JPWO2004050649A1 - Perfluoro five-membered ring compound - Google Patents

Perfluoro five-membered ring compound Download PDF

Info

Publication number
JPWO2004050649A1
JPWO2004050649A1 JP2004570717A JP2004570717A JPWO2004050649A1 JP WO2004050649 A1 JPWO2004050649 A1 JP WO2004050649A1 JP 2004570717 A JP2004570717 A JP 2004570717A JP 2004570717 A JP2004570717 A JP 2004570717A JP WO2004050649 A1 JPWO2004050649 A1 JP WO2004050649A1
Authority
JP
Japan
Prior art keywords
compound
reaction
fluorine
fnmr
following formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004570717A
Other languages
Japanese (ja)
Inventor
大春 一也
一也 大春
高木 洋一
洋一 高木
真男 岩谷
真男 岩谷
室谷 英介
英介 室谷
岡本 秀一
秀一 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2004050649A1 publication Critical patent/JPWO2004050649A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/42Halogen atoms or nitro radicals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

ペルフルオロ化されたテトラヒドロフラン環構造、およびペルフルオロ化されたジオキソラン環構造等のペルフルオロ化された五員環構造を有する新規な化合物を提供する。該新規な化合物は、フッ素樹脂用モノマーおよびフッ素系溶剤等の機能性材料、もしくはそれらの中間体として有用である。Novel compounds having a perfluorinated five-membered ring structure such as a perfluorinated tetrahydrofuran ring structure and a perfluorinated dioxolane ring structure are provided. The novel compounds are useful as functional materials such as monomers for fluorine resins and fluorine-based solvents, or intermediates thereof.

Description

本発明は、種々の機能性材料やその中間体として有用であり、かつ新規な2−置換(ヘプタフルオロテトラヒドロフラン)誘導体およびペルフルオロジオキソラン誘導体等の、ペルフルオロ化された五員環化合物に関する。より詳しくは、本発明は、フッ素樹脂用モノマー製造用中間体、フッ素系溶剤、およびこれらの製造原料等として有用な新規な化合物に関する。  The present invention relates to a perfluorinated five-membered ring compound such as a novel 2-substituted (heptafluorotetrahydrofuran) derivative and a perfluorodioxolane derivative that is useful as various functional materials and intermediates thereof. More specifically, the present invention relates to an intermediate for producing a monomer for a fluororesin, a fluorinated solvent, and a novel compound useful as a raw material for production thereof.

ペルフルオロ化されたテトラヒドロフラン環構造およびペルフルオロ化されたジオキソラン環構造等のペルフルオロ化された五員環構造を有する化合物は、ペルフルオロ化された5員環の環状エーテル構造に基づく種々の物性が期待できる化合物である。これまでに本発明者らは、より工業的に有利な方法で安価な原料からペルフルオロ化されたテトラヒドロフラン環構造を有する化合物を製造する方法を提供している(国際公開02/66452号パンフレット参照)。
一方、ポリテトラフルオロエチレン(PTFE)に代表されるフッ素樹脂は、化学的安定性および熱的安定性に優れ、かつ耐薬品性を有することから、電子産業等の種々の機能性材料として用いられている。しかし、汎用のフッ素樹脂は、溶融粘度が高いために成形がしにくい問題や、ポリマー主鎖の結晶性が高いために透明性が低い等の欠点も有していた。該欠点を改良する方法として、鎖状のパーフルオロアルキルビニルエーテル等のフッ素系モノマーを第2成分として共重合させたフッ素樹脂が提案されている(国際公開00/02935号パンフレット参照)。しかし、ポリマー物性を充分に改良するには、第2成分の共重合割合を増加させる必要があり、一方で、第2成分の共重合割合の増加はフッ素樹脂製品の耐熱性を低下させる要因になる問題があった。
また、1,1,2−トリクロロ−1,2,2−トリフルオロエタン(以下、R−113と記す。)に代表されるクロロフルオロカーボン(CFC)は、地球規模の環境保護の観点からその製造および使用が制限されている。CFCの代替化合物の1つにヒドロフルオロエーテル(HFE)があり、種々の構造の化合物が提案されている。該化合物としては、ペルフルオロ化環状エーテル構造を有する化合物が提案されていたが、該化合物は製造がしにくい問題があった。また、フッ素原子と水素原子の導入位置が制御された純度の高い化合物は提供されていなかった。
本発明は上記の問題を解決する目的でなされたものである。すなわちペルフルオロ化されたテトラヒドロフラン環構造およびペルフルオロ化されたジオキソラン環構造等のペルフルオロ化された五員環構造を有する有用な化合物を新規に提供する。また、本発明は該化合物を誘導体化することによって、フッ素樹脂用モノマーとして有用な化合物、および、洗浄性およびその汎用性に優れ、かつ、環境問題にも対応する化合物の提供を目的とする。
Compounds having a perfluorinated five-membered ring structure such as a perfluorinated tetrahydrofuran ring structure and a perfluorinated dioxolane ring structure can be expected to have various physical properties based on a perfluorinated five-membered cyclic ether structure It is. So far, the present inventors have provided a method for producing a perfluorinated compound having a tetrahydrofuran ring structure from an inexpensive raw material by a more industrially advantageous method (see International Publication No. 02/66452 pamphlet). .
On the other hand, fluororesins represented by polytetrafluoroethylene (PTFE) are excellent in chemical stability and thermal stability and have chemical resistance, and are therefore used as various functional materials in the electronics industry and the like. ing. However, general-purpose fluororesins have problems such as difficulty in molding due to high melt viscosity and low transparency due to high crystallinity of the polymer main chain. As a method for improving this defect, a fluororesin obtained by copolymerizing a fluorine-based monomer such as a chain perfluoroalkyl vinyl ether as a second component has been proposed (see International Publication No. 00/02935 pamphlet). However, in order to sufficiently improve the physical properties of the polymer, it is necessary to increase the copolymerization ratio of the second component. On the other hand, the increase in the copolymerization ratio of the second component is a factor that decreases the heat resistance of the fluororesin product. There was a problem.
A chlorofluorocarbon (CFC) represented by 1,1,2-trichloro-1,2,2-trifluoroethane (hereinafter referred to as R-113) is produced from the viewpoint of global environmental protection. And use is limited. One alternative compound for CFC is hydrofluoroether (HFE), and compounds of various structures have been proposed. As the compound, a compound having a perfluorinated cyclic ether structure has been proposed, but the compound has a problem that it is difficult to produce. Moreover, a high-purity compound in which the introduction positions of fluorine atoms and hydrogen atoms are controlled has not been provided.
The present invention has been made for the purpose of solving the above problems. That is, it provides a novel useful compound having a perfluorinated five-membered ring structure such as a perfluorinated tetrahydrofuran ring structure and a perfluorinated dioxolane ring structure. Another object of the present invention is to provide a compound useful as a monomer for a fluororesin by derivatizing the compound, and a compound that is excellent in detergency and versatility, and that also copes with environmental problems.

本発明者らはペルフルロ化された環状エーテル誘導体を製造する方法を検討した。その結果、ペルフルオロテトラヒドロフラン骨格等のペルフルオロ化された五員環構造を有する特定の環状エーテル化合物から、新規なフッ素系モノマーおよびフッ素系溶剤として有用な新規な化合物が提供されることを見いだした。
すなわち本発明は、以下に示す式で表される化合物を提供する。
1.下式(1)で表される化合物。

Figure 2004050649
ただし、Q、Q、Q、およびQは、それぞれ独立に、−O−または−CR−(ただし、RおよびRは、それぞれ独立に、フッ素原子またはペルフルオロアルキル基であり、Q〜Qから選ばれる、隣り合う2個以上の基は同時に−O−にはならない。)であり、Rはフッ素原子またはペルフルオロアルキル基である。
2.下式(1a)で表される化合物、下式(1b)で表される化合物、または下式(1c)で表される化合物。
Figure 2004050649
3.下式(2)で表される化合物。
Figure 2004050649
ただし、Q〜QおよびRは、前記と同じ意味を示す。
4.下式(2a)で表される化合物、下式(2b)で表される化合物、または下式(2c)で表される化合物。
Figure 2004050649
5.下式(3)で表される化合物。
Figure 2004050649
ただし、Q〜QおよびRは、前記と同じ意味を示す。
6.下式(3a)で表される化合物。
Figure 2004050649
The present inventors examined a method for producing a perfluorinated cyclic ether derivative. As a result, it has been found that a novel fluorine-based monomer and a novel compound useful as a fluorine-based solvent are provided from a specific cyclic ether compound having a perfluorinated five-membered ring structure such as a perfluorotetrahydrofuran skeleton.
That is, the present invention provides a compound represented by the following formula.
1. A compound represented by the following formula (1).
Figure 2004050649
Provided that Q 1 , Q 2 , Q 3 , and Q 4 are each independently —O— or —CR a R b — (wherein R a and R b are each independently a fluorine atom or a perfluoroalkyl group, And two or more adjacent groups selected from Q 1 to Q 4 cannot simultaneously be —O—.) And R 1 is a fluorine atom or a perfluoroalkyl group.
2. A compound represented by the following formula (1a), a compound represented by the following formula (1b), or a compound represented by the following formula (1c).
Figure 2004050649
3. A compound represented by the following formula (2).
Figure 2004050649
However, Q 1 to Q 4 and R 1 are as defined above.
4). A compound represented by the following formula (2a), a compound represented by the following formula (2b), or a compound represented by the following formula (2c).
Figure 2004050649
5). A compound represented by the following formula (3).
Figure 2004050649
However, Q 1 to Q 4 and R l are as defined above.
6). A compound represented by the following formula (3a).
Figure 2004050649

本明細書においては、式(1)で表される化合物を化合物(1)とも記す。他の式で表される化合物についても同様である。
本発明において、Q、Q2、、およびQは、それぞれ独立に、−O−または−CR−(ただし、RおよびRは、それぞれ独立に、フッ素原子またはペルフルオロアルキル基であり、Q〜Qから選ばれる、隣り合う2個以上の基は同時に−O−にはならない。)であり、Rはフッ素原子またはペルフルオロアルキル基である。R、RおよびRがそれぞれペルフルオロアルキル基である場合、該基は直鎖構造または分岐構造であるのが好ましく、また、炭素数1〜4の基が好ましく、トリフルオロメチル基が特に好ましい。Q〜Qが、それぞれ−CR−である場合のRおよびRは、それぞれ独立に、フッ素原子またはトリフルオロメチル基が好ましい。また、Rはフッ素原子またはトリフルオロメチル基が好ましい。
式(1)、式(2)、および式(3)において、Q〜Qで形成される五員環の基としては、たとえば、下式(a)〜(s)で表される基が挙げられ、フッ素樹脂用モノマーおよびフッ素系溶剤としての有用性の点から下式(a)〜(c)で表される基のいずれかの基が好ましい。

