JPWO2005041330A1 - Membrane / electrode assembly for polymer electrolyte fuel cell and method for producing the same - Google Patents

Membrane / electrode assembly for polymer electrolyte fuel cell and method for producing the same Download PDF

Info

Publication number
JPWO2005041330A1
JPWO2005041330A1 JP2005514960A JP2005514960A JPWO2005041330A1 JP WO2005041330 A1 JPWO2005041330 A1 JP WO2005041330A1 JP 2005514960 A JP2005514960 A JP 2005514960A JP 2005514960 A JP2005514960 A JP 2005514960A JP WO2005041330 A1 JPWO2005041330 A1 JP WO2005041330A1
Authority
JP
Japan
Prior art keywords
catalyst layer
membrane
amine
catalyst
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005514960A
Other languages
Japanese (ja)
Inventor
田沼 敏弘
敏弘 田沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2005041330A1 publication Critical patent/JPWO2005041330A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8663Selection of inactive substances as ingredients for catalytic active masses, e.g. binders, fillers
    • H01M4/8668Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8875Methods for shaping the electrode into free-standing bodies, like sheets, films or grids, e.g. moulding, hot-pressing, casting without support, extrusion without support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

初期の発電性能が高く、長期にわたって安定した出力特性を維持できる固体高分子型燃料電池用膜・電極接合体の提供。 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体において、前記アノードの触媒層及び前記カソードの触媒層の少なくとも一方には、20℃で水に対する溶解度が3以下のアミンを含有させ、当該アミンの触媒粉末に対する含有量(W×N)/M×1000を0.03〜1とする(ただし、Wは前記アミンの触媒粉末1gあたりの含有量(g)、Mは前記アミンの分子量、Nは前記アミン1分子中における塩基性を有する窒素原子の数である。)。前記アミンとしては、特にHALSが好ましい。Providing membrane / electrode assemblies for polymer electrolyte fuel cells that have high initial power generation performance and can maintain stable output characteristics over a long period of time. An anode and a cathode having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon support and an ion exchange resin; an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode; And at least one of the catalyst layer of the anode and the catalyst layer of the cathode contains an amine having a solubility in water of 3 or less at 20 ° C. Of the catalyst powder (W × N) / M × 1000 is set to 0.03 to 1 (where W is the content (g) of the amine per 1 g of the catalyst powder, M is the molecular weight of the amine, N Is the number of basic nitrogen atoms in one amine molecule.) As the amine, HALS is particularly preferable.

Description

本発明は、初期の出力電圧が高く、長期に渡って高い出力電圧が得られる固体高分子型燃料電池用膜・電極接合体及びその製造方法に関する。  The present invention relates to a membrane / electrode assembly for a polymer electrolyte fuel cell, which has a high initial output voltage and can provide a high output voltage over a long period of time, and a method for producing the same.

燃料電池は、原料となるガスの反応エネルギを直接電気エネルギに変換する電池であり、水素・酸素燃料電池は、その反応生成物が原理的に水のみであり地球環境への影響がほとんどない。なかでも電解質として固体高分子膜を使用する固体高分子型燃料電池は、高いイオン導電性を有する高分子電解質膜が開発され、常温でも作動でき高出力密度が得られる。このため、近年のエネルギ、地球環境問題への社会的要請の高まりとともに、電気自動車用等の移動車両や、小型コージェネレーションシステムの電源として大きな期待が寄せられている。  A fuel cell is a cell that directly converts the reaction energy of a gas that is a raw material into electric energy. In a hydrogen / oxygen fuel cell, the reaction product is only water in principle and has little influence on the global environment. In particular, a polymer electrolyte fuel cell using a solid polymer membrane as an electrolyte has been developed as a polymer electrolyte membrane having high ionic conductivity, and can operate at room temperature to obtain a high output density. For this reason, with increasing social demands for energy and global environmental problems in recent years, there is great expectation as a power source for mobile vehicles for electric vehicles and small cogeneration systems.

固体高分子型燃料電池では、通常、電解質膜として陽イオン交換基を有するイオン交換膜が使用され、特にスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜が基本特性に優れている。固体高分子型燃料電池では、イオン交換膜の両面にガス拡散性の電極層を配置し、燃料である水素を含むガス及び酸化剤となる酸素を含むガス(空気等)を、それぞれアノード及びカソードに供給することにより発電を行う。  In a polymer electrolyte fuel cell, an ion exchange membrane having a cation exchange group is usually used as an electrolyte membrane, and an ion exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group is particularly excellent in basic characteristics. In a polymer electrolyte fuel cell, gas diffusible electrode layers are arranged on both surfaces of an ion exchange membrane, and a gas containing hydrogen as a fuel and a gas containing oxygen (such as air) as an oxidant are respectively supplied to an anode and a cathode. To generate electricity.

固体高分子型燃料電池のカソードにおける酸素の還元反応は過酸化水素(H)を経由して反応が進行することから、触媒層中で生成する過酸化水素又は過酸化物ラジカルによって、電解質膜の劣化を引き起こす可能性が懸念されている。また、アノードにはカソードから酸素分子が膜内を透過してくるため、アノードで水素分子と酸素分子が反応を引き起こしラジカルを生成することも考えられる。特に炭化水素樹脂膜を電解質膜として使用する場合は、ラジカルに対する安定性に乏しく長期間に渡る運転においては大きな問題となっていた。例えば、固体高分子型燃料電池が初めて実用化されたのは、米国のジェミニ宇宙船の電源として採用された時であり、この時にはスチレン−ジビニルベンゼン重合体をスルホン化した膜が電解質膜として使用されたが、長期間に渡る耐久性に問題があった。このため、ラジカルに対する安定性に優れる重合体として、スルホン酸基を有するパーフルオロカーボン重合体が着目され、該重合体からなるイオン交換膜が電解質膜として使用できることが知られている。Since the oxygen reduction reaction at the cathode of the polymer electrolyte fuel cell proceeds via hydrogen peroxide (H 2 O 2 ), hydrogen peroxide or peroxide radicals generated in the catalyst layer There is concern about the possibility of causing deterioration of the electrolyte membrane. Moreover, since oxygen molecules permeate through the membrane from the cathode to the anode, it is conceivable that hydrogen molecules and oxygen molecules cause a reaction at the anode to generate radicals. In particular, when a hydrocarbon resin membrane is used as an electrolyte membrane, the stability against radicals is poor, which has been a major problem in long-term operation. For example, the polymer electrolyte fuel cell was first put into practical use when it was used as a power source for a Gemini spacecraft in the United States. At this time, a membrane obtained by sulfonating a styrene-divinylbenzene polymer was used as an electrolyte membrane. However, there was a problem with durability over a long period of time. For this reason, a perfluorocarbon polymer having a sulfonic acid group has attracted attention as a polymer having excellent radical stability, and it is known that an ion exchange membrane made of the polymer can be used as an electrolyte membrane.

また、さらにラジカルに対する安定性を高めるため、電解質膜中に過酸化物ラジカルを接触分解できる遷移金属酸化物又はフェノール性水酸基を有する化合物を添加する系(特許文献1)や、電解質膜内に触媒金属粒子を担持し、過酸化水素を分解する技術(特許文献2)も開示されている。しかし、これらの技術は電解質膜内のみに材料を添加する技術であり、過酸化水素又は過酸化物ラジカルの発生源である触媒層の改良を試みるものではない。したがって、初期的には改善の効果があるものの、長期間に渡る耐久性には大きな問題が生じる可能性があった。またコスト的にも高くなるという問題があった。  Further, in order to further enhance the stability against radicals, a system in which a transition metal oxide capable of catalytically decomposing peroxide radicals or a compound having a phenolic hydroxyl group is added to the electrolyte membrane (Patent Document 1), or a catalyst in the electrolyte membrane. A technology for supporting metal particles and decomposing hydrogen peroxide (Patent Document 2) is also disclosed. However, these techniques are techniques for adding materials only into the electrolyte membrane, and do not attempt to improve the catalyst layer, which is a source of hydrogen peroxide or peroxide radicals. Therefore, although there is an improvement effect at the beginning, there is a possibility that a big problem occurs in durability over a long period of time. There is also a problem that the cost becomes high.

また、触媒のカーボン表面をN,N−ジメチルアミノプロピルアミンで処理して形成された担持触媒からなる固体高分子型燃料電池が知られている(特許文献3)が、N,N−ジメチルアミノプロピルアミンを触媒の処理に用いた後に濾別しているため、アミンが触媒中に十分残らず、耐久性を向上させる効果は不十分であった。さらに、ここで用いられているN,N−ジメチルアミノプロピルアミンは水に対して溶解度が高く、親水性であるため、燃料電池運転中に生成する水により溶出し、その効果が薄れやすいという問題点があった。
特開2001−118591号公報(特許請求の範囲) 特開平06−103992号公報(2頁33〜37行) 特開2002−373663号公報(実施例1)
Further, a solid polymer fuel cell comprising a supported catalyst formed by treating the carbon surface of a catalyst with N, N-dimethylaminopropylamine is known (Patent Document 3). Since propylamine was filtered after being used for the treatment of the catalyst, the amine was not sufficiently left in the catalyst, and the effect of improving the durability was insufficient. Furthermore, since N, N-dimethylaminopropylamine used here has high solubility in water and is hydrophilic, it is eluted by water generated during operation of the fuel cell, and its effect tends to be reduced. There was a point.
JP 2001-118591 A (Claims) Japanese Patent Laid-Open No. 06-103992 (page 2, lines 33 to 37) JP 2002-373663 A (Example 1)

近年、固体高分子型燃料電池は、自動車用、住宅用市場等の電源として期待され、実用化への要望が高まり開発が加速している。これらの用途では、特に高い効率での運転が要求されるため、より高い電圧での運転が望まれると同時に長期に渡って安定した出力を得られることが望ましい。また、電解質膜の導電性を確保するために、電解質膜を加湿する必要があるが、燃料電池システム全体の効率の点から低加湿又は無加湿での運転が要求されることも多い。  In recent years, polymer electrolyte fuel cells are expected to be used as power sources for automobiles and residential markets, and the demand for practical use is increasing and development is accelerating. In these applications, operation with particularly high efficiency is required. Therefore, operation at a higher voltage is desired, and at the same time, it is desirable to obtain a stable output over a long period of time. Moreover, in order to ensure the electroconductivity of the electrolyte membrane, it is necessary to humidify the electrolyte membrane. However, operation with low or no humidification is often required from the viewpoint of the efficiency of the entire fuel cell system.

そこで本発明は、車載用、住宅用市場等へ固体高分子型燃料電池を実用化するにあたって、充分に高いエネルギ効率での発電が可能であると同時に、長期間に渡って耐久性に優れた固体高分子型燃料電池用膜・電極接合体及びその製造方法を提供することを目的とする。高耐久性を得るために、発電に伴って過酸化水素や過酸化物ラジカルが発生しにくい触媒層を有する膜・電極接合体及びその製造方法を提供することを目的とする。  Therefore, the present invention is capable of generating power with sufficiently high energy efficiency in practical use of a polymer electrolyte fuel cell for in-vehicle use, residential use market, etc., and at the same time has excellent durability over a long period of time. It is an object of the present invention to provide a membrane / electrode assembly for a polymer electrolyte fuel cell and a method for producing the same. In order to obtain high durability, an object of the present invention is to provide a membrane / electrode assembly having a catalyst layer in which hydrogen peroxide and peroxide radicals are unlikely to be generated with power generation, and a method for producing the same.

本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体であって、前記アノードの触媒層及び前記カソードの触媒層の少なくとも一方には、20℃で水に対する溶解度が3以下のアミン(以下、本アミンともいう)が含まれ、本アミンの触媒粉末に対する含有量(W×N)/M×1000が0.03〜1である(ただし、Wは本アミンの触媒粉末1gあたりの含有量(g)、Mは本アミンの分子量、Nは本アミン1分子中における塩基性を有する窒素原子の数である。)ことを特徴とする固体高分子型燃料電池用膜・電極接合体を提供する。  The present invention is arranged between an anode and a cathode having a catalyst layer containing a catalyst powder in which catalyst metal particles are supported on a carbon support and an ion exchange resin, and the catalyst layer of the anode and the catalyst layer of the cathode. A membrane / electrode assembly for a polymer electrolyte fuel cell having an ion exchange membrane, wherein at least one of the catalyst layer of the anode and the catalyst layer of the cathode is an amine having a water solubility of 3 or less at 20 ° C. (Hereinafter also referred to as the present amine), and the content (W × N) / M × 1000 of the present amine with respect to the catalyst powder is 0.03 to 1 (where W is the amount per 1 g of the catalyst powder of the present amine). Content (g), M is the molecular weight of the amine, and N is the number of basic nitrogen atoms in one molecule of the amine.) Membrane / electrode assembly for polymer electrolyte fuel cell I will provide a.

