JPWO2004076972A1 - 水位計測システム - Google Patents

水位計測システム Download PDF

Info

Publication number
JPWO2004076972A1
JPWO2004076972A1 JP2004564080A JP2004564080A JPWO2004076972A1 JP WO2004076972 A1 JPWO2004076972 A1 JP WO2004076972A1 JP 2004564080 A JP2004564080 A JP 2004564080A JP 2004564080 A JP2004564080 A JP 2004564080A JP WO2004076972 A1 JPWO2004076972 A1 JP WO2004076972A1
Authority
JP
Japan
Prior art keywords
water level
water surface
water
level measurement
rectangular parallelepiped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004564080A
Other languages
English (en)
Inventor
公元 水野
公元 水野
克之 亀井
克之 亀井
宮田 亮
宮田  亮
満治 酒井
満治 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2004076972A1 publication Critical patent/JPWO2004076972A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • G01F23/2928Light, e.g. infrared or ultraviolet for discrete levels using light reflected on the material surface
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

設置が容易でしかも安価な水位計測システムを提供し、既設監視システムにも容易に水位計測機能を追加可能とする。堤防側(固定位置)に既知寸法の基準構造物(基準直方体、基準正方形、基準ポール)を設置し、堤防近傍の水面に関連した既知寸度(浮遊する基準ポール、基準正方形、基準直方体、または堤防端面と水面との境界線部、または水面に照射されたレーザ光、または堤防端面に敷設された透明管内部の浮き、または既設の量水標)とともに撮像する。取得された画像データに対して演算処理を施し、基準構造物および既知寸度の3次元の位置関係を求めることにより、水面の水位を計測する。

