WO2002048085A1 - Process for producing product of decomposition of fluorinated ester compound - Google Patents

Process for producing product of decomposition of fluorinated ester compound Download PDF

Info

Publication number
WO2002048085A1
WO2002048085A1 PCT/JP2001/010889 JP0110889W WO0248085A1 WO 2002048085 A1 WO2002048085 A1 WO 2002048085A1 JP 0110889 W JP0110889 W JP 0110889W WO 0248085 A1 WO0248085 A1 WO 0248085A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
reaction
saturated hydrocarbon
monovalent
Prior art date
Application number
PCT/JP2001/010889
Other languages
French (fr)
Japanese (ja)
Inventor
Kunio Watanabe
Yasuhiro Suzuki
Koichi Yanase
Takashi Okazoe
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to AU2002221128A priority Critical patent/AU2002221128A1/en
Priority to JP2002549621A priority patent/JP4126542B2/en
Publication of WO2002048085A1 publication Critical patent/WO2002048085A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • C07C45/54Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition of compounds containing doubly bound oxygen atoms, e.g. esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/10Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/16Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/04Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D307/18Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D307/24Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/18Radicals substituted by singly bound oxygen or sulfur atoms
    • C07D317/20Free hydroxyl or mercaptan
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/14Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D317/30Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/42Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings

Definitions

  • the present invention relates to a method for producing an ester bond decomposition reaction product, particularly a useful fluorine-containing compound. More specifically, the present invention relates to a method for efficiently decomposing an ester bond of a fluorine-containing ester compound to produce a decomposition reaction product, and further relates to a method for efficiently producing a fluorine-containing ester compound used in the method.
  • a method of fluorinating all of the C-H portion in a C-H-containing compound to C-F a method of using cobalt trifluoride, a method of directly fluorinating using fluorine gas, or a method of fluorinating.
  • Hydrogen chloride ⁇ A method of performing a fluorination reaction by electrolysis (electrofluorination, hereinafter referred to as “ECF method”) is known.
  • ECF method electrolysis
  • direct fluorination using fluorine gas is known to be performed in a gas phase or in a liquid phase.
  • the method performed in the gas phase has a problem that a C—C single bond is broken during the fluorination reaction and various types of by-products are generated, and the method performed in the liquid phase is advantageous (WO 00 / 56694).
  • the present invention has been made to solve the above problems, and provides a method for continuously decomposing a fluorine-containing ester compound by effectively decomposing an ester bond of the fluorine-containing ester compound. Further, the present invention provides a method for efficiently producing the fluorine-containing ester compound used in the method.
  • the present invention provides the following manufacturing method.
  • a reaction temperature of not more than ° C At a reaction temperature of not more than ° C, and continuously supplying the fluorinated ester compound to the reaction zone, and performing the reaction while continuously extracting the decomposition reaction product from the reaction zone. Production method.
  • the fluorine-containing ester compound is a compound represented by the formula (4)
  • the decomposition reaction product is a compound represented by the formula (5) and a compound represented by Z or the formula (6). Production method.
  • R AF is a fluorine atom or a monovalent organic group
  • R BF is a monovalent organic group
  • R AF and R BF may be bonded to each other to form a divalent organic group
  • CF A fluorine atom is present in at least one group selected from R AF , R BF and R CF which is a monovalent organic group.
  • a compound represented by the formula (4) is reacted with a compound represented by the formula (1) and a compound represented by the formula (2) to form a compound represented by the formula (3); (3)
  • the production method described above which is a compound produced by reacting the compound represented by (3) with fluorine in a liquid phase.
  • R AF is a fluorine atom
  • RA is a hydrogen atom
  • R A and R AF are the same monovalent organic group
  • R A is a non-fluorinated monovalent organic group
  • R AF is a different monovalent organic group
  • R A is a monovalent organic group to be fluorinated
  • R B and R BF are the same monovalent organic group: B is not fluorinated
  • RB is a monovalent organic group to be fluorinated.
  • R AF and R BF are bonded to each other to form a divalent organic group
  • R A and R B are bonded to each other to form a divalent organic group
  • R A and R B 2 Ataiyu machine group formed from the, R AF and a divalent organic group is a divalent organic not fluorinated formed from R a and R B when it is identical to the divalent organic group formed from R BF a group, a divalent organic group formed from R a and R B when different is a divalent organic radical fluorination.