また、本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体であって、前記アノードの触媒層及び前記カソードの触媒層の少なくとも一方には、本アミンが含まれ、本アミンの触媒粉末に対する含有量が質量比で0.3〜30%であることを特徴とする固体高分子型燃料電池用膜・電極接合体を提供する。  The present invention also provides an anode and a cathode having a catalyst layer containing a catalyst powder in which catalyst metal particles are supported on a carbon support and an ion exchange resin, and the anode catalyst layer and the cathode catalyst layer. A membrane-electrode assembly for a polymer electrolyte fuel cell, wherein the amine is contained in at least one of the catalyst layer of the anode and the catalyst layer of the cathode. Provided is a membrane / electrode assembly for a polymer electrolyte fuel cell, characterized in that the content with respect to the catalyst powder is 0.3 to 30% by mass.

また、本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体の製造方法であって、前記触媒粉末と前記イオン交換樹脂と本アミンとを含み、かつ、本アミンの前記触媒粉末に対する含有量(W×N)/M×1000が0.03〜1である塗工液を調製し、該塗工液を基材上に塗工することにより触媒層を形成し、得られた触媒層をアノード及びカソードの触媒層の少なくとも一方とすることを特徴とする固体高分子型燃料電池用膜・電極接合体の製造方法を提供する。  The present invention also provides an anode and a cathode having a catalyst layer containing a catalyst powder in which catalyst metal particles are supported on a carbon support and an ion exchange resin, and the anode catalyst layer and the cathode catalyst layer. A membrane / electrode assembly for a polymer electrolyte fuel cell comprising an ion exchange membrane, comprising the catalyst powder, the ion exchange resin, and the amine, and the catalyst powder of the amine A coating liquid having a content (W × N) / M × 1000 of 0.03 to 1 was prepared, and a catalyst layer was formed by coating the coating liquid on a substrate. Provided is a method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst layer is at least one of an anode catalyst layer and a cathode catalyst layer.

また、本発明は、触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体の製造方法であって、前記触媒粉末と前記イオン交換樹脂と本アミンとを含み、かつ、本アミンの前記触媒粉末に対する含有量が質量比で0.3〜30%である塗工液を調製し、該塗工液を基材上に塗工することにより触媒層を形成し、得られた触媒層をアノード及びカソードの触媒層の少なくとも一方とすることを特徴とする固体高分子型燃料電池用膜・電極接合体の製造方法を提供する。  The present invention also provides an anode and a cathode having a catalyst layer containing a catalyst powder in which catalyst metal particles are supported on a carbon support and an ion exchange resin, and the anode catalyst layer and the cathode catalyst layer. A membrane / electrode assembly for a polymer electrolyte fuel cell comprising an ion exchange membrane, comprising the catalyst powder, the ion exchange resin, and the amine, and the catalyst powder of the amine A coating liquid having a mass ratio of 0.3 to 30% by weight is prepared, and a catalyst layer is formed by coating the coating liquid on a substrate. Provided is a method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, characterized in that it is at least one of a catalyst layer of a cathode.

通常の触媒活性が高いといわれる触媒粉末を含む膜・電極接合体を組み込んだ固体高分子型燃料電池は、発電時に過酸化水素や過酸化物ラジカルが生成しやすく、長期間の発電を行うと出力が低下しやすい。本発明の膜・電極接合体を組み込んだ燃料電池は、長期間発電しても性能劣化が少なくなる。この理由としては、本発明では、触媒層中に本アミンを含有させることにより、本アミンが過酸化物の分解やラジカルの補足機能を有するため、また、本アミンの存在により過酸化水素や過酸化物ラジカルが生成しにくくなるためと考えられる。  A polymer electrolyte fuel cell incorporating a membrane / electrode assembly containing a catalyst powder, which is said to have a high catalytic activity, tends to generate hydrogen peroxide and peroxide radicals during power generation. The output tends to decrease. The fuel cell incorporating the membrane-electrode assembly of the present invention has less performance deterioration even if it generates power for a long time. The reason for this is that in the present invention, the amine is contained in the catalyst layer, so that the amine has a function of decomposing peroxides and capturing radicals. This is probably because oxide radicals are less likely to be generated.

本発明の固体高分子型燃料電池用膜・電極接合体の実施態様を示す断面図。Sectional drawing which shows the embodiment of the membrane-electrode assembly for polymer electrolyte fuel cells of this invention.

符号の説明Explanation of symbols

1:固体高分子電解質膜、
2:アノード触媒層、
3:カソード触媒層、
4、4’:ガス拡散層、
5:セパレータ、
5a:セパレータのガス供給溝、
6:ガスシール体、
7:膜・電極接合体。
1: solid polymer electrolyte membrane,
2: Anode catalyst layer,
3: Cathode catalyst layer,
4, 4 ': Gas diffusion layer,
5: Separator,
5a: separator gas supply groove,
6: Gas seal body,
7: Membrane / electrode assembly.

本発明の固体高分子型燃料電池用膜・電極接合体の一態様の断面図を図1に示す。以下、膜・電極接合体7を図1に基づいて説明する。膜・電極接合体7は、固体高分子電解質膜1と、この電解質膜1の膜面に密着したアノード触媒層2及びカソード触媒層3と、これら各触媒層に密着したガス拡散層4、4’とガスシール体6により構成される。アノード触媒層2及びカソード触媒層3は、ガス拡散層4、4’と固体高分子電解質膜1との間に配置される。固体高分子電解質膜1は、アノード触媒層2中で生成するプロトンを膜厚方向に沿ってカソード触媒層3へ選択的に透過させる役割を有する。また、固体高分子電解質膜1は、アノードに供給される水素とカソードに供給される酸素が混じり合わないようにするための隔膜としての機能も有する。ガス拡散層4、4’は通常多孔性の導電性基材からなり、必ずしも備えられていなくてもよいが、触媒層へのガスの拡散を促進し、集電体の機能も有するので、通常は備えられていることが好ましい。膜・電極接合体7の外側にはガス流路5aとなる溝が形成されたセパレータ5が配置される。アノード側には、セパレータの溝を介して、例えばメタノールや天然ガス等の燃料を改質して得られる水素ガスが供給される。なお、本明細書では、膜・電極接合体7がガス拡散層4、4’を有する場合はガス拡散層4、4’と触媒層2、3とを合わせて電極という。
以下、本発明について詳述する。
A cross-sectional view of one embodiment of the membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention is shown in FIG. Hereinafter, the membrane-electrode assembly 7 will be described with reference to FIG. The membrane / electrode assembly 7 includes a solid polymer electrolyte membrane 1, an anode catalyst layer 2 and a cathode catalyst layer 3 in close contact with the membrane surface of the electrolyte membrane 1, and gas diffusion layers 4, 4 in close contact with these catalyst layers. And a gas seal body 6. The anode catalyst layer 2 and the cathode catalyst layer 3 are disposed between the gas diffusion layers 4, 4 ′ and the solid polymer electrolyte membrane 1. The solid polymer electrolyte membrane 1 has a role of selectively transmitting protons generated in the anode catalyst layer 2 to the cathode catalyst layer 3 along the film thickness direction. The solid polymer electrolyte membrane 1 also has a function as a diaphragm for preventing hydrogen supplied to the anode and oxygen supplied to the cathode from being mixed. The gas diffusion layers 4 and 4 'are usually made of a porous conductive base material, and may not necessarily be provided. Are preferably provided. On the outside of the membrane / electrode assembly 7, a separator 5 in which a groove to be a gas flow path 5a is formed is disposed. For example, hydrogen gas obtained by reforming a fuel such as methanol or natural gas is supplied to the anode side through a groove of the separator. In this specification, when the membrane / electrode assembly 7 includes the gas diffusion layers 4 and 4 ′, the gas diffusion layers 4 and 4 ′ and the catalyst layers 2 and 3 are collectively referred to as an electrode.
Hereinafter, the present invention will be described in detail.

本発明では、アノード触媒層2は、例えば、白金とルテニウムの合金をカーボン担体に担持した触媒粉末とイオン交換樹脂と含んで構成される。また、カソード触媒層3は、白金又は白金合金をカーボン担体に担持した触媒粉末とイオン交換樹脂とを含んで構成される。本発明では、イオン交換樹脂としては、陽イオン交換基を有する、炭化水素樹脂又は含フッ素炭化水素樹脂が好ましく、スルホン酸基を有するパーフルオロカーボン重合体(エーテル性酸素原子を含んでもよい。)からなるものが、ラジカルに対する安定性に優れることから特に好ましい。陽イオン交換基としてはスルホン酸基、カルボン酸基、ホスホン酸基、リン酸基等が挙げられる。  In the present invention, the anode catalyst layer 2 includes, for example, a catalyst powder in which an alloy of platinum and ruthenium is supported on a carbon support and an ion exchange resin. The cathode catalyst layer 3 includes a catalyst powder in which platinum or a platinum alloy is supported on a carbon support and an ion exchange resin. In the present invention, the ion exchange resin is preferably a hydrocarbon resin or a fluorine-containing hydrocarbon resin having a cation exchange group, and is a perfluorocarbon polymer having a sulfonic acid group (which may contain an etheric oxygen atom). Is particularly preferred because of its excellent radical stability. Examples of the cation exchange group include a sulfonic acid group, a carboxylic acid group, a phosphonic acid group, and a phosphoric acid group.

スルホン酸基を有するパーフルオロカーボン重合体としては、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく重合単位と、テトラフルオロエチレンに基づく重合単位とを含む共重合体であることが好ましい。The perfluorocarbon polymer having a sulfonic acid group, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) a perfluorovinyl compound represented by n -SO 3 H (m is 0 to 3 N represents an integer of 1 to 12, p represents 0 or 1, X represents a fluorine atom or a trifluoromethyl group, and a polymer unit based on tetrafluoroethylene; It is preferable that it is a copolymer containing.

上記フルオロビニル化合物の好ましい例としては、下記式(i)〜(iii)で表される化合物が挙げられる。ただし、下記式中、qは1〜8の整数、rは1〜8の整数、tは1〜3の整数を示す。  Preferable examples of the fluorovinyl compound include compounds represented by the following formulas (i) to (iii). However, in the following formula, q is an integer of 1 to 8, r is an integer of 1 to 8, and t is an integer of 1 to 3.

Figure 2005041330
Figure 2005041330

また、陽イオン交換基を有する炭化水素樹脂としては、従来より知られている様々なものが使用できる。陽イオン交換基を有する炭化水素樹脂は、例えば、アクリル酸・ジビニルベンゼン共重合体、メタクリル酸・ジビニルベンゼン共重合体、フェノールスルホン酸樹脂、ポリスチレンスルホン酸、スルホン化ポリイミド等の他に、スチレン・ジビニルベンゼン共重合体、スチレン・ブタジエン共重合体、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリオレフィン、ポリ塩化ビニル、ポリエチレン等の重合体に陽イオン交換基を導入したものが挙げられる。  Various conventionally known hydrocarbon resins having a cation exchange group can be used. Examples of the hydrocarbon resin having a cation exchange group include acrylic acid / divinylbenzene copolymer, methacrylic acid / divinylbenzene copolymer, phenolsulfonic acid resin, polystyrenesulfonic acid, sulfonated polyimide, and the like. Examples thereof include those obtained by introducing a cation exchange group into a polymer such as divinylbenzene copolymer, styrene / butadiene copolymer, polyethersulfone, polyetheretherketone, polyolefin, polyvinyl chloride, and polyethylene.

また、陽イオン交換基を有する部分フッ素化炭化水素樹脂としては、上述の陽イオン交換基を有する炭化水素樹脂において、イオン交換基等の官能基以外の水素原子がフッ素原子に一部置換した構造の物質が使用できる。その他、ポリスチレンスルホン酸グラフト−ポリ(トリフルオロスチレン)、ポリスチレンスルホン酸グラフト−ポリ(エチレン・テトラフルオロエチレン)等のイオン交換樹脂、さらには、テトラフルオロエチレン・エチレン共重合体、フッ化ビニリデン樹脂、トリフルオロ−クロロエチレン樹脂、ポリスチレングラフト−ポリテトラフルオロエチレン、ポリ(トリフルオロスチレン)グラフト−ポリ(エチレン・テトラフルオロエチレン)、スチレン・ジビニルベンゼン共重合体グラフト−ポリ(パーフルオロエチレン・プロペン)、ポリスチレングラフト−ポリ(パーフルオロエチレン・プロペン)等の樹脂に陽イオン交換基を導入したもの等が挙げられる。  In addition, as the partially fluorinated hydrocarbon resin having a cation exchange group, in the above-described hydrocarbon resin having a cation exchange group, a hydrogen atom other than a functional group such as an ion exchange group is partially substituted with a fluorine atom. Can be used. Other ion exchange resins such as polystyrene sulfonic acid graft-poly (trifluorostyrene), polystyrene sulfonic acid graft-poly (ethylene / tetrafluoroethylene), tetrafluoroethylene / ethylene copolymer, vinylidene fluoride resin, Trifluoro-chloroethylene resin, polystyrene graft-polytetrafluoroethylene, poly (trifluorostyrene) graft-poly (ethylene tetrafluoroethylene), styrene-divinylbenzene copolymer graft-poly (perfluoroethylene propene), Examples thereof include those obtained by introducing a cation exchange group into a resin such as polystyrene graft-poly (perfluoroethylene propene).