Figure 2004050649
式(1)で表される化合物としては、後述する式(1a)、式(1b)、又は式(1c)で表される化合物が好ましい。
本発明の式(1)で表される化合物は、つぎの方法で製造できる。
すなわち、下式(4)で表される化合物を原料とし、これを本出願人によるWO02/66452に記載する方法にしたがって、エステル化、フッ素化およびエステル結合の分解反応を行うことにより、下式(7)で表されるペルフルオロ化されたアシルフルオリドを得る。次に、下式(7)で表されるペルフルオロ化されたアシルフルオリドにヘキサフルオロプロピレンオキシド(以下、HFPOと記す。)を反応させる方法である。化合物(4)から化合物(7)を製造する工程は、WO02/66452に記載する方法および条件と同様に実施できる。
Figure 2004050649
ただし、式中のQ〜Q、およびRは前記と同じ意味を示す。Q1HとQ、Q2HとQ、Q3HとQ、Q4HとQはそれぞれ対応し、Q〜Qがそれぞれ−O−である場合のQ1H〜Q4Hは−O−であり、Q〜Qが−CR−である場合のQ1H〜Q4Hは−CR−中のフッ素原子を水素原子に置換した基である。またR1HはRに対応し、Rがフッ素原子である場合のR1Hは水素原子、Rがペルフルオロアルキル基である場合のR1Hは該ペルフルオロアルキル基と同一炭素骨格を有するアルキル基である。
は、ペルフルオロ化された1価有機基を示し、ペルフルオロアルキル基、または、ペルフルオロ(エーテル性酸素原子含有アルキル基)が好ましい。Rの好ましい例としては、−CFCF(CF、−CF(CF)OCFCFCF、−CF(CF)OCFCF(CF)OCFCFCF等が挙げられる。Xはハロゲン原子を示し、フッ素原子が好ましい。
たとえば、化合物(1a)は、2−テトラヒドロフルフリルアルコールに下式(10)で表される化合物(ただし、Rは前記と同じ意味を示す。)をエステル化反応させて下式(5a)で表される化合物とし、該化合物(5a)を液相中でフッ素と反応させることによってペルフルオロ化して下式(6a)で表される化合物とし、該化合物(6a)のエステル結合の分解反応を行うことによって下式(7a)で表される2,3,3,4,4,5,5−ヘプタフルオロテトラヒドロフラン−2−アシルフルオリドを得る。つぎに該化合物(7a)にHFPOを反応させる方法で製造できる。
Figure 2004050649
化合物(1b)は、2,2−ジメチル−4−メチロール−1,3−ジオキソランに、化合物(10)(ただし、Rは前記と同じ意味を示す。)をエステル化反応させて化合物(5b)とし、該化合物(5b)を液相中でフッ素と反応させることによってペルフルオロ化して化合物(6b)とし、該化合物(6b)のエステル結合の分解反応を行うことによってペルフルオロ−2,2−ジメチル−1,3−ジオキソラン−4−アシルフルオリド(7b)を得る。つぎに該化合物(7b)にHFPOを反応させることによって製造できる。
Figure 2004050649
化合物(1c)は、2,4−ジメチル−2−メチロール−1,3−ジオキソランに、化合物(10)(ただし、Rは前記と同じ意味を示す。)をエステル化反応させて化合物(5c)とし、該化合物(5c)を液相中でフッ素と反応させることによってペルフルオロ化して化合物(6c)とし、該化合物(6c)のエステル結合の分解を行うことによってペルフルオロ−2,4−ジメチル−1,3−ジオキソラン−2−アシルフルオリド(7c)を得る。つぎに該化合物(7c)にHFPOを反応させることによって製造できる。
Figure 2004050649
また、化合物(7c)は上記以外の方法(たとえば、米国特許3475456号公報に記載の方法等)によっても製造することができ、該方法によって入手した化合物(7c)にHFPOを反応させて化合物(1c)を得てもよい。
化合物(7)にHFPOを付加させて、化合物(1a)〜(1c)等の化合物(1)を得る反応は、触媒の存在下に実施するのが好ましい。この際、化合物(7)は、HFPOに対して、通常は0.5〜2.0倍モルを反応させるのが好ましく、特には0.9〜1.1倍モルを反応させるのが好ましい。
化合物(7)とHFPOとの反応に用いうる触媒としては、アルカリ金属フッ化物およびアルカリ土類金属フッ化物の中から選ばれる1種以上の金属フッ化物が好ましい。アルカリ金属フッ化物としては、フッ化カリウム、フッ化ナトリウム、およびフッ化セシウム等が好ましく、アルカリ土類金属フッ化物としては、フッ化カルシウム等が好ましい。アルカリ金属フッ化物またはアルカリ土類金属フッ化物を使用する場合の量は、HFPOに対して0.01〜0.7倍モルが好ましく、0.05〜0.7倍モルが特に好ましく、とりわけ0.1〜0.4倍モルが好ましい。化合物(7)に対しては0.005〜0.3倍モルが好ましく、0.01〜0.1倍モルが特に好ましい。該量が多すぎるとHFPO自体がオリゴメリ化して収率が低下するおそれがある。
化合物(7)とHFPOとの反応は、溶媒の存在下に行うのが好ましい。溶媒は、非プロトン性極性有機溶媒を使用するのが好ましい。非プロトン性極性有機溶媒としては特に制限されず、たとえば、モノグライム、ジグライム、トリグライム、テトラグライム、ジエチルエーテル、ジブチルエーテル、ジイソプロピルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類、アセトニトリル、プロピオニトリル、アジポニトリル等のニトリル類、ジメチルホルムアミド、ジメチルアセトアミド等の鎖状アミド類、および1、3−ジメチル−2−イミダゾリジノン、N−メチル−2−ピロリドン等の環状アミド等から選ばれる1種または2種以上の溶媒が挙げられる。
化合物(7)とHFPOとの反応に溶媒を使用した場合には、HFPOのオリゴメリ化が防止できるので、溶媒は使用したほうがよい。溶媒を使用する場合の量は、化合物(7)およびHFPOの合計量(触媒を使用する場合には前記合計量に触媒量を加えた量)に対して、上限は3倍質量が好ましく、2倍質量が特に好ましく、0.5倍質量がとりわけ好ましい。下限は0.001倍質量が好ましく、0.01倍質量が好ましく、0.05倍質量がとりわけ好ましい。通常の場合の溶媒の使用量は0.01〜0.5倍質量が好ましい。
化合物(7)とHFPOとの反応においては、反応の系中に水および/またはルイス酸(たとえばプロトン酸など)が存在すると、好ましくない反応が起こるおそれがあるため、系中のこれらの量をできるだけ少なくするのが好ましい。反応の系中に存在しうる水およびルイス酸の量は、それぞれ0.005質量%以下にするのが好ましい。系中の水分量を少なくすることにより、化合物(7)やHFPOが水と反応して反応収率が低下する現象を防止できる。また、ルイス酸量を少なくすることにより、触媒活性を長期に保つことができ、かつ反応転化率が高くなりうる。
化合物(7)とHFPOとの反応において、圧力は特に制限されず、減圧、常圧、または加圧系で反応は実施でき、操作性等の観点からは1.1MPa(ゲージ圧)以下で反応を実施することが好ましい。反応温度は、反応溶媒の種類等により適宜変更され、通常は+80℃以下にするのが好ましく、特に−50℃〜+80℃にするのが好ましく、−20℃〜+30℃にするのがとりわけ好ましい。反応温度を高温にしすぎると、目的とする反応と同時に、フッ素イオンを触媒としたHFPOのオリゴメリ化が競争的に進行し、収率が低下する可能性がある。
化合物(1)は、それ自身が溶剤等として利用できる有用な化合物であり、かつ新規な化合物である。特に化合物(1a)〜(1c)は、含フッ素化合物を良好に溶解しうる溶剤として有用である。さらに該化合物(1)は−COF基の反応性を利用して、種々の有用な化合物に誘導体化できる。たとえば、化合物(1a)〜(1c)等の化合物(1)の気相熱分解反応またはカルボン酸塩の熱分解により、化合物(2)が製造できる。
化合物(1)を気相熱分解反応して化合物(2)を得る反応は、連続式反応で行うのが好ましい。連続式反応は、加熱した反応管中に、化合物(1)を気体状で通過させて、分解反応を行い、分解反応で生成した化合物(2)を、凝縮し、連続的に回収する方法により実施するのが好ましい。気相熱分解の反応温度は、+100〜+450℃が好ましく、とりわけ+200〜+400℃が好ましい。反応温度が高くなりすぎると、化合物(2)がさらに分解して収率が低下するおそれがある。一方、反応温度が低すぎると、化合物(1)の反応率が低下するおそれがある。
化合物(1)の気相熱分解反応においては、管型反応器を用いるのが好ましい。管型反応器を用いる場合の滞留時間は、空筒基準で0.1秒〜10分程度が好ましい。反応圧力は特に限定されない。該管型反応器には、反応を促進させる目的で、管中にガラス、アルカリ金属の塩、またはアルカリ土類金属の塩等を充填するのが好ましい。アルカリ金属の塩またはアルカリ土類金属の塩としては、炭酸塩が好ましい。アルカリ金属の塩の具体例としては、炭酸ナトリウム(軽灰等であってもよい。)、炭酸カリウム、炭酸リチウム等が挙げられる。アルカリ土類金属の炭酸塩の具体例としては、炭酸カルシウム、炭酸マグネシウム、炭酸バリウム等が挙げられる。ガラスとしては、一般的なソーダライムガラスが挙げられ、特にビーズ状にして流動性を上げたガラスビーズが好ましい。さらに、管式反応管中にガラス、アルカリ金属の塩、またはアルカリ土類金属の塩を充填させる場合には、粒径が100〜250μm程度であるものを用いると、流動床型の反応形式を採用できることから特に好ましい。
熱分解反応を気相反応で実施する場合は、化合物(1)の気化を促進する目的で、熱分解反応には直接は関与しない不活性ガスを存在させて反応を行うのが好ましい。不活性ガスとしては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガス等が挙げられる。不活性ガス量は、化合物(1)に対して0.01〜98体積%程度が好ましく、0.01〜50体積%程度が特に好ましい。不活性ガス量が多すぎると、化合物(2)の回収量が低くなるおそれがある。
一方、化合物(1)をカルボン酸塩とした後に熱分解することによって化合物(2)を製造する方法において、カルボン酸塩としては、アルカリ金属塩またはアルカリ土類金属塩が好ましい。アルカリ金属塩またはアルカリ土類金属塩は、アルカリ金属水酸化物またはアルカリ土類金属水酸化物を水溶液とし、該水溶液に化合物(1)を中和点まで加え、つぎに水を除去して乾燥する方法により得るのが好ましい。カルボン酸塩の熱分解反応は、加熱することにより実施できる。熱分解反応で発生するガス成分には化合物(2)が含まれることから、該ガスを低温冷却したトラップ中に回収するのが好ましい。熱分解反応の温度は+100〜+400℃が好ましく、+200〜+350℃が特に好ましい。
熱分解反応によれば、化合物(1a)からは化合物(2a)が得られ、化合物(1b)からは化合物(2b)が得られ、化合物(1c)からは化合物(2c)が得られる。
熱分解反応で得た化合物(2)の用途は特に限定されない。たとえば、該化合物は、重合しうるフッ化ビニル基を有する化合物であることから、フッ素樹脂用モノマーとして有用であり、かつ新規な化合物である。化合物(2)としては、化合物(2a)、化合物(2b)、または化合物(2c)が好ましい。該化合物(2)は、汎用のフッ素樹脂用モノマーと共重合させることによって、有効に物性が改良されたフッ素樹脂が提供されうる。たとえば、化合物(2a)を共重合させた共重合体は、立体的に嵩高い基であるペルフルオロ化されたテトラヒドロフラン環構造を側鎖に持つ共重合体になり、または化合物(2b)、または化合物(2c)を重合させた共重合体は、立体的に嵩高い基であるペルフルオロ化されたジオキソラン環構造を側鎖に持つ共重合体であるため、たとえ少量の共重合であってもフッ素樹脂等の物性を有効に改良しうる。
化合物(1)からは、化合物(3a)等の化合物(3)もまた製造できる。化合物(3)は、化合物(1)をカルボン酸塩とし、つぎにプロトン性溶媒中で熱分解することにより製造できる。化合物(3)としては、下記化合物(3a)、下記化合物(3b)、または下記化合物(3c)が好ましい。化合物(3a)等の化合物(3)は、含フッ素溶剤等として有用な化合物である。
Figure 2004050649
化合物(1)から化合物(3)を製造する方法において、カルボン酸塩としては、アルカリ金属塩またはアルカリ土類金属塩が好ましい。アルカリ金属塩またはアルカリ土類金属塩は、アルカリ金属水酸化物またはアルカリ土類金属水酸化物をプロトン性溶媒の溶液とし、該溶液に化合物(1)を中和点まで加えることにより、該塩の溶液または懸濁液として得るのが好ましい。つぎに該カルボン酸塩を、プロトン性溶媒中で熱分解させる。プロトン性溶媒としては、水、アルコール、グリコール類等から選ばれる1種または2種以上の溶媒が好ましい。プロトン性溶媒の量は、カルボン酸塩が溶解する量よりも多い量が好ましい。また、熱分解の温度は+30〜+200℃が好ましく、+50〜+200℃が特に好ましく、+80〜+150℃がとりわけ好ましい。
該製造方法においては、得られたカルボン酸塩をいったん取り出して、プロトン性溶媒中で熱分解を行ってもよく、カルボン酸塩を製造する工程と、熱分解する工程とを、同一の反応器で連続して行ってもよい。
化合物(3a)等の化合物(3)は、化合物(2)にHFを付加することによっても製造できる。HFの付加反応は液相で行うのが好ましく、反応条件は化合物(2)の反応性等により適宜設定される。
化合物(3a)等の、化合物(3)は、フッ素系溶剤としての安定性、不燃性、および安全性等の性質を併せ持つ化合物である。また、溶剤特性、洗浄特性などのバランスにも優れることから、フッ素系溶剤が適用される各種の用途に用いることができる新規化合物である。また、化合物(3)は、炭化水素類や、ハロゲン化合物、エーテル類、エステル類、アルコール類等とも相溶しうることから、これらとの組成物を形成させて、種々の用途に使用できる。In the present specification, the compound represented by the formula (1) is also referred to as the compound (1). The same applies to compounds represented by other formulas.
In the present invention, Q 1 , Q 2, Q 3 , and Q 4 are each independently —O— or —CR a R b — (wherein R a and R b are each independently a fluorine atom or perfluoro And two or more adjacent groups selected from Q 1 to Q 4 are not simultaneously —O—, and R 1 is a fluorine atom or a perfluoroalkyl group. When R a , R b and R 1 are each a perfluoroalkyl group, the group is preferably a linear or branched structure, a group having 1 to 4 carbon atoms is preferred, and a trifluoromethyl group is particularly preferred preferable. When Q 1 to Q 4 are each —CR a R b —, R a and R b are each independently preferably a fluorine atom or a trifluoromethyl group. R 1 is preferably a fluorine atom or a trifluoromethyl group.
In the formula (1), formula (2), and formula (3), examples of the 5-membered ring group formed by Q 1 to Q 4 include groups represented by the following formulas (a) to (s): And any one of the groups represented by the following formulas (a) to (c) is preferable from the viewpoint of usefulness as a monomer for a fluororesin and a fluorine-based solvent.
Figure 2004050649
As a compound represented by Formula (1), the compound represented by Formula (1a), Formula (1b), or Formula (1c) mentioned later is preferable.
The compound represented by Formula (1) of this invention can be manufactured with the following method.
That is, the compound represented by the following formula (4) is used as a raw material, and this is subjected to esterification, fluorination and ester bond decomposition reaction according to the method described in WO 02/66452 by the present applicant. A perfluorinated acyl fluoride represented by (7) is obtained. Next, it is a method in which hexafluoropropylene oxide (hereinafter referred to as HFPO) is reacted with the perfluorinated acyl fluoride represented by the following formula (7). The step of producing compound (7) from compound (4) can be carried out in the same manner as in the method and conditions described in WO02 / 66452.
Figure 2004050649
However, Q 1 to Q 4 in the formula, and R 1 are as defined above. Q 1H and Q 1 , Q 2H and Q 2 , Q 3H and Q 3 , Q 4H and Q 4 correspond to each other, and Q 1H to Q 4H in the case where Q 1 to Q 4 are each —O— When Q 1 to Q 4 are —CR a R b —, Q 1H to Q 4H are groups in which the fluorine atom in —CR a R b — is substituted with a hydrogen atom. The R IH corresponds to R 1, an alkyl group having R IH is R IH is the perfluoroalkyl group and the same carbon skeleton when hydrogen atom, R l is a perfluoroalkyl group of R 1 is a fluorine atom It is.
R f represents a perfluorinated monovalent organic group, and is preferably a perfluoroalkyl group or a perfluoro (etheric oxygen atom-containing alkyl group). Preferred examples of R f include —CF 2 CF (CF 3 ) 2 , —CF (CF 3 ) OCF 2 CF 2 CF 3 , —CF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 Etc. X represents a halogen atom, preferably a fluorine atom.
For example, the compound (1a) is obtained by subjecting 2-tetrahydrofurfuryl alcohol to a compound represented by the following formula (10) (wherein R f has the same meaning as described above) by an esterification reaction: The compound (5a) is perfluorinated by reacting with fluorine in the liquid phase to obtain a compound represented by the following formula (6a), and the ester bond decomposition reaction of the compound (6a) is carried out. By carrying out, 2,3,3,4,4,5,5-heptafluorotetrahydrofuran-2-acyl fluoride represented by the following formula (7a) is obtained. Next, the compound (7a) can be produced by reacting HFPO.
Figure 2004050649
Compound (1b) was obtained by subjecting 2,2-dimethyl-4-methylol-1,3-dioxolane to compound (10) (wherein R f represents the same meaning as described above) by esterification. The compound (5b) is perfluorinated by reacting with fluorine in the liquid phase to obtain a compound (6b), and the ester bond decomposition reaction of the compound (6b) is carried out to obtain perfluoro-2,2-dimethyl. -1,3-Dioxolane-4-acyl fluoride (7b) is obtained. Next, it can be produced by reacting the compound (7b) with HFPO.
Figure 2004050649
Compound (1c) is obtained by subjecting 2,4-dimethyl-2-methylol-1,3-dioxolane to compound (10) (wherein R f has the same meaning as described above) for esterification. The compound (5c) is perfluorinated by reacting with fluorine in the liquid phase to obtain a compound (6c), and the ester bond of the compound (6c) is decomposed to obtain perfluoro-2,4-dimethyl- 1,3-dioxolane-2-acyl fluoride (7c) is obtained. Next, it can be produced by reacting the compound (7c) with HFPO.
Figure 2004050649
Compound (7c) can also be produced by methods other than those described above (for example, the method described in US Pat. No. 3,475,456). Compound (7c) obtained by the method is reacted with HFPO to give compound (7 1c) may be obtained.
The reaction of adding HFPO to compound (7) to obtain compound (1) such as compounds (1a) to (1c) is preferably carried out in the presence of a catalyst. Under the present circumstances, it is preferable that compound (7) reacts 0.5-2.0 times mole normally with respect to HFPO, and it is preferable to make 0.9-1.1 times mole react especially.
As a catalyst that can be used for the reaction of the compound (7) and HFPO, one or more metal fluorides selected from alkali metal fluorides and alkaline earth metal fluorides are preferable. As the alkali metal fluoride, potassium fluoride, sodium fluoride, cesium fluoride and the like are preferable, and as the alkaline earth metal fluoride, calcium fluoride and the like are preferable. The amount in the case of using an alkali metal fluoride or an alkaline earth metal fluoride is preferably 0.01 to 0.7 times mol, particularly preferably 0.05 to 0.7 times mol, particularly 0 to HFPO. .1 to 0.4 times mole is preferable. 0.005-0.3 times mole is preferable with respect to compound (7), and 0.01-0.1 times mole is especially preferable. If the amount is too large, the HFPO itself may oligomerize and the yield may decrease.
The reaction between compound (7) and HFPO is preferably carried out in the presence of a solvent. As the solvent, an aprotic polar organic solvent is preferably used. The aprotic polar organic solvent is not particularly limited. For example, ethers such as monoglyme, diglyme, triglyme, tetraglyme, diethyl ether, dibutyl ether, diisopropyl ether, dioxane, tetrahydrofuran, acetonitrile, propionitrile, adiponitrile One or more selected from chain amides such as nitriles, dimethylformamide and dimethylacetamide, and cyclic amides such as 1,3-dimethyl-2-imidazolidinone and N-methyl-2-pyrrolidone A solvent is mentioned.
When a solvent is used for the reaction between the compound (7) and HFPO, oligomerization of HFPO can be prevented, so it is better to use a solvent. The amount when the solvent is used is preferably 3 times the upper limit of the total amount of the compound (7) and HFPO (the amount obtained by adding the catalyst amount to the total amount when a catalyst is used). Double mass is particularly preferred, and 0.5 mass is particularly preferred. The lower limit is preferably 0.001 times mass, preferably 0.01 times mass, and particularly preferably 0.05 times mass. The amount of solvent used in a normal case is preferably 0.01 to 0.5 times the mass.
In the reaction of compound (7) with HFPO, if water and / or Lewis acid (for example, protonic acid) is present in the reaction system, an undesirable reaction may occur. It is preferable to reduce as much as possible. The amount of water and Lewis acid that may be present in the reaction system is preferably 0.005% by mass or less. By reducing the amount of water in the system, it is possible to prevent a phenomenon in which the compound (7) or HFPO reacts with water and the reaction yield decreases. Further, by reducing the amount of Lewis acid, the catalytic activity can be maintained for a long time and the reaction conversion rate can be increased.
In the reaction between the compound (7) and HFPO, the pressure is not particularly limited, and the reaction can be carried out under reduced pressure, normal pressure, or a pressurized system. From the viewpoint of operability, the reaction is performed at 1.1 MPa (gauge pressure) or less. It is preferable to implement. The reaction temperature is appropriately changed depending on the kind of the reaction solvent, etc., and is usually preferably + 80 ° C. or less, particularly preferably −50 ° C. to + 80 ° C., particularly preferably −20 ° C. to + 30 ° C. . If the reaction temperature is too high, simultaneously with the intended reaction, oligomerization of HFPO using a fluorine ion as a catalyst proceeds competitively, and the yield may decrease.
Compound (1) itself is a useful compound that can be used as a solvent or the like, and is a novel compound. In particular, the compounds (1a) to (1c) are useful as solvents that can dissolve the fluorine-containing compound satisfactorily. Furthermore, the compound (1) can be derivatized into various useful compounds by utilizing the reactivity of the —COF group. For example, the compound (2) can be produced by a vapor phase pyrolysis reaction of the compound (1) such as the compounds (1a) to (1c) or a pyrolysis of the carboxylate.
The reaction for obtaining the compound (2) by subjecting the compound (1) to a gas phase thermal decomposition reaction is preferably carried out by a continuous reaction. In the continuous reaction, the compound (1) is passed in the form of a gas in a heated reaction tube to perform a decomposition reaction, and the compound (2) produced by the decomposition reaction is condensed and continuously recovered. It is preferable to carry out. The reaction temperature of the gas phase pyrolysis is preferably +100 to + 450 ° C., more preferably +200 to + 400 ° C. If the reaction temperature is too high, the compound (2) may be further decomposed to reduce the yield. On the other hand, when reaction temperature is too low, there exists a possibility that the reaction rate of a compound (1) may fall.
In the gas phase pyrolysis reaction of the compound (1), it is preferable to use a tubular reactor. The residence time when using a tubular reactor is preferably about 0.1 seconds to 10 minutes on an empty cylinder basis. The reaction pressure is not particularly limited. The tubular reactor is preferably filled with glass, alkali metal salt, alkaline earth metal salt or the like in the tube for the purpose of promoting the reaction. As the alkali metal salt or alkaline earth metal salt, carbonate is preferred. Specific examples of the alkali metal salt include sodium carbonate (may be light ash), potassium carbonate, lithium carbonate and the like. Specific examples of the alkaline earth metal carbonate include calcium carbonate, magnesium carbonate, barium carbonate and the like. Examples of the glass include general soda lime glass, and glass beads that are made into beads and have improved fluidity are particularly preferable. Furthermore, when a glass, alkali metal salt, or alkaline earth metal salt is filled in a tubular reaction tube, if a particle having a particle size of about 100 to 250 μm is used, a fluidized bed type reaction mode is obtained. It is particularly preferable because it can be adopted.
When the pyrolysis reaction is carried out by a gas phase reaction, it is preferable to carry out the reaction in the presence of an inert gas that is not directly involved in the pyrolysis reaction for the purpose of promoting vaporization of the compound (1). Examples of the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas. The amount of the inert gas is preferably about 0.01 to 98% by volume, particularly preferably about 0.01 to 50% by volume with respect to the compound (1). When there is too much inert gas amount, there exists a possibility that the collection amount of a compound (2) may become low.
On the other hand, in the method for producing the compound (2) by converting the compound (1) into a carboxylate and then thermally decomposing it, the carboxylate is preferably an alkali metal salt or an alkaline earth metal salt. The alkali metal salt or alkaline earth metal salt is prepared by using an alkali metal hydroxide or alkaline earth metal hydroxide as an aqueous solution, adding the compound (1) to the aqueous solution up to the neutral point, and then removing the water and drying. It is preferable to obtain by this method. The thermal decomposition reaction of the carboxylate can be carried out by heating. Since the gas component generated by the thermal decomposition reaction contains the compound (2), it is preferable to recover the gas in a trap cooled at a low temperature. The temperature of the thermal decomposition reaction is preferably +100 to + 400 ° C, particularly preferably +200 to + 350 ° C.
According to the thermal decomposition reaction, compound (2a) is obtained from compound (1a), compound (2b) is obtained from compound (1b), and compound (2c) is obtained from compound (1c).
The use of the compound (2) obtained by the thermal decomposition reaction is not particularly limited. For example, since the compound is a compound having a polymerizable vinyl fluoride group, it is useful as a monomer for a fluororesin and is a novel compound. As the compound (2), the compound (2a), the compound (2b), or the compound (2c) is preferable. By copolymerizing the compound (2) with a general-purpose monomer for fluororesin, a fluororesin having effectively improved physical properties can be provided. For example, a copolymer obtained by copolymerizing the compound (2a) becomes a copolymer having a perfluorinated tetrahydrofuran ring structure, which is a sterically bulky group, in the side chain, or the compound (2b), or the compound Since the copolymer obtained by polymerizing (2c) is a copolymer having a perfluorinated dioxolane ring structure, which is a sterically bulky group, in the side chain, even if it is a small amount of copolymer, a fluororesin The physical properties such as can be effectively improved.
From compound (1), compound (3) such as compound (3a) can also be produced. The compound (3) can be produced by converting the compound (1) into a carboxylate and then thermally decomposing in a protic solvent. As the compound (3), the following compound (3a), the following compound (3b), or the following compound (3c) is preferable. Compound (3) such as compound (3a) is a useful compound as a fluorine-containing solvent.
Figure 2004050649
In the method for producing the compound (3) from the compound (1), the carboxylate is preferably an alkali metal salt or an alkaline earth metal salt. The alkali metal salt or alkaline earth metal salt is prepared by adding an alkali metal hydroxide or alkaline earth metal hydroxide to a solution of a protic solvent and adding the compound (1) to the neutralization point. It is preferably obtained as a solution or suspension of Next, the carboxylate is thermally decomposed in a protic solvent. As the protic solvent, one or more solvents selected from water, alcohol, glycols and the like are preferable. The amount of the protic solvent is preferably larger than the amount in which the carboxylate is dissolved. Moreover, the temperature of thermal decomposition is preferably +30 to + 200 ° C., particularly preferably +50 to + 200 ° C., and particularly preferably +80 to + 150 ° C.
In the production method, the obtained carboxylate may be once taken out and thermally decomposed in a protic solvent, and the step of producing the carboxylate and the step of pyrolyzing are performed in the same reactor. May be performed continuously.
Compound (3) such as compound (3a) can also be produced by adding HF to compound (2). The addition reaction of HF is preferably performed in a liquid phase, and the reaction conditions are appropriately set depending on the reactivity of the compound (2).
The compound (3) such as the compound (3a) is a compound having properties such as stability as a fluorine-based solvent, nonflammability, and safety. Moreover, since it is excellent also in the balance of a solvent characteristic, a washing | cleaning characteristic, etc., it is a novel compound which can be used for various uses to which a fluorine-type solvent is applied. Moreover, since the compound (3) is compatible with hydrocarbons, halogen compounds, ethers, esters, alcohols and the like, it can be used in various applications by forming a composition with them.