  • R t is a non-fluorinated monovalent organic group
  • R G and R eF are different monovalent organic groups
  • R e is fluorinated Is a monovalent organic group
  • X is a halogen atom.
  • the compound represented by the formula (3) has a fluorine atom content of 30 to 84% by mass.
  • RA is a hydrogen atom, a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partial halogeno (a monovalent saturated hydrocarbon group containing an etheric oxygen atom) A saturated hydrocarbon group), wherein R AF is a fluorine atom or a group in which substantially all of the hydrogen atoms present in R A have been replaced by fluorine atoms,
  • R B is a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, an etheric oxygen atom-containing monovalent saturated hydrocarbon group, or a partial octalogeno (etheric oxygen atom-containing monovalent saturated hydrocarbon) group
  • R BF is a group in which substantially all of the hydrogen atoms present in R B have been replaced by fluorine atoms;
  • R A and R B are each other bivalent saturated hydrocarbon group, partially halogeno 2 Atai ⁇ sum hydrocarbon group, an etheric oxygen atom-containing bivalent saturated hydrocarbon group or moiety halogenoalkyl (etheric oxygen atom, A divalent saturated hydrocarbon) group, wherein R AF and R BF are groups in which substantially all of the hydrogen atoms in the group formed from R A and R B have been replaced by fluorine atoms;
  • R c and R e F are the same group, and are a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogeno (etheric oxygen).
  • the above-described production method wherein substantially all of the hydrogen atoms present in the group selected from the group consisting of an atom-containing monovalent saturated hydrocarbon group are substituted with fluorine atoms.
  • the organic group refers to a group essentially including a carbon atom, and includes a saturated or unsaturated structure.
  • organic group a hydrocarbon group, an octogeno hydrocarbon group, a hetero atom-containing hydrocarbon group, or a halogeno (hetero atom-containing hydrocarbon) group is preferable. From the viewpoint of solubility in the liquid phase used in the fluorination reaction, these organic groups are preferably groups having 1 to 20 carbon atoms, and particularly preferably groups having 1 to 10 carbon atoms.
  • the hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group, preferably an aliphatic hydrocarbon group, and more preferably a saturated aliphatic hydrocarbon group.
  • Examples of the monovalent saturated aliphatic hydrocarbon group include an alkyl group and a cycloalkyl group, and the structure of the alkyl group may be any of a straight-chain structure, a branched structure, a ring structure, and a partially ring-shaped structure. You may.
  • Examples of the divalent saturated hydrocarbon group include an alkylene group and a cycloalkylene group, and the structure of the alkylene group may be any of a linear structure, a branched structure, and a structure having a ring portion.
  • the alkyl group or the alkylene group preferably has 1 to 10 carbon atoms.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cycloalkylalkyl group, and a cycloalkyl group part in which the alkyl group is an alkyl group.
  • a cycloalkylalkyl group a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cycloalkylalkyl group, and a cycloalkyl group part in which the alkyl group is an alkyl group.
  • alkylene group examples include groups in which one hydrogen atom of the above-mentioned alkyl group is a bond, and a linear or branched alkylene group is preferable.
  • cycloalkyl group examples include a 3- to 6-membered cycloalkyl group, and a cyclopentyl group and a cyclohexyl group are preferable.
  • a cycloalkylene group Is preferably a cyclopentylene group or a cyclohexylene group.
  • a halogeno group refers to a group in which one or more hydrogen atoms have been replaced by halogen atoms.
  • the halogeno group may be a group having a hydrogen atom or a group not having a hydrogen atom.
  • a partial halogeno group refers to a group in which part of a hydrogen atom has been replaced by a halogen atom. That is, the partial halogeno group is a group having a hydrogen atom.
  • the Belha geno group is a group in which all of the hydrogen atoms are fluorinated, and is a group in which no hydrogen atoms are present.
  • the meanings of the terms halogeno, partial halogeno, and bergha-geno have the same meaning even when the ⁇ and ⁇ ⁇ atoms are specified.
  • halogen atom in the halogeno group examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom, a chlorine atom, or a bromine atom is preferable.
  • a fluorine atom, or a chlorine atom is preferable.
  • only a fluorine atom, or It preferably comprises a fluorine atom and a chlorine atom.
  • a halogeno hydrocarbon group is a group in which one or more of the hydrogen atoms present in the hydrocarbon group has been replaced by a halogen atom.