本発明では、アノード触媒層2及びカソード触媒層3の少なくとも一方には本アミンが含まれる。燃料電池の反応においては過酸化水素がアノード側を中心に生成するため、本アミンはアノード触媒層2に含有させるほうがカソード触媒層3に含有させるのよりも効果的である。しかし、よりいっそう高い効果を得るには、アノード触媒層2、カソード触媒層3のいずれにも含有させることが好ましい。本アミンを含有させることにより、過酸化水素や過酸化物ラジカルが生成しにくくなり、その結果、燃料電池を長期間運転しても性能劣化が少なくなると考えられる。この過酸化水素や過酸化物ラジカルが生成しにくくなる機構については、詳細には解明されていないが、おそらくは触媒粉末表面にある酸性の官能基(−COOH)と本アミン中の塩基性を有する窒素原子が反応することにより、酸性の官能基が消失するため過酸化水素や過酸化物ラジカルの生成を抑制するものと考えられる。したがって、本アミン中の塩基性を有する窒素原子の数により、その抑制効果は決まってくるものと考えられる。  In the present invention, the amine is contained in at least one of the anode catalyst layer 2 and the cathode catalyst layer 3. In the reaction of the fuel cell, hydrogen peroxide is generated mainly on the anode side. Therefore, it is more effective that the amine is contained in the anode catalyst layer 2 than in the cathode catalyst layer 3. However, in order to obtain an even higher effect, it is preferable to contain both in the anode catalyst layer 2 and the cathode catalyst layer 3. By containing this amine, hydrogen peroxide and peroxide radicals are less likely to be generated. As a result, it is considered that the performance deterioration is reduced even when the fuel cell is operated for a long period of time. Although the mechanism by which hydrogen peroxide and peroxide radicals are less likely to be generated has not been elucidated in detail, it probably has an acidic functional group (—COOH) on the catalyst powder surface and basicity in the amine. It is considered that the generation of hydrogen peroxide and peroxide radicals is suppressed because the acidic functional group disappears when the nitrogen atom reacts. Therefore, it is considered that the suppression effect is determined by the number of basic nitrogen atoms in the amine.

本アミンとしては、第1級アミン、第2級アミン、第3級アミンのいずれのものでも好ましく、なかでも、HALSが化学的、熱的にも安定である点から特に好ましい。本発明において、本アミンを含む触媒層を有する燃料電池を作動させた場合、電池の反応により水が生成しても、本アミンは作動中に触媒層から離脱しにくいので好ましい。
ここで、HALSとは、ヒンダードアミン系光安定剤(Hidered amine light stabilizers)の総称であり、ピペリジンの2位及び6位の炭素上の全ての水素原子がメチル基で置換された構造を有するものである。
The amine is preferably any of primary amines, secondary amines, and tertiary amines, and HALS is particularly preferable because it is chemically and thermally stable. In the present invention, when a fuel cell having a catalyst layer containing the present amine is operated, even if water is generated by the reaction of the cell, the present amine is preferable because it is difficult to separate from the catalyst layer during operation.
Here, HALS is a general term for hindered amine light stabilizers, and has a structure in which all hydrogen atoms on the 2nd and 6th carbons of piperidine are substituted with methyl groups. is there.

本アミンとして使用されるHALSは、通常ピペリジンの2位と6位が全てメチル基で置換された構造、好ましくは式1で表わされる基を有する。ただし、式1中Xは水素原子又はアルキル基を表す。式1で表わされる基のなかでも、Xが水素原子である2,2,6,6−テトラメチル−4−ピペリジル基、又はXがメチル基である1,2,2,6,6−ペンタメチル−4−ピペリジル基を有するHALSが特に好ましく採用される。なお、式1で表わされる基が−COO−基に結合している構造、すなわち式2で表わされる基を有するHALSが数多く市販されているがこれらは好ましく使用できる。  The HALS used as the amine usually has a structure in which the 2-position and 6-position of piperidine are all substituted with methyl groups, preferably a group represented by Formula 1. However, X in Formula 1 represents a hydrogen atom or an alkyl group. Among the groups represented by Formula 1, 2,2,6,6-tetramethyl-4-piperidyl group in which X is a hydrogen atom, or 1,2,2,6,6-pentamethyl in which X is a methyl group HALS having a -4-piperidyl group is particularly preferably employed. A number of HALS having a structure in which a group represented by Formula 1 is bonded to a —COO— group, that is, a group represented by Formula 2, are commercially available, but these can be preferably used.

Figure 2005041330
Figure 2005041330

具体的に本発明で好ましく使用できるHALSを挙げると、例えば以下の式で表わされるものが挙げられる。なお、ここで2,2,6,6−テトラメチル−4−ピペリジル基をR、1,2,2,6,6−ペンタメチル−4−ピペリジル基をR’で表わす。
ROC(=O)(CHC(=O)OR、ROC(=O)C(CH)=CH、R’OC(=O)C(CH)=CH、CH(COOR)CH(COOR)CH(COOR)CHCOOR、CH(COOR’)CH(COOR’)CH(COOR’)CHCOOR’、式3で表わされる化合物等。
Specific examples of HALS that can be preferably used in the present invention include those represented by the following formulas. Here, 2,2,6,6-tetramethyl-4-piperidyl group is represented by R, and 1,2,2,6,6-pentamethyl-4-piperidyl group is represented by R ′.
ROC (= O) (CH 2 ) 8 C (= O) OR, ROC (= O) C (CH 3) = CH 2, R'OC (= O) C (CH 3) = CH 2, CH 2 ( COOR) CH (COOR) CH (COOR) CH 2 COOR, CH 2 (COOR ′) CH (COOR ′) CH (COOR ′) CH 2 COOR ′, compounds represented by Formula 3, and the like.

Figure 2005041330
Figure 2005041330

また、具体的な商品としては、チヌビン123、チヌビン144、チヌビン765、チヌビン770、チヌビン622、チマソーブ944、チマソーブ119(以上はいずれも、チバ・スペシャリティ・ケミカルズ社商品名)、アデカスタブLA52、アデカスタブLA57、アデカスタブLA62、アデカスタブLA67、アデカスタブLA82、アデカスタプLA87、アデカスタブLX335(以上はいずれも旭電化工業社商品名)等を挙げることができるが、これらに限定されない。  Specific products include Tinuvin 123, Tinuvin 144, Tinuvin 765, Tinuvin 770, Tinuvin 622, Chimassorb 944, Chimassorb 119 (all of which are trade names of Ciba Specialty Chemicals), ADK STAB LA52, ADK STAB LA57 , Adeka Stub LA62, Adeka Stub LA67, Adeka Stub LA82, Adeka Stub LA87, Adeka Stub LX335 (all of which are trade names of Asahi Denka Kogyo Co., Ltd.) and the like, but are not limited thereto.

HALSのなかでも分子が比較的小さいものは触媒の細孔の奥深くに入り込めるので好ましい。この観点で好ましいHALSとしては、ROC(=O)(CHC(=O)OR、R’OC(=O)C(CH)=CHで表わされる化合物等である。Among HALS, those having relatively small molecules are preferable because they can penetrate deep into the pores of the catalyst. Preferred HALS from this viewpoint includes a compound represented by ROC (═O) (CH 2 ) 8 C (═O) OR, R′OC (═O) C (CH 3 ) ═CH 2 .

また、本アミンとしては、HALSの他に、具体的には、2−エチルヘキシルアミン、3−(2−エチルヘキシルオキシ)プロピルアミン、ジイソブチルアミン、ジ−n−オクチルアミン、トリ−n−オクチルアミン、トリアリルアミン、ジ−2−エチルヘキシルアミン及び3−(ジブチルアミノ)プロピルアミンからなる群より選ばれる1種以上も好ましく使用できる。HALSと同様、本アミンのなかでも分子が比較的小さいもの、例えば、2−エチルヘキシルアミン、ジイソブチルアミン等は、触媒の細孔の奥深くに入り込めるので好ましい。  In addition to HALS, the present amine is specifically 2-ethylhexylamine, 3- (2-ethylhexyloxy) propylamine, diisobutylamine, di-n-octylamine, tri-n-octylamine, One or more selected from the group consisting of triallylamine, di-2-ethylhexylamine and 3- (dibutylamino) propylamine can also be preferably used. Similar to HALS, those having a relatively small molecule, for example, 2-ethylhexylamine, diisobutylamine, etc., are preferable because they can penetrate deep into the pores of the catalyst.

本アミンは、水に対する溶解度が3以下であることが必要である。本アミンの水に対する溶解度が3を超えるものは、燃料電池運転中に触媒表面から周囲の水に溶出する割合が増し、耐久性向上の効果が徐々に薄れていくため好ましくない。本アミンの水に対する溶解度は1以下が特に好ましい。なお、本発明では、本アミンの水に対する溶解度とは、20℃で、100gの水に対して溶解するアミンの質量のことを意味する。  The amine needs to have a water solubility of 3 or less. When the amine solubility in water exceeds 3, the ratio of elution from the catalyst surface to the surrounding water during the operation of the fuel cell increases, and the effect of improving the durability gradually diminishes. The solubility of the amine in water is particularly preferably 1 or less. In the present invention, the solubility of the amine in water means the mass of the amine dissolved in 100 g of water at 20 ° C.

本発明では、触媒層中において、本アミンは含有量(W×N)/M×1000が0.03〜1であることが好ましく、特に0.05〜0.7であることが好ましい。ただし、Wは本アミンの触媒粉末1gあたりの含有量(g)、Mは本アミンの分子量、Nは本アミン1分子中における塩基性を有する窒素原子の数である。なお、塩基性を有する窒素原子は、アミンとして作用する窒素原子の数を示す。本アミンでは、塩基性を有する窒素原子とは、下式(iv)〜(vi)のいずれかの結合を有する窒素原子で表される。下記式で、R、R、R、R、R、Rは1価の有機基を示す。なお、HALSの場合は通常、式(v)又は(vi)の結合を有する。In the present invention, the content (W × N) / M × 1000 of the present amine in the catalyst layer is preferably 0.03 to 1, and particularly preferably 0.05 to 0.7. However, W is the content (g) per gram of catalyst powder of the present amine, M is the molecular weight of the present amine, and N is the number of basic nitrogen atoms in one molecule of the present amine. In addition, the nitrogen atom which has basicity shows the number of the nitrogen atoms which act as an amine. In the present amine, the basic nitrogen atom is represented by a nitrogen atom having any one of the following formulas (iv) to (vi). In the following formula, R a , R b , R c , R d , R e , and R f represent a monovalent organic group. In addition, in the case of HALS, it has the coupling | bonding of Formula (v) or (vi) normally.

Figure 2005041330
Figure 2005041330

塩基性を有する窒素原子の数は、例えば、HALSの場合では、ROC(=O)(CHC(=O)ORであれば、N=2であり、CH(COOR)CH(COOR)CH(COOR)CHCOORであれば、N=4である。また、HALS以外の本アミンの場合は、例えば、トリ−n−オクチルアミンであれば、N=1であり、3−(ジブチルアミノ)プロピルアミンであれば、N=2である。For example, in the case of HALS, the number of basic nitrogen atoms is N = 2 if ROC (═O) (CH 2 ) 8 C (═O) OR, and CH 2 (COOR) CH ( For COOR) CH (COOR) CH 2 COOR, N = 4. In the case of the present amine other than HALS, for example, N = 1 for tri-n-octylamine and N = 2 for 3- (dibutylamino) propylamine.