Description

この発明は、画像処理技術を応用した水位計測システムに関し、特に水位計測対象物(たとえば、ダム、河川、海、湖など)の水面近傍に監視カメラを設置して、収得されたデジタル画像を演算処理することにより、水位計測対象物の水位を計測するシステムに関するものである。
以下、図45〜図49を参照しながら、水位計測対象物(ダム、河川、海、湖などの水面)の近傍に設置される従来の水位計測システムについて説明する。
まず、一例として、図45を参照しながら、従来のフロート式による水位計測システムについて説明する。
図45は従来のフロート式による水位計測システムを示す説明図であり、たとえば河川の水面6を水位計測対象物とした場合を示している。
図45において、河川に近接した陸地209には、水位計測システムを構成する水位計棟201が設置されている。
水位計棟201は、河川と同一水位を有する観測井戸205と、回転角度検出器(エンコーダなど)を有する滑車200と、観測井戸205内で浮遊するフロート202と、滑車200を介してフロート202を吊すロープ203と、ロープ203の他端に吊されてロープ203のたるみを除去するカウンタウェイト204とを備えている。
観測井戸205は、河川の水面6と一致した水位を常に保持するために、横導水管206および導水口207を介して水位計測対象物に連通されている。
また、水位計測結果の信頼性を確認するために、河川に近接した陸地209の固定側(護岸堤防など)には、河川の水位を含む位置に垂直式の量水標208が複数配設されている。
図45の従来システムを設置する場合、まず、河川に近接した陸地209に観測井戸205を掘り、観測井戸205と河川との間を横導水管206および導水口207で連通する。
また、河川(水面6)の水位を計測する場合には、観測井戸205内にフロート202を浮かべるとともに、ロープ203およびカウンタウェイト204を用いて、回転角度検出器(図示せず)を含む滑車200を回転させ、フロート202の位置を滑車200に設けられた回転角度検出器により計測する。
このように、従来のフロート式水位計測システムにおいては、フロート202の計測位置を河川の水位として計測する。
このとき、たとえば洪水発生などで横導水管206の先端部の導水口207が砂利などで詰まっていると、観測井戸205内の水位と実際の河川の水位とが一致しなくなる。
したがって、砂利などが横導水管206の導水口207に詰まらないように管理するとともに、量水標208のチェックに基づいて導水管206の連通状態を定期的に確認している。
すなわち、河川の岸部には、観測井戸205のみならず複数の量水標208が設置されており、量水標208の目盛で確認した水位と、観測井戸205で計測された水位とを定期的に比較して、両者が一致するか否かにより、フロート202を用いた計測値が正しいか否かを確認している。
次に、図46〜図49を参照しながら、画像処理技術を応用した従来の水位計測システムについて説明する。
図46はたとえば特開平3−170029号公報に記載された従来の水位計測システムおよびカメラ画像を示す説明図である。
図46において、観測井戸205の上方には、一般的なビデオカメラからなる水位監視カメラ210が設けられている。
水位監視カメラ210は、観測井戸205内において、たとえば、距離h1の深さに位置する高水位211と、距離h2(>h1)の深さに位置する低水位212とを、それぞれ、被写体角度φの範囲213で撮像する。
したがって、水位監視カメラ210で撮像される画像枠214内には、高水位211に対応した直径r1の画像215と、低水位212に対応した直径r2(<r1)の画像216とが得られる。
この場合、滑車200およびフロート202(図45参照)を用いることなく、観測井戸205内の水面を水位監視カメラ210で観測し、カメラ画像215または216により、直接水位が計測される。
図46に示した従来システムにおいて、カメラ画像枠214内に撮影された水面の画像と、実際の観測井戸205内の壁面および水面との間には、所定の関数関係が存在し、高水位211の場合の画像215は、大きい直径r1の円として得られ、低水位212に下がった場合の画像216は、小さい直径r2の円として得られる。
したがって、カメラ画像枠214内の同心円の輪郭を抽出し、直径r1、r2と各水位211、212(距離h1、h2)との間の関数関係を利用して、比較的簡単な演算処理で水位を計測することができる。
一方、図47はたとえば特開平8−145765号公報に記載された従来の水位計測するシステムを示す説明図であり、図48はたとえば特開2000−329522号公報に記載された従来の水位計測するシステムを示す説明図である。
図47において、量水標11の近傍には、傾斜板217が並列配置されており、傾斜板217には、複数の傾斜模様218が連続的に設けられている。
この場合、ITVカメラ210Aは、河川の近傍から、量水標11および傾斜板217を同時に撮像している。
したがって、画像処理部(図示せず)においては、量水標11および傾斜板217の画像を組合せて読み取り、カメラ画像から水面上の量水標11を抽出し、河川の水面6の上部の画像と、量水標11の目盛および数字を読み取ることにより、水位を計測することができる。
また、図48においては、簡略化のためにITVカメラ210Aの図示が省略されており、傾斜板217の傾斜模様218が水面位置で屈折して曲がって見える部分218A、218Bが示されている。
この場合、河川の水面6の透明度、濁り、静水および流水などの各種条件、日光の反射条件などに関する対策を考慮し、傾斜模様218の曲がって見える部分218A、218Bを利用して水面を検出することにより、量水標11の目盛を観測して水位を計測することができる。
図49はたとえば特開平7−77451号公報に記載された従来の水位計測システムによる画像処理原理を示す説明図である。
図49においては、左右に離れて配置された2台のITVカメラ210L、210Rにより、各水位(高、中、低)に対応した水面上の波6A1、6A2、6A3が直接観測される。
この場合、ITVカメラ210L、210Rによって観測される2つの画像は、水位が高い場合には219、220となり、水位が中くらいの場合には219A、220Aとなり、水位が低い場合には219B、220Bとなる。
また、各水位における波6A1、6A2、6A3などの特徴点は、相関関数を計算することにより検出される。すなわち、各画像内において、水位が高い場合の波6A1の特徴点は、6A1L、6A1Rとして、水位が中くらいの場合の波6A2の特徴点は、6A2L、6A2Rとして、水位が低い場合の波6A3の特徴点は、6A3L、6A3Rとして、ぞれぞれ、検出される。
以下、各画像中の水平位置と、2台のカメラ210L、210Rの水平角とが、ほぼ比例することを利用し、水位を計測することができる。
しかし、図45〜図49に示した従来の水位計測システムにおいては、以下のような問題点がある。
まず、図45および図46の水位計測システムにおいては、観測井戸および横導水管などが必要であり、これらが敷設されていない場所では水位計測が困難である。また、観測井戸および横導水管を新たに敷設しようとすると、工事費が高価になるうえ、専用カメラも必要になる。
また、図47および図48のように、量水標および傾斜板をITVカメラで観測する水位計測システムにおいては、量水標および傾斜板を敷設する必要があり、以下の問題(a)〜(c)が生じる。
(a)工事期間が、乾季の水位の低い場合に限られる。
(b)図45のように、堤防などの傾斜がゆるやかな場合には、複数の量水標および傾斜板が必要になる。
(c)カメラ位置を固定する必要がある。
さらに、図49の水位計測システムにおいては、水面および光線に関する各種条件の違い、すなわち、水面の透明度、濁り、静水、流水などの違い、水面への日光照射期間(日の出および日没時などの時間)や季節などの違いに起因して、水面が反射したり影になったりするので、水面上の特徴点を正確に把握することが困難である。さらに、固定したITVカメラが2台必要となるので、設備費も高価になる。
この発明の目的は、新たな設備を設けることなく、一般的な監視カメラを利用して、設置が容易で安価で且つ簡単な基準構造物を撮像し、パーソナルコンピュータおよび専用画像処理ソフトウェアを追加することのみで、立体的な基準構造物の3次元変換座標を計測基準とすることにより、水位計測対象物(ダム、河川、湖、海岸など)の水位を高い信頼性で計測可能な水位計測システムを提供することにある。
上記目的を達成するために、この発明においては、既設の水位監視カメラを利用して、水位計測対象物の近傍の固定側(堤防の近傍など)に設けられた基準寸法を有する基準構造物(たとえば、既知寸法のビルなど)と、水面に浮遊した基準浮遊物(または、堤防端面と水面との境界線など)とから得られた2次元画像データを、ソフトウェア演算で3次元画像データに変換することにより、水位を計測する。
また、この発明においては、水位計測対象物の近傍の固定側・(堤防近傍など)に設けられた基準構造物を仮設基準構造物とする。
また、この発明においては、水位計測時の画像座標を固定するために、水位監視カメラの旋回角度位置または基準構造物の座標位置を記憶する。
この発明によれば、特別な工事をともなう高価な専用設備の追加が不要となるうえ、画像取得用の専用の水位監視カメラの位置を固定する必要もなく、既設の旋回式の水位監視カメラを利用して、安価で簡単な基準構造物と、安価なパソコンおよび専用ソフトウェアとを追加することのみで、水位計測対象物の水位を計測監視することが可能となる。
図1はこの発明の実施の形態1による水位計測原理を要部斜視図とともに示す説明図である。
図2はこの発明の実施の形態1による基本構成をカメラ撮像座標とともに示す説明図である。
図3はこの発明の実施の形態1による座標変換原理をカメラ撮像座標とともに示す説明図であり、基準直方体の画像(2次元座標)から実際の3次元座標への変換原理を示している。
図4はこの発明の実施の形態1による座標変換原理をカメラ撮像座標とともに示す説明図であり、ポールを含む画像(2次元座標)から実際の3次元座標への変換時の各座標位置を示している。
図5はこの発明の実施の形態1における水位変化時の計測原理を要部斜視図とともに示す説明図である。
図6はこの発明の実施の形態1による水位計測原理を要部側面図とともに示す説明図である。
図7はこの発明の実施の形態1による演算処理を示すフローチャートである。
図8はこの発明の実施の形態1による制御部を示すブロック構成図である。
図9はこの発明の実施の形態2による水位計測原理を要部斜視図とともに示す説明図である。
図10はこの発明の実施の形態2による水位計測用の浮遊物の2次元(YZ面)回転時における水位計測原理を要部斜視図とともに示す説明図である。
図11はこの発明の実施の形態3による水位計測原理を要部斜視図とともに示す説明図である。
図12はこの発明の実施の形態3による水位計測用の浮遊物の3次元回転時における水位計測原理をカメラ撮像座標とともに示す説明図である。
図13はこの発明の実施の形態4による水位計測原理を要部斜視図とともに示す説明図である。
図14はこの発明の実施の形態5による水位計測原理を要部斜視図とともに示す説明図である。
図15はこの発明の実施の形態6による過去に記憶した基準直方体の座標を用いた水位計測原理をカメラ撮像座標とともに示す説明図である。
図16はこの発明の実施の形態6による演算処理(図17の処理と関連して用いられる)を示すフローチャートであり、固定側(堤防近傍など)に設けられた基準直方体から基準座標を演算する処理を示している。
図17はこの発明の実施の形態6による水位計測処理(図16の処理と関連して用いられる)を示すフローチャートであり、固定側(堤防近傍など)に設けられた基準直方体から記憶された基準座標を利用した処理を示している。
図18は夜間に計測できるようにしたこの発明の実施の形態7による水位計測原理を要部斜視図とともに示す説明図であり、固定位置(堤防上など)に配置された基準構造物と、計測用の水面浮遊物の所定の頂点にランプ照明を点灯した状態を示している。
図19は夜間に照明を水面のみに照射するようにしたこの発明の実施の形態8による水位計測原理を要部斜視図とともに示す説明図である。
図20はこの発明の実施の形態9による水位計測原理をカメラ撮像座標とともに示す説明図であり、フェンスによる浮遊物の浮遊範囲を示している。
図21はこの発明の実施の形態9による水位計測原理をカメラ撮像座標とともに示す説明図であり、堤防端面にロープなどにより繋留された浮遊物の浮遊範囲を示している。
図22はこの発明の実施の形態9による水位計測原理をカメラ撮像座標とともに示す説明図であり、錨やロープなどにより繋留された浮遊物の浮遊範囲を示している。
図23はこの発明の実施の形態9による水位計測原理を要部斜視図とともに示す説明図であり、堤防側のアーム、返し車、釣り合い錘により繋留された水面上の浮遊物を示している。
図24はこの発明の実施の形態9による異常判定処理を示すフローチャートであり、計算結果が所定値内か否かにより異常を判定する場合を示している。
図25はこの発明の実施の形態10による水位計測原理をカメラ撮像座標とともに示す説明図である。
図26はこの発明の実施の形態10による水位計測原理をカメラ撮像座標とともに示す説明図であり、水面と堤防との境界線分が完全に抽出できない場合の原理を示している。
図27はこの発明の実施の形態10による水位計測原理をカメラ撮像座標とともに示す説明図であり、図25とは堤防形状が異なる(段付形状の)場合の原理を示している。
図28はこの発明の実施の形態10による水位計測原理をカメラ撮像座標とともに示す説明図であり、図25とは堤防形状が異なる(斜面形状の)場合の原理を示している。
図29はこの発明の実施の形態10による変換行列の演算処理手順部分(図30の処理に連続して用いられる)を示すフローチャートである。
図30はこの発明の実施の形態10による線分認識処理手順部分(図29の処理から連続して用いられる)を示すフローチャートである。
図31はこの発明の実施の形態11による水位計測原理をカメラ撮像座標とともに示す説明図である。
図32はこの発明の実施の形態12による水位計測原理をカメラ撮像座標とともに示す説明図である。
図33はこの発明の実施の形態13による水位計測原理をカメラ撮像座標とともに示す説明図である。
図34はこの発明の実施の形態13による水位計測原理を要部斜視図とともに示す説明図である。
図35はこの発明の実施の形態14による水位計測原理をカメラ撮像座標とともに示す説明図である。
図36はこの発明の実施の形態15による水位計測原理をカメラ撮像座標とともに示す説明図である。
図37はこの発明の実施の形態16による水位計測原理をカメラ撮像座標とともに示す説明図である。
図38はこの発明の実施の形態17による水位計測原理をカメラ撮像座標とともに示す説明図であり、錨やロープなどにより繋留された浮遊物の浮遊範囲内に木材などの異物が混入した場合の原理を示している。
図39はこの発明の実施の形態19による水位計測原理を示す説明図であり、利用される旋回式監視カメラの上下(Tilt)および左右(Pan)の旋回角を示している。
図40はこの発明の実施の形態19による水位計測原理をカメラ撮像座標とともに示す説明図であり、旋回式監視カメラを計測位置角度に固定する場合の原理を示している。
図41はこの発明の実施の形態19による制御ブロックを示す構成図であり、旋回式監視カメラを計測位置角度に固定する場合の構成を示している。
図42はこの発明の実施の形態19による処理手順を示すフローチャートであり、旋回式監視カメラを計測位置角度に固定するために各軸の取り付けられた位置センサ(エンコーダなど)を利用する場合の処理を示している。
図43はこの発明の実施の形態19による処理手順を示すフローチャートであり、旋回式監視カメラを計測角度に固定するために記憶画像を利用した場合の処理を示している。
図44はこの発明の実施の形態20による処理手順を示すフローチャートであり、固定側または浮遊側の基準構造物の形状が認識できない場合の処理を示している。
図45は従来の水位計測システムによる計測原理を側面図とともに示す説明図であり、観測井戸中のフロートを用いた場合の原理を示している。
図46は従来の水位計測システムによる計測原理を要部側面図とともに示す説明図であり、ITVカメラで撮影した観測井戸中の水面画像を用いた場合の原理を示している。
図47は従来の水位計測システムによる計測原理を要部側面図とともに示す説明図であり、ITVカメラで撮影した量水標および傾斜板の画像を用いた場合の原理を示している。
図48は従来の水位計測システムによる計測原理を要部側面図とともに示す説明図であり、ITVカメラで撮影した量水標および傾斜板の画像を用いた場合の詳細原理を示しる。
図49は従来の水位計測システムによる計測原理を要部側面図とともに示す説明図であり、2台のITVカメラで水面を撮影した場合の原理を示している。
以下、図1〜図6を参照しながら、この発明の実施の形態1の構成例および原理について説明図する。
図1はこの発明の実施の形態1による基本構成例を斜視図とともに示す説明図である。
図1においては、煩雑さを回避するために、水位監視カメラ(後述する)の図示が省略されている。
基準寸法La、Lb、Lcを有する基準直方体1(たとえば、ビルなど)は、堤防5などの地上4側の固定位置の近傍に設置されている。なお、基準直方体1は、La=Lb=Lcを満たす基準立方体であってもよいが、ここでは、直方体のうちの特殊形状に立方体が含まれるものと見なして、以下、代表的に基準直方体1と総称する。
一方、堤防近傍の水面6(水位計測対象物側)に浮かんでいる浮遊物3(浮き、または、ブイなど)の上には、基準寸法Lnの長さを有する基準ポール2が水面6に対して垂直になるように取り付けられている。
なお、基準直方体1の底面(O、F、G、E)は、水面6に対して平行な位置関係を満たしているものとする。
また、基準直方体1の各頂点間の辺の長さは、以下の3つの式を満たす関係にある。
OA=BE=DF=CG=La
OF=AD=BC=EG=Lb
OE=AB=CD=FG=Lc
図1に示す基準直方体1において、各辺を実3次元(X,Y,Z)座標に変換すると、辺OAはX軸、辺OEはZ軸、辺OFはY軸となる。
このとき、浮遊物3上に立設された長さLnの基準ポール2と、基準直方体1との3次元距離関係は、X軸距離OX1(=Lx)、Y軸距離X1Y1(=Ly)、Z軸距離Y1O1(=Lz)で表すものとする。
また、図1において、堤防5上の点Q1と浮遊物3上の点Q2との間を結ぶロープ7(または、鎖)は、浮遊物3が流れていかないように浮遊物3を繋留しており、少なくとも、水面6の最大水位から最小水位までの変化に耐えられる所定長を有している。
堤防5側の基準直方体1(基準構造物)の底面および上面は、水面6と平行な座標面に対して平行であり、基準直方体1は、水面6(座標面)に対して垂直方向の既知寸法を有する。
また、後述するように、カメラ8には、PC(パソコン)が接続されており、PCは、カメラ8により取得された画像データを記憶する記憶手段と、画像データに含まれる基準直方体1(既知寸度)および基準ポール2(基準線分)の2次元座標(基準直方体を基準として得られる)を3次元座標に変換する演算処理手段とを含み、得られた3次元座標に基づいて基準ポール2の3次元の座標位置を求めることにより、水面6の水位を計測する。
図2はこの発明の実施の形態1による基本構成をカメラ撮像座標とともに示す説明図である。
図2においては、堤防5などの固定位置に設けられた基準直方体1と、水面6に浮かんだ基準寸法Lnの基準ポール2とを、デジタル式の1台の水位監視カメラ8(たとえばITVカメラからなり、以下、単に「カメラ8」ともいう)で同時に撮影した場合に、基準画像において得られる2次元座標(u,v)と、実3次元座標(X,Y,Z)との関係が示されている。
図2において、u、v座標値は、カメラ画像の2次元座標を示している。
周知のように、デジタルカメラの2次元座標は、画素数によって決定し、u軸1024分解、v軸1024分解とすると、総画素数は約百万画素となる。
図2においては、カメラ8で収得した2次元座標上において、基準直方体1の点Oの座標を(u2,v8)とし、基準ポール2と関係する点X1の座標を(u2,v9)とし、点Z1の座標を(u5,v12)としている。
また、水面6側の基準ポール2の下部O1の座標を(u6,v11)とし、基準ポール2の上部T1の座標を(u6,v10)としている。
つまり、図2に示す画像上において、基準ポール2の上部T1から下部O1までのv軸方向の長さ(v10−v11)は、実3次元座標上での長さLnとなる。
図3はこの発明の実施の形態1による座標変換原理をカメラ撮像座標とともに示す説明図であり、基準直方体1の画像(2次元座標)から実際の3次元座標への変換原理を示している。
図3において、基準直方体1の各頂点O、A、B、C、D、E、F、Gの画像の2次元座標と実3次元座標とを対比させると、以下のように、各頂点の2次元画像座標(左側)と3次元実座標(右側)とを、それぞれ、並列に表記することができる。
O(u2,v8)(0,0,0)
A(u2,v4)(La,0,0)
B(u1,v2)(La,0,Lc)
C(u3,v1)(La,Lb,Lc)
D(u4,v3)(La,Lb,0)
E(u1,v6)(0,0,Lc)
F(u4,v7)(0,Lb,0)
G(u3,v5)(0,Lb,Lc) 図4はこの発明の実施の形態1による座標変換原理をカメラ撮像座標とともに示す説明図であり、基準直方体1および浮遊物上の基準ポール2を含む画像(2次元座標)から実際の3次元座標への変換時の各座標位置を示している。
図4においては、上記各頂点座標に加えて、基準ポール2との関係を示す各点X1、Z1、O1、T1に対しても、以下のように、2次元座標(左側)と、実3次元座標(右側)とを対比させて、それぞれ、並列に表記することができる。
X1(u2,v9)(Lx,0,0)
Z1(u5,v12)(Lx,0,Lz)
O1(u6,v11)(Lx,Ly,Lz)