以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの例に限定されない。圧力は特に記載しない限りゲージ圧で表記し、ガスクロマトグラフィーをGC、ガスクロマトグラフー質量分析法をGC−MSと表記する。
なお、GC−MSは電子イオン化衝撃法により測定し、HNMRおよび19FNMRは下記の条件で測定した。
HNMRの共鳴周波数は300.4MHz、溶媒はCDCl、標準物質はTMSとした。
19FNMRの共鳴周波数は例1−2と例1−3においては376.0MHz、その他の例においては282.7MHz、溶媒はCDCl、標準物質はCClFとした。
[例1]化合物(1a)の合成例
(例1−1)エステル化反応の例

Figure 2004050649
2−テトラヒドロフルフリルアルコール(20g)とトリエチルアミン(21.8g)をフラスコに入れ、氷浴下撹拌した。FCOCF(CF)OCFCFCF(71.5g)を内温を10℃以下に保ちながら1時間かけて滴下した。滴下終了後、室温で2時間撹拌し、水50mLを内温15℃以下で加えた。
得られた粗液を分液し、下層を水50mLで2回洗浄し、硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。減圧蒸留で目的のエステル化合物(66.3g)を88〜89℃/2.7KPa(絶対圧)の留分として得た。GC純度は98%であった。NMR分析により化合物(5a−1)の生成を確認した。
化合物(5a−1)のNMRスペクトル;
HNMR:δ(ppm)1.60〜1.73(m,1H),1.86〜2.10(m,3H),3.76〜3.91(m,2H),4.14〜4.22(m,1H),4.28〜4.47(m,2H)。
19FNMR:δ(ppm)−79.9(1F),−81.3(3F),−82.1(3F),−86.4(1F),−129.5(2F),−131.5(1F)。
(例1−2)フッ素化反応の例
Figure 2004050649
500mLのニッケル製オートクレーブに、R−113(313g)を加えて撹拌し、25℃に保った。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−10℃に保持した冷却器を直列に設置した。なお、−10℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガス(以下、20%フッ素ガスと記す。)を、流速8.08L/hで1時間吹き込んだ。つぎに、20%フッ素ガスを同じ流速で吹き込みながら、例1−1の方法で得た化合物(5a−1)(5.01g)をR−113(100g)に溶解した溶液を4.7時間かけて注入した。
さらに、20%フッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLのR−113溶液を25℃から40℃にまで昇温しながら9mL注入し、オートクレーブのベンゼン注入口を閉め、更にオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入り口バルブを閉めて、0.4時間撹拌を続けた。つぎに圧力を常圧にし、反応器内温度を40℃に保ちながら、上記のベンゼン溶液を6mL注入し、オートクレーブのベンゼン注入口を閉め、更にオートクレーブの出口バルブを閉め、圧力が0.20MPaになったところでオートクレーブのフッ素ガス入り口バルブを閉めて、0.4時間撹拌を続けた。さらに、同様の操作を3回くり返した。ベンゼンの注入総量は0.33g、R−113の注入総量は(33mL)であった。さらに、窒素ガスを1.0時間吹き込んだ。目的物を19FNMRで定量したところ、化合物(6a−1)の生成が確認された。収率は64%であった。
化合物(6a−1)のNMRスペクトル;
19FNMR:δ(ppm)−80.3(1F),−81.9(3F),−82.1(3F),−83.5〜−84.8(2F),−85.5〜−88.0(3F),−126.5(1F),−127.4(1F),−128.1(1F),−130.2(2F),−130.4(1F),−132.2(1F),−135.8(1F)。
(例1−3)熱分解反応の例
Figure 2004050649
例1−2の方法で得た化合物(6a−1)(2.1g)をNaF粉末(0.02g)と共にフラスコに仕込み、激しく撹拌を行いながらオイルバス中で140℃で10時間加熱した。フラスコ上部には−10℃に温度調節した還流器を設置した。冷却後、液状サンプル(2.0g)を回収し、これを精密蒸留して化合物(7a)(0.8g)を回収した。化合物(7a)の構造は19FNMRにより確認した。
化合物(7a)のNMRスペクトル;
19FNMR:δ(ppm)26.6〜26.3(1F),−82.6〜−83.9(2F),−117.9〜−118.3(1F),−125.7〜−127.0(2F),−128.9〜−129.9(1F),−134.4〜−135.3(1F)。
(例1−4)HFPOの付加反応の例
Figure 2004050649
1Lの内容積を持つハステロイ−C製オートクレーブ中に、脱水乾燥したCsF(16.5g)を仕込んだ後に、反応器内を脱気した。この反応器中に例1−3の方法で得た化合物(7a)(662g、2.7mol)とテトラグライム(139g)を仕込んだ後に、反応器を−20℃に冷却し、反応器内圧が微減圧を保つようにしながらHFPOを連続的に供給した。反応温度が0℃以上に上がらないように供給量をコントロールしながらHFPO(450g、2.7mol)を供給した。反応終了後に分液ロートによりフルオロカーボン層(下層)(1010g)を回収した。フルオロカーボン層に含まれる化合物が化合物(1a)であることを19FNMR、GC−MSスペクトル解析により決定した。ただし、下式においてFに付したa〜pの記号は、19FNMRにおけるフッ素原子の帰属を特定するための記号である。
Figure 2004050649
化合物(1a)のNMRスペクトル;
19FNMR:δ(ppm)26.83(F,s,1F),−77.58〜−86.56(F and F,m,2F),−82.18(F and F.s,3F),−83.28〜−84.14(F and F,m,2F),−126.40(F,s,1F),−126.88〜−128.55(F and F,m,2F),−129.82〜−136.07(F and F,m,2F),−130.98(F,bs,1F).
化合物(1a)のGC−MSスペクトル;
MS(m/z):391(M−F),363,341,313,301,275,247,213,197,169,150,131,119,100,97,69,47(calculated Exact mass of C :409.96)。
[例2]化合物(2a)の合成例
Figure 2004050649
例1−4で得たフルオロカーボン層をテトラグライムで2回洗浄した後、KOH(330g)を溶解した水溶液中に滴下して、中和した後に、水を留去し、得られた白色固体を真空オーブン中で100℃で2日間減圧乾燥を行った。この後、減圧状態を保ったまま液体窒素温度に冷却した金属製トラップを接続し、乾燥機内の温度を270℃まで昇温した。分解反応によって発生するガスを金属トラップ内に回収しながら、ガス発生が終了するまで反応を継続し、化合物(2a)(700g)を回収した。化合物(2a)の構造は、19FNMR、HNMR、GC−MSスペクトル解析により決定した。ただし、下式においてFに付したa〜mの記号は、19FNMRにおけるフッ素原子の帰属を特定するための記号である。
Figure 2004050649
化合物(2a)のNMRスペクトル;
19FNMR:δ(ppm)−83.56(F,d,1F,J=39Hz),−83.59(F,1F,J=39Hz),−83.47〜−83.59,−84.03〜−84.09,−84.82〜−84.88,and −85.32〜−85.39(F and F,AB quartet,2F),−112.97〜−113.49(F,dd,1F,J=84Hz,J=66Hz),−120.96〜−121.67(F,ddm,1F,J=112Hz,J=84Hz),−125.67(F,bs,1F),−127.15,−128.08,−129.15,and −130.06(F and F,AB quartet,2F),−134.65〜−135.32(F,ddt,1F,J=112Hz,J=66Hz,J=6.5Hz),−126.08〜−127.15(F,dm,1F,J=250Hz),−134.55〜−135.48(F,dm,1F,J=250Hz)。
化合物(2a)のGC−MSスペクトル;
MS(m/z):344,325,275,247,197,169,159,147,131,119,100,97,69,50,47(calculated Exact mass of C12:343.97。)
[例3]化合物(3a)の合成例
Figure 2004050649
例1−4で得たフルオロカーボン層をテトラグライムで2回洗浄した後、KOH(330g)を溶解した水溶液中に滴下し、中和後、テトラグライム(100g)を添加して溶液を得た。該溶液を耐圧反応器に仕込み、120℃まで加熱し撹拌を行った。反応の進行に伴って、反応器内部の圧力上昇が確認された。4時間反応後、室温まで冷却後に反応液を回収すると、水相と有機相(下相)に分離したので、有機相を回収し、脱水した後に蒸留で精製して、化合物(3a)(750g)を回収した。化合物(3a)の構造は19FNMR、HNMR、GC−MSスペクトルにより決定した。ただし、下式においてFに付したa〜nの記号は、 FNMRにおけるフッ素原子の帰属を特定するための記号である。
Figure 2004050649
化合物(3a)のNMRスペクトル;
19FNMR:δ(ppm)−82.24〜−82.84(F,ddd,1F,J=144Hz,17Hz,9Hz),−83.48〜−84.12(F,ddd,1F,J=145Hz,7Hz,7Hz),−83.59 and −83.97(F,F and F,3F),−84.71〜−85.29(F,ddd,1F,J=144Hz,16Hz,6Hz),−86.13〜−86.68(F,dm,1F,J=144Hz),−125.64〜−127.88(F and F,m,2F),−126.05〜−127.09(F,m,1F),−128.91〜−129.96(F,dm,1F,J=250Hz),−134.33〜−135.30(F,dm,1F,J=250Hz),−144.80〜−145.06(F,dm,1F,JH−F=55Hz)。
HNMR:δ(ppm)6.0(dq,1H,Jgem=54Hz,Jvic=3Hz)。
化合物(3a)のGC−MSスペクトル;
MS(m/z):345(M−F),295,247,225,197,169,167,150,131,119,101,100,97,69,51,47(calculated Exact mass of CHF13:363.98)
[例4]化合物(1b)の合成例
(例4−1)エステル化反応の例
Figure 2004050649
ハステロイC製の2Lのオートクレーブに2,2−ジメチル−4−メチロール−1,3−ジオキソラン(500g)を入れた。反応器を冷却して、常圧で内温が30℃以下に保たれるようにゆっくりとFCOCF(CF)OCFCF(CF)OCFCFCF(2070g)を導入した。同時に充分に撹拌しながら、窒素ガスをバブリングさせ、反応により生じたHFを系外に追い出した。FCOCF(CF)OCFCF(CF)OCFCFCFの全量を投入後、30℃でさらに5時間反応させて生成物を得た。生成物をGC分析した結果、化合物(5b−1)が99.0%生成しており、未反応の2,2−ジメチル−4−メチロール−1,3−ジオキソランは検出されなかった。この生成物は精製することなく、例4−2の反応に使用した。
化合物(5b−1)のNMRスペクトル;
HNMR:δ(ppm)1.36(3H),1.42(3H),3.75〜4.16(2H),4.28〜4.53(3H)。
19FNMR:δ(ppm)−79.0〜−80.1(1F),−80.6(3F),−81.9(3F),−82.1(2F),−82.7(3F),−84.6〜−85.6(1F),−130.1(2F),−132.0(1F),−145.6(1F)。
(例4−2)フッ素化反応の例
Figure 2004050649
500mLのニッケル製オートクレーブに、例1−2と同様に、冷却器、NaFペレット層、液体返送ラインを設置した。オートクレーブにR−113(312g)を仕込んだ後に撹拌して25℃に保った。オートクレーブに窒素ガスを室温で1時間吹き込んだ後、20%フッ素ガスを室温で流速9.90L/hで1時間吹き込んだ。つぎに20%フッ素ガスを同じ流速で吹き込みながら、例4−1で得た化合物(5b−1)(32g)をR−113(256g)に溶解した溶液を8.3時間かけて注入した。
つぎに、20%フッ素ガスを同じ流速で吹き込みながらオートクレーブ内圧力を0.15MPaまで昇圧して、ベンゼン濃度が0.01g/mLであるR−113溶液を25℃から40℃にまで昇温しながら9mL注入し、オートクレーブのベンゼン溶液注入口を閉め、0.3時間撹拌を続けた。
つぎに反応器内圧力を0.15MPaに、反応器内温度を40℃に保ちながら、前記ベンゼン溶液を6mL注入し、オートクレーブのベンゼン溶液注入口を閉め、0.3時間撹拌を続けた。ベンゼンの注入総量は0.15g、R−113の注入総量は15mLであった。
さらに20%フッ素ガスを同じ流速で吹き込みながら1時間撹拌を続けた。つぎに、反応器内圧力を常圧にして、窒素ガスを1時間吹き込んだ。生成物を19F NMRで分析した結果、化合物(6b−1)が収率95%で含まれていることを確認した。
化合物(6b−1)のNMRスペクトル;
19F NMR:δ(ppm)−77.6(1F)、−79.0〜−80.9(10F)、−81.4〜−82.2(9F)、−85.0〜−86.8(3F)、−122.4(1F)、−130.1(2F)、−132.0(1F)、−145.4(1F)。
(例4−3)熱分解反応の例
Figure 2004050649
10℃の還流器を備えた2Lのフラスコ内に、例4−2の方法で得た化合物(6b−1)(2000g)をKF粉末(14g)と共に仕込み、熱媒温度を100〜130℃に保って加熱撹拌を行った。冷却後、液状サンプルを回収し、これを精密蒸留して化合物(7b)(純度99%、580g)を回収した。化合物(7b)の構造は19FNMRにより確認した。
化合物(7b)のNMRスペクトル;
19FNMR:δ(ppm)25.0(1F),−73.3〜−73.9(1F),−80.2(6F),−82.2〜−82.8(1F),−112.7(1F)。
(例4−4)HFPOの付加反応の例
Figure 2004050649
ハステロイC製の2Lのオートクレーブに、脱水乾燥したCsF(13g)を仕込んだ後、反応器内を脱気した。この反応器中に例4−3の方法で得た化合物(7b)(540g)とテトラグライム(66g)を仕込み、反応器を−20℃に冷却して、反応温度が0℃以上に上がらないように供給量をコントロールしながらHFPO(290g)を連続的に供給した。反応終了後、分液ロートによりフルオロカーボン層(下層)(780g)を回収した。フルオロカーボン層に含まれる化合物が化合物(1b)であることを19FNMR、GC−MSスペクトル解析により決定した。
化合物(1b)のNMRスペクトル;
19FNMR:δ(ppm)26.5(1F),−76.4〜−78.8(2F),−80.2(6F),−80.3〜−80.8(1F),−81.5(3F),−84.3〜−86.0(1F),−121.3(1F),−130.1(1F)。
化合物(1b)のGC−MSスペクトル;
MS(m/z):429(M−COF),407,313,263,213,197,169,147,131,128,119,100,97,81,78,69,50,47(calculated Exact mass of C16:476.07)。
[例5]化合物(2b)の合成例
Figure 2004050649
例4−4で得たフルオロカーボン層を用い、KOHの使用量を92gとすること以外は、例2と同様に反応を行い、化合物(2b)(650g)を回収した。化合物(2b)の構造は、19FNMR、GC−MSスペクトル解析により決定した。
化合物(2b)のNMRスペクトル;
19FNMR:δ(ppm)−76.6〜77.4(1F),−80.4(6F),−80.8〜−81.4(1F),−83.6〜−85.2(2F),−112.9〜−113.6(1F),−120.9〜−121.7(2F),−134.5〜−135.3(1F)。
化合物(2b)のGC−MSスペクトル;
MS(m/z):410,313,263,169,147,131,128,119,100,97,81,78,69,50,47(calculated Exact mass of C14:410.06)。
[例6]化合物(5c−1)の合成例
(例6−1)エステル化反応の例
Figure 2004050649
ハステロイC製の2Lのオートクレーブに2,4−ジメチル−2−メチロール−1,3−ジオキソラン(500g)とNaF(320g)を入れた。反応器を冷却して、常圧で内温が30℃以下に保たれるようにゆっくりとFCOCF(CF)OCFCF(CF)OCFCFCF(2070g)を導入した。例4−1と同様に反応させ、得られた生成物をGC分析した結果、化合物(5c−1)が98.5%生成しており、未反応の2,4−ジメチル−2−メチロール−1,3−ジオキソランは検出されなかった。この生成物は精製することなく、例6−2の反応に使用した。
化合物(5c−1)のNMRスペクトル;
HNMR:δ(ppm)1.24〜1.30(3H),1.38〜1.44(3H),3.41〜3.56(1H),4.05〜4.47(4H)。
19FNMR:δ(ppm)−79.0〜−80.2(1F),−80.6(3F),−81.9(3F),−82.1(2F),−82.7(3F),−84.5〜−85.6(1F),−130.1(2F),−132.1(1F),−145.6(1F)。
(例6−2)フッ素化反応の例
Figure 2004050649
500mLのニッケル製オートクレーブに、例1−2と同様に、冷却器、NaFペレット層、液体返送ラインを設置した。オートクレーブにR−113(312g)を仕込んだ後に撹拌して25℃に保った。オートクレーブに窒素ガスを室温で1時間吹き込んだ後、20%フッ素ガスを室温で流速7.35L/hで1時間吹き込んだ。つぎに20%フッ素ガスを同じ流速で吹き込みながら、例6−1で得た化合物(5c−1)(5g)をR−113(120g)に溶解した溶液を2.8時間かけて注入した。つぎに、20%フッ素ガスを同じ流速で吹き込みながらオートクレーブ内圧力を0.15MPaまで昇圧して、ベンゼン濃度が0.01g/mLであるR−113溶液を25℃から40℃にまで昇温しながら9mL注入し、オートクレーブのベンゼン溶液注入口を閉め、0.3時間撹拌を続けた。つぎに反応器内圧力を0.15MPaに、反応器内温度を40℃に保ちながら、前記ベンゼン溶液を6mL注入し、オートクレーブのベンゼン溶液注入口を閉め、0.3時間撹拌を続けた。さらに同様の操作を1回繰り返した。ベンゼンの注入総量は0.22g、R−113の注入総量は21mLであった。さらに20%フッ素ガスを同じ流速で吹き込みながら1時間撹拌を続けた。つぎに、反応器内圧力を常圧にして、窒素ガスを1時間吹き込んだ。生成物を19FNMRで分析した結果、化合物(6c−1)が収率93%で含まれていることを確認した。
化合物(6c−1)のNMRスペクトル;
19FNMR:δ(ppm)−77.6〜−78.9(1F)、−79.0〜−80.9(10F)、−81.0〜−82.4(9F)、−84.0〜−86.7(3F)、−123.3(1F)、−130.1(2F)、−131.8(1F)、−145.5(1F)。
(例6−3)熱分解反応の例
Figure 2004050649
熱分解の原料として、例6−2の方法で得た化合物(6c−1)(2000g)を用いること以外は、例4−3と同様に反応を行い、化合物(7c)(純度99%、600g)を回収した。化合物(7c)の構造は19FNMRにより確認した。
化合物(7c)のNMRスペクトル;
19FNMR:δ(ppm)22.9〜24.4(1F),−78.2〜−79.6(1F),−80.3〜−81.0(3F),−81.6〜−82.2(3F),−83.7〜−84.7(1F),−122.5〜−126.0(1F)。
(例6−4)HFPOの付加反応の例
Figure 2004050649
HFPO付加反応の原料に、例6−3の方法で得た化合物(7c)(540g)を用いること以外は、例4−4と同様に反応を行い、フルオロカーボン層(下層)(800g)を回収した。フルオロカーボン層に含まれる化合物が化合物(1c)であることを19FNMR、GC−MSスペクトル解析により決定した。
化合物(1c)のNMRスペクトル;
19FNMR:δ(ppm)26.3(1F),−76.6〜−79.0(2F),−80.3(3F),−80.8(3F),−81.3〜−82.6(3F),−84.5〜−86.7(2F),−123.1(1F),−131.0〜−133.3(1F)。
化合物(1c)のGC−MSスペクトル
MS(m/z):429(M−COF),407,313,285,263,213,197,169,147,131,119,100,97,81,78,69,50,47(calculated Exact mass of C16:476.07)。
[例7]化合物(2c)の合成例
Figure 2004050649
例6−4で得たフルオロカーボン層を用い、KOHの使用量を94gとすること以外は、例2と同様に反応を行い、化合物(2c)(670g)を回収した。化合物(2c)の構造は、19FNMR、GC−MSスペクトル解析により決定した。
化合物(2c)のNMRスペクトル;
19FNMR:δ(ppm)−77.9〜−78.1(1F),−80.3〜−80.4(3F),−80.9〜−81.1(3F),−81.4〜−81.6(1F),−84.7〜−85.4(2F),−114.0〜−114.1(1F),−122.2〜−122.4(1F),−123.2(1F),−136.1〜−136.2(1F)。
化合物(2c)のGC−MSスペクトル;
MS(m/z):410,313,285,263,247,213,197,169,147,131,119,100,97,81,78,69,50,47(calculated Exact mass of C14:410.06)。
[参考例]重合反応の例
1.2Lの撹拌機付き圧力容器に、イオン交換水の590g、CHFClCFCFClの353g、化合物(2a)の54.8g、メタノールの16.4gを仕込み、50℃の内温で、テトラフルオロエチレン(TFE)を圧力が1.21MPaになるまで仕込んだ。ついで(CFCFCFCOO)の0.1%溶液(溶媒:CHFClCFCFCl)(以下、開始剤溶液という。)の3mLを仕込み、50℃で重合を開始させた。重合中に開始剤溶液は断続的に仕込み、合計20.2mLを仕込んだ。重合の進行にともない、圧力が低下するので、圧力が一定になるようにTFEを連続的に後仕込みした。後仕込みのTFE量が145gになったところで内温を室温まで冷却し、未反応TFEを空放し、圧力容器を開放した。圧力容器の内容物をガラスフィルターで濾過してスラリー状のTFE共重合体を得た。得られたスラリーを120℃で8時間乾燥して白色のTFE共重合体の155gを得た。得られたTFE共重合体は、TFEに基づく重合単位/化合物(2a)に基づく重合単位のモル比が98.3/1.7であり、Q値は1.7であった。引張強度は32.6MPa、引張伸度は310%、降伏強度は14.0MPa、引張弾性率は154MPa、MIT折り曲げ寿命は123万回であった。EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples. Unless otherwise indicated, pressure is expressed as gauge pressure, gas chromatography is expressed as GC, and gas chromatography mass spectrometry is expressed as GC-MS.