また、本アミンの含有量の好ましい範囲を触媒粉末との質量比で示すと、触媒粉末に対し、質量比で0.3〜30%が好ましく、特に1〜20%が好ましい。本アミンの含有量が少なすぎると、燃料電池として運転した場合に十分な耐久性が得られない。また、本アミンの含有量が多すぎると、触媒層形成用塗工液に本アミンを含有させておいて塗工する場合には、触媒層にクラックが入りやすくなるなど塗工性が悪化し、燃料電池としての性能も低下する。  Moreover, when the preferable range of content of this amine is shown by mass ratio with a catalyst powder, 0.3-30% is preferable by mass ratio with respect to catalyst powder, and 1-20% is especially preferable. If the amine content is too small, sufficient durability cannot be obtained when the fuel cell is operated. In addition, if the amine content is too high, the coating properties are deteriorated, for example, when the catalyst layer forming coating solution contains the amine and the catalyst layer is likely to crack. Further, the performance as a fuel cell also decreases.

本発明における担持触媒において、触媒金属とカーボン担体とは質量比(触媒金属:カーボン担体)で2:8〜7:3であることが好ましく、特に4:6〜6:4であることが好ましい。この範囲であれば、触媒層の厚さを薄くすることが可能であり、ガスの拡散性を高め、優れた出力特性を得ることができる。触媒粉末中の触媒金属の含有割合が少なすぎると、反応に必要な触媒金属の量が不足するおそれがあり、触媒金属の含有量が多すぎるとカーボン担体上で触媒金属粒子同士の凝集が起こりやすくなり、かえって性能が低下するおそれがある。  In the supported catalyst of the present invention, the catalyst metal and the carbon support are preferably in a mass ratio (catalyst metal: carbon support) of 2: 8 to 7: 3, particularly preferably 4: 6 to 6: 4. . Within this range, the thickness of the catalyst layer can be reduced, gas diffusibility can be increased, and excellent output characteristics can be obtained. If the content of the catalyst metal in the catalyst powder is too small, the amount of the catalyst metal required for the reaction may be insufficient. If the content of the catalyst metal is too large, the catalyst metal particles aggregate on the carbon support. There is a risk that the performance will be reduced.

本発明において担持触媒に使用される担体となるカーボン材料としては、細孔の発達したカーボンブラック、活性炭、カーボンナノチューブ、カーボンナノホーン等種々の炭素材料が好ましく使用できる。固体高分子型燃料電池では、通常カーボンブラックが使用されることが多く、該カーボンブラックとしてはチャンネルブラック、ファーネスブラック、サーマルブラック、アセチレンブラック等が挙げられる。また、活性炭としては、種々の炭素原子を含む材料を炭化、賦活処理して得られる種々の活性炭が使用できる。  In the present invention, various carbon materials such as carbon black, activated carbon, carbon nanotubes, and carbon nanohorns having fine pores can be preferably used as the carbon material used as the support for the supported catalyst. In the polymer electrolyte fuel cell, carbon black is usually used, and examples of the carbon black include channel black, furnace black, thermal black, and acetylene black. Moreover, as activated carbon, various activated carbons obtained by carbonizing and activating materials containing various carbon atoms can be used.

本発明では、固体高分子電解質膜1としては、イオン交換膜を使用する。イオン交換膜には、前述の触媒層に含まれる樹脂として好ましいイオン交換樹脂と同種のものが使用できる。すなわち、陽イオン交換基を有する、炭化水素樹脂又は含フッ素炭化水素樹脂が好ましく使用できる。スルホン酸基を有するパーフルオロカーボン重合体からなるものが、ラジカルに対する安定性に優れることから特に好ましい。  In the present invention, an ion exchange membrane is used as the solid polymer electrolyte membrane 1. As the ion exchange membrane, the same type of ion exchange resin as that preferable as the resin contained in the catalyst layer can be used. That is, a hydrocarbon resin or a fluorine-containing hydrocarbon resin having a cation exchange group can be preferably used. Those made of a perfluorocarbon polymer having a sulfonic acid group are particularly preferred because of their excellent radical stability.

また、ガス拡散層4、4’は、通常カーボンペーパーやカーボンクロス、カーボンフェルト等の導電性の多孔質シートからなる。このガス拡散層4、4’は、触媒層2、3とセパレータ5との間に介在されている。上記ガス拡散層4、4’としては、カーボンペーパー、カーボンクロス、カーボンフェルト上にフッ素樹脂で撥水処理を行った材料等も好ましく使用できる。  The gas diffusion layers 4 and 4 ′ are usually made of a conductive porous sheet such as carbon paper, carbon cloth, or carbon felt. The gas diffusion layers 4 and 4 ′ are interposed between the catalyst layers 2 and 3 and the separator 5. As the gas diffusion layers 4 and 4 ′, carbon paper, carbon cloth, a material obtained by performing a water repellent treatment with a fluororesin on a carbon felt, or the like can be preferably used.

本発明では、アノード触媒層2及びカソード触媒層3の少なくとも一方は、触媒粉末とイオン交換樹脂と本アミンを溶媒に溶解又は分散させた液とを混合して、触媒層形成用塗工液を調製し、該塗工液をガス拡散層4、4’又は固体高分子電解質膜1に塗工し、乾燥させることにより形成されることが好ましい。また、別途用意した基材上に上記塗工液を塗布し乾燥して触媒層を形成した後、固体高分子電解質膜1と積層してホットプレスすることにより固体高分子電解質膜1に転写してもよい。なお、本アミンの含有量は、触媒粉末に対する含有量(W×N)/M×1000で示す場合は0.03〜1であることが好ましく、特に0.05〜0.7が好ましい。また、本アミンの含有量は、触媒粉末との質量比で示す場合は、0.3〜30%が好ましく、特に1〜20%が好ましい。ここで、触媒層形成用塗工液を塗工する基材としては、触媒層形成用塗工液中に含まれる分散媒に対して安定なフィルムであれば好ましく使用でき、例えば、ポリプロピレン、ポリエチレンテレフタレート、エチレン・テトラフルオロエチレン共重合体、ポリテトラフルオロエチレンのシート等が挙げられる。  In the present invention, at least one of the anode catalyst layer 2 and the cathode catalyst layer 3 is prepared by mixing a catalyst powder, an ion exchange resin, and a liquid in which the present amine is dissolved or dispersed in a solvent to prepare a catalyst layer forming coating solution. It is preferably formed by preparing, coating the coating liquid on the gas diffusion layers 4, 4 ′ or the solid polymer electrolyte membrane 1 and drying it. In addition, the coating solution is applied onto a separately prepared substrate and dried to form a catalyst layer, and then laminated with the solid polymer electrolyte membrane 1 and hot-pressed to transfer to the solid polymer electrolyte membrane 1. May be. The content of the amine is preferably 0.03 to 1 and particularly preferably 0.05 to 0.7 when expressed as content (W × N) / M × 1000 with respect to the catalyst powder. Further, the content of the amine is preferably from 0.3 to 30%, particularly preferably from 1 to 20%, when expressed as a mass ratio to the catalyst powder. Here, as a base material to which the coating liquid for forming a catalyst layer is applied, any film that is stable with respect to the dispersion medium contained in the coating liquid for forming a catalyst layer can be preferably used. For example, polypropylene, polyethylene Examples include terephthalate, ethylene / tetrafluoroethylene copolymer, polytetrafluoroethylene sheet, and the like.

上述の触媒層形成用の塗工液の塗工方法としては、アプリケータ、バーコータ、ダイコータ等を使用する方法や、スクリーン印刷法、グラビア印刷法等を適用できる。また、触媒層形成用塗工液中には、必要に応じて撥水剤、造孔剤、増粘剤、希釈溶媒等を添加することにより、電極反応で生成する水の排出性を高めること、触媒層自体の形状安定性を保持すること、又は塗工時の塗工むらの改善や塗工安定性等を高めることも可能である。また、上記の他に、本アミンを触媒層に含有させる方法としては、触媒層形成用塗工液により触媒層を形成した後、当該触媒層を、本アミンを溶媒に溶解した溶液に浸漬する方法や、触媒層の外側に膜・電極接合体を作製した後に膜・電極接合体を本アミン溶液に浸漬する方法等が挙げられる。  As a coating method of the above-described coating liquid for forming the catalyst layer, a method using an applicator, a bar coater, a die coater or the like, a screen printing method, a gravure printing method, or the like can be applied. Also, in the coating liquid for forming the catalyst layer, the water repellent, pore-forming agent, thickener, diluting solvent, etc. may be added as necessary to enhance the drainage of water generated by the electrode reaction. It is also possible to maintain the shape stability of the catalyst layer itself, or to improve the coating unevenness at the time of coating or to improve the coating stability. In addition to the above, as a method of incorporating the present amine into the catalyst layer, after forming the catalyst layer with the catalyst layer forming coating solution, the catalyst layer is immersed in a solution obtained by dissolving the present amine in a solvent. And a method of immersing the membrane / electrode assembly in the amine solution after preparing the membrane / electrode assembly on the outside of the catalyst layer.

本発明の膜・電極接合体を備える固体高分子型燃料電池では、カソードには酸素を含むガス、アノードには水素を含むガスが供給される。具体的には、例えばガスの流路となる溝が形成されたセパレータを膜・電極接合体の両方の電極の外側に配置し、ガスの流路にガスを流すことにより膜・電極接合体に燃料となるガスを供給し発電させる。セパレータは、金属製、カーボン製のもののほか、黒鉛と樹脂を混合した材料からなるものもあり、各種導電性材料を幅広く使用できる。  In the polymer electrolyte fuel cell having the membrane-electrode assembly of the present invention, a gas containing oxygen is supplied to the cathode, and a gas containing hydrogen is supplied to the anode. Specifically, for example, a separator in which a groove that becomes a gas flow path is formed is disposed outside both electrodes of the membrane-electrode assembly, and the gas is allowed to flow through the gas flow path to form a membrane-electrode assembly. Supply fuel gas and generate electricity. In addition to metal and carbon separators, there are separators made of a mixture of graphite and resin, and a wide variety of conductive materials can be used.

以下、本発明を具体的に実施例及び比較例を用いて説明するが、本発明はこれらに限定されない。なお、表1、3、5に各実施例において、触媒層に含まれる本アミンの含有量を(W×N)/M×1000で表した値と触媒層中の触媒粉末に対する質量比で表した値とを、それぞれ示す。  Hereinafter, the present invention will be specifically described using Examples and Comparative Examples, but the present invention is not limited thereto. In Tables 1, 3, and 5, in each Example, the content of the amine contained in the catalyst layer is represented by a value expressed by (W × N) / M × 1000 and a mass ratio with respect to the catalyst powder in the catalyst layer. The values are shown respectively.

[例1(実施例)]
白金がカーボン担体(比表面積800m/g)に触媒全質量の50%含まれるように担持された触媒(エヌ・イーケムキャット社製、以下、触媒1という)2gを、蒸留水11.6gに添加し、よく撹拌した。これに対し、CH(COOR)CH(COOR)CH(COOR)CHCOOR(ただし、Rは2,2,6,6−テトラメチル−4−ピペリジル基)で示されるHALS(アデカスタブLA57:旭電化工業社商品名、分子量:792、塩基性を有する窒素原子の数:4、水に不溶)0.15gをエタノールに溶解した溶液7.9gを添加した。この混合液をホモジナイザー(キネマチカ社商品名:ポロトロン)を使用して、混合、分散させた。これに対し、CF=CF/CF=CFOCFCF(CF)O(CFSOH共重合体(イオン交換容量1.1ミリ当量/g乾燥樹脂、以下、共重合体Aという)をエタノールに分散させた固形分濃度10質量%の液8gと蒸留水3.3gを添加し、さらにホモジナイザーを使用して混合、分散させ、これを触媒層形成用塗工液aとした。
[Example 1 (Example)]
21.6 g of a catalyst (made by N.E. Chemcat, hereinafter referred to as catalyst 1) supported so that platinum is contained in a carbon support (specific surface area 800 m 2 / g) in 50% of the total mass of the catalyst is added to 11.6 g of distilled water. Added and stirred well. On the other hand, HALS (ADK STAB LA57: Asahi) represented by CH 2 (COOR) CH (COOR) CH (COOR) CH 2 COOR (where R is 2,2,6,6-tetramethyl-4-piperidyl group) Denka Kogyo Co., Ltd. trade name, molecular weight: 792, number of basic nitrogen atoms: 4, insoluble in water) 7.9 g of a solution of 0.15 g dissolved in ethanol was added. This mixture was mixed and dispersed using a homogenizer (Kinematica trade name: Polotron). On the other hand, CF 2 = CF 2 / CF 2 = CFOCF 2 CF (CF 3 ) O (CF 2 ) 2 SO 3 H copolymer (ion exchange capacity 1.1 meq / g dry resin, hereinafter, 8 g of a liquid having a solid content concentration of 10% by mass dispersed in ethanol and 3.3 g of distilled water are added and mixed and dispersed using a homogenizer, and this is mixed with a coating liquid a for forming a catalyst layer a. It was.