T1(u6,v10)(Lx+Ln,Ly,Lz)
なお、各点X1、Z1、O1、T1の表記座標において、各記号には、±符号が含まれる。
図5はこの発明の実施の形態1における水位変化時の計測原理を要部斜視図とともに示す説明図である。
図5において、水面6側で基準寸法Lnを有する基準ポール2は、浮遊物3に立設されているので、繋留用のロープ7(または、鎖)の長さの範囲内で、水位の変化または水流などにより、たとえば、基準ポール2Aおよび浮遊物3Aで示す位置に自由に移動することができる。
このとき、基準ポール2の位置から基準ポール2Aの位置への移動にともない、堤防5側(固定位置)に設けられた基準直方体1の頂点Oからの3次元距離Lx、Ly、Lzは、移動後の3次元距離Lx1、Ly1、Lz1に変化する。また、移動後の基準ポール2Aの各頂点はO2、T2に変化するものとする。
図6はこの発明の実施の形態1による水位計測原理を要部側面図とともに示す説明図であり、水面6の実際の水位Hdと、堤防5(固定位置)に設けられた基準直方体1の底面から浮遊物3(基準ポール2の点O1)までの距離Lxとの関係を示している。
図6において、基準直方体1の底面から水底までの垂直距離Hoは一定である。
また、基準ポール2の点O1から実水面位置までの垂直距離H2は、浮遊物3上の重量が一定であるため、通常は一定となる。
したがって、実水位Hdは、以下の式(1)により表される。
Hd=Ho−H2−Lx ・・・(1)
式(1)を用いて、所定時間毎に、堤防5側に設けられた基準直方体1と、水面6側の基準ポール2(または、基準ポール2A)との3次元位置関係を求め、水位Hdを計算する。
次に、La、Lb、Lc、Lnから、未知の寸法Lx、Ly、Lzを算出する方法の一例について、公知文献「3次元ビジョン」(徐剛および辻三郎、共立出版、1998年)を参考として説明する。
未知の寸法Lx、Ly、Lzの算出手順の要旨は、以下の(1a)〜(1d)で表される。
(1a)3次元座標系から画像座標系への変換を、3×4の変換行列Pで表す。
(1b)直方体の頂点(6点以上)の座標と、各頂点の画像上での座標を得る。
(1c)各頂点の対応関係から、変換行列Pを求める。
(1d)変換行列Pと基準寸法Lの画像上の座標とにより、基準ポール2の下部O1の3次元座標(L,L,L)を算出する。
[準備]
次に、上記算出手順(1a)〜(1d)について、具体的に説明する。
まず、座標系を設定する。
3次元座標系で、直方体の1頂点を原点として、辺をX、Y、Z軸にとると、8個の頂点の座標は、それぞれ、(0,0,0)、(L,0,0)、(0,L,0)、(0,0,L)、(0,L,L)、(L,0,L)、(0,L,L)、(L,L,L)となる。
上記頂点座標のうち、カメラ8から見えているn個の頂点座標を(X,Y,Z)と表す(i=1、2,..,n)。
また、画像座標系で、写真画像上にu軸、v軸をとり、このとき、見えているi個めの頂点は、(u,v)に写るとする。
(1a)まず、3次元座標系から画像座標系への変換は、以下の式(2)のように、変換行列Pで表現することができる。
Figure 2004076972
なお、式(2)において、α、αは、焦点距離に画像のスケールファクタを乗じたものであり、θは画像座標系のu、v軸のなす角(通常は90度)、(u,v)は画像中心(以上、カメラの内部パラメータ)、Rは3次元の回転を表す3×3の行列、tは平行移動を表す3次元の縦ベクトルである。以上は、外部パラメータである。また、sはスカラである。
(1b)続いて、直方体のi個めの頂点の変換は、以下の式(3)のようになる。
Figure 2004076972
(1c)また、変換行列Pを決定する。式(2)を展開してsを消去すれば、以下の式(4)となる。
Figure 2004076972
n個の頂点についてまとめると、以下の式(5)となる。
Figure 2004076972
このとき、変換行列Pの成分からなるベクトルpは、BBの最小の固有値に対応する固有ベクトルとして求められる。
さらに、||(p31,p32,p33)||で各要素を除し、スケールを調整して変換行列Pとする。以降、変換行列Pは既知となる。
(1d)最後に、(L,L,L)を算出する。このとき、既知寸法の3次元座標を(L,L,L)、(L+L,L,L)とし、これらの画像上の座標を(u,v)、(u,v)とすると、変換行列Pにより、以下の式(6)となる。
Figure 2004076972
式(6)を展開してs、sを消去し、さらに、(L,L,L)について整理すると、以下の式(7)が得られる。
Figure 2004076972
以下、式(7)を解いて、(L,L,L)を得る。
次に、図7のフローチャートを参照しながら、この発明の実施の形態1による上記計算処理について具体的に説明する。
図7において、各処理ステップ103〜106の機能は、上記算出手順(1a)〜(1c)に相当し、各処理ステップ107〜109の機能は、上記算出手順(1d)に相当する。
まず、スタート処理(ステップ100)においては、この処理プログラムの起動信号に応答して、通常のコンピュータに内蔵されたタイマ機能などの割込処理により、所定時間毎の起動が実行される。
続いて、ステップ101において、カメラ8による撮像画像を読み込み、基準直方体1とともに、水面6側の浮遊物3に対して垂直に立設された基準ポール2の画像を収得する。
以下、画像上での各座標を抽出し(ステップ102)、収得した画像に対して種々の演算処理(ステップ103〜106)を施すことにより、基準直方体1の各辺(La,Lb,Lc)の線分と、基準ポール2の線分長さLnとを抽出する。
ここで利用される抽出方法については、公知の既刊参考書に記載された画像処理を適用することができるうえ、この発明に直接関連しないので、詳述を省略する。
なお、一般的な抽出方法としては、たとえば、カラー画像を収得し、フィルタにより濃淡画像に変換し、濃淡画像から濃度値のu軸、v軸方向の1次微分(または、2次微分)によってエッジを強調させる方法、勾配ベクトルを用いて勾配ベクトルの大きさおよび方向の各値を抽出する方法、ハフ(Hough)変換により線分長さLnを抽出する方法、ならびに、パターンマッチング法などが利用される。これにより、線分長さLnが2値線分化されて抽出される。
これらの線分抽出処理においては、基準直方体1の各辺や水面6側の基準ポール2に対して、塗色を施して周囲画像と比較して濃淡の明確な色に設定するか、または、反射板を貼り付けることにより、各線分の抽出を容易にすることができる。
次に、線分抽出後に、水面6側の基準ポール2の線分長さLnが抽出できているか否か(Lnの有無)を判定し(ステップ107)、カメラ画像上に線分長さLnが存在している(すなわち、YES)と判定された場合のみ、ステップ108に進む。
ステップ108においては、線分長さLnの端点の画像座標を読み取る。
続いて、変換行列Pと線分長さLnの座標とから、3次元座標距離(Lx,Ly,Lz)を計算し(ステップ109)、線分寸法Lxを用いた前述の式(1)から実水位Hdを計算して(ステップ109A)、図7の処理を完了する(ステップ112)。
一方、ステップ107において、基準ポール2を検出することができず、線分長さLnが無い(すなわち、NO)と判定された場合には、計測用の浮きが異常であると見なし(ステップ110)、警報ブザー52(図8参照)を駆動して(ステップ111)、図7の処理を異常完了する(ステップ113)。
警報ブザー52の駆動により、オペレータは、異常発生への対処が促され、水面6側の基準ポール2が流失したり転倒したりしていないかを確認して、適宜の判断処理を行うことができる。
図8はこの発明の実施の形態1によるハードウェア具体例を示すブロック構成図である。
図8において、ITVカメラ8は、前述と同様に、堤防5側の固定位置に設置された基準寸法を有する基準直方体1と、水面6に浮遊する基準ポール2とを同時に確認できる位置および角度にセットされている。
カメラ8の近傍には、画像信号処理部71と、O−E変換部およびE−O変換部72とを備えたカメラ制御装置55が設置されている。
カメラ8で撮像された画像は、カメラ制御装置55内の画像信号処理部71により画像信号として収得され、O−E変換部およびE−O変換部72を通して、光ケーブル73に光信号として送出される。
光ケーブル73に送出された光信号(画像信号)は、O−E変換部およびE−O変換部68と、画像表示制御部69と、モニタ70とを備えたカメラ画像表示装置54に入力される。
カメラ画像表示装置54は、カメラ画像を常時モニタして目視による監視を行うための装置であり、通常、カメラ8の設置場所から離れた事務所側に配置されている。
カメラ画像表示装置54内のO−E変換部およびE−O変換部68は、光ケーブル73の光信号を電気信号に変換したり、または、電気信号を光信号に逆変換したりする。また、モニタ70は、画像表示制御部69の制御下でカメラ画像を表示する。
また、カメラ8からの画像信号は、カメラ画像表示装置54を介して、カメラ制御・水位演算PC(パソコン)53に入力される。
カメラ制御・水位演算PC53は、PC用出力端末となるモニタ57と、PC用入力端末となるキーボード58およびマウス59と、マイコン本体となるCPU60と、演算用メモリとなるRAM61と、記憶装置となるHD(ハードディスク)62と、外部機器に接続されたI/O63と、画像信号が入力される画像I/Fメモリ64と、キーボード58およびマウス59に接続された各機器IF65と、モニタ57に接続されたモニタ制御部66とを備えている。
I/O63には、外部機器となる水位表示器51および警報ブザー52が接続されている。
画像信号は、カメラ制御・水位演算PC53内の画像I/Fメモリ64を通してCPU60に入力され、前述(図7)のフローチャートによる各線分寸法Lx、Ly、Lzおよび水位Hdの計算に寄与する。
CPU60により算出された水位Hdは、I/O63を通して水位表示器51に表示される。また、異常モードが発生した場合には、I/O63を通して警報ブザー52が駆動される。
このように、カメラ8から収得されたデジタル画像のデータを、カメラ制御・水位演算PC53内で演算処理し、基準直方体1の3次元座標位置を計測基準とすることにより、水位計測対象物(ダム、河川、湖、海岸など)の水位を、設置が容易で且つ安価な一般的なカメラ8を用いて計測することができる。
また、既設の河川監視システムにおいても、容易に水位計測機能を追加することができる。
なお、ここでは、カメラ8側のカメラ制御装置55と、事務所側のカメラ画像表示装置54との間の通信を、光ケーブル73を通して行うようにしたが、PHSなどの公衆回線、または、業務用無線などを用いてもよい。
また、異常時に警報ブザー52のみを駆動するシステムとしたが、公衆回線などを用いて担当者などに連絡することもできる。
また、堤防5側の固定位置に設置された基準直方体1(または、立方体)の底面が、水面6に対して平行に設置されているものとして水位Hdを計算したが、水面6に対する底面の傾斜角および傾斜方向などがあらかじめ明確に分かっていれば、補正を加えて水位Hdを計算することもできる。
すなわち、カメラ8から収得した画像を、既知の傾斜角および傾斜方向を相殺するように逆補正回転させることにより、水面6に対する平行座標に修正した後の水位を計算することができる。このことは、後述する他の実施の形態においても同様である。
実施の形態2.
なお、上記実施の形態1では、水位Hdを計算するために、基準直方体1に関連した基準寸法Lnの基準ポール2を用いたが、基準ポール2の代わりに、一辺がLnの基準正方形の図形を用いてもよい。
以下、図9および図10を参照しながら、基準ポール2の代わりに基準正方形を用いたこの発明の実施の形態2の構成例および原理について説明する。
図9はこの発明の実施の形態2による水位計測原理を要部斜視図とともに示す説明図であり、図10はこの発明の実施の形態2による水位計測用の浮遊物(正方形)3Bの2次元回転時における水位計測原理を要部斜視図とともに示す説明図である。
図9および図10において、前述(図1参照)と同様のものについては、前述と同一符号を付して詳述を省略する。また、図9、図10に示されない構成については、前述と同様であるものとする。
図9、図10において、水面6側の浮遊物3B(浮きやブイなど)上には、前述(図1参照)の基準ポール2に代えて、一辺がLn(=O1J=JK=KL=LO1)の基準正方形の図形が形成されている。
ここでは、図示されないが、カメラ8(図2参照)は、基準直方体1の画像と同時に、浮遊物3B上の基準正方形の画像を収得できるように配置されている。
図9内の浮遊物(正方形)3Bと前述(図1内)の浮遊物3との違いは、以下の通りである。
すなわち、浮遊物3(図1)の場合、水面6に対して垂直な基準ポール2は、回転しても基準直方体1のX軸に対して基本的に平行状態を維持するのに対し、浮遊物3B(図9)の場合には、基準正方形の各辺(O1J、JKなど)は、YZ面(水平面)方向に回転すると、基準直方体1のY軸やZ軸に対して必ずしも平行状態を維持することができなくなる。
しかし、図9内の浮遊物3Bの場合、基準直方体1の各面ABCD、OEGFに対する浮遊物3B上の基準正方形の面O1JKLの平行状態は、回転によらず維持される。
図10は水面6側で浮遊物3Bが角度θだけ回転した状態を示し、基準正方形(O1,J,K,L)の図形を有する浮遊物3Bが、角度θだけ回転することにより、浮遊物3Cの状態になった様子を示している。
この場合、基準正方形の少なくとも3頂点は、カメラ8(図2、図8参照)により画像信号として検出され、3頂点の座標から基準正方形の2辺が画像座標上で確立される必要がある。
このときの計算処理は、基準正方形(O1,J,K,L)の画像から、基準直方体1の水平面(Y−Z軸平面)に平行な平面上にある3頂点(O1,J,K,Lのうちの3頂点)の3次元座標を求めること以外は、前述の実施の形態1と同様である。
したがって、この場合も、前述の実施の形態1と同様の作用効果を奏する。
上記説明において、一辺の長さ(=Ln)が既知の基準正方形を用いたが、二辺が既知の基準長方形を用いてもよい。
実施の形態3.
なお、上記実施の形態1では、水位Hdを計算するために、基準寸法Lnの基準ポール2を用いたが、基準ポール2の代わりに、一辺がLnの基準立方体(または、基準直方体)を用いてもよい。
以下、図11および図12を参照しながら、基準ポール2の代わりに基準立方体を用いたこの発明の実施の形態3の構成例および原理について説明する。
図11はこの発明の実施の形態3による水位計測原理を要部斜視図とともに示す説明図であり、図12はこの発明の実施の形態3による水位計測用浮遊物の3次元回転時における水位計測原理をカメラ撮像座標とともに示す説明図である。
この場合、浮遊物3上には、一辺の長さがLnの基準立方体1Aが載置されており、基準立方体1Aの画像は、カメラ8(図2、図8参照)により収得できるようになっている。
ここで、基準立方体1Aの各一辺はLnであり、各頂点をO1、A1、B1、C1、D1、E1、F1、G1とすると、各頂点間の辺の長さは、以下の3つの式を満たす関係にある。
A1B1=B1C1=C1D1=D1A1=Ln
O1E1=E1G1=G1F1=F1O1=Ln
A1O1=B1E1=C1G1=D1F1=Ln
なお、浮遊物3上の基準立方体1Aは、当然ながら基準直方体であってもよいが、ここでは、固定側の基準直方体1と区別し易いように、代表的に基準立方体1Aで総称して説明する。
図11においては、堤防5側に設置された基準直方体1と、水面6側の基準立方体1Aとにより、収得画像上に2組の3次元座標が得られるので、水面6側の基準立方体1Aが波や風などによって大きく傾いた場合でも、基準立方体1Aの少なくとも6頂点(および線分)を認識することにより、誤差のない水位Hdを計測することができる。
図12においては、水面上の基準立方体1Aが傾斜して、基準立方体1Bの状態に変化した場合が示されている。
基準立方体1Bは、X軸傾斜角度α、Y軸傾斜角度β、Z軸傾斜角度γで、傾いているものとする。
この場合、基準直方体1から得られる座標軸と傾斜後の基準立方体1Bから得られる座標軸とから、各軸の回転角度α、β、γを求め、水面上の基準立方体1Bの画像を回転角度α、β、γだけ逆補正回転させて、基準直方体1の座標系に変換し、前述と同様の要領で各線分寸法Lx、Ly、Lzを求め、水位Hdを計算する。
また、浮遊物3上の基準立方体1Aは、水面6上の波などによって傾斜したとしても、傾斜角度が一義的に算出可能なので、容易に補正して正確に校正することができる。
また、水面上の基準立方体1A(または、1B)は、各辺の長さが既知であるならば、直方体であっても同等の効果を有する。
実施の形態4.
なお、上記実施の形態1(図1参照)では、堤防5側(固定位置)に基準直方体1を設置し、水面6側の浮遊物3上に基準ポール2を立設したが、基準直方体1と基準ポール2との関係を逆に設定して、堤防5側に基準ポールを立設し、水面6側の浮遊物3上に基準立方体を取り付けてもよい。
図13は堤防5側と水面6側との基準構造物(基準直方体、基準ポール)の関係を逆に設定したこの発明の実施の形態4による水位計測原理を要部斜視図とともに示す説明図である。
図13においては、前述(図1)の堤防5側の基準直方体1と水面6側の基準ポール2との関係が逆に設定されており、堤防5側の固定位置O1には基準ポール2Bが立設され、水面6側の浮遊物3上には、基準立方体1Aが取り付けられている。
基準ポール2Bは、水面6に対して垂直な長さLnを有している。
図13の構成からなるシステムによれば、前述の実施の形態1と同様の計算方法を用いて水位Hdを計算することができる。
この場合も、水面6側の基準立方体1Aは、各辺の寸法が既知の基準直方体であってもよい。
実施の形態5.
なお、上記実施の形態2(図9、図10参照)では、堤防5側(固定位置)に基準直方体1を設置し、水面6側の浮遊物3上に基準正方形を形成したが、基準直方体1と基準正方形との関係を逆に設定して、堤防5側に基準正方形を形成し、水面6側の浮遊物3上に基準立方体を取り付けてもよい。
図14は堤防5側と水面6側との基準構造物(基準直方体、基準正方形)の関係を逆に設定したこの発明の実施の形態5による水位計測原理を要部斜視図とともに示す説明図である。
図14においては、前述(図9、図10)の堤防5側の基準直方体1と、水面6側の基準正方形(浮遊物3B)との関係が逆に設定されている。
すなわち、堤防5側の固定位置O1には、基準正方形3Dが設置されており、基準正方形3Dは、一辺の長さLn(=O1E1=E1G1=G1F1=F1O1)を有し、基準正方形3Dの平面は、水面6に対して平行に形成されている。
また、水面6上の浮遊物3上には、基準立方体1Aが取り付けられている。
図14において、水面6上の基準立方体1AのZ軸は、堤防5側の基準正方形3DのZ軸に対して、角度θ1だけ回転している。
図14の構成によれば、前述(図9、図10参照)の実施の形態2と同様の計算方法により、水位Hdを計算することができる。
この場合も、水面6上の基準立方体1Aは、各辺の寸法が既知の基準直方体であってもよい。
また、固定位置O1に一辺の長さ(=Ln)が既知の基準正方形3Dを配設したが、二辺が既知の基準長方形を配設してもよい。
実施の形態6.
なお、上記実施の形態1では、堤防5側(固定位置)に基準直方体1を設置したが、仮設基準構造物(仮設ダンボール箱など)を一時的に仮配置して、仮設ダンボール箱の画像が取得されて記憶された後に、仮設ダンボール箱を排除してもよい。
図15は固定側の基準直方体として仮設ダンボール箱1Cを用いたこの発明の実施の形態6による説明図であり、撮像後に排除された仮設ダンボール箱1Cの位置を破線で示している。すなわち、図15においては、過去に記憶した仮設ダンボール箱(基準直方体)1Cの座標を用いた水位計測原理をカメラ撮像座標とともに示している。
なお、制御演算システムの基本的な構成は、前述の図8に示した通りである。
図15において、まず、前述(図1〜図6参照)の基準直方体1に近似した仮設ダンボール箱1Cを仮設置し、たとえばシステム電源投入時に、所定のカメラ位置で仮設ダンボール箱1Cの画像を一度収得する。
また、カメラ制御・水位演算PC53(図8参照)においては、仮設ダンボール箱(基準直方体)1Cを、所定座標上に記憶する。たとえば、図15に示すように、仮設ダンボール箱1Cの点O(基準点)を画像座標(u2,v8)に記憶する。
その後、仮設ダンボール箱1Cを取り除き、初期の記憶画像の座標を用いて水位を計算する。
このときの算出原理は、仮設ダンボール箱(基準直方体)1Cの座標位置と、水面6上の基準ポール2を撮像する画像収得用のカメラ位置とが固定されていれば、仮設ダンボール箱1Cの座標位置により計算された基準ポール2の画像の3次元座標および基準寸法は固定されることを利用している。
図16および図17はこの発明の実施の形態6によるPC53(パソコン)上の処理手順を示すフローチャートであり、図16は堤防5(固定側)に設けられた基準直方体を仮設ダンボール箱1Cとした場合の演算処理を示し、図17は仮設ダンボール箱1Cを用いた場合の警報判定処理を示している。
なお、図16および図17の基本的な処理内容は、前述の実施の形態1のフローチャート(図7)を分解したものであり、前述と同様の処理ステップには、同一符号が付されている。
すなわち、図16の処理フローは、仮設ダンボール箱1Cの画像を収得して座標変換用の変換行列Pを求め、変換行列Pを一旦記憶する初期記憶処理に対応する。また、図17の処理フローは、記憶した変換行列Pと水面6上の基準ポール2の画像座標とを用いて、水位Hdを計算する水位計測処理に対応する。
また、図16の処理は、基準直方体などの撮像可能時間帯(たとえば、昼間の所定時間)のシステム起動時に、または所定時間に1度起動され、図17の処理は、前述の図7と同様に、所定時間毎のタイマ割込処理によって起動される。
図16において、まず、計測用のカメラ画像を読み込み(ステップ101)、仮設ダンボール箱1C(基準直方体)の基準線分の寸法La、Lb、Lcの抽出により、各基準頂点の画像上での座標を抽出する(ステップ102A)。