GC-MS was measured by an electron ionization impact method, and 1 HNMR and 19 FNMR were measured under the following conditions.
The resonance frequency of 1 HNMR was 300.4 MHz, the solvent was CDCl 3 , and the standard substance was TMS.
The resonance frequency of 19 FNMR was 376.0 MHz in Examples 1-2 and 1-3, 282.7 MHz in the other examples, the solvent was CDCl 3 , and the standard substance was CCl 3 F.
[Example 1] Synthesis example of compound (1a) (Example 1-1) Example of esterification reaction
Figure 2004050649
2-tetrahydrofurfuryl alcohol (20 g) and triethylamine (21.8 g) were placed in a flask and stirred in an ice bath. FCOCF (CF 3 ) OCF 2 CF 2 CF 3 (71.5 g) was added dropwise over 1 hour while maintaining the internal temperature at 10 ° C. or lower. After completion of dropping, the mixture was stirred at room temperature for 2 hours, and 50 mL of water was added at an internal temperature of 15 ° C. or lower.
The obtained crude liquid was separated, and the lower layer was washed twice with 50 mL of water, dried over magnesium sulfate, and then filtered to obtain a crude liquid. The target ester compound (66.3 g) was obtained by distillation under reduced pressure as a fraction of 88 to 89 ° C./2.7 KPa (absolute pressure). The GC purity was 98%. The formation of compound (5a-1) was confirmed by NMR analysis.
NMR spectrum of compound (5a-1);
1 HNMR: δ (ppm) 1.60 to 1.73 (m, 1H), 1.86 to 2.10 (m, 3H), 3.76 to 3.91 (m, 2H), 4.14 to 4.22 (m, 1H), 4.28-4.47 (m, 2H).
19 FNMR: δ (ppm) -79.9 (1F), -81.3 (3F), -82.1 (3F), -86.4 (1F), -129.5 (2F), -131. 5 (1F).
(Example 1-2) Example of fluorination reaction
Figure 2004050649
R-113 (313 g) was added to a 500 mL nickel autoclave, stirred, and kept at 25 ° C. At the autoclave gas outlet, a cooler maintained at 20 ° C., a packed bed of NaF pellets, and a cooler maintained at −10 ° C. were installed in series. In addition, the liquid return line for returning the condensed liquid to the autoclave was installed from the cooler kept at -10 ° C. After blowing nitrogen gas for 1.0 hour, fluorine gas diluted to 20% with nitrogen gas (hereinafter referred to as 20% fluorine gas) was blown for 1 hour at a flow rate of 8.08 L / h. Next, while blowing 20% fluorine gas at the same flow rate, a solution obtained by dissolving the compound (5a-1) (5.01 g) obtained in the method of Example 1-1 in R-113 (100 g) was 4.7 hours. It was injected over.
Further, while blowing 20% fluorine gas at the same flow rate, 9 mL of an R-113 solution having a benzene concentration of 0.01 g / mL was injected while raising the temperature from 25 ° C. to 40 ° C., and the benzene inlet of the autoclave was closed, Further, the autoclave outlet valve was closed, and when the pressure reached 0.20 MPa, the fluorine gas inlet valve of the autoclave was closed and stirring was continued for 0.4 hours. Next, while maintaining the pressure inside the reactor at 40 ° C., 6 mL of the benzene solution was injected, the benzene inlet of the autoclave was closed, the autoclave outlet valve was closed, and the pressure was reduced to 0.20 MPa. At that time, the fluorine gas inlet valve of the autoclave was closed and stirring was continued for 0.4 hours. Further, the same operation was repeated three times. The total amount of benzene injected was 0.33 g, and the total amount of R-113 injected was (33 mL). Further, nitrogen gas was blown for 1.0 hour. Quantification of the target product by 19 FNMR confirmed the production of compound (6a-1). The yield was 64%.
NMR spectrum of compound (6a-1);
19 FNMR: δ (ppm) -80.3 (1F), -81.9 (3F), -82.1 (3F), -83.5 to -84.8 (2F), -85.5 to- 88.0 (3F), -126.5 (1F), -127.4 (1F), -128.1 (1F), -130.2 (2F), -130.4 (1F), -132. 2 (1F), -135.8 (1F).
(Example 1-3) Example of thermal decomposition reaction
Figure 2004050649
Compound (6a-1) (2.1 g) obtained by the method of Example 1-2 was charged into a flask together with NaF powder (0.02 g), and heated at 140 ° C. for 10 hours in an oil bath with vigorous stirring. A reflux condenser whose temperature was adjusted to −10 ° C. was installed at the top of the flask. After cooling, a liquid sample (2.0 g) was recovered, and this was precision distilled to recover compound (7a) (0.8 g). The structure of the compound (7a) was confirmed by 19 FNMR.
NMR spectrum of compound (7a);
19 FNMR: δ (ppm) 26.6 to 26.3 (1F), −82.6 to −83.9 (2F), −117.9 to −118.3 (1F), −125.7 to − 127.0 (2F), -128.9 to -129.9 (1F), -134.4 to -135.3 (1F).
(Example 1-4) Example of HFPO addition reaction
Figure 2004050649
After charging dehydrated and dried CsF (16.5 g) into a Hastelloy-C autoclave having an internal volume of 1 L, the inside of the reactor was deaerated. After charging the compound (7a) (662 g, 2.7 mol) and tetraglyme (139 g) obtained by the method of Example 1-3 into this reactor, the reactor was cooled to −20 ° C., and the reactor internal pressure was HFPO was continuously supplied while maintaining a slight vacuum. HFPO (450 g, 2.7 mol) was supplied while controlling the supply amount so that the reaction temperature did not rise above 0 ° C. After completion of the reaction, a fluorocarbon layer (lower layer) (1010 g) was recovered with a separatory funnel. It was determined by 19 FNMR and GC-MS spectrum analysis that the compound contained in the fluorocarbon layer was the compound (1a). However, the symbols a to p attached to F in the following formula are symbols for specifying the assignment of fluorine atoms in 19 FNMR.
Figure 2004050649
NMR spectrum of compound (1a);
19 FNMR: δ (ppm) 26.83 (F p , s, 1F), −77.58 to −86.56 (F h and F i , m, 2F), −82.18 (F k F m and F n .s, 3F), −83.28 to −84.14 (F a and F b , m, 2F), −126.40 (F j , s, 1F), −126.88 to −128. 55 (F c and F d, m, 2F), - 129.82~-136.07 (F e and F f, m, 2F), - 130.98 (F g, bs, 1F).
GC-MS spectrum of compound (1a);
MS (m / z): 391 (M + -F), 363, 341, 313, 301, 275, 247, 213, 197, 169, 150, 131, 119, 100, 97, 69, 47 (calculated Exact mass) of C 8 F 1 4 O 3 : 409.96).
[Example 2] Synthesis example of compound (2a)
Figure 2004050649
The fluorocarbon layer obtained in Example 1-4 was washed twice with tetraglyme, then dropped into an aqueous solution in which KOH (330 g) was dissolved, neutralized, and then water was distilled off. The resultant was dried under reduced pressure at 100 ° C. for 2 days in a vacuum oven. Thereafter, a metal trap cooled to the liquid nitrogen temperature was connected while maintaining the reduced pressure state, and the temperature in the dryer was increased to 270 ° C. While collecting the gas generated by the decomposition reaction in the metal trap, the reaction was continued until the gas generation was completed, and the compound (2a) (700 g) was recovered. The structure of the compound (2a) was determined by 19 FNMR, 1 HNMR, and GC-MS spectrum analysis. However, the symbols a to m attached to F in the following formula are symbols for specifying the assignment of fluorine atoms in 19 FNMR.
Figure 2004050649
NMR spectrum of compound (2a);
19 FNMR: δ (ppm) −83.56 (F h , d, 1F, J = 39 Hz), −83.59 (F i , 1F, J = 39 Hz), −83.47 to −83.59, − 84.03 to -84.09, -84.82 to -84.88, and -85.32 to -85.39 (F a and F b , AB quartet, 2F), -112.97 to -113. 49 (F j , dd, 1F, J = 84 Hz, J = 66 Hz), −120.96 to −121.67 (F m , ddm, 1F, J = 112 Hz, J = 84 Hz), −125.67 (F g, bs, 1F), - 127.15, -128.08, -129.15, and -130.06 (F e and F f, AB quartet, 2F), - 134.65~-135.32 ( F k, ddt, 1F, J = 1 2Hz, J = 66Hz, J = 6.5Hz), - 126.08~-127.15 (F c, dm, 1F, J = 250Hz), - 134.55~-135.48 (F d, dm, 1F, J = 250 Hz).
GC-MS spectrum of compound (2a);
MS (m / z): 344,325,275,247,197,169,159,147,131,119,100,97,69,50,47 (calculated Exact mass of C 7 F 12 O 2: 343. 97.)
[Example 3] Synthesis example of compound (3a)
Figure 2004050649
The fluorocarbon layer obtained in Example 1-4 was washed twice with tetraglyme and then dropped into an aqueous solution in which KOH (330 g) was dissolved. After neutralization, tetraglyme (100 g) was added to obtain a solution. The solution was charged into a pressure resistant reactor and heated to 120 ° C. and stirred. As the reaction progressed, an increase in pressure inside the reactor was confirmed. After the reaction for 4 hours, the reaction liquid was recovered after cooling to room temperature, and separated into an aqueous phase and an organic phase (lower phase). Therefore, the organic phase was recovered, dehydrated and purified by distillation to obtain compound (3a) (750 g). ) Was recovered. The structure of the compound (3a) was determined by 19 FNMR, 1 HNMR, and GC-MS spectrum. Provided that the symbols a~n which was subjected to F in the formula is a symbol for identifying the attribution of fluorine atoms in 1 9 FNMR.
Figure 2004050649
NMR spectrum of compound (3a);
19 FNMR: δ (ppm) −82.24 to −82.84 (F a , ddd, 1F, J = 144 Hz, 17 Hz, 9 Hz), −83.48 to −84.12 (F b , ddd, 1F, J = 145 Hz, 7 Hz, 7 Hz), −83.59 and −83.97 (F k , F m and F n , 3F), −84.71 to −85.29 (F h , ddd, 1F, J = 144 Hz, 16 Hz, 6 Hz), −86.13 to −86.68 (F i , dm, 1F, J = 144 Hz), −125.64 to −127.88 (F e and F f , m, 2F), -126.05~-127.09 (F g, m , 1F), - 128.91~-129.96 (F c, dm, 1F, J = 250Hz), - 134.33~-135.30 ( F d , dm, 1F, J = 250 Hz), −144.80 to −145.06 (F j , dm, 1F, J H−F = 55 Hz).
1 HNMR: δ (ppm) 6.0 (dq, 1H, J gem = 54 Hz, J vic = 3 Hz).
GC-MS spectrum of compound (3a);
MS (m / z): 345 (M + -F), 295, 247, 225, 197, 169, 167, 150, 131, 119, 101, 100, 97, 69, 51, 47 (calculated Exact mass of C 7 HF 13 O 2 : 363.98)
[Example 4] Synthesis example of compound (1b) (Example 4-1) Example of esterification reaction
Figure 2004050649
2,2-Dimethyl-4-methylol-1,3-dioxolane (500 g) was placed in a 2 L autoclave manufactured by Hastelloy C. The reactor was cooled, and FCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (2070 g) was slowly introduced so that the internal temperature was maintained at 30 ° C. or lower at normal pressure. At the same time, while sufficiently stirring, nitrogen gas was bubbled, and HF generated by the reaction was driven out of the system. FCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 was added, followed by further reaction at 30 ° C. for 5 hours to obtain a product. As a result of GC analysis of the product, 99.0% of compound (5b-1) was produced, and unreacted 2,2-dimethyl-4-methylol-1,3-dioxolane was not detected. This product was used in the reaction of Example 4-2 without purification.
NMR spectrum of compound (5b-1);
1 HNMR: δ (ppm) 1.36 (3H), 1.42 (3H), 3.75 to 4.16 (2H), 4.28 to 4.53 (3H).
19 FNMR: δ (ppm) -79.0 to -80.1 (1F), -80.6 (3F), -81.9 (3F), -82.1 (2F), -82.7 (3F ), -84.6 to -85.6 (1F), -130.1 (2F), -132.0 (1F), -145.6 (1F).
(Example 4-2) Example of fluorination reaction
Figure 2004050649