この塗工液aを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で30分間乾燥させて触媒層aを作製した。この触媒層中に含まれるHALSの含有量を表1に示す。なお、触媒層a形成前の基材フィルムのみと触媒層a形成後の基材フィルムの質量を測定することにより、触媒層aに含まれる単位面積あたりの白金の量を算出したところ、0.5mg/cmであった。The coating liquid a was applied onto a polypropylene substrate film with a bar coater, and then dried in an oven at 80 ° C. for 30 minutes to prepare a catalyst layer a. Table 1 shows the content of HALS contained in the catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer a was calculated by measuring the mass of only the base film before the formation of the catalyst layer a and the mass of the base film after the formation of the catalyst layer a, 0. It was 5 mg / cm 2 .

次に、固体高分子電解質膜として、スルホン酸基を有するパーフルオロカーボン重合体からなる厚さ30μmのイオン交換膜(フレミオン:旭硝子社商品名、イオン交換容量1.1ミリ当量/g乾燥樹脂)を使用し、この膜の両面に基材フィルム上に形成された触媒層aをそれぞれ配置し、ホットプレス法により転写した。これによりアノード触媒層及びカソード触媒層を形成し、電極面積が25cmである固体高分子膜と触媒層からなる膜・触媒層接合体を作製した。Next, as a solid polymer electrolyte membrane, an ion exchange membrane (Flemion: trade name of Asahi Glass Co., Ltd., ion exchange capacity 1.1 milliequivalent / g dry resin) made of a perfluorocarbon polymer having a sulfonic acid group is used. The catalyst layers a formed on the base film were respectively disposed on both sides of the membrane and transferred by a hot press method. Thus, an anode catalyst layer and a cathode catalyst layer were formed, and a membrane / catalyst layer assembly comprising a solid polymer membrane having an electrode area of 25 cm 2 and a catalyst layer was produced.

得られた膜・触媒層接合体を、厚さ350μmのカーボンクロスからなるガス拡散層2枚の間に挟んで膜・電極接合体を作製した。発電用セルに組み込み、常圧にて、水素(利用率70%)/空気(利用率40%)を供給し、セル温度70℃において電流密度0.2A/cmにおける固体高分子型燃料電池の評価を行った。アノード側は露点70℃、カソード側は露点50℃としてそれぞれ水素及び空気を加湿してセル内に供給し、運転初期のセル電圧を測定した。結果を表2に示す。さらに、運転開始後の経過時間とセル電圧との関係(耐久性評価)を測定すると、表2に示すとおりとなる。The obtained membrane / catalyst layer assembly was sandwiched between two gas diffusion layers made of carbon cloth having a thickness of 350 μm to produce a membrane / electrode assembly. Solid polymer fuel cell built in a power generation cell, supplying hydrogen (utilization rate 70%) / air (utilization rate 40%) at normal pressure and a cell temperature of 70 ° C. and a current density of 0.2 A / cm 2 Was evaluated. Hydrogen and air were humidified and supplied to the cell with a dew point of 70 ° C. on the anode side and a dew point of 50 ° C. on the cathode side, and the cell voltage at the initial stage of operation was measured. The results are shown in Table 2. Furthermore, when the relationship between the elapsed time after the start of operation and the cell voltage (durability evaluation) is measured, it is as shown in Table 2.

[例2(比較例)]
例1において、HALSのエタノール溶液のかわりに、HALSを溶解していないエタノールを使用した以外は例1と同様にして、触媒層形成用塗工液bを調製した。塗工液aのかわりに塗工液bを用い、例1と同様にして触媒層bを作製した。触媒層bに含まれる単位面積あたりの白金の量を例1と同様に測定したところ、0.5mg/cmであった。次に、アノード触媒層、カソード触媒層ともに触媒層bにより構成した以外は例1と同様にして、電極面積が25cmである膜・触媒層接合体を作製した。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧を測定した。結果を表2に示す。さらに、例1と同様に耐久性評価を行うと得られる結果を表2に示す。
[Example 2 (comparative example)]
A catalyst layer forming coating solution b was prepared in the same manner as in Example 1 except that ethanol in which HALS was not dissolved was used in place of the HALS ethanol solution. A catalyst layer b was produced in the same manner as in Example 1 except that the coating liquid b was used in place of the coating liquid a. When the amount of platinum per unit area contained in the catalyst layer b was measured in the same manner as in Example 1, it was 0.5 mg / cm 2 . Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer were constituted by the catalyst layer b.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was produced in the same manner as in Example 1, and the cell voltage at the initial stage of operation was measured in the same manner as in Example 1. The results are shown in Table 2. Furthermore, Table 2 shows the results obtained when durability evaluation is performed in the same manner as in Example 1.

[例3(実施例)]
例1において、HALSとしてアデカスタブLA57のかわりにROC(=O)C16C(=O)OR(ただし、Rは例1におけるRと同じ)で表わされるHALS(アデカスタブLA77:旭電化工業社商品名、分子量:481、塩基性を有する窒素原子の数:2、水に不溶)を使用した以外は例1と同様にして、触媒層形成用塗工液cを調製した。塗工液aのかわりに塗工液cを用い、例1と同様にして触媒層cを作製した。この触媒層中に含まれるHALSの含有量を表1に示す。なお、触媒層cに含まれる単位面積あたりの白金の量を例1と同様に測定したところ、0.5mg/cmであった。次に、アノード触媒層、カソード触媒層ともに触媒層cにより構成した以外は例1と同様にして、電極面積が25cmである膜・触媒層接合体を作製した。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧を測定した。結果を表2に示す。さらに、例1と同様に耐久性評価を行うと得られる結果を表2に示す。
[Example 3 (Example)]
In Example 1, instead of ADK STAB LA57 as HALS, HALS (ADK STAB LA77: Asahi Denka Kogyo Co., Ltd.) represented by ROC (= O) C 8 H 16 C (═O) OR (where R is the same as R in Example 1) A catalyst layer forming coating solution c was prepared in the same manner as in Example 1 except that the product name, molecular weight: 481, number of basic nitrogen atoms: 2, insoluble in water were used. A catalyst layer c was produced in the same manner as in Example 1 except that the coating liquid c was used instead of the coating liquid a. Table 1 shows the content of HALS contained in the catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer c was measured in the same manner as in Example 1, it was 0.5 mg / cm 2 . Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer were constituted by the catalyst layer c.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was produced in the same manner as in Example 1, and the cell voltage at the initial stage of operation was measured in the same manner as in Example 1. The results are shown in Table 2. Furthermore, Table 2 shows the results obtained when durability evaluation is performed in the same manner as in Example 1.

[例4(実施例)]
例1において、HALSとしてアデカスタブLA57のかわりにポリ[{6−(1,1,3,3−テトラメチルブチル)アミノ−1,3,5−トリアジン−2,4−ジイル}{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}ヘキサメチレン{(2,2,6,6−テトラメチル−4−ピペリジル)イミノ}](チマソーブ944:チバ・スペシャリティ・ケミカル社商品名、分子量:2500、塩基性を有する窒素原子の数:20、水に不溶)を0.1g溶解した以外は例1と同様にして、触媒層形成用塗工液dを調製した。塗工液aのかわりに塗工液dを用い、例1と同様にして触媒層dを作製した。この触媒層中に含まれるHALSの含有量を表1に示す。なお、触媒層dに含まれる単位面積あたりの白金の量を例1と同様に測定したところ、0.5mg/cmであった。次に、アノード触媒層、カソード触媒層ともに触媒層dにより構成した以外は例1と同様にして、電極面積が25cmである膜・触媒層接合体を作製した。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧を測定した。結果を表2に示す。さらに、例1と同様に耐久性評価を行うと得られる結果を表2に示す。
[Example 4 (Example)]
In Example 1, poly [{6- (1,1,3,3-tetramethylbutyl) amino-1,3,5-triazine-2,4-diyl} {(2,2) instead of ADK STAB LA57 as HALS , 6,6-tetramethyl-4-piperidyl) imino} hexamethylene {(2,2,6,6-tetramethyl-4-piperidyl) imino}] (Timasorb 944: trade name, molecular weight of Ciba Specialty Chemicals) : 2500, the number of basic nitrogen atoms: 20, insoluble in water) was prepared in the same manner as in Example 1 except for dissolving 0.1 g of catalyst layer forming coating solution d. A catalyst layer d was prepared in the same manner as in Example 1 except that the coating liquid d was used in place of the coating liquid a. Table 1 shows the content of HALS contained in the catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer d was measured in the same manner as in Example 1, it was 0.5 mg / cm 2 . Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer were constituted by the catalyst layer d.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was produced in the same manner as in Example 1, and the cell voltage at the initial stage of operation was measured in the same manner as in Example 1. The results are shown in Table 2. Furthermore, Table 2 shows the results obtained when durability evaluation is performed in the same manner as in Example 1.

[例5(実施例)]
例1において、HALSとしてアデカスタブLA57のかわりにN,N’−ビス(3−アミノプロピル)エチレンジアミン・2,4−ビス[N−ブチル−N−(1,1,2,2,6,6−ペンタメチル−4−ピペリジル)アミノ]−6−クロロ−1,3,5−トリアジン縮合物(チマソーブ119:チバ・スペシャリティ・ケミカル社商品名、分子量:2000、塩基性を有する窒素原子の数:20、水に不溶)を0.1g溶解した以外は例1と同様にして、触媒層形成用塗工液eを調製した。塗工液aのかわりに塗工液eを用い、例1と同様にして触媒層eを作製した。この触媒層中に含まれるHALSの含有量を表1に示す。なお、触媒層eに含まれる単位面積あたりの白金の量を例1と同様に測定したところ、0.5mg/cmであった。次に、アノード触媒層、カソード触媒層ともに触媒層eにより構成した以外は例1と同様にして、電極面積が25cmである膜・触媒層接合体を作製した。次に、アノード触媒層、カソード触媒層ともに触媒層eにより構成した以外は例1と同様にして、電極面積が25cmである膜・触媒層接合体を作製した。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧を測定した。結果を表2に示す。さらに、例1と同様に耐久性評価を行うと得られる結果を表2に示す。
[Example 5 (Example)]
In Example 1, instead of ADK STAB LA57 as HALS, N, N′-bis (3-aminopropyl) ethylenediamine · 2,4-bis [N-butyl-N- (1,1,2,2,6,6- Pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5-triazine condensate (Timasorb 119: trade name of Ciba Specialty Chemicals, molecular weight: 2000, number of basic nitrogen atoms: 20, A catalyst layer forming coating solution e was prepared in the same manner as in Example 1 except that 0.1 g of (insoluble in water) was dissolved. A catalyst layer e was produced in the same manner as in Example 1 except that the coating liquid e was used instead of the coating liquid a. Table 1 shows the content of HALS contained in the catalyst layer. In addition, when the amount of platinum per unit area contained in the catalyst layer e was measured in the same manner as in Example 1, it was 0.5 mg / cm 2 . Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer were constituted by the catalyst layer e. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 was produced in the same manner as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer were constituted by the catalyst layer e.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was produced in the same manner as in Example 1, and the cell voltage at the initial stage of operation was measured in the same manner as in Example 1. The results are shown in Table 2. Furthermore, Table 2 shows the results obtained when durability evaluation is performed in the same manner as in Example 1.

[例6(実施例)]
触媒1を7.5gとり、蒸留水67g、メタノール68gの混合溶媒に添加し、よく混合する。これにHALSとして、アデカスタブLA77を0.5gメタノールに溶解した溶液7.9gを添加し、この混合液をホモジナイザーを使用して、混合、分散させる。
次いで、この混合物に、スチレンスルホン酸ナトリウム2.08g、ジビニルベンゼン0.21g、アゾビスイソブチロニトリル0.002gを混合してホモジナイザーで混合、分散し触媒層形成用塗工液fを調製する。
[Example 6 (Example)]
7.5 g of catalyst 1 is taken and added to a mixed solvent of 67 g of distilled water and 68 g of methanol and mixed well. To this, 7.9 g of a solution in which Adeka Stab LA77 is dissolved in 0.5 g of methanol is added as HALS, and this mixture is mixed and dispersed using a homogenizer.
Next, 2.08 g of sodium styrenesulfonate, 0.21 g of divinylbenzene, and 0.002 g of azobisisobutyronitrile are mixed into this mixture and mixed and dispersed with a homogenizer to prepare a coating solution f for forming a catalyst layer. .