  • the monovalent halogeno saturated hydrocarbon group is preferably a fluoroalkyl group or a fluoro (partial cycloalkyl) group, etc., and is preferably a perfluoroalkyl group or a perfluoro (partial cycloalkyl) group (ie, a partial cycloalkyl group). In which all of the hydrogen atoms in the group are replaced by fluorine atoms).
  • a fluoroalkylene group or a fluoro (partial cycloalkylene) group is preferable, and a perfluoroalkylene group or a perfluoro (partial chloroalkylene) group (that is, a partial cycloalkylene group) is preferred. Wherein all of the hydrogen atoms in the group are replaced by fluorine atoms).
  • the perfluoro (partially fluoroalkyl) group is the same as the perfluoroalkyl group, and the perfluoro (partially alkylene) group is the same as the perfluoroalkylene group.
  • a hetero atom-containing hydrocarbon group is a group such as an oxygen atom, a nitrogen atom, or a sulfur atom.
  • an etheric oxygen atom o of c_o—C
  • the heteroatom is preferably present between the carbon-carbon atoms of the hydrocarbon group or at the bonding terminus of said hydrocarbon group.
  • an alkyl group containing an etheric oxygen atom as a monovalent group for example, from the viewpoint of the usefulness of the compound, availability, ease of production, and usefulness of the product
  • An alkoxyalkyl group, etc. are preferable, and the divalent group is preferably an alkylene group containing an etheric oxygen atom (eg, a polyoxyalkylene group).
  • alkoxyalkyl group a group having 1 to 10 carbon atoms in the alkoxy group is preferable.
  • examples of the alkoxyalkyl group include an ethoxymethyl group, an 11-propoxyl group, and a 2-propoxyl group.
  • the polyoxyalkylene group a polyoxyethylene group and a polyoxypropylene group are preferable.
  • the halogeno (hetero atom-containing hydrocarbon) group refers to a group in which one or more of the hydrogen atoms of the hetero atom-containing hydrocarbon group has been substituted with a halogen atom.
  • a fluoro (alkoxyalkyl) group or a fluoro (partial alkyl (alkoxyalkyl)) group is preferred, and a perfluoro (alkoxyalkyl) group or a Belfluoro (partial alkyl (alkoxyalkyl)) group is particularly preferred.
  • a fluoro (polyoxyalkylene) group is preferable, and a perfluoro (polyoxyalkylene) group is particularly preferable.
  • the ester bond of the fluorine-containing ester compound which can undergo a decomposition reaction of the ester bond is decomposed.
  • the fluorine-containing ester compound in which an ester bond can be decomposed include a compound having a partial structure (a C (0) 0-CF-) in which a fluorine atom is bonded to a carbon atom adjacent to an oxygen atom forming an ester bond.
  • a compound having a partial structure a C (0) 0-CF-
  • a fluorine atom is bonded to a carbon atom adjacent to an oxygen atom forming an ester bond.
  • Can be The carbon atom to which the fluorine atom in this partial structure is bonded has an additional bond.
  • a monovalent atom (a fluorine atom is preferred in terms of availability) or a monovalent organic group (a trifluoromethyl group is preferred in terms of availability) is bonded to the bond. Is also good.
  • the carbon atom to which the fluorine atom is bonded may be a carbon atom forming a ring.
  • the partial structure in the fluorinated ester compound is one or more, preferably 1 to 10, and more preferably 1 or 2 from the viewpoint of the usefulness of the compound and the ease of the reaction operation.
  • R AF , R BF , and R eF are as described above.
  • the compound (4) is preferably a substantially perfluorinated compound.
  • a substantially perfluorinated compound refers to a compound whose properties as a compound are equivalent to those of a perfluorinated compound, even when a non-fluorinated hydrogen atom is present.
  • R AF , R BF , and R GF are a perfluoro monovalent saturated hydrocarbon group, a perfluoro (partial chromate (monovalent saturated hydrocarbon)) group, a perfluoro (a monovalent saturated hydrocarbon containing an etheric oxygen atom) group, and a perfluoro group.
  • RAF Partial port (etheric oxygen atom-containing monovalent saturated hydrocarbon) group is preferable, and in RAF , a fluorine atom is also preferable in addition to the above. Further, as R AF , R BF and R CF , a perfluoroalkyl group, a perfluoro (partially alkyl)) group, a perfluoroalkoxyalkyl group, and a perfluoro (partially alkoxyalkyl) group are particularly preferred. In addition, in RAF , a fluorine atom is also preferable in addition to the above.