A cooler, a NaF pellet layer, and a liquid return line were installed in a 500 mL nickel autoclave in the same manner as in Example 1-2. The autoclave was charged with R-113 (312 g) and then stirred and kept at 25 ° C. Nitrogen gas was blown into the autoclave at room temperature for 1 hour, and then 20% fluorine gas was blown at room temperature for 1 hour at a flow rate of 9.90 L / h. Next, 20% fluorine gas was blown at the same flow rate, and a solution obtained by dissolving the compound (5b-1) (32 g) obtained in Example 4-1 in R-113 (256 g) was injected over 8.3 hours.
Next, the pressure inside the autoclave is increased to 0.15 MPa while blowing 20% fluorine gas at the same flow rate, and the R-113 solution having a benzene concentration of 0.01 g / mL is heated from 25 ° C. to 40 ° C. While injecting 9 mL, the benzene solution inlet of the autoclave was closed and stirring was continued for 0.3 hours.
Next, 6 mL of the benzene solution was injected while maintaining the reactor pressure at 0.15 MPa and the reactor temperature at 40 ° C., the benzene solution inlet of the autoclave was closed, and stirring was continued for 0.3 hours. The total amount of benzene injected was 0.15 g, and the total amount of R-113 injected was 15 mL.
Further, stirring was continued for 1 hour while blowing 20% fluorine gas at the same flow rate. Next, nitrogen pressure was blown in for 1 hour with the pressure inside the reactor at normal pressure. As a result of analyzing the product by 19 F NMR, it was confirmed that the compound (6b-1) was contained in a yield of 95%.
NMR spectrum of compound (6b-1);
19 F NMR: δ (ppm) -77.6 (1F), −79.0 to −80.9 (10F), −81.4 to −82.2 (9F), −85.0 to −86. 8 (3F), -122.4 (1F), -130.1 (2F), -132.0 (1F), -145.4 (1F).
(Example 4-3) Example of thermal decomposition reaction
Figure 2004050649
A compound (6b-1) (2000 g) obtained by the method of Example 4-2 was charged together with KF powder (14 g) in a 2 L flask equipped with a 10 ° C. reflux condenser, and the heat medium temperature was adjusted to 100 to 130 ° C. The mixture was stirred while heating. After cooling, a liquid sample was recovered, and this was precision distilled to recover compound (7b) (purity 99%, 580 g). The structure of the compound (7b) was confirmed by 19 FNMR.
NMR spectrum of compound (7b);
19 FNMR: δ (ppm) 25.0 (1F), −73.3 to −73.9 (1F), −80.2 (6F), −82.2 to −82.8 (1F), −112 .7 (1F).
(Example 4-4) Example of addition reaction of HFPO
Figure 2004050649
After dehydrating and drying CsF (13 g) in a 2 L autoclave made of Hastelloy C, the inside of the reactor was deaerated. Into this reactor, the compound (7b) (540 g) obtained by the method of Example 4-3 and tetraglyme (66 g) were charged, the reactor was cooled to -20 ° C, and the reaction temperature did not rise above 0 ° C. Thus, HFPO (290 g) was continuously supplied while controlling the supply amount. After completion of the reaction, a fluorocarbon layer (lower layer) (780 g) was recovered with a separatory funnel. It was determined by 19 FNMR and GC-MS spectrum analysis that the compound contained in the fluorocarbon layer was the compound (1b).
NMR spectrum of compound (1b);
19 FNMR: δ (ppm) 26.5 (1F), −76.4 to −78.8 (2F), −80.2 (6F), −80.3 to −80.8 (1F), −81 .5 (3F), -84.3 to -86.0 (1F), -121.3 (1F), -130.1 (1F).
GC-MS spectrum of compound (1b);
MS (m / z): 429 (M + -COF), 407, 313, 263, 213, 197, 169, 147, 131, 128, 119, 100, 97, 81, 78, 69, 50, 47 (calculated) Exact mass of C 9 F 16 O 4: 476.07).
[Example 5] Synthesis example of compound (2b)
Figure 2004050649
A reaction was carried out in the same manner as in Example 2 except that the fluorocarbon layer obtained in Example 4-4 was used and the amount of KOH used was changed to 92 g, and the compound (2b) (650 g) was recovered. The structure of the compound (2b) was determined by 19 FNMR and GC-MS spectrum analysis.
NMR spectrum of compound (2b);
19 FNMR: δ (ppm) -76.6-77.4 (1F), -80.4 (6F), -80.8 to -81.4 (1F), -83.6 to -85.2 ( 2F), -112.9 to -113.6 (1F), -120.9 to -121.7 (2F), -134.5 to -135.3 (1F).
GC-MS spectrum of compound (2b);
MS (m / z): 410,313,263,169,147,131,128,119,100,97,81,78,69,50,47 (calculated Exact mass of C 8 F 14 O 3: 410. 06).
[Example 6] Synthesis example of compound (5c-1) (Example 6-1) Example of esterification reaction
Figure 2004050649
2,4-Dimethyl-2-methylol-1,3-dioxolane (500 g) and NaF (320 g) were placed in a 2 L autoclave manufactured by Hastelloy C. The reactor was cooled, and FCOCF (CF 3 ) OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3 (2070 g) was slowly introduced so that the internal temperature was maintained at 30 ° C. or lower at normal pressure. As a result of GC analysis of the product obtained by reacting in the same manner as in Example 4-1, 98.5% of compound (5c-1) was produced, and unreacted 2,4-dimethyl-2-methylol- 1,3-dioxolane was not detected. This product was used in the reaction of Example 6-2 without purification.
NMR spectrum of compound (5c-1);
1 HNMR: δ (ppm) 1.24 to 1.30 (3H), 1.38 to 1.44 (3H), 3.41 to 3.56 (1H), 4.05 to 4.47 (4H) .
19 FNMR: δ (ppm) -79.0 to -80.2 (1F), -80.6 (3F), -81.9 (3F), -82.1 (2F), -82.7 (3F ), -84.5 to -85.6 (1F), -130.1 (2F), -132.1 (1F), -145.6 (1F).
(Example 6-2) Example of fluorination reaction
Figure 2004050649
A cooler, a NaF pellet layer, and a liquid return line were installed in a 500 mL nickel autoclave in the same manner as in Example 1-2. The autoclave was charged with R-113 (312 g) and then stirred and kept at 25 ° C. After nitrogen gas was blown into the autoclave at room temperature for 1 hour, 20% fluorine gas was blown at room temperature for 1 hour at a flow rate of 7.35 L / h. Next, 20% fluorine gas was blown at the same flow rate, and a solution obtained by dissolving the compound (5c-1) (5 g) obtained in Example 6-1 in R-113 (120 g) was injected over 2.8 hours. Next, the pressure inside the autoclave is increased to 0.15 MPa while blowing 20% fluorine gas at the same flow rate, and the R-113 solution having a benzene concentration of 0.01 g / mL is heated from 25 ° C. to 40 ° C. While injecting 9 mL, the benzene solution inlet of the autoclave was closed and stirring was continued for 0.3 hours. Next, 6 mL of the benzene solution was injected while maintaining the reactor pressure at 0.15 MPa and the reactor temperature at 40 ° C., the benzene solution inlet of the autoclave was closed, and stirring was continued for 0.3 hours. Further, the same operation was repeated once. The total amount of benzene injected was 0.22 g, and the total amount of R-113 injected was 21 mL. Further, stirring was continued for 1 hour while blowing 20% fluorine gas at the same flow rate. Next, nitrogen pressure was blown in for 1 hour with the pressure inside the reactor at normal pressure. As a result of analyzing the product by 19 FNMR, it was confirmed that the compound (6c-1) was contained in a yield of 93%.
NMR spectrum of compound (6c-1);
19 FNMR: δ (ppm) −77.6 to −78.9 (1F), −79.0 to −80.9 (10F), −81.0 to −82.4 (9F), −84.0 ~ -86.7 (3F), -123.3 (1F), -130.1 (2F), -131.8 (1F), -145.5 (1F).
(Example 6-3) Example of thermal decomposition reaction
Figure 2004050649
The reaction was conducted in the same manner as in Example 4-3 except that compound (6c-1) (2000 g) obtained by the method of Example 6-2 was used as the raw material for thermal decomposition, and compound (7c) (purity 99%, 600 g) was recovered. The structure of the compound (7c) was confirmed by 19 FNMR.
NMR spectrum of compound (7c);
19 FNMR: δ (ppm) 22.9 to 24.4 (1F), −78.2 to −79.6 (1F), −80.3 to −81.0 (3F), −81.6 to − 82.2 (3F), -83.7 to -84.7 (1F), -122.5 to -126.0 (1F).
(Example 6-4) Example of addition reaction of HFPO
Figure 2004050649
The reaction is conducted in the same manner as in Example 4-4 except that the compound (7c) (540 g) obtained by the method of Example 6-3 is used as the raw material for the HFPO addition reaction, and the fluorocarbon layer (lower layer) (800 g) is recovered. did. It was determined by 19 FNMR and GC-MS spectrum analysis that the compound contained in the fluorocarbon layer was the compound (1c).
NMR spectrum of compound (1c);
19 FNMR: δ (ppm) 26.3 (1F), −76.6 to −79.0 (2F), −80.3 (3F), −80.8 (3F), −81.3 to −82 .6 (3F), -84.5 to -86.7 (2F), -123.1 (1F), -131.0 to -133.3 (1F).
GC-MS spectrum of compound (1c) MS (m / z): 429 (M + -COF), 407, 313, 285, 263, 213, 197, 169, 147, 131, 119, 100, 97, 81, 78,69,50,47 (calculated Exact mass of C 9 F 16 O 4: 476.07).
[Example 7] Synthesis example of compound (2c)
Figure 2004050649
The reaction was carried out in the same manner as in Example 2 except that the fluorocarbon layer obtained in Example 6-4 was used and the amount of KOH used was 94 g, and the compound (2c) (670 g) was recovered. The structure of the compound (2c) was determined by 19 FNMR and GC-MS spectrum analysis.
NMR spectrum of compound (2c);
19 FNMR: δ (ppm) -77.9 to -78.1 (1F), -80.3 to -80.4 (3F), -80.9 to -81.1 (3F), -81.4 -81.6 (1F), -84.7 to -85.4 (2F), -114.0 to -114.1 (1F), -122.2 to -122.4 (1F), -123 .2 (1F), -136.1 to -136.2 (1F).
GC-MS spectrum of compound (2c);
MS (m / z): 410, 313, 285, 263, 247, 213, 197, 169, 147, 131, 119, 100, 97, 81, 78, 69, 50, 47 (calculated Exact mass of C 8 F 14 O 3 : 410.06).
[Reference Example] Example of Polymerization Reaction A 1.2 L pressure vessel equipped with a stirrer was charged with 590 g of ion-exchanged water, 353 g of CHFCClCF 2 CF 2 Cl, 54.8 g of compound (2a), and 16.4 g of methanol. Tetrafluoroethylene (TFE) was charged at an internal temperature of 50 ° C. until the pressure reached 1.21 MPa. Subsequently, 3 mL of a 0.1% solution of (CF 3 CF 2 CF 2 COO) 2 (solvent: CHFCClCF 2 CF 2 Cl) (hereinafter referred to as initiator solution) was charged, and polymerization was started at 50 ° C. During the polymerization, the initiator solution was charged intermittently, and a total of 20.2 mL was charged. As the polymerization progressed, the pressure decreased, so TFE was continuously charged to keep the pressure constant. When the amount of TFE added later became 145 g, the internal temperature was cooled to room temperature, unreacted TFE was discharged, and the pressure vessel was opened. The contents of the pressure vessel were filtered through a glass filter to obtain a slurry-like TFE copolymer. The obtained slurry was dried at 120 ° C. for 8 hours to obtain 155 g of a white TFE copolymer. The obtained TFE copolymer had a molar ratio of polymerized units based on TFE / polymerized units based on compound (2a) of 98.3 / 1.7 and a Q value of 1.7. The tensile strength was 32.6 MPa, the tensile elongation was 310%, the yield strength was 14.0 MPa, the tensile modulus was 154 MPa, and the MIT bending life was 1,230,000 times.