この塗工液fを、ポリプロピレン製の基材フィルムの上にバーコータで塗工した後、80℃の乾燥器内で8時間乾燥させることにより、−SONa基を有するスチレン・ジビニルベンゼンイオン交換樹脂からなる、単位面積あたりの白金の量が0.5mg/cmの触媒層fを作製する。この触媒層fを水にて数回洗浄した後、0.5mmol/Lの硫酸水溶液に浸すことにより−SONa基を−SOH基に変換する。この触媒層中に含まれるHALSの含有量を表3に示す。なお、触媒層fに含まれる単位面積あたりの白金の量は例1と同様に測定することにより算出することができる。This coating solution f is coated on a polypropylene substrate film with a bar coater, and then dried in a dryer at 80 ° C. for 8 hours, whereby styrene / divinylbenzene ion exchange having —SO 3 Na group is performed. A catalyst layer f made of resin and having a platinum amount of 0.5 mg / cm 2 per unit area is prepared. This catalyst layer f is washed several times with water and then immersed in a 0.5 mmol / L sulfuric acid aqueous solution to convert —SO 3 Na groups into —SO 3 H groups. Table 3 shows the content of HALS contained in the catalyst layer. The amount of platinum per unit area contained in the catalyst layer f can be calculated by measuring in the same manner as in Example 1.

次に、固体高分子電解質膜として、特開2002−334702号の実施例1に開示されている方法で合成して得られる厚さ50μmの高分子電解質膜(ポリスチレンスルホン酸グラフト−ポリ(エチレン・テトラフルオロエチレン))を用いる以外は例1と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
Next, as a solid polymer electrolyte membrane, a 50 μm-thick polymer electrolyte membrane (polystyrene sulfonic acid graft-poly (ethylene · ethylene) synthesized by the method disclosed in Example 1 of JP-A-2002-334702 is used. A membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced in the same manner as in Example 1 except that tetrafluoroethylene)) is used.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例7(比較例)]
例6において、HALSのメタノール溶液のかわりに、HALSを溶解しないメタノールを使用する以外は例6と同様にして操作を行い、触媒層形成用塗工液gを調製する。例6において、塗工液fのかわりに塗工液gを用い、例6と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層gを作製する。この触媒層gを、例6と同様にして操作を行い、−SONa基を−SOH基に変換する。次に、アノード触媒層、カソード触媒層ともに触媒層gにより構成する以外は例6と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
[Example 7 (comparative example)]
In Example 6, instead of using a HALS methanol solution, the same operation as in Example 6 was performed except that methanol that did not dissolve HALS was used to prepare a coating solution g for forming a catalyst layer. In Example 6, the coating liquid g is used in place of the coating liquid f, and a catalyst layer g having an amount of platinum of 0.5 mg / cm 2 per unit area is produced in the same manner as in Example 6. This catalyst layer g is operated in the same manner as in Example 6 to convert —SO 3 Na groups into —SO 3 H groups. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 6 except that both the anode catalyst layer and the cathode catalyst layer are composed of the catalyst layer g.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例8(実施例)]
例6において、固体高分子電解質膜として、特開2001−307752号の実施例1に開示されている方法で合成して得られる厚さ60μmの高分子電解質膜(スルホン化ポリエーテルスルホン、イオン交換容量:0.56ミリ当量/g乾燥樹脂)を用いる以外は例6と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。この触媒層中に含まれるHALSの含有量を表1に示す。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
[Example 8 (Example)]
In Example 6, as a solid polymer electrolyte membrane, a 60 μm thick polymer electrolyte membrane (sulfonated polyethersulfone, ion exchange) obtained by synthesis by the method disclosed in Example 1 of JP-A No. 2001-307752 A membrane / catalyst layer assembly having an electrode area of 25 cm 2 is prepared in the same manner as in Example 6 except that (volume: 0.56 meq / g dry resin) is used. Table 1 shows the content of HALS contained in the catalyst layer.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例9(比較例)]
例7と同様にして、触媒層gを作製する。次に、アノード触媒層、カソード触媒層ともに触媒層gにより構成する以外は例8と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
[Example 9 (comparative example)]
In the same manner as in Example 7, a catalyst layer g is prepared. Next, an operation is performed in the same manner as in Example 8 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer g, and a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例10(実施例)]
例6と同様にして、触媒1を7.5gとり、蒸留水67g、メタノール68gの混合溶媒に添加し、よく混合する。これにHALSとして、アデカスタブLA77を0.5gメタノールに溶解した溶液7.9gを添加し、この混合液をホモジナイザーを使用して、混合、分散させる。
[Example 10 (Example)]
In the same manner as in Example 6, 7.5 g of catalyst 1 is taken and added to a mixed solvent of 67 g of distilled water and 68 g of methanol and mixed well. To this, 7.9 g of a solution in which Adeka Stab LA77 is dissolved in 0.5 g of methanol is added as HALS, and this mixture is mixed and dispersed using a homogenizer.

次いで、この混合物に、CF=CF(CHCHCH)/CF=CF(CHCHSOH)共重合体(イオン交換容量:1.4ミリ当量/g乾燥樹脂、以下、共重合体Bという)を3g添加し、ホモジナイザーで混合、分散し触媒層形成用塗工液hを調製する。なお、上記共重合体は、特開2004−10744号の実施例1に開示されている方法で合成して得ることができ、4−ブロモ−1,1,2−トリフルオロブテン−1と1,1,2−トリフルオロペンテン−1とのフレオン溶液に、イソブテンを添加した後、Co−γ線照射を6時間行うことにより反応させて重合体を生成させ、さらに、亜硫酸ナトリウムを添加して反応させることにより−SOH基を導入して得られる。Then, this mixture was added to CF 2 ═CF (CH 2 CH 2 CH 3 ) / CF 2 ═CF (CH 2 CH 2 SO 3 H) copolymer (ion exchange capacity: 1.4 meq / g dry resin, Hereinafter, 3 g of copolymer B) is added and mixed and dispersed with a homogenizer to prepare a catalyst layer forming coating solution h. The copolymer can be obtained by synthesis by the method disclosed in Example 1 of JP-A No. 2004-10744, and 4-bromo-1,1,2-trifluorobutene-1 and 1 After adding isobutene to a freon solution with 1,2,2-trifluoropentene-1, a reaction is carried out by performing Co-γ irradiation for 6 hours to form a polymer, and sodium sulfite is added. It is obtained by introducing a —SO 3 H group by reaction.

次いで、例6において、塗工液fのかわりに塗工液hを用い、80℃の乾燥器内で30分乾燥させた以外は、例6と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層hを作製する。この触媒層中に含まれるHALSの含有量を表3に示す。次に、アノード触媒層、カソード触媒層ともに触媒層hにより構成する以外は例6と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。Next, in Example 6, the amount of platinum per unit area was 0 as in Example 6, except that the coating liquid h was used in place of the coating liquid f and the coating liquid h was dried in an oven at 80 ° C. for 30 minutes. A catalyst layer h of 5 mg / cm 2 is prepared. Table 3 shows the content of HALS contained in the catalyst layer. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 6 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer h.

次いで、固体高分子電解質膜として、特開2003−68327号の比較例2に開示されている方法で合成して得られる40μmの高分子電解質膜(スルホン化ポリイミド、イオン交換容量:1.21ミリ当量/g乾燥樹脂)を用いる以外は例6と同様にして操作行い、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
Subsequently, as a solid polymer electrolyte membrane, a 40 μm polymer electrolyte membrane (sulfonated polyimide, ion exchange capacity: 1.21 mm) obtained by synthesis by the method disclosed in Comparative Example 2 of JP-A-2003-68327. The membrane / catalyst layer assembly having an electrode area of 25 cm 2 is prepared in the same manner as in Example 6 except that equivalent weight / g dry resin) is used.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例11(比較例)]
例10において、HALSのメタノール溶液のかわりに、HALSを溶解しないメタノールを使用する以外は例10と同様にして操作を行い、触媒層形成用塗工液iを調製する。例10において、塗工液hのかわりに塗工液iを用い、例6と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層iを作製する。次に、アノード触媒層、カソード触媒層ともに触媒層iにより構成する以外は例6と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製することができる。この触媒層中に含まれるHALSの含有量を表3に示す。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
[Example 11 (comparative example)]
In Example 10, instead of the HALS methanol solution, the same operation as in Example 10 was performed except that methanol that did not dissolve HALS was used to prepare catalyst layer forming coating solution i. In Example 10, the coating liquid i is used in place of the coating liquid h, and a catalyst layer i having an amount of platinum per unit area of 0.5 mg / cm 2 is produced in the same manner as in Example 6. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 can be produced by performing the same operation as in Example 6 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer i. . Table 3 shows the content of HALS contained in the catalyst layer.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例12(実施例)]
例6において、HALSとしてアデカスタブLA57を0.41g及びメタノールを7.9g混合した溶液を用いる以外は例6と同様にして操作を行い、触媒層形成用塗工液jを調製する。塗工液fのかわりに塗工液jを用いる以外は、例6と同様にして操作を行い、単位面積あたりの白金の量が0.5mg/cmの触媒層jを作製する。この触媒層jを、例6と同様にして操作を行い、−SONa基を−SOH基に変換する。次に、アノード触媒層、カソード触媒層ともに触媒層jにより構成する以外は例6と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。この触媒層中に含まれるHALSの含有量を表3に示す。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
[Example 12 (Example)]
In Example 6, a catalyst layer-forming coating solution j is prepared in the same manner as in Example 6 except that a solution prepared by mixing 0.41 g of ADK STAB LA57 and 7.9 g of methanol is used as HALS. Except that the coating liquid j is used in place of the coating liquid f, an operation is performed in the same manner as in Example 6 to produce a catalyst layer j having an amount of platinum of 0.5 mg / cm 2 per unit area. This catalyst layer j is operated in the same manner as in Example 6 to convert —SO 3 Na groups into —SO 3 H groups. Next, an operation is performed in the same manner as in Example 6 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer j, and a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced. Table 3 shows the content of HALS contained in the catalyst layer.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例13(実施例)]
例6において、HALSとしてチマソーブ944を0.43g、メタノールを7.9g混合した溶液を用いる以外は例6と同様にして操作を行い、触媒層形成用塗工液kを調製する。塗工液fのかわりに塗工液kを用いる以外は、例6と同様にして操作を行い、単位面積あたりの白金の量が0.5mg/cmの触媒層kを作製する。この触媒層kを、例6と同様にして操作を行い、−SONa基を−SOH基に変換する。この触媒層中に含まれるHALSの含有量を表3に示す。次に、アノード触媒層、カソード触媒層ともに触媒層kにより構成する以外は例6と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表4に示す結果が得られる。
Example 13 (Example)
A catalyst layer forming coating solution k is prepared in the same manner as in Example 6 except that a solution prepared by mixing 0.43 g of chimasorb 944 and 7.9 g of methanol is used as HALS. Except that the coating liquid k is used in place of the coating liquid f, an operation is performed in the same manner as in Example 6 to produce a catalyst layer k having a platinum amount of 0.5 mg / cm 2 per unit area. This catalyst layer k is operated in the same manner as in Example 6 to convert —SO 3 Na groups into —SO 3 H groups. Table 3 shows the content of HALS contained in the catalyst layer. Next, an operation is performed in the same manner as in Example 6 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer k, and a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 4 were obtained. Is obtained.

[例14(実施例)]
触媒1を2g取り、これに、蒸留水11.6gに添加し、よく撹拌する。これに、トリ−n−オクチルアミン(分子量:353.67、塩基性を有する窒素原子の数:1、水に不溶)0.2gをエタノールに溶解して得た溶液7.9gを添加して、この混合液をホモジナイザーを使用して、混合、分散させる。これに共重合体Aをエタノールに分散させて固形分濃度10質量%の液8gとし、蒸留水3.3gを添加して、さらにホモジナイザーを使用して混合、分散して触媒層形成用塗工液lを調整する。
この塗工液lを、ポリプロピレン製の基材フィルムの上にバーコータで塗工し、80℃の乾燥器内で30分間乾燥させることにより、単位面積あたりの白金の量が0.5mg/cmの触媒層lを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。なお、触媒層lに含まれる単位面積あたりの白金の量は例1と同様に測定することにより算出することができる。
Example 14 (Example)
2 g of catalyst 1 is taken and added to 11.6 g of distilled water, and stirred well. To this was added 7.9 g of a solution obtained by dissolving 0.2 g of tri-n-octylamine (molecular weight: 353.67, number of basic nitrogen atoms: 1, insoluble in water) in ethanol. The mixed solution is mixed and dispersed using a homogenizer. Copolymer A is dispersed in ethanol to obtain 8 g of a liquid having a solid content of 10% by mass, 3.3 g of distilled water is added, and further mixed and dispersed using a homogenizer to form a coating for forming a catalyst layer. Adjust liquid l.
This coating liquid l is coated on a polypropylene base film with a bar coater and dried in an oven at 80 ° C. for 30 minutes, so that the amount of platinum per unit area is 0.5 mg / cm 2. The catalyst layer 1 is prepared. Table 5 shows the amine content contained in the catalyst layer. The amount of platinum per unit area contained in the catalyst layer 1 can be calculated by measuring in the same manner as in Example 1.

