from a direction perpendicular to its plane, the pattern made of the conductive thin film forms a grid at equal intervals.
【請求項10】 請求項1又は3記載の電磁波シールド
材を建築物の壁面もしくは窓面に設ける工程を包含する
電磁波を遮断する方法。
10. A method for blocking electromagnetic waves, comprising the step of providing the electromagnetic wave shielding material according to claim 1 on a wall surface or a window surface of a building.
JP557998A 1998-01-14 1998-01-14 Frequency selective electromagnetic wave shield material Pending JPH11204984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP557998A JPH11204984A (en) 1998-01-14 1998-01-14 Frequency selective electromagnetic wave shield material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP557998A JPH11204984A (en) 1998-01-14 1998-01-14 Frequency selective electromagnetic wave shield material

Publications (1)

Publication Number Publication Date
JPH11204984A true JPH11204984A (en) 1999-07-30

Family

ID=11615151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP557998A Pending JPH11204984A (en) 1998-01-14 1998-01-14 Frequency selective electromagnetic wave shield material

Country Status (1)

Country Link
JP (1) JPH11204984A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339191A (en) * 2000-05-30 2001-12-07 Toppan Printing Co Ltd Radio wave absorbent having frequency selectivity
JP2003243876A (en) * 2001-12-10 2003-08-29 Yoji Kozuka Method of changing characteristics of electric wave absorption material
EP1722618A1 (en) * 2004-03-01 2006-11-15 Nitta Corporation Electromagnetic wave absorber
JP2007335781A (en) * 2006-06-19 2007-12-27 Mitsubishi Cable Ind Ltd Electromagnetic wave shielding material
JP2008041687A (en) * 2006-08-01 2008-02-21 Mitsubishi Cable Ind Ltd Electromagnetic shield
JP2008047594A (en) * 2006-08-11 2008-02-28 Mitsubishi Cable Ind Ltd Radio wave absorber and radio wave shielding
JP2008166834A (en) * 2003-05-28 2008-07-17 Nitta Ind Corp Electromagnetic wave absorbing body
US7495181B2 (en) 2004-09-29 2009-02-24 Nitta Corporation Electromagnetic wave absorber
US20100052992A1 (en) * 2005-10-21 2010-03-04 Haruhide Okamura Sheet Member for Improving Communication, and Antenna Device and Electronic Information Transmitting Apparatus Provided Therewith
JP2010062471A (en) * 2008-09-05 2010-03-18 Asahi Glass Co Ltd Method of defining dimension of conductive element and dimension of clearance between conductive elements in fss for transparent radio wave absorbers, and radio wave absorber
JP2011066094A (en) * 2009-09-15 2011-03-31 Nitta Corp Electromagnetic wave absorber, partition, radio wave dark box, building material, radio communication system, and radio communication method
KR101306249B1 (en) * 2006-06-19 2013-09-09 미츠비시 덴센 고교 가부시키가이샤 Electromagnetic wave shielding material and electromagnetic wave absorber
JP2016143921A (en) * 2015-01-29 2016-08-08 国立大学法人茨城大学 Sheet type meta-material
WO2018189983A1 (en) * 2017-04-11 2018-10-18 株式会社村田製作所 Electromagnetic wave shielding material, building material with electromagnetic wave shield, and article with electromagnetic wave shielding material