以下、前述と同様に変換行列Pを求め(ステップ103〜106)、その後、変換行列Pの値をパソコン内の記憶装置に記憶して(ステップ114)、図16の処理を完了する(ステップ112)。
また、図17においては、カメラ画像を読み込み(ステップ101)、水面6上の基準寸法Lnからなる基準ポール2の線分抽出により、基準頂点O1、T1の画像上での各座標(u6,v11)、(u6,v10)を抽出する(ステップ102B)。
以下、前述と同様に、画像上に基準寸法Ln(基準ポール2)が存在するか否かを判定し(ステップ107)、存在する(すなわち、YES)と判定されれば、基準寸法Lnの画像上の座標を読み取る(ステップ108)。
続いて、変換行列Pの記憶値を読み出し(ステップ109B)、前述と同様に、3次元距離Lx、Ly、Lzを計算し(ステップ109)、実水位Hdを計算して(ステップ109A)、図17の処理を完了する(ステップ112)。
一方、ステップ107において、基準ポール2の基準寸法Lnが存在しない(すなわち、NO)とは判定されれば、警報ブザーを駆動して異常完了する(ステップ110〜113)。
このように、電源投入時に撮像された仮設ダンボール箱1Cを撤去しても、基準直方体としての画像上の座標記憶値を用いて、正確に水位Hdを算出することができる。
なお、ここでは、変換行列Pを収得後に仮設ダンボール箱1Cを撤去していることから、処理内容を図16および図17に分離したが、前述の実施の形態1によるフローチャート(図7)においても、水位計算時の演算時間の短縮を目的として、同様に処理内容を分離してもよい。この場合、水位計算時において、固定側の基準直方体1の座標位置として初期の記憶値が用いられる。
また、詳述を省略するが、前述(図11〜図14)の実施の形態3〜5による配置例(堤防5側に配置された基準直方体1、基準ポール2B、基準正方形3D)においても、同様に水位計算時に初期に記憶された座標値を利用することができる。また、このときのハードウェアは、いずれの場合も、前述の図8をそのまま利用することができる。
実施の形態7.
なお、上記実施の形態1〜6では、夜間の水位計測について特に言及しなかったが、夜間でも水位の収得を可能にするために、固定側および浮遊側に配設される各基準点(各頂点)に発光ダイオードなどの発光物体を配置してもよい。
図18は基準点に発光物体を配置したこの発明の実施の形態7による水位計測原理を要部斜視図とともに示す説明図である。
図18においては、夜間に水位を収得する場合を考慮して、堤防5上に配置された基準構造物1L(基準直方体1など)と、水面6上の浮遊物3に立設された基準寸法Lnの計測対象物2L(基準ポール2など)との各所定頂点(基準点)に、ランプ照明や発光ダイオードなどの発光体76、77を点灯させた状態を示している。
図18のように発光体76、77を設けることにより、夜間においても各頂点をカメラ8で撮像することができ、基準寸法La、Lb、Lc、Lnを有する各辺は、カメラ制御装置55を含むパソコン上で認識することができる。
図18において、発光体76、77は、発光ダイオードに限らず、近傍に大容量の給電設備があれば、通常の照明であってもよく、また、カメラ8側から照明などにより照らすことができれば、蛍光物質や光反射板であってもよい。
また、水面6上においてロープで浮遊範囲が制限された基準ポール2の頂点に設けられる発光体77としては、通常のランプや発光ダイオードなどを容易に適用することができ、発光体77への給電は、浮遊物3上に取り付けられたバッテリなどにより容易に行うことができる。
また、夜間(または、悪天候)などの条件によって周囲が暗くなり、各構造物の画像が収得できない状態で、ランプ切れなどの発光体76、77の異常が発生した場合も、パソコンのソフトウエア上で容易に異常検出を行うことができ、たとえば警報ブザー52(図8参照)の駆動により異常通報することができる。
また、降雪地方における雪対策として、堤防5側に設置された基準直方体1、水面6上で規準寸法Lnを有する浮遊物3、または、堤防5の端面のマーカ標識などに、発熱線(ニクロム線など)を通すことにより、雪を溶かして規準線分の抽出を容易にすることもできる。
実施の形態8.
なお、上記実施の形態7では、各基準点に発光体76、77を設けたが、固定側の基準点として記憶値を用いることを考慮すれば、夜間においては、浮遊側の基準点のみに照明を当てることにより、水位Hdを計測できるように構成してもよい。
図19は浮遊側の基準点のみに照明を当てるように構成したこの発明の実施の形態8による水位計測原理を要部斜視図とともに示す説明図であり、夜間または悪天候などの条件によって周囲が暗い場合を示している。
図19において、カメラ8側に設置された照明ランプ75は、カメラ制御装置55内の照明電源部74により駆動され、堤防5側に配置された基準直方体1を照らさずに、水面6上の浮遊物3上の基準ポール2のみを照らしている。
この場合、夜間の水位計測時においては、浮遊物3上の基準ポール2の画像のみが収得可能となっている。
なお、この発明の実施の形態8によるハードウェア構成は、前述(図8参照)と同様であり、PC部の処理手順は、図16および図17のフローチャートにより容易に実現することができる。
また、前述の実施の形態7の場合と同様に、基準ポール2の画像が収得できない異常状態(ランプ切れなど)も、パソコン上のソフトウエアで容易に検出することができ、警報ブザー52で通報することができる。
実施の形態9.
なお、上記実施の形態1〜8では、浮遊物の流失防止について詳細に考慮しなかったが、浮遊物の流失防止対策を具体的に施してもよい。
図20〜図23は、浮遊物3の流失防止対策を具体的に施したこの発明の実施の形態9による水位計測原理をカメラ撮像座標とともに示す説明図である。
図20は、フェンスによる浮遊物3の浮遊範囲を示しており、図21は、堤防5の端面にロープ7などにより繋留された浮遊物3の浮遊範囲を示しており、図22は、錨(または、ロープなど)により繋留された浮遊物3の浮遊範囲を示している。
また、図23は、堤防5側のアーム85と、アーム85に取り付けられた返し車82と、ロープ83と、釣り合い錘84とにより繋留された浮遊物3Bを示している。
図24はこの発明の実施の形態9による異常判定処理を示すフローチャートであり、計算結果が所定値内か否かにより異常を判定する処理を示している。
この場合、水位計測時において、水面6側の浮遊物3上の基準ポール2、浮遊物3B上の基準正方形、浮遊物3上の基準立方体1Aは、堤防5側に配置された基準直方体1(または、基準ポール2B、基準正方形3D)と一緒に、カメラ8により画像収得できるように、且つ、水面6上で移動して流失しないように構成されている。
まず、図20において、基準ポール2を有する浮遊物3は、フェンス(オイルフェンスなどと同様の浮遊構造物)により、頂点A1、B1、C1、D1(または、E1、G1、F1、H1)で限定された一点鎖線の範囲内で包囲されている。このとき、浮遊物3の上記移動範囲は、カメラ8の撮像範囲内に制限されている。
なお、フェンスは、図示されていないが、浮きやブイ、または、錨などで構成されている。
図20において、Y軸およびZ軸(水平)方向の正常浮遊範囲は、水位が最大の場合には、四角形A1、B1、C1、D1で示す範囲となり、水位が最小の場合には、四角形H1、E1、G1、F1で示す範囲となる。
また、X軸(垂直)方向の正常浮遊範囲は、水位変化が最大になる範囲(最大水位−最小水位)として、以下のように表される。
A1H1=B1E1=C1G1=D1F1
すなわち、計算した基準線分の3次元距離Lx、Ly、Lzの各端点X1、Z1、O1は、上記範囲(図20内の一点鎖線参照)内に存在することになり、この範囲以外の値は、システムとして異常と判定される。
また、図21において、水面上の浮遊物3は、長さRのロープ(または、鎖)7により、堤防5の端面の点Q1に繋留されており、堤防5の端面線分で示す水位面(M1−N1)を含む半径Rの水面上範囲内で移動する。
すなわち、水平面(Y軸およびZ軸)に関する移動範囲は、水面6の水位がロープ7の堤防5側の繋留点Q1の垂直位置と一致する場合に最大となり、繋留点Q1を中心としたロープ長さRの半円内となる。
この場合も、浮遊物3(基準ポール2)の移動範囲は、カメラ8の撮像範囲内に制限されている。
したがって、上記半円範囲が3次元距離Ly、Lzの正常範囲となり、垂直方向の3次元距離Lxは、水位Hdの変化範囲となる。
また、図22において、水面上の浮遊物3は、ロープ(または、鎖)13を介して、点Qで錨12に繋留されている。
この場合、錨12は深さ(水位)Hdの水底に落下しているので、浮遊物3は、ロープ13の長さR1と水位Hdとで決定される半径R2の水面上範囲内で移動する。
すなわち、図22において、浮遊物3(基準ポール2)の移動範囲は、錨12の繋留位置Qを頂点とし、且つロープ7の長さR1を稜辺PQとした円錐で決定され、この円錐の底面の円部分が移動範囲となる。
ここで、水位(深さ)Hdは、線分O1Qであるから、半径PO1は、以下の式で表される。
Figure 2004076972
上記半径PO1の円範囲が3次元距離Ly、Lzの正常範囲となり、垂直方向の3次元距離Lxは、水位Hdの変化範囲となる。この場合、当然ながら、浮遊範囲の最大領域は、水位Hdが小さい(浅い)場合の錨12の位置Qを中心とした半径R1の円となる。
また、図23において、水面6上の基準正方形を有する浮遊物3Bは、堤防5側から水面6側に突き出したアーム85と、アーム85に取り付けられた返し車82とに関連して、ロープ(または、ワイヤなど)83の一端に連結されている。この場合、浮遊物3B(基準正方形)は、ロープ83の他端に連結された釣り合い錘84によって、カメラ8の撮像範囲内となり、且つ浮遊範囲が極めて小さくなるように制限されている。
次に、図24のフローチャートを参照しながら、異常判定のための処理について詳細に説明する。
図24において、まず、タイマ割込によって起動すると(ステップ115)、3次元距離Lx、Ly、Lzが正常領域範囲内であるか否かを判定し(ステップ116)、もし正常領域外と判定されれば、モニタ57などを駆動して計測異常を示す警報表示を行い(ステップ120)、同時に、警報ブザー52を駆動して(ステップ111)、図24の処理を異常完了して再試行可能にする(ステップ122)。
一方、ステップ116において、3次元距離Lx、Ly、Lzが正常領域内と判定されれば、水位Hdを計算し(ステップ117)、計算された水位Hdが所定の増水警報水位以上であるか否かを判定する(ステップ118)。
ステップ118において、Hd<増水警報水位(すなわち、NO)と判定されれば、算出された水位Hdを水位表示器51(図8算出)に表示させて(ステップ119)、図24の処理を完了する(ステップ123)。
一方、水位Hdが所定水位よりも上昇し(3次元距離Lxが小さくなり)、ステップ118において、Hd≧増水警報水位(すなわち、YES)と判定されれば、増水状態を報知するために警報ブザー52を駆動し(ステップ121)、ステップ123に進む。
この場合、増水報知に利用される警報ブザー52は、他の異常報知の場合と明確に区別するために、音色を変化させたり、断続音で報音するように駆動される。これにより、異常の種類を聴感で瞬時に判断することができる。
このように、浮遊物の移動可能範囲を規定することにより、浮遊物が流出してカメラ8の撮像範囲から逸脱することを防止することができる。
また、算出された3次元距離が異常領域を示す場合には、計測異常状態を認識して、迅速に且つ確実に警報することができる。
実施の形態10.
なお、上記実施の形態1〜9では、堤防の端面形状について特に考慮しなかったが、堤防の端面が水面6に対して垂直関係にある(または、既知の所定角度だけ傾斜している)場合には、堤防側の基準直方体1の底面(Y−Z面)を水面6に対して平行となるように配置し、浮遊物3(図1参照)を省略してもよい。
図25〜図28は浮遊物を省略したこの発明の実施の形態10による水位計測原理をカメラ撮像座標とともに示す説明図であり、それぞれ異なる状況を示している。各図において、前述と対応する箇所に対しては、それぞれ、前述と同一符号が付されている。
図25および図26はこの発明の実施の形態10により適用可能な堤防の第1の構成例を示している。
図25は水の透明性(光の関係)が低い場合であって堤防5Aの端面(M1−N1)が完全に抽出可能な状態を示している。また、図26は水の透明性が高い場合であったり、光線の関係や天候の関係により水面に相当する堤防5Aの端面(M1−N1)の抽出が不完全(部分的に可能)な状態を示している。
なお、この発明の実施の形態10に適用される基本的なハードウェア構成は、図8に示した通りである。
図29および図30はこの発明の実施の形態10による変換行列の演算処理手順および線分認識処理手順を示すフローチャートであり、PC(パソコン)本体56内のタイマ割込によりノードaを介して連続的に実行される処理を示している。
図25において、コンクリートなどにより構築された堤防5Aの端面は、水面6に対して垂直に形成されている。
堤防5A側の固定位置には、基準寸法を有する基準直方体1が配置されており、基準直方体1の底面(Y−Z面)は、水面6に対して平行となっている。
ITVカメラ8は、基準直方体1と堤防5Aの端面において、水位が高い場合の水位面(M1−N1)の画像、または、水位が低い場合の水位面(M2−N2)の画像を収得する。また、カメラ制御装置55およびPC(図8参照)は、図29の処理手順により、基準直方体1の辺の線分を抽出して3次元座標を確立する。
このとき、前述の実施の形態1〜9とは異なり、浮遊物の位置を検出する必要がないので、頂点OからのY軸方向の3次元距離Lyを「0」に固定することができる。したがって、Z軸方向の3次元距離Lz(O−O1の長さ)、ならびに、堤防5Aの側端水位面(M0−N0)から水面6までの距離Lx1、Lx2の計算が容易となる。ただし、3次元距離Lyは、必ずしも「0」に固定されるものではなく、必要に応じて任意の値に設定されてもよい。
ここで、図30のフローチャート(図29の変換行列Pの演算処理に続いて実行される)を参照しながら、この発明の実施の形態10により水位Hdを計算するための具体的手順について説明する。
まず、画像の濃淡の変化分から、堤防5A上の水位面線分(M0−N0)を抽出し(ステップ124)、同様に画像濃淡変化分から、高水位の場合の水位線分(M1−N1)、または、低水位の場合の水位線分(M2−N2)を抽出する(ステップ125)。
以下、水面線分の認識の有無を判定し(ステップ126)、たとえば、水面と堤防との境界線検出状態が良好(図25参照)であって、認識有り(すなわち、YES)と判定されれば、続いて、水面線分の完全認識の有無を判定する(ステップ126A)。
ステップ126Aにおいて、完全認識(すなわち、YES)と判定されれば、画面上の3次元距離を求めて各点(図26内のO1、S3およびY5、または、図25内のO1、S1およびS2)を確定し(ステップ126C)、ステップ130に進む。
このとき、各長さLz、Lx1、Lx2、Lyは、以下のように表される。
OO1=Lz、
O1S1=Lx1、
O1S2=Lx2、
Ly=0
また、ステップ126Aにおいて、不完全認識(すなわち、NO)と判定されれば、不完全線分の補正または短線分1本を利用して(ステップ126B)、ステップ126Cに進む。
一方、水面と堤防との境界線検出状態が不良(図26参照)であって、ステップ126において、水面線分の認識が無い(すなわち、NO)と判定されれば、異常警報を行い(ステップ127)、オペレータのマウス操作により堤防5Aおよび水面に関連して、Y軸に対して平行な直線を引く(ステップ128)。続いて、画面上の各点(Z軸と線分(M0−N0)との交点O1)を確定し、点O1を通過し且つX軸に対して平行な線分と、水位線分(M1−N1)または(M2−N2)との交点S1またはS2を確立し(ステップ129)、ステップ130に進む。
一般に、堤防5Aの端面(水位面)線分(M1−N1)または(M2−N2)は、Y軸に平行なので、図26のように、水位面(M1−N1)または(M2−N2)(図25参照)の画像から水面6の線分を完全に抽出することが困難な場合でも、部分的に2個所の部分的線分(たとえば、短線分(M1−N3)、(M4−N1))が抽出可能であれば、水面6に相当する直線(M1−N1)を確定することができる(ステップ126B)。
したがって、水位線分(M1−N1)が完全に検出することができない場合でも、短い線分のみが検出可能であれば、図25内の点S1を確立することができる(ステップ126C)。
なお、図26において、中間部の短線分(M3−N4)のみしか抽出できない場合には、仮に、短線分(M3−N4)の延長線上に端面線分(M1−N1)を確立すると、水位面(M1−N1)に角度誤差が発生するおそれがある。したがって、この場合には、ステップ126Cにおいて、新たな点S3(図26参照)を設定して、以下の演算処理を行う。
まず、短線分(M3−N4)上の中点(または、中間部の任意の点)をS3とし、点S3を通過し且つX軸に対して平行な線(点線参照)を描き、堤防5Aの端面線分(M0−N0)の交点O1を求める。
次に、点O1を通過し且つZ軸に対して平行な線を引き、Y軸との交点Y5を求める。
このように画像の座標軸を確立すると、各線分の関係は、以下のように表される。
OY5=Ly、
Y5O1=Lz、
O1S3=Lx
したがって、図30内のステップ130において、変換行列Pから実3次元座標の距離Lx、Ly、Lzを計算することができる。
また、図25または図26内の一点鎖線で示す水面6の存在範囲(Y1,Y2,Y3,Y4)は、小さく設定することが可能であるため、水面6の線分抽出を容易にすることができる。
なぜなら、前回計算された水位から所定時間後(今回計算時)の水位までの変化可能な最大変化水位幅は、水面6の存在範囲(Y1,Y2,Y3,Y4)の垂直線分(Y1−Y3)および(Y2−Y4)は、水位計測のサンプリング時間を水位変化量と比較して短く設定すれば、非常に小さくすることができるからである。したがって、所定の狭い範囲においては、水面6に相当する線分の濃淡画像の変化分のスレッシュホールドレベルを、堤防5Aの端面線分(MO−N0)の抽出時と比較して小さく設定することが可能となり、水面6の線分を抽出することも容易となる。
また、上記処理においても、ステップ126において、水面6に相当する線分(M1−N1)または(M2−N2)を確定することができない場合には、ステップ127により警報ブザー52を駆動する。
これにより、異常報知された監視員(オペレータ)の判断にしたがい、ステップ128において、水面6に関する線分M1−N1(または、M2−N2)をマウス59の操作などで画面上に引くことができ、点S1または点S2を検出して水位Hdを計算することができる。
水面6の線分が確定した後、点O1からX軸に平行な線を水面6に下ろして、水面6との交点をS1(または、S2)とし、この線分O1−S1(または、O1−S2)を、前述と同様に、以下のように、3次元距離Lx1、Lx2に対応付ける。
O1S1=Lx1、
O1S2=Lx2
したがって、ステップ129において、2次元画面上での座標Lx1、Lx2が求められ、続くステップ130において、変換行列Pにより、実際の3次元座標でのLx1、Lx2が求められる。
さらに、ステップ130Aにおいて、堤防端面O1から水底までの既知の深さをHoとすれば、高い水位面(M1−N1)での水位Hd1を、以下のように算出することができる。
Hd1=Ho−Lx1
同様に、低い水位面(M2−N2)での水位Hd2を、以下のように算出することができる。
Hd2=Ho−Lx2
なお、この場合、Z軸(O−O1)と堤防(M0−N0)との関係は、必ずしも直角である必要はなく、任意の角度を有していても、カメラ8による計測に基づいて、カメラ制御・水位演算PC53(図8参照)において容易に計算することができる。
また、図25または図26において、3次元距離Lzは、既知寸法を有する基準構造物の座標から計算可能であるが、通常は計測可能であることから、3次元距離Lzを既知寸法とすれば、水位計算をさらに簡略化することができる。
なお、上述した通り、図25は、写真計測した画像の濃淡処理により堤防5Aと水面6との境界線分(M1−N1)が完全に抽出された状態を示し、図26は、境界線分(M1−N1)が完全に検出されない状態を示す。
したがって、図26の状況下においては、
(1)境界線分が全く検出されない場合には、モニタ画面上のマニュアル(マウス操作)で境界線分(M1−N1)を引き(ステップ128)、
(2)境界に相当する複数の小線分(M3−N4、M4−N1など)が検出された場合には、図25内の線分(O−O1−S1)を適用し(ステップ126C)、
(3)単一の小線分(M3−N4)のみが検出可能な場合には、図26内の線分(O−Y5−O1−S3)を検出する(ステップ126B、126C)。
上記のように検出条件(1)〜(3)に応じて処理を分ける理由は、水面6の境界線の濃淡検出条件は、水面6上の各種条件(水の透明性、反射、屈折、天候、時刻など)によって変化し、単純なソフトウェアを用いた対応が困難であるからである。
また、上記検出条件(2)、(3)を分けて考慮する理由は、上述した通り、1本の小線分(M3−N4)を延長して境界線分(M1−N1)を形成した場合には、誤差が大きくなってしまうからである。
図30内のステップ129は、境界線分が全く検出できなかった場合(検出条件(1))の処理を示し、ステップ126Cは、上記検出条件(2)、(3)の両方を表現している。
図27はこの発明の実施の形態10により適用可能な堤防の第2の構成例を示しており、前述(図25、図26参照)の堤防5Aとは異なり、段付き形状の堤防5Bを示している。
図27において、基本的構成は前述(図25、図26)と同様であるが、堤防5Bの端面線分(M0−N0)を含む面は、基準直方体1の底面よりもLx2だけ高くなっている。
この場合、堤防5Bの内側線分(M6−N6)は、カメラ8から認識することができず、カメラ画像から計測することが不可能である。