次に、アノード触媒層、カソード触媒層ともに触媒層lにより構成する以外は例1と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer are composed of the catalyst layer l.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例15(実施例)]
例14において、トリ−n−オクチルアミンのかわりにジイソブチルアミン(分子量:129.14、塩基性を有する窒素原子の数:1、水に対する溶解度<1)を0.1g用いる以外は例14と同様にして操作を行い、触媒層形成用塗工液mを調製する。塗工液lのかわりに塗工液mを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層mを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。次に、アノード触媒層、カソード触媒層ともに触媒層nにより構成する以外は例1と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
Example 15 (Example)
Example 14 is the same as Example 14 except that 0.1 g of diisobutylamine (molecular weight: 129.14, number of basic nitrogen atoms: 1, solubility in water <1) is used instead of tri-n-octylamine. The operation is carried out to prepare a catalyst layer forming coating solution m. Using the coating liquid m instead of the coating liquid l, a catalyst layer m having a platinum amount of 0.5 mg / cm 2 per unit area is prepared in the same manner as in Example 14. Table 5 shows the amine content contained in the catalyst layer. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer are composed of the catalyst layer n.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例16(実施例)]
例14において、トリ−n−オクチルアミンのかわりに2−エチルヘキシルアミン(分子量:129.24、塩基性を有する窒素原子の数:1、水に対する溶解度:0.16)を0.1g用いる以外は例14と同様にして操作を行い、触媒層形成用塗工液nを調製する。塗工液lのかわりに塗工液nを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層nを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。次に、アノード触媒層、カソード触媒層ともに触媒層nにより構成する以外は例1と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
Example 16 (Example)
In Example 14, 0.1 g of 2-ethylhexylamine (molecular weight: 129.24, number of basic nitrogen atoms: 1, solubility in water: 0.16) was used instead of tri-n-octylamine. The same operation as in Example 14 is carried out to prepare catalyst layer forming coating solution n. Using the coating liquid n instead of the coating liquid l, a catalyst layer n having a platinum amount of 0.5 mg / cm 2 per unit area is prepared in the same manner as in Example 14. Table 5 shows the amine content contained in the catalyst layer. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer are composed of the catalyst layer n.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例17(比較例)]
例14において、トリ−n−オクチルアミンのかわりにピペリジン(分子量:85.2、塩基性を有する窒素原子の数:1、水に対する溶解度:任意の割合で溶解)を0.05g用いる以外は例14と同様にして操作を行い、触媒層形成用塗工液oを調製する。塗工液lのかわりに塗工液oを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層oを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。次に、アノード触媒層、カソード触媒層ともに触媒層oにより構成する以外は例1と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
[Example 17 (comparative example)]
Example 14 except that 0.05 g of piperidine (molecular weight: 85.2, number of basic nitrogen atoms: 1, solubility in water: soluble at an arbitrary ratio) is used instead of tri-n-octylamine in Example 14. The same operation as in No. 14 is performed to prepare a catalyst layer forming coating solution o. Using the coating liquid o instead of the coating liquid l, a catalyst layer o having an amount of platinum of 0.5 mg / cm 2 per unit area is prepared in the same manner as in Example 14. Table 5 shows the amine content contained in the catalyst layer. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer are composed of the catalyst layer o.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例18(比較例)]
例14において、トリ−n−オクチルアミンのかわりにn−プロピルアミン(分子量:59.11、塩基性を有する窒素原子の数:1、水に対する溶解度:100)を0.05g用いる以外は例14と同様にして操作を行い、触媒層形成用塗工液pを調製する。塗工液lのかわりに塗工液pを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層pを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。次に、アノード触媒層、カソード触媒層ともに触媒層pにより構成する以外は例1と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
[Example 18 (comparative example)]
In Example 14, 0.05 g of n-propylamine (molecular weight: 59.11, number of basic nitrogen atoms: 1, solubility in water: 100) was used instead of tri-n-octylamine. In the same manner as described above, a catalyst layer forming coating solution p is prepared. Using the coating liquid p instead of the coating liquid l, a catalyst layer p having a platinum amount of 0.5 mg / cm 2 per unit area is prepared in the same manner as in Example 14. Table 5 shows the amine content contained in the catalyst layer. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is manufactured by performing the same operation as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer p.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例19(比較例)]
例14において、トリ−n−オクチルアミンのかわりにN,N−ジメチルアミノプロピルアミン(分子量:102.18、塩基性を有する窒素原子の数:2、溶解度:100)を0.1g用いる以外は例14と同様にして操作を行い、触媒層形成用塗工液qを調製する。塗工液lのかわりに塗工液qを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層qを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。次に、アノード触媒層、カソード触媒層ともに触媒層qにより構成する以外は例1と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
[Example 19 (comparative example)]
In Example 14, 0.1 g of N, N-dimethylaminopropylamine (molecular weight: 102.18, the number of basic nitrogen atoms: 2, solubility: 100) was used instead of tri-n-octylamine. The same operation as in Example 14 is performed to prepare a catalyst layer forming coating solution q. Using the coating liquid q instead of the coating liquid l, a catalyst layer q having an amount of platinum per unit area of 0.5 mg / cm 2 is prepared in the same manner as in Example 14. Table 5 shows the amine content contained in the catalyst layer. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 1 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer q.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例20(実施例)]
例14において、共重合体Aを使用するかわりに、スチレンスルホン酸ナトリウム0.55g、ジビニルベンゼン0.055g、アゾビスイソブチロニトリル0.0055gを混合して、触媒層形成用塗工液rを調整する。
[Example 20 (Example)]
In Example 14, instead of using the copolymer A, 0.55 g of sodium styrenesulfonate, 0.055 g of divinylbenzene, and 0.0055 g of azobisisobutyronitrile were mixed to form a coating solution r for forming a catalyst layer. Adjust.

例14において、塗工液lのかわりに塗工液rを用い、80℃の乾燥器内で8時間乾燥させること以外は同様に操作を行い、−SONa基を有するスチレン・ジビニルベンゼンイオン交換樹脂を含む、単位面積あたりの白金の量が0.5mg/cmの触媒層rを作製する。この触媒層rを水にて数回洗浄した後、0.5mmol/Lの硫酸水溶液に浸すことにより−SONa基を−SOH基に変換する。この触媒層中に含まれるアミンの含有量を表5に示す。In Example 14, the coating liquid r was used in place of the coating liquid l, and the same operation was performed except that the coating liquid r was dried in an oven at 80 ° C. for 8 hours. A styrene / divinylbenzene ion having a —SO 3 Na group was used. A catalyst layer r containing an exchange resin and containing 0.5 mg / cm 2 of platinum per unit area is prepared. The catalyst layer r is washed several times with water and then immersed in a 0.5 mmol / L sulfuric acid aqueous solution to convert —SO 3 Na groups into —SO 3 H groups. Table 5 shows the amine content contained in the catalyst layer.

次に、固体高分子電解質膜として、特開2002−334702号の実施例1に開示されている方法で合成して得られる厚さ50μmの高分子電解質膜(ポリスチレンスルホン酸グラフト−ポリ(エチレン・テトラフルオロエチレン)を用いる以外は例1と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
Next, as a solid polymer electrolyte membrane, a 50 μm-thick polymer electrolyte membrane (polystyrene sulfonic acid graft-poly (ethylene · ethylene) synthesized by the method disclosed in Example 1 of JP-A-2002-334702 is used. A membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced in the same manner as in Example 1 except that (tetrafluoroethylene) is used.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例21(比較例)]
例20において、トリ−n−オクチルアミンのエタノール溶液のかわりに、トリ−n−オクチルアミンを溶解しないエタノールを使用する以外は例20と同様にして操作を行い、触媒層形成用塗工液sを調製する。塗工液rのかわりに塗工液sを用い、例20と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層sを作製する。この触媒層sを、例20と同様にして操作を行い、−SONa基を−SOH基に変換する。次に、アノード触媒層、カソード触媒層ともに触媒層sにより構成する以外は例20と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
[Example 21 (comparative example)]
In Example 20, instead of the ethanol solution of tri-n-octylamine, the same procedure as in Example 20 was used except that ethanol that did not dissolve tri-n-octylamine was used. To prepare. Using the coating liquid s instead of the coating liquid r, a catalyst layer s having a platinum amount of 0.5 mg / cm 2 per unit area is prepared in the same manner as in Example 20. This catalyst layer s is operated in the same manner as in Example 20 to convert —SO 3 Na groups into —SO 3 H groups. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 20 except that both the anode catalyst layer and the cathode catalyst layer are composed of the catalyst layer s.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例22(実施例)]
例14において、共重合体Aを使用するかわりに、共重合体B0.8g及びエタノール7.2gを添加して、触媒層形成用塗工液tを調整する。
[Example 22 (Example)]
In Example 14, instead of using the copolymer A, 0.8 g of the copolymer B and 7.2 g of ethanol are added to prepare a coating liquid t for forming a catalyst layer.

次に、例14において、塗工液lのかわりに塗工液tを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層tを作製する。この触媒層中に含まれるアミンの含有量を表5に示す。次に、アノード触媒層、カソード触媒層ともに触媒層tにより構成し、固体高分子電解質膜として、特開2003−68327号の例2に開示されている方法で合成して得られる40μmの高分子電解質膜(スルホン化ポリイミド)を用いる以外は例1と同様にして操作を行い、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
Next, in Example 14, the coating liquid t is used in place of the coating liquid l, and a catalyst layer t having an amount of platinum of 0.5 mg / cm 2 per unit area is produced in the same manner as in Example 14. Table 5 shows the amine content contained in the catalyst layer. Next, the anode catalyst layer and the cathode catalyst layer are both constituted by the catalyst layer t, and a 40 μm polymer obtained by synthesizing by the method disclosed in Example 2 of JP-A-2003-68327 is used as the solid polymer electrolyte membrane. A membrane / catalyst layer assembly having an electrode area of 25 cm 2 is prepared in the same manner as in Example 1 except that the electrolyte membrane (sulfonated polyimide) is used.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

[例23(比較例)]
例22において、トリ−n−オクチルアミンのエタノール溶液のかわりに、トリ−n−オクチルアミンを溶解しないエタノールを使用する以外は例22と同様にして操作を行い、触媒層形成用塗工液uを調整する。例22において、塗工液tのかわりに塗工液uを用い、例14と同様にして単位面積あたりの白金の量が0.5mg/cmの触媒層uを作製する。次に、アノード触媒層、カソード触媒層ともに触媒層uにより構成する以外は例22と同様にして操作を行うことにより、電極面積が25cmである膜・触媒層接合体を作製する。
この膜・触媒層接合体を用いて例1と同様に膜・電極接合体を作製し、例1と同様にして、運転初期のセル電圧の測定及び耐久性評価を行うと表6に示す結果が得られる。
[Example 23 (comparative example)]
In Example 22, the same operation as in Example 22 was carried out except that ethanol that did not dissolve tri-n-octylamine was used in place of the ethanol solution of tri-n-octylamine. Adjust. In Example 22, the coating liquid u is used in place of the coating liquid t, and a catalyst layer u having a platinum amount of 0.5 mg / cm 2 per unit area is produced in the same manner as in Example 14. Next, a membrane / catalyst layer assembly having an electrode area of 25 cm 2 is produced by performing the same operation as in Example 22 except that both the anode catalyst layer and the cathode catalyst layer are constituted by the catalyst layer u.
Using this membrane / catalyst layer assembly, a membrane / electrode assembly was prepared in the same manner as in Example 1. When the cell voltage was measured and the durability was evaluated in the initial operation in the same manner as in Example 1, the results shown in Table 6 were obtained. Is obtained.

Figure 2005041330
Figure 2005041330

Figure 2005041330
Figure 2005041330

Figure 2005041330
Figure 2005041330

Figure 2005041330
Figure 2005041330

Figure 2005041330
Figure 2005041330

Figure 2005041330
Figure 2005041330

本発明によれば、触媒層にアミンが含まれることにより、過酸化水素や過酸化物ラジカルが生成しにくくなるため、得られる膜・電極接合体を組み込んだ燃料電池は、長期間発電しても性能劣化が少なくなる。そのため、長期間の発電を行っても安定した固体高分子型燃料電池用膜・電極接合体を提供できる。  According to the present invention, since an amine is contained in the catalyst layer, hydrogen peroxide and peroxide radicals are less likely to be generated. Therefore, the fuel cell incorporating the obtained membrane-electrode assembly is capable of generating power for a long period of time. Also reduces performance degradation. Therefore, it is possible to provide a membrane / electrode assembly for a polymer electrolyte fuel cell that is stable even when power is generated for a long time.