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339191A (en) * 2000-05-30 2001-12-07 Toppan Printing Co Ltd Radio wave absorbent having frequency selectivity
JP4547849B2 (en) * 2001-12-10 2010-09-22 洋司 小塚 How to change the characteristics of radio wave absorber
JP2003243876A (en) * 2001-12-10 2003-08-29 Yoji Kozuka Method of changing characteristics of electric wave absorption material
JP2008166834A (en) * 2003-05-28 2008-07-17 Nitta Ind Corp Electromagnetic wave absorbing body
EP1722618A1 (en) * 2004-03-01 2006-11-15 Nitta Corporation Electromagnetic wave absorber
KR101021188B1 (en) * 2004-03-01 2011-03-15 니타 가부시키가이샤 Electromagnetic wave absorber
US7804439B2 (en) 2004-03-01 2010-09-28 Nitta Corporation Electromagnetic wave absorber
EP1722618A4 (en) * 2004-03-01 2008-10-29 Nitta Corp Electromagnetic wave absorber
US7495181B2 (en) 2004-09-29 2009-02-24 Nitta Corporation Electromagnetic wave absorber
US20100052992A1 (en) * 2005-10-21 2010-03-04 Haruhide Okamura Sheet Member for Improving Communication, and Antenna Device and Electronic Information Transmitting Apparatus Provided Therewith
EP2096711B1 (en) * 2005-10-21 2017-01-25 Nitta Corporation Sheet body for improving communication, antenna device provided with such sheet body and electronic information transmitting apparatus
US8564472B2 (en) * 2005-10-21 2013-10-22 Nitta Corporation Sheet member for improving communication, and antenna device and electronic information transmitting apparatus provided therewith
KR101306249B1 (en) * 2006-06-19 2013-09-09 미츠비시 덴센 고교 가부시키가이샤 Electromagnetic wave shielding material and electromagnetic wave absorber
JP2007335781A (en) * 2006-06-19 2007-12-27 Mitsubishi Cable Ind Ltd Electromagnetic wave shielding material
JP2008041687A (en) * 2006-08-01 2008-02-21 Mitsubishi Cable Ind Ltd Electromagnetic shield
JP2008047594A (en) * 2006-08-11 2008-02-28 Mitsubishi Cable Ind Ltd Radio wave absorber and radio wave shielding
JP2010062471A (en) * 2008-09-05 2010-03-18 Asahi Glass Co Ltd Method of defining dimension of conductive element and dimension of clearance between conductive elements in fss for transparent radio wave absorbers, and radio wave absorber
JP2011066094A (en) * 2009-09-15 2011-03-31 Nitta Corp Electromagnetic wave absorber, partition, radio wave dark box, building material, radio communication system, and radio communication method
JP2016143921A (en) * 2015-01-29 2016-08-08 国立大学法人茨城大学 Sheet type meta-material
WO2018189983A1 (en) * 2017-04-11 2018-10-18 株式会社村田製作所 Electromagnetic wave shielding material, building material with electromagnetic wave shield, and article with electromagnetic wave shielding material
JP6485611B1 (en) * 2017-04-11 2019-03-20 株式会社村田製作所 Electromagnetic shielding material, building material with electromagnetic shielding, and article with electromagnetic shielding material
US10701847B2 (en) 2017-04-11 2020-06-30 Murata Manufacturing Co., Ltd. Electromagnetic wave shielding material, building material with electromagnetic wave shield, and article with electromagnetic wave shielding material

Similar Documents

Publication Publication Date Title
JPH11204984A (en) Frequency selective electromagnetic wave shield material
US4656487A (en) Electromagnetic energy passive filter structure
JP3874806B2 (en) Novel conductive loop pattern and frequency selective electromagnetic shielding material having the same
EP1853103B1 (en) Radio wave shielding body
EP1720396A1 (en) Radio wave absorber and radio wave absorber manufacturing method
US4684954A (en) Electromagnetic energy shield
EP3767745B1 (en) Antenna unit, and antenna unit-attached window glass
WO1998009490A1 (en) Windowpane having electromagnetic shielding ability
JPH08307088A (en) Radio wave absorber
JP4474759B2 (en) Radio wave shield with multiple frequency selectivity
JP2000036685A (en) Electromagnetic wave absorption material
JPH11195890A (en) New conductive bipolar element pattern which reflects electromagnetic wave of frequency in specific range, and frequency selective electromagnetic wave shielding material comprising it
JP3079364B2 (en) Window glass with electromagnetic shielding performance
JP3180899B2 (en) Radio wave shielding sheet and radio wave shielding area in building
JP3323113B2 (en) Multilayer chip antenna
JPH11163585A (en) Electromagnetic control board
JP2003124673A (en) Film having electromagnetic wave shielding properties
JP4857500B2 (en) Radio wave absorber
JP2001345632A (en) Electromagnetic shield structure
JPH08116197A (en) Radio-wave absorptive structure of transparent plate, window member and frame
JP2001352191A (en) Electromagnetic wave absorber
JP2005079247A (en) Electric wave absorber
JP4259078B2 (en) Building materials
JPH10224075A (en) Electromagnetic wave absorbing material
JP3033020B2 (en) Window electromagnetic shielding structure