本発明によって提供される化合物(2a)等の化合物(2)はフッ素樹脂用モノマー等として有用な化合物であり、たとえば汎用のフッ素樹脂用モノマー等と共重合させることによって、有効に物性が改良されたフッ素樹脂が提供されうる。
また、本発明によって提供される化合物(3a)等の化合物(3)は、フッ素系溶剤として有用に用いうる化合物であり、洗浄剤や溶剤、添加剤等に有効に用いうる。
また、本発明によって提供される化合物(1a)等の化合物(1)は、化合物(2)および化合物(3)の製造用中間体として有用な化合物であり、かつ該化合物自身もまたフッ素系溶剤等として利用できる有用な化合物である。
The compound (2) such as the compound (2a) provided by the present invention is a useful compound as a monomer for a fluororesin. For example, the physical properties are effectively improved by copolymerizing with a general-purpose monomer for a fluororesin. Fluororesin can be provided.
Further, the compound (3) such as the compound (3a) provided by the present invention is a compound that can be usefully used as a fluorine-based solvent, and can be effectively used for a cleaning agent, a solvent, an additive, and the like.
Further, the compound (1) such as the compound (1a) provided by the present invention is a compound useful as an intermediate for the production of the compound (2) and the compound (3), and the compound itself is also a fluorinated solvent. It is a useful compound that can be used as such.