  • R AF and R BF jointly form a perfluoro divalent saturated hydrocarbon group, a perfluoro (partially halogeno (divalent saturated hydrocarbon)) group, a perfluoro (a divalent saturated hydrocarbon containing an etheric oxygen atom) group, or a perfluoro group.
  • a perfluoro divalent saturated hydrocarbon group a perfluoro (partially halogeno (divalent saturated hydrocarbon)) group, a perfluoro (a divalent saturated hydrocarbon containing an etheric oxygen atom) group, or a perfluoro group.
  • Partial halogeno etheric acid Divalent saturated hydrocarbons containing carbon atoms
  • a perfluoro (partial cycloalkylene)) group a perfluoroalkyleneoxyalkylene group, or a perfluoro (partial cycloalkylenealkylene) group.
  • C y F is pel full O b a cyclohexyl group
  • R 1 F and R represents an independently, respectively It fluorine atom or Bok Rifuruoromechiru group.
  • the ester bond of the fluorinated ester compound is decomposed.
  • the conditions and method of the ester bond decomposition reaction are appropriately determined depending on the type of the fluorinated ester compound and the intended fluorinated compound (whether the target compound is the compound (5) or the compound (6)). Can be changed.
  • the decomposition reaction of the ester bond is performed while continuously supplying the fluorine-containing ester compound to the reaction zone and continuously extracting the decomposition reaction product from the reaction zone.
  • the reaction of the present invention is carried out substantially without using a solvent.
  • the solvent refers to a liquid mixture other than the compounds involved in the reaction (ie, the fluorine-containing ester compound and its decomposition reaction product).
  • the supply rate of the fluorinated ester compound and the withdrawal rate of the reaction product of the decomposition reaction can be appropriately changed depending on the reactivity of the fluorinated ester compound, the type of the apparatus, the reaction conditions and the like.
  • the fluorinated ester compound is a compound having a boiling point lower than the decomposition reaction temperature of the ester bond
  • the decomposition reaction of the ester bond can be performed in a gas phase reaction mode.
  • the gaseous fluorinated ester compound may be passed through a reactor in which KF is a fixed bed or a fluidized bed.
  • KF is a fixed bed or a fluidized bed.
  • the reaction is preferably performed by a liquid phase reaction method.
  • KF and the fluorinated ester compound are charged into the reaction vessel and stirred, and the fluorinated ester compound is supplied thereto to carry out the reaction.
  • the reaction temperature is preferably set to be equal to or higher than the boiling point of the target decomposition reaction product. Furthermore, in this case, it is preferable that the reaction and distillation are simultaneously performed using a reaction apparatus provided with distillation or the like, so that the reaction is performed while continuously distilling the reaction product from the reaction site. Since the decomposition reaction product of the ester bond usually has a lower boiling point than that of compound (4), it can be continuously and efficiently extracted by distillation. The decomposition reaction of the ester bond is performed in the presence of KF.
  • KF acts as a nucleophile
  • F— is further eliminated from R AF R BF CFO— to produce compound (5).
  • the eliminated F— reacts in the same manner as another compound (4). Therefore, KF used at the beginning of the reaction may be a catalytic amount or may be used in excess. That is, the amount of KF is preferably from 1 to 500 mol%, more preferably from 5 to 50 mol%, based on compound (4).
  • the reaction by performing the reaction using KF, other alcohols such as NaF can be used.
  • Decomposition reaction products can be obtained more efficiently at lower temperatures than when using potassium metal fluoride.
  • the upper limit of the reaction temperature is 200 ° C, preferably 150 ° C, particularly preferably 100 ° C.
  • the lower limit of the reaction temperature in the gas phase reaction is preferably the boiling point of the reaction product of the decomposition reaction, and particularly preferably 120 ° C. Since the decomposition reaction of the ester bond of the present invention can be carried out at a low reaction temperature, it is advantageous in production and is suitable as an industrial production method.
  • the reaction can be performed without using a solvent. That is, while the conventional ester-bond decomposition reaction was carried out in the liquid phase in the presence of a solvent, the method of the present invention can be carried out without using a solvent with substantially no solvent, so that the volumetric efficiency is improved. This is also advantageous from the viewpoint of controlling by-products.
  • the reaction can be carried out at a low reaction temperature both in the case of carrying out the reaction in the gas phase and in the case of carrying out the reaction in the liquid phase.