したがって、まず、基準直方体1の底面から堤防5Bの最上部面(M0,M5,N5,N0)までの高低差Lx2を事前に計測しておき、高低差Lx2を既知寸法としてカメラ制御・水位演算PC53に与えておく。
次に、基準直方体1の頂点OからX軸上の点X3までの線分(O−X3)を、以下の関係を満たすように求める。
OX3=Lx2
続いて、点X3を通過し且つZ軸に平行な線分(X3−X1−O1)を引く。このとき、点X1は、線分(M5−N5)との交点、点O1は線分(M0−N0)との交点である。
こうして求められた点O1から、X軸に平行な線分(O1−S1)を引く。
点S1は、堤防5Bの端面と水面6との境界線(M1−N1)と、点O1を通り且つX軸に対して平行な線分との交点であり、前述(図30参照)のフローチャートと同様の処理により抽出される。
このように、3次元距離Lx1、Ly、Lz1+Lz2を求めることができる。
なお、図27においても、前述(図25)と同様に、Y軸方向の3次元距離Ly0とすることができる。
また、3次元距離Lz1+Lz2は、通常計測可能であることから、これを既知寸法とすれば、水位計算をさらに簡略化することができる。
図28はこの発明の実施の形態10により適用可能な堤防の第3の構成例を示しており、前述(図25〜図27参照)の堤防5A、5Bとは異なり、斜面形状の堤防5Cを示している。
図25〜図27においては、堤防5A、5Bの端面形状が水面6に対して直角関係にあったが、図28においては、堤防5Cの端面が水面6に対して直角関係ではなく、実角度θだけ傾斜している。
図28の場合も、堤防5Cの断面形状が画像として与えられていなければ、実角度θをカメラ画像から計測することは不可能である。
したがって、まず、堤防5Cの端面と水面6とのなす実角度θを事前に計測しておき、カメラ制御・水位演算PC53に与えておく。ここで、3次元距離Lzは、計算可能であるが、計測して既知寸法としてもよい。
また、前述と同様に、堤防5Cの端面線分(M0−N0)、および、堤防5Cと水面6との境界線(M1−N1)を、画像から抽出する。
次に、Z軸と堤防5Cの端面線分(M0−N0)との交点をO1とし、点O1を通過し且つX軸に対して実角度θをなす直線(O1−S1)を引く。ただし、画像上においては、実角度θおよび基準直方体1の寸法を用いて、画像角度に補正演算して、直線(O1−S1)を引く。ここで、点S1は、堤防5Cの端面と水面6の境界線(M1−N1)との交点である。
次に、点S1を通り且つZ軸に対して平行な直線(S1−X1)を引き、また、点O1を通り且つX軸に対して平行な直線(O1−X1)を引く。
図28において、点X1は、Z軸に対して平行な直線(S1−X1)と直線(O1−X1)との交点となり、線分(O1−X1)は、以下のように表される。
O1X1=Lx1
このように3次元距離Lx1、Ly、Lzを求めることにより、前述と同様に、実水位Hdを求めることができる。
なお、図28の場合も、前述と同様に、Y軸方向の3次元距離Lyは、Ly=0とすることができる。
また、Z軸方向の3次元距離Lzは、通常計測可能であることから、3次元距離Lzを既知寸法とすれば、水位計算をさらに簡略化することができる。
また、図28においては、堤防5Cの端面線分(M0−M1)および(N0−N1)が1次関数(平面)の場合を例にとって説明したが、たとえば図2のように、堤防5の端面形状が曲面の場合であっても、その曲面の関数があらかじめ判明していれば、この発明の実施の形態10を適用することができる。
実施の形態11.
なお、上記実施の形態1〜10では、堤防の端面処理について特に考慮しなかったが、画像処理を容易にするために堤防端面にマーカを設けてもよい。
図31は堤防端面にマーカ86を設けたこの発明の実施の形態11による水位計測原理をカメラ撮像座標とともに示す説明図であり、前述(図28)の実施の形態10における斜面形状の堤防5Cを例にとっている。
なお、この発明の実施の形態11によるハードウェア構成は、基本的に図8を適用することができる。
また、この発明の実施の形態11による演算処理手順は、基本的に図7のフローチャートを適用することができ、ステップ102を、マーカ86と水面6との境界線分(O1−L)を収得する処理に変更するのみでよい。
図31において、堤防5Cの端面領域(K1,L1,L2,K2)には、幅Lnのマーカ86が塗布されている。
堤防5C側の固定位置には、前述と同様の基準直方体1が配置されている。
基準直方体1の底面は、水面6に対して平行であり、また、Y軸がマーカ86と水面6との境界線に対して平行関係になっている。
この場合、堤防5Cの端面上のマーカ86と水面6との境界線(O1−L)の長さは、必ずマーカ86の幅Lnと一致するので、前述(図25〜図28)の実施の形態10と同様に、水面と堤防端面のマーカ86の境界線O1−Lを収得画像から抽出すると、境界線(O1−L)は、以下のように表される。
O1L=Ln
図31の状態は、長さLnの基準ポールがY軸方向に対して平行配置されたものと考慮すれば、前述(図1〜図6)の実施の形態1における座標系のX軸とY軸とを入れ替えた状態と等価である。
したがって、図31においても、前述の実施の形態1と同様の計算により、3次元距離Lx、Ly、Lzを計算することができる。
また、基準直方体1の設置位置(地上面)から水底までの距離をHoとすれば、前述と同様に、以下の式により、水位Hdを求めることができる。
Hd=Ho−Lx
なお、図31において、水面の透明度が高ければ、水面下のマーカ86は、屈折した画像O1−L−L3−K3(点線参照)として収得されるので、カメラ画像に基づく堤防5Cの面と水面6との境界線分の抽出がさらに容易となる。
また、マーカ86は、塗料でなく、幅Lnの標識であっても、または間隔Lnの2本線であっても、同等の作用効果を奏する。
また、マーカ86(または、標識)が設けられる堤防5Cの端面は、図31のような斜面形状に限らず、任意の曲面形状であってもよい。
また、マーカ86の設置角度は、カメラ8で画像が収得できる範囲であれば、傾斜していてもよい。
実施の形態12.
なお、上記実施の形態11(図31)では、堤防5Cの端面にマーカ86を設けたが、一対の平行のレーザ光を水面6上に照射してもよい。
図32は平行のレーザ光を水面6上に照射したこの発明の実施の形態12による水位計測原理をカメラ撮像座標とともに示す説明図である。
図32においては、カメラ8側の所定位置に2つのレーザ発振装置87、88が設置されており、レーザ発振装置87、88は、相互間隔がLnの平行のレーザ光を水面6上に照射している。
図32において、レーザ発振装置87、88の配置および照射角度は、水面6に照射される2本のレーザ光の光軸と水面6との交点をO1、Lとしたときに、水位変化に依存せずに、点O1およびLの間隔(O1−L)が常に一定値Lnとなるように設定されている。
レーザ発振装置87からのレーザ光は、点K1から出射され、水面6上の点O1において、Z軸に対して角度θ2をもって照射される。このとき、水の透過性が高い場合には、水面から水中への屈折線分(O1−K2)が観測される。
また、レーザ発振装置88からのレーザ光は、点L1から出射されて、水面6上の点Lに照射される。このとき、水の透過性が高い場合には、水面から水中への屈折線分(L−K3)が観測される。
ここで、各照射点を結ぶ線分(O1−L)は、水面6上のY軸に対して角度θ1を有している。
また、2つのレーザ発振装置87、88の平行光軸は、カメラ8の画像上で重なることがなく、レーザ発振装置87、88の機器間隔は、レーザ光の出射間隔Lnとなるように配置されている。
なお、2つのレーザ光の光軸と水面6との交点O1、Lによって構成される四角形(K1−O1−L−L1)が平行四辺形または長方形になるように、レーザ発振装置87、88を配置すれば、水位が変化しても、簡単な周知の幾何計算(詳述は省略する)により、線分(O1−L)は、常に以下のように表される。
O1L=Ln
また、基準直方体1(水面6上)のY軸に対して平行で且つ一方の光軸と水面6との交点O1を通る直線Y3−Y4と、間隔Lnの線分(O1−L)との成す角度をθ1とし、Z軸に対して平行で且つ他方の光軸と水面6との交点Lを通る線分と、直線(Y3−Y4)との交点をY5とすれば、線分(O1−Y5)は、以下の式で表される。
O1Y5=Ln・cosθ1
ただし、上式において、θ1=0[度]であれば、Y5=L、cosθ1=1であるから、以下の式となる。
O1L=Ln
このとき、角度θ1は、2つのレーザ発振装置87および88の設置角度により決定する定数(通常、既知)なので、水位変化によらず、以下の関係が成り立つ。
O1Y5=Ln・cosθ1=一定
したがって、基準直方体1の画像とともに、レーザ光と水面6との交点O1、Lの画像をカメラ8で収得することにより、前述(図31)の実施の形態11と同様に、以下の計算により、水位Hdを算出することができる。
Hd=Ho−Lx
次に、この発明の実施の形態12によるレーザ光と水面6との交点O1、Lの認識方法について説明する。
周知のように、レーザ光は直線性および輝度が高いので、カメラ8で収得した濃淡画像上において濃淡情報を微分することにより、容易に線分を抽出することができる。
また、レーザ光と水面6との交点し、O1において、水面6の透過性が高い場合には、線分(O1−K2)、(L−K3)(図32内の破線参照)のように、交点し、O1を境界として屈折したレーザ光の直線画像が収得される。
一方、水面6の透過性が低い場合には、交点L、O1において、レーザ光が反射した状態や途切れた状態の画像が収得される。
したがって、いずれの場合も、交点L、O1を含む画像の濃淡に基づいて、屈折線分(O1−K2)および(L−L1)を抽出したり、反射光を抽出したり、レーザ光の途切れ位置を抽出することにより、線分(O1−L)を容易に検出して、画像における水面6上の交点L、O1の座標を収得することができる。
なお、この発明の実施の形態12においても、基本的なハードウェア構成は、図8を適用することができる。
また、演算制御処理については、基本的に図7のフローチャートを適用することができ、ステップ102を、2本のレーザ光と水面6との交点間の線分(O1−L)を収得する処理に変更するのみでよい。
また、レーザ光は、夜間においても認識することができるので、基準直方体1を、前述(図15)の実施の形態6で説明したように、仮設ダンボール箱に置き換えたり、昼間に収得して記憶した画像を利用することにより、夜間の水位計測も容易にすることができる。
また、ここでは、図示を省略するが、レーザ発振装置87、88の寿命延長および省エネルギーを目的として、水位計測時のみにレーザ光の電源をONにする回路を追加してもよい。
実施の形態13.
なお、上記実施の形態12(図32)では、2つのレーザ発振装置87、88を設け、2本のレーザ光を水面6上に照射したが、単一のレーザ発振装置のみを設けて単一のレーザ光を照射してもよい。
図33は単一のレーザ光を水面6上に照射したこの発明の実施の形態13による水位計測原理をカメラ撮像座標とともに示す説明図である。
また、図34はこの発明の実施の形態13による水位計測原理を要部斜視図とともに示す説明図である。
図33において、堤防5C側には基準直方体1が設置され、カメラ8側には、単一のレーザ発振装置87のみが配置されている。
レーザ発振装置87は、点K1からレーザ光を出射し、水面6上の点O1を照射する。このとき、水の透過性が高い場合には、前述(図32)と同様に、水面から水中への屈折線分(O1−K2)が観測される。
図33においては、レーザ光と水面6との交点O1が1点のみであるため、水面6上に所定寸法Lnが存在しない。
図34は水位変化にともなう基準直方体1と水面6との垂直距離Lx、Lx1の変化を示しており、水位の低下により基準直方体1と水面6との垂直距離LxがLx1まで増大したときの水面6とレーザ光との関係を示している。
この場合、水位低下時における水面6とレーザ光との交点はO2となる。
ここでは、前提条件として、システム稼動時の初期水面(Y−Z面)に対するレーザ光の入射角θ3と、水面6に対して垂直な面(X−Z面)に対するレーザ光の入射角θ4と、水面6とレーザ光との交点O1のY軸方向の距離(O−Y1=Ly)とを、それぞれ既知の値とする。
したがって、前述の実施の形態1のように、基準直方体1により、2次元画像と実際の3次元画像との変換行列Pが規定され、レーザ光と水面6との交点O1の2次元画像上の座標と、存在する水面6に対して垂直な面(X−Z面)とが特定されているので、3次元座標上で点O1は、一意的に3次元座標上で決定される。
以下、図33および図34を参照しながら、この発明の実施の形態13による水位Hdの計算方法(基本的に、前述の実施の形態1と同様)について簡単に説明する。
初期の水面6に対するレーザ光の交点O1においては、前述(図32)の実施の形態12のように、レーザ光(K1−O1−K2)が水面6との交点で屈折(または、反射など)することから、既知の画像処理方法(前述の実施の形態1参照)により、レーザ光の線分(K1−O1)を抽出し、交点O1を特定する。
このとき、3次元距離Lyが既知であるから、点O1が存在し且つY軸に対して直角な面(X−Z面)は確定される。
したがって、点O1を通過し且つZ軸に対して平行な直線を(O1−X1)、既知の点Y1を通り且つY軸に対して平行な直線を(O−Y1=Ly)、点Y1を通り且つX軸に対して平行な直線を(Y1−X1)とすると、交点Y1は3次元座標上で固定される。
ここで、線分(X1−Y1=Lx)が判明すれば、水位Hdは、以下のように表される。
Hd=Ho−Lx
上式において、Hoは基準直方体1の底面から水底までの高さである。
次に、点O1を通過し且つY−Z面に対して平行な面上にある直線であって、線分(O1−X1)に対して角度θ4をなす直線を引き、この直線の長さ(O1−Z4)が、以下の式を満たすように、点Z4の位置を特定する。
O1−Z4=(Z2−Z4)/tanθ3=Lx/tanθ
このとき、点Z4を通過し且つX軸に対して平行な線は、レーザ光の光軸(K1−O1)に対して点Z2で交差し、線分(O1−Z4)と線分(Z4−Z2)との関係は垂直となり、線分(Z4−Z2)の長さは、以下のように表される。
Z4−Z2=Lx
このとき、点Z2は、基準直方体1の底面(Y−Z面)とレーザ光との交点となる。
初期の水面6での上記2次元座標上の交点Z2および3次元上の距離Lxは、記憶される。
その後、水面6の水位が低下して、レーザ光との交点がO2に変化し、レーザ光(K1−O2−K3)が点O2で屈折した場合、直角三角形(O1−Z4−Z2)と直角三角形(O1−O2−Z7)とは、3次元座標上では完全に相似となる。
また、レーザ光の光軸(Z2−O2)は直線であることから、3次元座標上から2次元座標上に投影しても、線分(O1−Z2=L1)と線分(O2−O1=L2)との比は変化しないので、以下の4つの式が成り立つ。
O1Z2/O1O2=Z2Z4/O1Z7
L1/L2=Lx/O1Z7
O1Z7=Lx・L2/L1
X2Y2=Lx1
=O1Z7+Lx
=Lx・L2/L1+Lx
したがって、低水位時の水位Hd2は、以下の式で与えられる。
Hd2=Ho−(Lx・L2/L1+Lx)
なお、この発明の実施の形態13による基本的なハードウェア構成は、図8と同様である。
また、この発明の実施の形態13によるシステム処理手順は、前述(図30参照)のフローチャートを上記制御フローに変更するのみでよい。
また、レーザ光は夜間でも認識可能なため、基準直方体1を前述(図15)の実施の形態6のように仮設ダンボール箱に置き換えたり、昼間に収得して記憶した画像を利用することなどにより、夜間の水位計測も容易となる。
また、ここでは、図示しないが、レーザ発振装置の87寿命延長などを目的として、水位計測時のみにレーザ光の電源をONにする省エネルギー回路を追加してもよい。
また、この発明の実施の形態13においては、前述の実施の形態12とは異なり、システム再起動時の3次元距離Lyの計測(Lyデータが記憶されている場合の再起動時には不要)が必要となる。ただし、レーザ光と水面6との交差角度のうち、角度θ4を0[度](または、90[度])に設定可能であれば、3次元距離Ly(または、Lz)が常時一定となるので、再起動時の計測を不要とすることができる。
実施の形態14.
なお、上記実施の形態1〜9(図1〜図24)では、水面6上の浮遊物をロープ7で繋留したが、水流の速さや波の大きさなどにより極めて不安定な状況下でも浮遊物の移動を確実に回避するために、水面6と連通した透明管を堤防側に固定し、透明管内に周辺輝度と区別し易い色彩を有する浮遊物を配置してもよい。
図35は固定された透明管内に浮きを配置したこの発明の実施の形態14による水位計測原理をカメラ撮像座標とともに示す説明図である。
図35において、堤防5D側には、基準直方体1のみならず、水面6の近傍の端面位置に、アクリル管(または、強化ガラスなど)により構成された円筒形状(または、角型形状)の透明管9が設けられている。
透明管9は、金具およびアンカーボルトなどにより堤防5Dの端面に固定されており、透明管9の下部(または、側面)には、透明管9の内部に水が入るように、連通用の複数個の穴が設けられている。
また、透明管9内には、浮き10が上下移動自在に設置されており、浮き10の色は、線分(M2−N2)を含む周囲の水面6の色と比較して区別し易い色(たとえば、赤や黄色など)に設定されている。
図35において、浮き10の位置は、透明管9により固定されており、また、透明管9内の水面は、周囲の水面6と一致している。
ここで、基準直方体1および浮き9のカメラ画像を収得すると、透明管9のセンタ位置と基準直方体1とのZ軸距離(O−O1=Lz)、および、透明管9のセンタ位置と基準直方体1とのY軸距離(O1−J=Ly)は、通常、既知(ただし、画像から計測することも可能)の値となる。
さらに、基準直方体1と水面線分(M2−N2)上の透明管9内の浮き10のX軸距離(J−L=Lx)を求め、堤防5Dの上面(地上4)から水底までの距離をHoとすれば、水位Hdは、以下のように表される。
Hd=Ho−Lx
したがって、前述と同様のフローチャート(図7)および制御ブロック(図8)を適用して、水位Hdを収得することができる。
また、夜間の計測に際しては、前述(図18参照)のように、浮き10を蛍光物質で構成してもよく、また、バッテリなどにより発光する発光ランプなどを浮き10に装着してもよい。
また、浮き10を収納する透明管9は、垂直に固定されていなくても、傾斜角度が判明していれば、傾斜して取り付けられてもよい。
また、浮き10のY軸方向の長さを基準寸法Lnに設定してもよい。この場合、前述(図31)のマーカ86(幅Ln)を配設した場合と同様に、基準直方体1と浮き10との位置関係を既知とする必要はない。
さらに、透明管9内の浮き10を堤防5Dの端面に密着させれば、前述(図25)の実施の形態10に適用することも可能であり、堤防5Aの端面の曲線が不明確であったり、光の関係で、水面6と堤防5Aとの境界線などが不明確な場合に、浮き10のラインを境界線に適用することもできる。
実施の形態15.
なお、上記実施の形態10(図25〜図30)では、堤防端面そのものを基準寸法として利用したが、既設の量水標を用いてもよい。
図36は基準直方体1とともに既設の量水標を撮像するよ.うに構成したこの発明の実施の形態15による水位計測原理をカメラ撮像座標とともに示す説明図である。
図36において、堤防5D側には、基準直方体1が設置されており、堤防5Dの端面近傍には、通常既設の量水標11(水面6上の長さLx1)が立設されている。
基準直方体1は、量水標11の近傍に位置しており、カメラ8により、量水標11とともに撮像されるようになっている。
これにより、カメラ制御・水位演算PC53(図8参照)は、基準直方体1および量水標11の水面6上の画像(K−L−L1−K1)を認識して、水位を計測することができる。
すなわち、量水標11と水面6との境界線(M2−N2)を濃淡画像から抽出し、前述(実施の形態14)と同様に、水位Hdを求める。
まず、量水標11と基準直方体1とのZ軸距離(O−O1=Lz)、および、量水標11と基準直方体1とのY軸距離(O1−J=Ly)は、既知である。
以下、堤防5Dの上面(地上4)から、水面6と量水標11との境界面すなわち水面線分(M2−N2)までのX軸距離(J−L=Lx)を求め、地上4から水底までの距離をHoとすれば、水位Hdは、以下のように表される。
Hd=Ho−Lx
なお、量水標11の幅(K−K1)、(L−L1)は、基準寸法Lnに設定されてもよい。また、量水標11の設置角度は、カメラ8で画像が収得できる範囲であれば傾斜していてもよい。
また、水面6の透明性や光の状況などにより、量水標11と水面6との境界線(M2−N2)を全く認識することができない場合であっても、堤防5Dの端面と水面6との境界線(M1−N1)の一部を認識することが可能であれば、この一部の線分を水平面(Y−Z面)上で平行移動して量水標11との交点を求め、水位(M2−N2)と置き換えることができる。これらの処理は、前述(図7)のフローチャートおよび前述(図8)の制御ブロックにより、容易に実現することができる。
実施の形態16.
なお、上記実施の形態15では、水面6に関連して量水標11のみを用いたが、前述(実施の形態1)と同様の基準ポール2を併用してもよい。
図37は基準直方体1とともに量水標11および基準ポール2を撮像するように構成したこの発明の実施の形態16による水位計測原理をカメラ撮像座標とともに示す説明図である。
図37において、堤防5E側には基準直方体1が設けられており、水面6側には前述(図36)の量水標11が設けられ、水面6上には、基準ポール2を有する浮き(図示せず)が配置されている。
図37のように、量水標11の近傍の水面6上に基準ポール2を浮遊させることにより、カメラ8側において、基準直方体1、量水標11および基準ポール2の画像を同時に収得して、基準直方体1および基準ポール2に基づいて計算した水位と、基準直方体1および量水標11に基づいて計算した水位との平均値を実水位とすることができる。