Claims (6)

下式(1)で表される化合物。
Figure 2004050649
ただし、Q、Q、Q、およびQは、それぞれ独立に、−O−または−CR−(ただし、RおよびRは、それぞれ独立に、フッ素原子またはペルフルオロアルキル基であり、Q〜Qから選ばれる、隣り合う2個以上の基は同時に−O−にはならない。)であり、Rはフッ素原子またはペルフルオロアルキル基である。
A compound represented by the following formula (1).
Figure 2004050649
Provided that Q 1 , Q 2 , Q 3 , and Q 4 are each independently —O— or —CR a R b — (wherein R a and R b are each independently a fluorine atom or a perfluoroalkyl group, And two or more adjacent groups selected from Q 1 to Q 4 cannot simultaneously be —O—.) And R 1 is a fluorine atom or a perfluoroalkyl group.
下式(1a)で表される化合物、下式(1b)で表される化合物、または下式(1c)で表される化合物。
Figure 2004050649
A compound represented by the following formula (1a), a compound represented by the following formula (1b), or a compound represented by the following formula (1c).
Figure 2004050649
下式(2)で表される化合物。
Figure 2004050649
ただし、Q、Q、Q、およびQは、それぞれ独立に、−O−または−CR−(ただし、RおよびRは、それぞれ独立に、フッ素原子またはペルフルオロアルキル基であり、Q〜Qから選ばれる、隣り合う2個以上の基は同時に−O−にはならない。)であり、Rはフッ素原子またはペルフルオロアルキル基である。
A compound represented by the following formula (2).
Figure 2004050649
Provided that Q 1 , Q 2 , Q 3 , and Q 4 are each independently —O— or —CR a R b — (wherein R a and R b are each independently a fluorine atom or a perfluoroalkyl group, And two or more adjacent groups selected from Q 1 to Q 4 cannot simultaneously be —O—.) And R 1 is a fluorine atom or a perfluoroalkyl group.
下式(2a)で表される化合物、下式(2b)で表される化合物、または下式(2c)で表される化合物。
Figure 2004050649
A compound represented by the following formula (2a), a compound represented by the following formula (2b), or a compound represented by the following formula (2c).
Figure 2004050649
下式(3)で表される化合物。
Figure 2004050649
ただし、Q、Q、Q、およびQは、それぞれ独立に、−O−または−CR−(ただし、RおよびRは、それぞれ独立に、フッ素原子またはペルフルオロアルキル基であり、Q〜Qから選ばれる、隣り合う2個以上の基は同時に−O−にはならない。)であり、Rはフッ素原子またはペルフルオロアルキル基である。
A compound represented by the following formula (3).
Figure 2004050649
Provided that Q 1 , Q 2 , Q 3 , and Q 4 are each independently —O— or —CR a R b — (wherein R a and R b are each independently a fluorine atom or a perfluoroalkyl group, And two or more adjacent groups selected from Q 1 to Q 4 cannot simultaneously be —O—.) And R 1 is a fluorine atom or a perfluoroalkyl group.
下式(3a)で表される化合物。
Figure 2004050649
A compound represented by the following formula (3a).
Figure 2004050649
JP2004570717A 2002-12-04 2003-10-28 Perfluoro five-membered ring compound Withdrawn JPWO2004050649A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2002352524 2002-12-04
JP2002352524 2002-12-04
JP2003160887 2003-06-05
JP2003160887 2003-06-05
PCT/JP2003/013786 WO2004050649A1 (en) 2002-12-04 2003-10-28 Perfluoro five-membered ring compound