  • the reaction rate of the ester bond decomposition reaction is significantly improved. Therefore, when the decomposition reaction is continuously performed, the production amount of the target compound per unit time is dramatically improved, which is extremely advantageous in terms of production efficiency.
  • a target compound is obtained from a reaction product of a decomposition reaction of an ester bond.
  • the reaction product include a compound having a terminal structure of one COF and a ketone compound.
  • R AF , R BF and R eF are the same groups corresponding to compound (4), and the preferred embodiments are also the same.
  • Specific examples of the compound (5) include the following compounds.
  • Specific examples of the compound (6) include compounds in which R 1F is a fluorine atom among the compounds mentioned as the specific examples of the compound (5). However, in the following formula, R 1F represents a fluorine atom or a trifluoromethyl group.
  • R AF in the compound (5) is a fluorine atom
  • R AF in the compound (5) is a fluorine atom
  • the compound (5) and the compound (6) formed by the decomposition reaction of the ester bond have the same structure.
  • the purification process of the decomposition reaction product can be greatly simplified, and an efficient production method can be achieved.
  • Compound (4A) can be obtained by a fluorination reaction of compound (3A) described below.
  • R BF has the same meaning as described above, and the preferred embodiment is also the same.
  • Compound (4) can be obtained by reacting compound (1) with compound (2) to give compound (3), and reacting compound (3) with fluorine in a liquid phase to produce compound (3). (4) is preferred.
  • the method can be carried out according to the method of WOOZ5 6694 by the present inventors, and a compound having an arbitrary structure can be obtained.
  • R A and R B are a hydrogen atom, a monovalent saturated hydrocarbon group, a partially saturated monovalent saturated hydrocarbon group, A monovalent saturated hydrocarbon group containing an etheric oxygen atom or a partial chloro (monovalent saturated hydrocarbon containing an etheric oxygen atom) group is preferable, and RA is preferably a hydrogen atom in addition to the above.
  • R A and R B an alkyl group, a partially substituted alkyl group, an alkoxyalkyl group, and a partially substituted alkoxyalkyl group are particularly preferable, and as R A , a hydrogen atom is also preferable in addition to the above.
  • R A and R B of compound (1) are jointly a divalent saturated hydrocarbon group
  • a compound having an arbitrary structure can be obtained by easily obtaining the compound (1) corresponding to the structure of the compound (4) because compounds having various structures can be easily obtained.
  • Cy represents a cyclohexyl group
  • R 1 represents a hydrogen atom or a methyl group
  • R c in compound (2) is preferably a monovalent organic group having a fluorine atom, and is a monovalent saturated hydrocarbon group, a partially octalogeno monovalent saturated hydrocarbon group, or a monovalent saturated hydrocarbon group containing an etheric oxygen atom.
  • a group in which substantially all of the hydrogen atoms present in a group selected from a hydrogen group and a partial octalogeno (monovalent saturated hydrocarbon containing an etheric oxygen atom) group are substituted with a fluorine atom is preferable, and in particular, perfluoro Monovalent saturated hydrocarbon group, perfluoro (partial chromate (monovalent saturated hydrocarbon)) group, perfluoro (etheric oxygen atom-containing monovalent saturated hydrocarbon) group, perfluoro (partial chromate (etheric oxygen atom containing) Monovalent saturated hydrocarbon)) groups are preferred, and especially perfluoroalkyl groups, perfluoro (partial cycloalkyl) groups, perfluoroalkoxyalkyl groups, Furuoro (partial black port (alkoxyalkyl)) group is preferred.
  • the compound (2) include the same compounds as the compound (6).
  • the following compound (1A) is preferable as the compound (1)
  • the following compound (2A) is preferable as the compound (2).
  • the compound (2A) produce the following compound (3A)
  • compound (4) is obtained by reacting compound (3) produced by the reaction between compound (1) and compound (2) with fluorine in a liquid phase.
  • the reaction between compound (1) and compound (2) can be carried out by applying known ester reaction methods and conditions.
  • HF is generated.
  • an alkali metal fluoride preferably NaF or KF
  • a trialkylamine may be present in the reaction system.
  • the HF scavenger is preferably used when compound (1) or compound (2) is an acid-labile compound. When an HF scavenger is not used, it is preferable to discharge HF out of the reaction system by entraining HF in a nitrogen stream.
  • an alkali metal fluoride it is preferably 1 to 10 moles per mole of the compound (2).