また、前述の領域判断などにより、2つの水位計算結果のうちの一方が異常と判定された場合には、他方の計算結果のみに基づいて水位を算出することができる。
また、図37において、堤防5Eの端面と水面6との境界線(M1−N1)を利用することもでき、前述の水位計測方法のうちの任意の複数の計測処理を容易に組合せることができる。
さらに、量水標11の幅(K−K1)、(L−L1)は、基準寸法Lnに設定されてもよく、量水標11の設置角度は、カメラ8で画像が収得できる範囲であれば傾斜していてもよい。
実施の形態17.
なお、上記実施の形態1〜16では、水面6上に混合浮遊し得る異物について考慮しなかったが、画像処理により異物を分離認識してもよい。
図38は異物を分離認識するように構成したこの発明の実施の形態17による水位計測原理をカメラ撮像座標とともに示す説明図であり、代表的に、前述の実施の形態9の構成に適用した場合を示している。
図38において、前述(図20参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
ここでは、水面6が高水位の場合に、基準ポール2を有する浮遊物3の浮遊範囲(A1−B1−C1−D1)内に木材などの異物14が混入した状況を示している。
水位計測時において、異物14の画像は、基準直方体1および基準ポール2の画像とともに、カメラ画像として収得される。
したがって、異物14の線分は、基準ポール2の座標抽出処理時(図7内のステップ102または図17内のステップ102B)において、水面領域の画像部の濃淡に基づいて同様に抽出される。
このとき、基準ポール2の形状寸法(基準寸法)Lnは既知なので、水面6上の他の異物14との分離処理を行うことは容易である。
たとえば、前述(図7または図17)のステップ107において、基準寸法Lnが存在しないと判定された場合に異常処理(ステップ110、111)に進むが、ステップ107と同時に異物14の有無を判定し、異物14が存在する場合に異常処理(ステップ110、111)に進むようにフローを構成すればよい。
また、基準直方体1の基準寸法などにより、異物14の大きさを計算することも可能なので、異物14の有無の判定時に、異物14が所定値以上の大きさを示す場合のみに異常と判定して、警報ブザー52(図8参照)を駆動することもできる。
実施の形態18.
なお、上記実施の形態10〜17では、特に言及しなかったが、前述(図15参照)の実施の形態6と同様に、基準直方体1を撤去可能な仮設ダンボール箱に置き換えてもよい。
また、前述と同様に、演算時間の短縮化を目的として、基準直方体1の画像から得られる変換行列Pの計算処理を、システム電源投入時などの必要時のみに実行し、通常の水位計測時には、変換行列Pの計算処理を実行せずに、既に記憶された計算結果のみを利用してもよい。
また、たとえば夜間の照明に関しても、前述(図19参照)の実施の形態8と同様に、水面を照らすのみで水位計測を可能とすることができる。
また、前述(図38参照)の実施の形態17で述べたように、木材などの異物14を検出することもできる。
実施の形態19.
なお、上記実施の形態1〜17では、カメラ8の旋回動作について詳細に言及しなかったが、所定の旋回角度を有する旋回式の水位監視カメラ8を用いて、基準構造物(基準直方体1)の目標位置と一致するようにカメラ8の旋回角度を調整してから、水位計測処理を実行してもよい。
図39は旋回式監視カメラ8(以下、単に「カメラ8」ともいう)を用いたこの発明の実施の形態19による水位計測原理を示す説明図であり、旋回式監視カメラ8の上下(Tilt)および左右(Pan)の旋回角θx、θyを示している。
図40はこの発明の実施の形態19による水位計測原理をカメラ撮像座標とともに示す説明図であり、旋回式監視カメラ8を計測位置角度に固定する場合の原理を示している。
図41はこの発明の実施の形態19による制御ブロックを示す構成図であり、旋回式監視カメラ8を計測位置角度に固定する場合の構成を示している。
図42はこの発明の実施の形態19による処理手順を示すフローチャートであり、旋回式監視カメラ8を計測位置角度に固定する場合の処理を示している。
図43はこの発明の実施の形態19による処理手順を示すフローチャートであり、旋回式監視カメラ8を計測角度に固定する記憶画像を利用した場合の処理を示している。
以下、図39〜図43を参照しながら、前述の実施の形態1〜17に関連したこの発明の実施の形態19について説明する。
通常、カメラ8は、水位の観測のみならず、周囲の監視領域全体における異常の有無も監視している。たとえば、水門の監視においては、木材などが水門に引っかかっているか否かなどの監視も行われる。したがって、カメラ8としては、旋回可能な旋回式監視カメラ8を利用することが多い。
この種の旋回式監視カメラ8を用いた場合、たとえば前述(図15〜図38)の実施の形態6〜17による水位計測を行うためには、カメラ8の画角を正確に固定する必要がある。
また、堤防5側の基準物体(基準直方体1、図13内の基準ポール2B、図14内の基準正方形3D)を仮設基準構造物とした場合には、カメラ8の画角を正確に固定する必要がある。
また、基準物体のカメラ画像に基づく3次元座標への計算を、システム電源投入時に1回のみ、または、昼間の所定時間に1回(たとえば、1日に朝1回)のみに実行し、水位計算時(特に、夜間など)のパソコン処理能力軽減を実現する場合には、前述したように、カメラ8の画角を正確に固定する必要がある。
また、前述の実施の形態1〜5に対して旋回式監視カメラ8を適用した場合には、堤防5側に設置された基準物体と、水面6側の基準寸法を有する浮遊物(浮きなど)の全移動範囲(水位変化などによる)とが同一画像に入るように、カメラ8の倍率や画角を設定することにより、水位計算が容易となる。
図39に示すように、カメラ8が所定の旋回角度(PAN角度θy、TILT角度θx)の画角を有する場合、基準物体(基準直方体1)の画像位置は、たとえば、図40に示すように、画像座標(U,V)上を、131→132→133(基準物体の頂点座標は、O→O1→O2)のように移動する。
また、画角の設定によっては、カメラ画像から基準物体(基準直方体1など)が画角外に移動する場合もある。
図39において、カメラ8の画角と画像上の長さとの関係は、カメラ8の中心軸と座標平面(X−Y面)との垂直交点位置を点O、カメラ8と座標平面(X−Y面)との距離(M−O)をrとし、且つ、点Oを中心とするカメラ8の旋回角度を、PAN角度θy、TILT角度θxとした場合に、以下のようになる。
すなわち、画像位置は、X軸(画像上のV軸)方向に対して、±r・tan(θx/2)だけ移動し、Y軸(画像上のU軸)方向に対して、±r・tan(θx/2)だけ移動する。
なお、ここでは、図示を省略するが、カメラ8のPAN角度θyが、θy1からθy2に変化し、TILT角度θxが、θx1からθx2に変化した場合には、画像位置は、X−Y軸方向に以下のように移動する。
すなわち、画像位置は、X軸(画像上のV軸)方向に対しては、r・(tan(θx1)−tan(θx2))(たとえば、図40内のV軸換算では、V1−V2などに相当)だけ移動する。
また、画像位置は、Y軸(画像上のU軸)方向に対しては、r・(tan(θy1)−tan(θy2))(たとえば、図40のV軸換算では、U1−U2などに相当)だけ移動する。
上記の関係式を利用することにより、カメラ8の旋回角度と画像位置との関係を求めることができる。
次に、図39および図40に加えて、図41のブロック構成図と、図42および図43のフローチャートとを参照しながら、この発明の実施の形態19による処理について説明する。
図41において、前述(図8参照)と同様のものについては、前述と同一符号を付して詳述を省略する。
図41において、カメラ8の周辺には、旋回駆動装置8A〜8Fが設けられ、カメラ制御装置55内には、旋回駆動制御部78〜81が追加されている。
カメラ8の旋回駆動装置は、Tilt軸モータ8AおよびPan軸モータ8Bと、カメラ8の旋回台8Cを載置する架台8Dと、各軸モータ8A、8Bの回転角度および駆動速度を検出するTilt軸エンコーダ8EおよびPan軸エンコーダ8Fとにより構成されている。
カメラ制御装置55内の旋回駆動制御部は、各エンコーダ8E、8Fの検出信号を個別に取り込むTilt駆動部78およびPan駆動部79と、各エンコーダ8E、8Fの両方の検出信号を取り込む角度制御部80と、角度制御部80に角度指令を入力する角度指令部81とにより構成されている。
カメラ8の旋回駆動装置において、旋回台8Cには、Tilt軸モータ8Aが取り付けられ、架台8Dには、Pan軸モータ8Bが取り付けられている。
Tilt軸モータ8AおよびPan軸モータ8Bとしては、通常のサーボモータが利用されており、各軸モータ8A、8Bのモータ軸には、回転角度および駆動速度をフィードバッグするための回転エンコーダ8E、8Fが取り付けられている。
なお、回転エンコーダ8E、8Fとしては、通常、絶対値式のエンコーダが用いられる。インクリメンタル式のエンコーダを用いた場合には、電源投入時に現在のカメラ角度が喪失するので、原点用のリミットスイッチなど(図41には、図示されない)が追加される。
これにより、カメラ制御装置55は、現在のカメラ8の旋回位置を常に把握することができる。
各軸モータ8A、8Bの旋回角度などは、所定のジョイスティック(図示せず)を利用して手動で設定することができる。
また、所定プログラムにしたがう旋回角度指令は、カメラ制御・水位演算PC53またはカメラ画像表示装置54から、光ケーブル73を経由して、カメラ制御装置55内の角度指令部81に転送される。
角度指令部81に入力された旋回角度指令は、角度制御部80に転送され、角度制御部80は、角度指令と各エンコーダ8B、8Eからの現在位置とを比較して、各軸モータ8A、8Bの回転方向を決定する。
以下、現在のTilt角度およびPan角度が角度指令と一致するまで、Tilt駆動部78およびPan駆動部79の制御を継続し、各軸モータ8Aおよび8Bを駆動してカメラ8を旋回させる。
たとえば、図40において、基準直方体の画像位置132の頂点O2(U2,V2)から画像位置133の頂点O1(U1,V2)に移動させ、画像位置133の頂点O1(U1,V2)から画像位置131の頂点O1(U1,V1)に移動させる場合には、前述のtanを含む関係式により、画像位置131の頂点O1(U1,V1)をカメラ8の旋回角度位置に変換し、角度指令として角度指令部81に出力する。
通常、水位計測位置となる頂点O1(U1,V1)に対するカメラ8の旋回角度位置は、既にパソコンに記憶されているので、この記憶値を指令値として利用すれば、容易に水位計測位置の頂点O1(U1,V1)にカメラ8を旋回させることができる。
図42は上記処理を示すフローチャートであり、図42において、前半の制御ステップ135〜139は、Pan角度の位置決めを実行する処理であり、後半の制御ステップ140〜144は、Tilt角度の位置決めを実行する処理である。
図42の処理がスタートすると(ステップ134)、まず、水位計測位置O1(U1,V1)のPan角度指令をセットし(ステップ135)、Pan軸エンコーダ8Fから現在位置O2(U2,V2)のPan角度を読込み(ステップ136)、Pan角度指令と現在Pan角度との偏差に応じて、Pan軸モータ8Bを駆動する(ステップ137)。
続いて、現在のPan角度がPan角度指令と一致するか否かを判定し(ステップ138)、不一致(すなわち、NO)と判定されれば、ステップ136に戻り、Pan軸モータ8Bの駆動(ステップ137)を繰り返す。
一方、ステップ138において、現在のPan角度がPan角度指令と一致する(すなわち、YES)と判定されれば、Pan軸モータ8Bを停止させる(ステップ139)。このとき、カメラ8のPan軸の旋回角度は、Pan角度指令と一致しているので、座標値はO1(U1,V2)となる。
次に、水位計測位置O1(U1,V1)のTilt角度指令をセットし(ステップ140)、Tilt軸エンコーダ8Eから現在位置O1(U1,V2)のTilt角度を読込み(ステップ141)、Tilt角度指令と現在Tilt角度との偏差に応じて、Tilt軸モータ8Aを駆動する(ステップ142)。
続いて、現在のTilt角度がTilt角度指令と一致するか否かを判定し(ステップ143)、不一致(すなわち、NO)と判定されれば、ステップ141に戻り、Tilt軸モータ8Aの駆動(ステップ142)を繰り返す。
一方、ステップ143において、現在のTilt角度がTilt角度指令と一致する(すなわち、YES)と判定されれば、Tilt軸モータ8Aを停止させて(ステップ144)、図42の処理を完了する(ステップ145)。
このとき、Pan軸およびTilt軸の旋回角度は角度指令と一致しているので、座標値はO1(U1,V1)となる。
なお、図42においては、TiltおよびPanの2軸を別々に駆動制御しているが、TiltおよびPanの2軸を同時に駆動制御することもできる。
また、図42においては、水位計測時のカメラ角度を記憶して水位計測位置に復帰させることができるので、堤防側の固定位置に設置された基準直方体1として撤去可能な仮設基準構造物を利用した場合にも適用することができる。
また、夜間での基準直方体1の検出が不可能な場合でも、前述(図19参照)のように水位計測を行うことができる。
また、図42においては、回転式の各軸エンコーダ8E、8Fを用いた場合を例にとって説明したが、各軸エンコーダ8E、8Fを利用しない場合や、インクリメンタル式のエンコーダを利用して停電時にカメラ旋回位置の絶対位置を喪失した場合、または、各軸モータとしてパルスモータを利用して停電時にカメラ旋回位置の絶対位置を喪失した場合においても、図43のフローチャートを用いて旋回角度を制御することができる。
図43において、ステップ147〜153は、Pan角度の位置決め用の制御フローであり、続くステップ154〜160は、Tilt角度の位置決め用の制御フローである。
なお、ここでは、Pan角度およびTilt角度の位置決めを別々に実行しているが、TiltおよびPanの2軸を同時に駆動制御することもできる。
この場合、まず、カメラ8により現在の基準直方体132の画像を収得し、収得した濃淡画像に基づき、濃淡の変化分から線分を抽出して頂点座標O2(U2,V2)を確立する。
ここで、カメラ8の目標旋回角度の水位計測位置O(U1,V1)は、あらかじめ記憶されているので、現在の頂点座標O2(U2,V2)と目標位置O(U1,V1)とを比較し、現在位置O2(U2,V2)から次の画像位置133の頂点座標O1(U1,V2)に移動するまで、PAN軸モータ8Bを駆動する。
その後、上記処理と同様に、画像位置133の座標O1(U1,V2)から水位計測位置O(U1,V1)に移動するようにTilt軸モータ8Aを駆動し、基準直方体の画像位置を、カメラ8の撮像座標上の水位計測位置O(U1,V1)に移動させる。
図43の処理がスタートすると(ステップ146)、まず、水位計測位置O1(U1,V1)のU軸座標指令値をセットし(ステップ147)、現在画像の基準直方体132n(nは基準直方体132の時間経過を考慮した動画像を示す)を読込み(ステップ148)、基準直方体132nの形状を抽出する(ステップ149)。
続いて、基準直方体132nの現在の2次元画像座標O2(Un,V2)を確立し(ステップ150)、現在の2次元画像座標とU軸座標指令値との偏差に応じて、Pan軸モータ8Bを駆動する(ステップ151)。
続いて、現在のPan軸座標がU軸座標指令値と一致するか否かを判定し(ステップ152)、不一致(すなわち、NO)と判定されれば、ステップ148に戻り、Pan軸モータ8Bの駆動(ステップ151)を繰り返す。
一方、ステップ152において、現在のPan軸座標がU軸座標指令値と一致する(すなわち、YES)と判定されれば、Pan軸モータ8Bを停止させる(ステップ153)。このとき、カメラ8のPan軸座標がU軸座標指令値と一致しているので、座標値はO1(U1,V2)となり、基準直方体133の位置画像となる。
次に、水位計測位置O1(U1,V1)のV軸座標指令値をセットし(ステップ154)、現在画像の基準直方体133n(nは基準直方体133の時間経過を考慮した動画像を示す)を読込み(ステップ155)、基準直方体133nの形状を抽出する(ステップ156)。
続いて、基準直方体133nの現在の2次元画像座標O2(U1,Vn)を確立し(ステップ157)、現在の2次元画像座標とV軸座標指令値との偏差に応じて、Tilt軸モータ8BAを駆動する(ステップ158)。
続いて、現在のTilt軸座標がV軸座標指令値と一致するか否かを判定し(ステップ159)、不一致(すなわち、NO)と判定されれば、ステップ155に戻り、Tilt軸モータ8Aの駆動(ステップ158)を繰り返す。
一方、ステップ159において、現在のTilt軸座標がV軸座標指令値と一致する(すなわち、YES)と判定されれば、Tilt軸モータ8Aを停止させて(ステップ160)、図43の処理を完了する(ステップ161)。
このとき、カメラ8のTilt軸座標がV軸座標指令値と一致しているので、座標値はO1(U1,V1)となり、基準直方体131の位置画像となる。
図43に示した処理は、基本的に堤防の固定位置に設置された基準直方体1、基準ポール2B(図13参照)、または基準正方形3D(図14参照)が常時存在する場合に適用される。
なお、堤防側の基準構造物が仮設基準構造物などに置き換えられた場合でも、仮設基準構造物の撤去後に堤防側の他の基準構造物(建物など)が水位計測位置のカメラ画像内に同時に写っていて、他の基準構造物の形状の線分抽出が可能な場合には、このカメラ画像に基づいて、基準直方体1、基準ポール2B(図13)、または基準正方形3D(図14参照)の代用とすることができる。
実施の形態20.
なお、上記実施の形態1〜19では、画像情報から基準直方体や基準ポールなどの形状または基準寸法が得られなかった場合の追加対策処理について特に言及しなかったが、基準寸法が得られなかった場合には、異常警報に応答して、オペレータのマニュアル操作によりモニタ上で線分をトレースしてもよい。
以下、図44のフローチャートを参照しながら、基準寸法が認識できない場合にマニュアル操作で線分をトレースするようにしたこの発明の実施の形態20について説明する。
図44において、前述(図7、図16、図17)と同様のものについては、前述と同一符号を付して詳述を省略する。
また、図44において、ステップ107A、111Aは、前述(図7、図17)の基準寸法Lnの有無判定ステップ107および異常警報ステップ111に対応しており、ステップ111Bが新たに追加されている。
図44において、まず、カメラ制御・水位演算PC53(図8、図41参照)は、カメラ画像の読込み処理(ステップ101)に続いて、、カメラ画像から基準寸法の認識が可能か否かを判定し(ステップ107A)、認識可能(すなわち、YES)と判定されれば、前述のステップ103以降に進む。
一方、ステップ107Aにおいて、基準寸法の認識が不可能(すなわち、NO)と判定されれば、悪天候などの理由によって、堤防側の基準構造物(基準直方体1、基準ポール2B、基準正方形3D)、または水面6側の基準浮遊物(基準ポール2、正方形3B、基準直方体1A)の基準線分が収得できない異常状態と見なし、警報ブザー52を駆動する(ステップ111A)。
警報ブザーの駆動処理(ステップ111A)は、監視員(オペレータ)の確認に続く解除操作によりOFFされる。
続いて、オペレータは、収得したカメラ画像をモニタ57上で確認しながら、自己の状況判断によりマウス59を操作し、堤防側、水面上の基準構造物の輪郭を明確化する(ステップ111B)。
以下、通常の制御フロー中のステップ102に戻り、ステップ107Aでの再判定において認識可能(すなわち、YES)と判定されることにより、水位演算(ステップ103〜109A)が実行され、図44の処理を完了する。
このように、簡単なマニュアル操作処理(ステップ111B)を追加することにより、水位計測システムとしての信頼性をさらに向上させることができる。
発明の効果
この発明によれば、堤防側の固定位置に設置された基準直方体(基準立方体)、基準正方形(基準長方形)または基準ポールと、水面側の浮遊物(浮き、ブイなど)に設けられた基準ポール、基準正方形(基準長方形)または基準立方体(基準直方体)とを同時に監視カメラで撮像し、監視カメラの画像を演算処理することのみにより、水位計測対象物(ダム、河川、湖、海岸など)の水位を容易に計測することができる。
このとき、カメラの設置精度も全く要求されないので、設置工事などが簡単であり、どんな場所であっても容易に設置することができ、低価格な水位計測システムを構成することができる。また、この発明による水位計測システムを既設の監視システムに付加することも容易である。
また、この発明による水位計測システムに利用される監視カメラは、基準寸法の計測(水位算出)に寄与することのみならず、異物(木材など)の検出など、多目的に利用することができる。
また、この発明による水位計測システムは、堤防側の固定位置に設置された基準直方体(基準立方体)と、堤防などの壁面と水面との境界線、簡易的な透明管内に上下移動自在に収納された浮き、既設の量水標、または、堤防端面に取り付けられた既知幅のマーカなどとの組合せにより実現することができる。
また、上記組合せに加えて、水面上の浮遊物(浮き、ブイなど)に設置された基準ポール、基準正方形(基準長方形)または基準立方体(基準長方体)を併用することも容易に可能となり、信頼性の高く安価な水位計測システムを実現することができる。
また、この発明による水位計測システムにおいて、堤防側の固定位置に設置された基準直方体(基準立方体)、基準正方形(基準長方形)または基準ポールは、仮設基準構造物に置き換えることもできるので、さらに簡単で安価な水位計測システムを構築することができる。
産業上の利用の可能性
この発明は、ダム、河川、海、湖などの水面近傍に監視カメラを設置し、基準寸法とともに収得されたカメラ画像(デジタル画像)に対して、画像処理技術を応用した演算処理を施すことにより、水位計測対象物の水位を計測するシステムとして利用される。