Publications (1)

Publication Number Publication Date
JPWO2004050649A1 true JPWO2004050649A1 (en) 2006-03-30

Family

ID=32473689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004570717A Withdrawn JPWO2004050649A1 (en) 2002-12-04 2003-10-28 Perfluoro five-membered ring compound

Country Status (3)

Country Link
JP (1) JPWO2004050649A1 (en)
AU (1) AU2003275717A1 (en)
WO (1) WO2004050649A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063013A (en) * 2004-08-26 2006-03-09 Asahi Glass Co Ltd Method for producing perfluoro cyclic ether
EP2128150A1 (en) * 2006-12-20 2009-12-02 Asahi Glass Company, Limited Fluorine-containing compound and fluorine-containing polymer
CN108299374B (en) * 2018-03-07 2020-01-03 博容新材料(深圳)有限公司 Fluorination process of perfluoro compound containing 1, 3-dioxolane ester or 1, 3-dioxane ester
WO2020102271A2 (en) * 2018-11-14 2020-05-22 3M Innovative Properties Company Copolymers of perfluorocycloaliphatic methyl vinyl ether

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2362695C (en) * 1999-03-23 2009-12-08 Asahi Glass Company, Limited Process for producing a fluorine-containing compound by liquid phase fluorination
WO2002048085A1 (en) * 2000-12-13 2002-06-20 Asahi Glass Company, Limited Process for producing product of decomposition of fluorinated ester compound
WO2002066452A1 (en) * 2001-02-21 2002-08-29 Asahi Glass Company, Limited Processes for producing fluorinated cyclic ethers and use thereof

Also Published As

Publication number Publication date
WO2004050649A1 (en) 2004-06-17
AU2003275717A1 (en) 2004-06-23

Similar Documents

Publication Publication Date Title
JP5149885B2 (en) Fluorosulfates of hexafluoroisobutylene and its higher homologues and their derivatives
JP4934939B2 (en) Method for producing fluorine-containing ketone
JP4285000B2 (en) Method for producing fluorine-containing ester, fluorine-containing acyl fluoride and fluorine-containing vinyl ether
JPWO2002026688A1 (en) Method for producing fluorine-containing ester compound
JP2020007276A (en) Novel fluorine-containing compound
KR100704527B1 (en) Process for producing a vic-dichloro acid fluoride
KR101431926B1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
JP2006241302A (en) New perfluoro(2-vinyl-1,3-dioxolane) structure-having compound and fluorine-containing polymer
JP4961656B2 (en) Process for producing perfluoroacyl fluorides
KR100758163B1 (en) Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
EP1346980A1 (en) Process for producing fluorosulfonyl fluoride compound
JPWO2004050649A1 (en) Perfluoro five-membered ring compound
RU2281280C2 (en) Method for preparing fluorinated derivatives of ethylene-unsaturated compounds
EP1602639A1 (en) Process for production of perfluorodiacyl fluorides
JP5092192B2 (en) Process for producing perfluoro compounds and derivatives thereof
JP4956856B2 (en) Method for producing fluoride compound
EP1642890A1 (en) Process for production of fluorinated sulfonyl fluorides
WO2001046093A2 (en) Process for producing a fluoride compound
JPWO2002026682A1 (en) Method for producing fluorine-containing vinyl ether compound
JP2019014667A (en) Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)
EP1679298A1 (en) Fluorine-containing ether compound
JP2005225816A (en) Production method for fluorine-containing allyl ether
JP2006282619A (en) New compound having perfluoro(2,2-divinyl-1,3-dioxolane) structure and fluorine-containing polymer
JP2006282619A5 (en)
WO2005121118A1 (en) Compound having perfluoro(4-methylene-1,3-dioxolane) structure and novel polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100310