Claims (10)

触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体であって、前記アノードの触媒層及び前記カソードの触媒層の少なくとも一方には、20℃で水に対する溶解度が3以下のアミンが含まれ、当該アミンの触媒粉末に対する含有量(W×N)/M×1000が0.03〜1である(ただし、Wは前記アミンの触媒粉末1gあたりの含有量(g)、Mは前記アミンの分子量、Nは前記アミン1分子中における塩基性を有する窒素原子の数である。)ことを特徴とする固体高分子型燃料電池用膜・電極接合体。An anode and a cathode having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon support and an ion exchange resin; an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode; And at least one of the catalyst layer of the anode and the catalyst layer of the cathode contains an amine having a solubility in water of 3 or less at 20 ° C. Content (W × N) / M × 1000 of the amine with respect to the catalyst powder is 0.03 to 1 (W is the content (g) of the amine per 1 g of the catalyst powder, and M is the molecular weight of the amine) , N is the number of basic nitrogen atoms in one molecule of the amine.) A membrane / electrode assembly for a polymer electrolyte fuel cell, wherein: 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体であって、前記アノードの触媒層及び前記カソードの触媒層の少なくとも一方には、20℃で水に対する溶解度が3以下のアミンが含まれ、当該アミンの触媒粉末に対する含有量が質量比で0.3〜30%であることを特徴とする固体高分子型燃料電池用膜・電極接合体。An anode and a cathode having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon support and an ion exchange resin; an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode; And at least one of the catalyst layer of the anode and the catalyst layer of the cathode contains an amine having a solubility in water of 3 or less at 20 ° C. A membrane / electrode assembly for a polymer electrolyte fuel cell, wherein the content of the amine with respect to the catalyst powder is 0.3 to 30% by mass. 前記アミンが、式1で表わされる基(ただし、Xは水素原子又はメチル基を表す。)を有するHALSである請求項1又は2に記載の固体高分子型燃料電池用膜・電極接合体。
Figure 2005041330
The membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1 or 2, wherein the amine is HALS having a group represented by Formula 1 (where X represents a hydrogen atom or a methyl group).
Figure 2005041330
前記アミンが、2−エチルヘキシルアミン、3−(2−エチルヘキシルオキシ)プロピルアミン、ジイソブチルアミン、ジ−n−オクチルアミン、トリ−n−オクチルアミン、トリアリルアミン、ジ−2−エチルヘキシルアミン及び3−(ジブチルアミノ)プロピルアミンからなる群より選ばれる1種以上である請求項1又は2に記載の固体高分子型燃料電池用膜・電極接合体。The amine is 2-ethylhexylamine, 3- (2-ethylhexyloxy) propylamine, diisobutylamine, di-n-octylamine, tri-n-octylamine, triallylamine, di-2-ethylhexylamine and 3- ( The membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1 or 2, which is at least one selected from the group consisting of dibutylamino) propylamine. 前記触媒粉末中の、触媒金属とカーボン担体の質量比(触媒金属:カーボン担体)が2:8〜7:3であり、かつ前記カーボン担体が、カーボンブラック、活性炭、カーボンナノチューブ及びカーボンナノホーンからなる群から選ばれる1種以上である請求項1〜4のいずれかに記載の固体高分子型燃料電池用膜・電極接合体。The mass ratio of the catalyst metal to the carbon support (catalyst metal: carbon support) in the catalyst powder is 2: 8 to 7: 3, and the carbon support is composed of carbon black, activated carbon, carbon nanotubes, and carbon nanohorns. The membrane / electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 4, which is at least one selected from the group. 前記イオン交換樹脂が、CF=CF−(OCFCFX)−O−(CF−SOHで表されるパーフルオロビニル化合物(mは0〜3の整数を示し、nは1〜12の整数を示し、pは0又は1を示し、Xはフッ素原子又はトリフルオロメチル基を示す。)に基づく繰り返し単位と、テトラフルオロエチレンに基づく繰り返し単位とを含む共重合体である請求項1〜5のいずれかに記載の固体高分子型燃料電池用膜・電極接合体。The ion exchange resin, CF 2 = CF- (OCF 2 CFX) m -O p - (CF 2) a perfluorovinyl compound represented by n -SO 3 H (m is an integer of 0 to 3, n Represents an integer of 1 to 12, p represents 0 or 1, and X represents a fluorine atom or a trifluoromethyl group.) And a copolymer comprising a repeating unit based on tetrafluoroethylene. A membrane / electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 5. 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体の製造方法であって、前記触媒粉末と前記イオン交換樹脂と20℃で水に対する溶解度が3以下のアミンとを含み、かつ、当該アミンの前記触媒粉末に対する含有量(W×N)/M×1000が0.03〜1である(ただし、Wは前記アミンの触媒粉末1gあたりの含有量(g)、Mは前記アミンの分子量、Nは前記アミン1分子中における塩基性を有する窒素原子の数である。)塗工液を調製し、該塗工液を基材上に塗工することにより触媒層を形成し、得られた触媒層をアノード及びカソードの触媒層の少なくとも一方とすることを特徴とする固体高分子型燃料電池用膜・電極接合体の製造方法。An anode and a cathode having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon support and an ion exchange resin; an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode; A membrane / electrode assembly for a polymer electrolyte fuel cell comprising the catalyst powder, the ion exchange resin, and an amine having a solubility in water of 3 or less at 20 ° C., and Content (W × N) / M × 1000 with respect to the catalyst powder is 0.03 to 1 (W is content (g) per 1 g of catalyst powder of the amine, M is molecular weight of the amine, N Is the number of basic nitrogen atoms in one amine molecule.) A catalyst layer was formed by preparing a coating solution and coating the coating solution on a substrate. Layer anode and cathode A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, comprising at least one of the catalyst layers. 触媒金属粒子がカーボン担体に担持された触媒粉末とイオン交換樹脂とを含む触媒層を有するアノード及びカソードと、該アノードの触媒層と該カソードの触媒層との間に配置されるイオン交換膜とを有する固体高分子型燃料電池用膜・電極接合体の製造方法であって、前記触媒粉末と前記イオン交換樹脂と20℃で水に対する溶解度が3以下のアミンとを含み、かつ、当該アミンの前記触媒粉末に対する含有量が質量比で0.3〜30%である塗工液を調製し、該塗工液を基材上に塗工することにより触媒層を形成し、得られた触媒層をアノード及びカソードの触媒層の少なくとも一方とすることを特徴とする固体高分子型燃料電池用膜・電極接合体の製造方法。An anode and a cathode having a catalyst layer containing a catalyst powder in which catalytic metal particles are supported on a carbon support and an ion exchange resin; an ion exchange membrane disposed between the catalyst layer of the anode and the catalyst layer of the cathode; A membrane / electrode assembly for a polymer electrolyte fuel cell comprising the catalyst powder, the ion exchange resin, and an amine having a solubility in water of 3 or less at 20 ° C., and A catalyst layer is formed by preparing a coating liquid having a content by mass ratio of 0.3 to 30% with respect to the catalyst powder, and coating the coating liquid on a substrate. A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell, wherein at least one of a catalyst layer of an anode and a cathode is used. 前記アミンが、式1で表わされる基(ただし、Xは水素原子又はメチル基を表す。)を有するHALSである請求項7又は8に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。
Figure 2005041330
The membrane-electrode assembly for a polymer electrolyte fuel cell according to claim 7 or 8, wherein the amine is HALS having a group represented by Formula 1 (where X represents a hydrogen atom or a methyl group). Production method.
Figure 2005041330
前記アミンが、2−エチルヘキシルアミン、3−(2−エチルヘキシルオキシ)プロピルアミン、ジイソブチルアミン、ジ−n−オクチルアミン、トリ−n−オクチルアミン、トリアリルアミン、ジ−2−エチルヘキシルアミン及び3−(ジブチルアミノ)プロピルアミンからなる群より選ばれる1種以上である請求項7又は8に記載の固体高分子型燃料電池用膜・電極接合体の製造方法。The amine is 2-ethylhexylamine, 3- (2-ethylhexyloxy) propylamine, diisobutylamine, di-n-octylamine, tri-n-octylamine, triallylamine, di-2-ethylhexylamine and 3- ( 9. The method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 7 or 8, which is at least one selected from the group consisting of dibutylamino) propylamine.
JP2005514960A 2003-10-24 2004-10-20 Membrane / electrode assembly for polymer electrolyte fuel cell and method for producing the same Withdrawn JPWO2005041330A1 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2003364352 2003-10-24
JP2003364352 2003-10-24
JP2004076310 2004-03-17
JP2004076309 2004-03-17
JP2004076309 2004-03-17
JP2004076310 2004-03-17
PCT/JP2004/015528 WO2005041330A1 (en) 2003-10-24 2004-10-20 Membrane electrode assembly for solid polymer fuel cell and method for producing same

Publications (1)

Publication Number Publication Date
JPWO2005041330A1 true JPWO2005041330A1 (en) 2007-11-29

Family

ID=34527593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005514960A Withdrawn JPWO2005041330A1 (en) 2003-10-24 2004-10-20 Membrane / electrode assembly for polymer electrolyte fuel cell and method for producing the same

Country Status (2)

Country Link
JP (1) JPWO2005041330A1 (en)
WO (1) WO2005041330A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE484081T1 (en) 2004-06-22 2010-10-15 Asahi Glass Co Ltd ELECTROLYTE MEMBRANE FOR A SOLID POLYMER FUEL CELL, PRODUCTION METHOD THEREOF, AND MEMBRANE ELECTRODE ASSEMBLY FOR A SOLID POLYMER FUEL CELL
US7943249B2 (en) 2004-06-22 2011-05-17 Asahi Glass Company, Limited Liquid composition, process for its production and process for producing membrane-electrode assembly for polymer electrolyte fuel cells
JP6358680B2 (en) * 2014-09-01 2018-07-18 国立大学法人 東京大学 Conductive hybrid materials containing covalent organic structures

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003059494A (en) * 2001-08-09 2003-02-28 Asahi Glass Co Ltd Method for operating solid polymer fuel cell and fuel cell system
JP2003077479A (en) * 2001-09-04 2003-03-14 Matsushita Electric Ind Co Ltd Polymer electrolyte type fuel cell and its manufacturing method
JP2003086187A (en) * 2001-09-14 2003-03-20 Matsushita Electric Ind Co Ltd Polymer electrolyte fuel cell
JP2003197218A (en) * 2001-12-27 2003-07-11 Asahi Glass Co Ltd Manufacturing method of film electrode junction for solid high polymer fuel cell

Also Published As

Publication number Publication date
WO2005041330A1 (en) 2005-05-06

Similar Documents

Publication Publication Date Title
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4808123B2 (en) Membrane-electrode assembly for fuel cell and manufacturing method thereof
JP2007012616A (en) Polyelectrolyte membrane for fuel cell, membrane - electrode assembly for fuel cell including the membrane and fuel cell system including the assembly
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
JP4946026B2 (en) Method for producing electrolyte membrane for polymer electrolyte fuel cell and method for producing membrane electrode assembly for polymer electrolyte fuel cell
JP2007200762A (en) Membrane electrode assembly for solid polymer fuel cell, and manufacturing method therefor
JP2007109599A (en) Film electrode assembly for solid polymer fuel cell
JPH0888007A (en) Solid polymer fuel cell and its electrode
JP2008521168A (en) Preconditioning of fuel cell membrane electrode assembly
Song et al. Investigation of direct methanol fuel cell performance of sulfonated polyimide membrane
JP2006318755A (en) Film-electrode assembly for solid polymer fuel cell
JP4823583B2 (en) Polymer membrane / electrode assembly for fuel cell and fuel cell including the same
JP2007287663A (en) Direct oxidation type fuel cell and its manufacturing method
JP2004178814A (en) Method of manufacturing membrane/electrode assembly for solid polymer fuel cell
JP4682629B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and membrane / electrode assembly for polymer electrolyte fuel cell
JP5614891B2 (en) Membrane electrode composite and solid polymer electrolyte fuel cell
JPWO2005041330A1 (en) Membrane / electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP2006059756A (en) Solid polyelectrolyte film and polymer electrolyte fuel cell using the same, and their manufacturing method
JP2006221970A (en) Operation method of direct methanol fuel cell
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP2003272637A (en) Electrode junction body for solid polymer fuel cell
KR102188833B1 (en) Membrane electrode assembly, manufacturing method of membrane electrode assembly and fuel cell
JP4499022B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR FUEL CELL AND FUEL CELL SYSTEM INCLUDING THE SAME
JP2004247155A (en) Solid polymer electrolyte membrane and membrane electrode assembly for solid polymer fuel cell
JP2004349180A (en) Membrane electrode assembly

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20110531