Claims (28)

  1. 水面または前記水面に近接する固定位置に設けられて、3軸直交形状を有し且つ3軸のうちの少なくとも1軸の寸度が既知の基準構造物と、
    前記水面の位置に関連した既知寸度または前記水面と基準物との境界線と、
    前記3軸直交形状および前記既知寸度または前記境界線を同時に撮像する撮像手段と、
    前記撮像手段により取得された画像データを記憶する記憶手段と、
    前記3軸直交形状に基づいて前記画像データの2次元座標を3次元座標に変換する演算処理手段とを備え、
    前記3次元座標に基づいて、前記基準構造物と前記既知寸度または前記境界線との3次元の位置関係を求めることにより、前記水面の水位を計測することを特徴とする水位計測システム。
  2. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記水面上の浮遊物と、
    前記浮遊物上に垂直に立設または前記浮遊物と一体化された所定長の基準ポールとを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記基準ポールにより設定されたことを特徴とする請求項1に記載の水位計測システム。
  3. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記水面上の浮遊物と、
    前記浮遊物上に一体化された基準長方形または基準正方形とを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記基準長方形または前記基準正方形の少なくとも二辺により設定されたことを特徴とする請求項1に記載の水位計測システム。
  4. 前記固定位置に設置された第1の直方体または第1の立方体の特徴部を有する第1の構造物と、
    前記水面上の浮遊物と、
    前記浮遊物上に設置または前記浮遊物と一体化された第2の直方体または第2の立方体の特徴部を有する第2の構造物とを備え、
    前記基準構造物は、前記第1の直方体または前記第1の立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記第2の構造物の直交3軸の少なくとも一辺により設定されたことを特徴とする請求項1に記載の水位計測システム。
  5. 前記固定位置に垂直に立設された所定長の基準ポールと、
    前記水面上の浮遊物と、
    前記浮遊物上に設置または前記浮遊物と一体化された直方体または立方体の特徴部を有する構造物とを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記構造物の直交3軸の少なくとも一辺により設定され、
    前記演算処理手段は、前記水位を計測するときに、前記基準構造物の座標データを用いることを特徴とする請求項1に記載の水位計測システム。
  6. 前記固定位置に設けられた長方形または正方形と、
    前記水面上の浮遊物と、
    前記浮遊物上に設置または前記浮遊物と一体化された直方体または立方体の特徴部を有する構造物とを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記構造物の直交3軸の少なくとも一辺により設定され、
    前記演算処理手段は、前記水位を計測するときに、前記基準構造物の座標データを用いることを特徴とする請求項1に記載の水位計測システム。
  7. 前記浮遊物を前記固定位置から所定範囲内に繋留するための繋留手段を備えたことを特徴とする請求項2から請求項6までのいずれか1項に記載の水位計測システム。
  8. 前記演算処理手段の制御下で駆動される警報手段を備え、
    前記演算処理手段は、前記画像データから計算された前記浮遊物の3次元位置が前記所定範囲から逸脱した場合に、前記警報手段を駆動することを特徴とする請求項7に記載の水位計測システム。
  9. 前記演算処理手段は、システム起動時または前記基準構造物の視認可能な時間帯に、前記基準構造物に関連した基準線および基準点の2次元画面上の座標データを計算し、
    前記記憶手段は、前記2次元画面上の座標を記憶し、
    前記演算処理手段は、前記水位を計測するときに、前記記憶手段に記憶された2次元画面上の座標を用いることを特徴とする請求項5または請求項6に記載の水位計測システム。
  10. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物を備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面と基準物との境界線は、前記固定位置の端面と前記水面との境界線部に関連した座標位置、または前記基準構造物と前記境界線との間の少なくとも1軸の水平距離により設定されたことを特徴とする請求項1に記載の水位計測システム。
  11. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記固定位置の前記水面を含む領域に垂直に取り付けられた透明管と、
    前記透明管内に上下移動自在に収納された浮きとを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記浮きに関連した座標位置と前記基準構造物との間の少なくとも1軸の水平距離により設定されたことを特徴とする請求項1に記載の水位計測システム。
  12. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記固定位置に近接した前記水面を含む領域に立設された量水標とを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記量水標に関連した座標位置と前記基準構造物との間の少なくとも1軸の水平距離により設定されたことを特徴とする請求項1に記載の水位計測システム。
  13. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記固定位置の端面に設けられたマーカとを備え、
    前記マーカは、前記水面に対して平行方向に一定幅を有しつつ、前記水面の変動幅を含む垂直方向の領域にわたって連続的に形成され、
    前記基準構造物は、前記直方体または立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記マーカの一定幅と前記水面との境界線部に関連した座標位置により設定されたことを特徴とする請求項1に記載の水位計測システム。
  14. 前記マーカは、前記透明管内に収納された浮き、または前記固定位置に近接した前記水面を含む領域に立設された量水標により兼用構成されたことを特徴とする請求項11または請求項13に記載の水位計測システム。
  15. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記撮像手段に近接配置された一対のレーザ発振装置とを備え、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記一対のレーザ発振装置は、前記基準構造物の近傍の水面上に一対の平行なレーザ光を照射し、
    前記水面に関連した既知寸度は、前記水面と前記一対のレーザ光との交点に関連した座標位置の既知間隔により設定されたことを特徴とする請求項1に記載の水位計測システム。
  16. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記撮像手段に近接配置された単一のレーザ発振装置とを備え、
    前記レーザ発振装置は、前記基準構造物の近傍の水面上に既知の傾斜角でレーザ光を照射し、
    前記基準構造物は、前記直方体または前記立方体の特徴部を有し、
    前記水面に関連した既知寸度は、前記水面と前記レーザ光との交点に関連した座標位置と、前記基準構造物との間の少なくとも1軸の水平距離により設定されたことを特徴とする請求項1に記載の水位計測システム。
  17. 前記演算処理手段は、システム起動時または前記基準構造物の視認可能な時間帯に、前記基準構造物の画像座標から画像全体の3次元座標データを計算し、
    前記記憶手段は、前記3次元座標データを記憶し、
    前記演算処理手段は、前記水位を計測するときに、前記記憶手段に記憶された3次元座標データに含まれる前記基準構造物の画像座標を用いることを特徴とする請求項2から請求項4までのいずれか1項、または、請求項10から請求項16までのいずれか1項に記載の水位計測システム。
  18. 前記固定位置側の基準構造物は、撤去可能な仮設構造物からなることを特徴とする請求項9または請求項17に記載の水位計測システム。
  19. 前記固定位置に設置された第1の直方体または第1の立方体の特徴部を有する構造物と、
    前記水面に関連した既知寸度を設定するための既知寸度設定手段とを備え、
    前記基準構造物は、前記第1の直方体または前記第1の立方体の特徴部を有し、
    前記既知寸度設定手段は、
    前記水面上の浮遊物上に設置または前記浮遊物と一体化された基準ポール、基準長方形または基準正方形、あるいは、第2の直方体または第2の立方体の特徴部を有する構造物と、
    前記固定位置に近接した前記水面を含む領域に取り付けられた透明管および前記透明管内に収納された浮きと、
    前記固定位置に近接した前記水面を含む領域に立設された量水標と、
    前記固定位置の端面と前記水面との境界線分に関連した座標位置と、
    前記固定位置の端面に設けられたマーカと、
    前記撮像手段に近接配置されて前記水面上にレーザ光を照射するレーザ発振装置と
    のうちの少なくとも2つの手段を含み、
    前記演算処理手段は、前記既知寸度設定手段に基づいて設定された既知寸度を含む画像データを用いて、前記水位を計測することを特徴とする請求項1に記載の水位計測システム。
  20. 前記固定位置に設置された直方体または立方体の特徴部を有する構造物と、
    前記水面に関連した既知寸度を設定するための既知寸度設定手段、または前記水面と基準物との境界線を検出するための境界線検出手段とを備え、
    前記基準構造物は、前記直方体または立方体の特徴部を有し、
    前記既知寸度設定手段または前記境界線検出手段は、
    前記固定位置に近接した前記水面を含む領域に立設された量水標と、
    前記固定位置の端面に近接した前記水面を含む領域に取り付けられた透明管および前記透明管内に収納された浮きと、
    前記固定位置の端面と前記水面との境界線分に関連した座標位置と、
    前記固定位置の端面に設けられたマーカと、
    前記撮像手段に近接配置されて前記水面上にレーザ光を照射するレーザ発振装置と
    のうちの少なくとも1つの手段を含み、
    前記演算処理手段は、前記既知寸度または前記境界線を含む画像データを用いて前記水位を計測するとともに、前記既知寸度または前記境界線を抽出するための画像上の水面境界線探索領域を、過去の計測時における水位データに基づいて制限することを特徴とする請求項1に記載の水位計測システム。
  21. 前記撮像手段は、少なくとも2軸方向の旋回機能と、前記撮像手段の水位計測時における角度位置および固定角度位置を検出するセンサ手段とを備え、
    前記記憶手段は、前記基準構造物の2次元画面上の座標データを記憶するとともに、前記固定角度位置と前記基準構造物の過去の画像収得時に記憶した旋回角度位置との少なくとも一方を記憶し、
    前記演算処理手段は、前記水位の計測時に、前記撮像手段の角度位置を、前記記憶手段に記憶された旋回角度位置に復帰させることを特徴とする請求項2から請求項6までのいずれか1項、または、請求項9から請求項20までのいずれか1項に記載の水位計測システム。
  22. 前記基準構造物および前記既知寸度の少なくとも一方は、発光体を含むことを特徴とする請求項2から請求項21までのいずれか1項に記載の水位計測システム。
  23. 前記既知寸度または前記境界線に光を照射する照明手段を備えたことを特徴とする請求項2から請求項9までのいずれか1項に記載の水位計測システム。
  24. 前記照明手段は、夜間のみに給電されることを特徴とする請求項23に記載の水位計測システム。
  25. 前記演算処理手段の制御下で駆動されるデータ異常警報手段を備え、
    前記演算処理手段は、前記画像データから前記既知寸度または前記境界線が取得できない場合、または、過去に計算された水位と今回計算された水位とが所定値以上異なる場合に、前記データ異常警報手段を駆動することを特徴とする請求項1から請求項24までのいずれか1項に記載の水位計測システム。
  26. 前記演算処理手段に接続されたモニタおよび入力端末を備え、
    前記入力端末は、前記データ異常警報手段の駆動に応答して、前記モニタの画面を参照したオペレータの操作により、前記既知寸度または前記境界線に対応した画像成分を入力可能に構成されたことを特徴とする請求項25に記載の水位計測システム。
  27. 前記演算処理手段の制御下で駆動される異物警報手段を備え、
    前記撮像手段は、前記水面上の所定領域を撮像し、
    前記演算処理手段は、前記所定領域内に、前記既知寸度または前記境界線とは無関係の所定寸法以上の大きさを有する異物が検出された場合に、前記異物警報手段を駆動することを特徴とする請求項1から請求項26までのいずれか1項に記載の水位計測システム。
  28. 前記撮像手段は、単一のITVカメラにより構成されたことを特徴とする請求項1から請求項27までのいずれか1項に記載の水位計測システム。
JP2004564080A 2003-02-27 2003-02-27 水位計測システム Pending JPWO2004076972A1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/002244 WO2004076972A1 (ja) 2003-02-27 2003-02-27 水位計測システム

Publications (1)

Publication Number Publication Date
JPWO2004076972A1 true JPWO2004076972A1 (ja) 2006-06-08

Family

ID=32923102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004564080A Pending JPWO2004076972A1 (ja) 2003-02-27 2003-02-27 水位計測システム

Country Status (2)

Country Link
JP (1) JPWO2004076972A1 (ja)
WO (1) WO2004076972A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169348A (ja) * 2017-03-30 2018-11-01 三菱電機株式会社 水面状況監視システムおよび水面状況監視方法

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3907200B2 (ja) * 2005-07-08 2007-04-18 株式会社ベーシックエンジニアリング 環境情報観測装置
JP4523904B2 (ja) * 2005-10-31 2010-08-11 日本電信電話株式会社 水位計測装置とこの水位計測装置を使用した水位計測システム
JP2008057994A (ja) * 2006-08-29 2008-03-13 Basic Engineering:Kk 画像処理による水位観測システム
FR2937130A1 (fr) * 2008-10-14 2010-04-16 Sita France Dispositif de mesure du niveau d'un liquide ou d'une substance pulverulente dans un contenant
JP5601255B2 (ja) * 2011-03-18 2014-10-08 富士通株式会社 水位監視装置、水位監視方法及び水位監視プログラム
JP2012202794A (ja) * 2011-03-25 2012-10-22 Tokyo Electric Power Co Inc:The 水位計測装置および水位計測方法
CN102721451A (zh) * 2012-05-30 2012-10-10 吴江市精工铝字制造厂 基于rfid技术的基坑积水监测系统
CN102722187A (zh) * 2012-05-30 2012-10-10 吴江市精工铝字制造厂 基于Android技术的基坑积水控制系统
CA2830402A1 (en) * 2012-10-23 2014-04-23 Syscor Controls & Automation Inc Visual monitoring system for covered storage tanks
CN103017869B (zh) * 2012-11-28 2015-07-29 华南农业大学 一种基于数字图像处理的水位测定系统及方法
CN106338474A (zh) * 2013-03-18 2017-01-18 河海大学 采用摄像装置监测水质的水情监测系统及其工作方法
KR101284842B1 (ko) 2013-04-12 2013-07-10 브이씨에이 테크놀러지 엘티디 수위 측정 장치 및 방법
GB2520721A (en) * 2013-11-29 2015-06-03 Airbus Operations Ltd Fuel surface height measurement
JP6213201B2 (ja) * 2013-12-09 2017-10-18 日本ゼオン株式会社 界面制御方法
KR101640793B1 (ko) * 2014-11-13 2016-07-20 한국해양과학기술원 연안해역 실시간 이상현상 관측방법
JP6459649B2 (ja) * 2015-03-06 2019-01-30 富士通株式会社 画像処理装置、画像処理方法および画像処理プログラム
CN106979803B (zh) * 2017-03-31 2020-02-18 邢杰炜 一种基于航拍无人机的测量河道流量的方法
CN109489637B (zh) * 2018-11-08 2019-10-18 清华大学 水量变化监测方法、装置、计算机设备和存储介质
JP6858415B2 (ja) * 2019-01-11 2021-04-14 学校法人福岡工業大学 海面計測システム、海面計測方法および海面計測プログラム
JP7393612B2 (ja) * 2019-02-27 2023-12-07 ダイキン工業株式会社 水位判定装置及びこの水位判定装置を備える空気調和機
KR102016037B1 (ko) * 2019-05-08 2019-08-29 주식회사 월드씨앤에스 식별표지를 이용한 수위 측정 장치
JP2021018214A (ja) * 2019-07-23 2021-02-15 キョーラク株式会社 フロート集合体を管理するシステム
JP7485917B2 (ja) 2020-04-06 2024-05-17 株式会社デンソーウェーブ レーザレーダシステム
CN113819971A (zh) * 2020-07-07 2021-12-21 湖北亿立能科技股份有限公司 基于水、标尺和漂浮物语义分割的人工智能水位监测系统
CN112433227B (zh) * 2021-01-28 2021-05-18 中国地质大学(武汉) 一种水容量变化监测方法、系统、终端设备及存储介质
CN112861856B (zh) * 2021-02-05 2022-05-27 慧目(重庆)科技有限公司 一种基于计算机视觉的排水监测方法及水体监测方法
CN113639822B (zh) * 2021-08-13 2024-01-16 湖北工业大学 测量机器人用于大坝变形监测时的辅助水位测量方法
KR102629681B1 (ko) * 2021-12-06 2024-01-29 한국해양과학기술원 영상 기반 월파 측정 방법 및 장치
JP7221445B1 (ja) * 2022-11-04 2023-02-13 西日本技術開発株式会社 水位計測装置および水位計測方法、並びにプログラム
CN116310999B (zh) * 2023-05-05 2023-07-21 贵州中水能源股份有限公司 一种水力发电站库区大型漂浮物检测方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2806451B2 (ja) * 1996-06-04 1998-09-30 防衛庁技術研究本部長 波高測定法
JP3701167B2 (ja) * 2000-03-30 2005-09-28 日本無線株式会社 水位計測方法および装置
JP2001343274A (ja) * 2000-06-01 2001-12-14 Masako Hata 画像処理による水位計測装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018169348A (ja) * 2017-03-30 2018-11-01 三菱電機株式会社 水面状況監視システムおよび水面状況監視方法

Also Published As

Publication number Publication date
WO2004076972A1 (ja) 2004-09-10

Similar Documents

Publication Publication Date Title
JPWO2004076972A1 (ja) 水位計測システム
CN104568983B (zh) 基于主动式全景视觉的管道内部缺陷检测装置及方法
AU2004282274B2 (en) Method and device for determining the actual position of a geodetic instrument
US10954648B1 (en) Multi-sensor manhole survey
CN104776977A (zh) 一种海岸工程泥沙物理模型试验底床动态综合观测方法
AU2019209754B2 (en) Method of and apparatus for monitoring positions on an object
CN106646509B (zh) 一种基于实景点云数据的杆塔护坡破损评估方法
ES2763934T3 (es) Sistema, procedimiento y producto de programa informático para determinar una posición y/o una orientación de una construcción marina
CN114001801B (zh) 一种长期地下水位观测装置及其观测方法
CN105445752A (zh) 基于激光三维成像的输电线路保护装置及方法
CN105910599A (zh) 机器人设备及其定位目标物方法
WO2016142576A1 (en) Method and target for underwater scanning of an object
CN110243293A (zh) 基于结构光和机器视觉的管片错台快速检测装置与方法
CN105865421A (zh) 基于照相机图像处理技术的水槽三维地形测量装置
WO2022059603A1 (ja) 浸水被害判定装置、浸水被害判定方法及びプログラム
JP4221432B2 (ja) 水位計測装置
JP3796488B2 (ja) 沈埋函沈設誘導装置および沈設誘導方法
US20240040247A1 (en) Method for capturing image, method for processing image, image capturing system, and information processing system
Fang et al. Extraction 3D road boundaries from mobile laser scanning point clouds
CN106895821B (zh) 一种基于北斗定位系统的沉降监测路灯
CN115187854A (zh) 一种面向水下地形局部变化的监测方法和系统
JP6869416B1 (ja) 反射板、測距装置、測距方法、変位観測システム、及びプログラム
Lim et al. Differential settlement monitoring system using inverse perspective mapping
KR101358455B1 (ko) 고정밀 항공이미지의 자동 항공촬영장치
KR102012514B1 (ko) 교량 하부 대상 영상안전점검 장치

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125