  • the reaction temperature of the compound (1) with the compound (2) is preferably not less than 50 T :, more preferably not more than + 100 ° C or not more than the boiling point of the solvent.
  • the reaction time of the reaction can be appropriately changed depending on the supply rate of the raw materials and the amount of the compound used in the reaction.
  • the reaction pressure gauge pressure, the same applies hereinafter is preferably from 0 to 2 MPa.
  • the molar ratio of the compound (1) to the compound (2) is preferably such that the amount of the compound (2) was 0.5 to 5 times, more preferably 1 to 2 times, the mole of the compound (1). Better.
  • the crude product containing the compound (3) produced by the reaction of the compound (1) with the compound (2) may be purified according to the purpose or used as it is for the next reaction or the like. From the viewpoint of stably performing the fluorination reaction in the process, it is desirable to carry out separation and purification.
  • the fluorine content (the fluorine content is the ratio of the mass of fluorine atoms to the molecular weight) of compound (3) obtained by reacting compound (1) with compound (2) is preferably 30% by mass or more.
  • the fluorine content is preferably from 30 to 84% by mass, more preferably from 30 to 76% by mass. If the fluorine content is too low, the solubility of compound (3) in the liquid phase will be extremely low, and the reaction system during the fluorination reaction will be non-uniform. Can not be fed into the reaction system.
  • the upper limit of the fluorine content is not particularly limited, but those that are too high are difficult to obtain, are expensive, and are not economical.
  • the molecular weight of the compound (3) is preferably from 200 to 1,000 in that an undesirable fluorination reaction in the gas phase can be prevented and the fluorination reaction in the liquid phase can be carried out smoothly. If the molecular weight is too small, the compound (3) is likely to evaporate, so that a decomposition reaction may occur in the gas phase during the fluorination reaction in the liquid phase. On the other hand, if the molecular weight is too large, purification of compound (3) may be difficult.
  • Cy represents a cycloalkyl group
  • R 1 represents a hydrogen atom or a methyl group
  • R 2F represents a fluorine atom or a trifluoromethyl group.
  • the compound (3) is then fluorinated to obtain a compound (4).
  • This fluorination is performed by a fluorination reaction in which compound (3) is reacted with fluorine in a liquid phase.
  • the fluorination reaction here is a reaction in which at least one fluorine atom is bonded to the molecule of the compound (3) by one atom.
  • R AF , R BF , and R GF in compound (4) are groups corresponding to substituents R A , R B , and RG in compound (3), respectively. There is no change in the arrangement of the atoms.
  • the divalent organic group formed from R AF , R BF , or R AF and R BF of compound (4) is R A , R B , or the divalent organic group formed from R A and R B , respectively.
  • these groups are different from each other, and these groups are preferably fluorinated groups.
  • the carbon atom Is replaced by fluorine.
  • a fluorine atom is added to the carbon-carbon unsaturated bond.
  • the fluorination reaction may be performed on a part of the structure that can be fluorinated, on the whole, or preferably on the whole.
  • R AF is a monovalent saturated hydrocarbon group, a partially octalogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogeno (a monovalent saturated hydrocarbon group containing an etheric oxygen atom).
  • saturated hydrocarbon is preferably substantive all of the hydrogen atoms present in radicals are radicals or fluorine atoms substituted by fluorine atoms selected from the group, all of the hydrogen atoms present in the fluorine atom or R a Particularly preferred are fluorinated groups.
  • RBF is a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogeno (a monovalent saturated hydrocarbon containing an etheric oxygen atom) preferably substantially all of the hydrogen atoms present in groups are substituted groups where a fluorine atom selected from group, particularly preferably all of the hydrogen atoms present in R B is fluorinated groups .
  • R GF is a same group as R e, monovalent saturated hydrocarbon groups, moieties eight Rogeno monovalent saturated hydrocarbon group, ether oxygen atom-containing monovalent saturated hydrocarbon group, and partially eight Rogeno (etheric It is preferable that substantially all of the hydrogen atoms present in the group selected from the oxygen atom-containing monovalent saturated hydrocarbon groups are substituted with fluorine atoms, and particularly those groups in which all are fluorinated. It is preferred that
  • fluorine gas When fluorinating compound (3) in a liquid phase, it is preferable to introduce fluorine gas into a solvent in which compound (3) is present.
  • the fluorine gas may be used as it is, or may be a fluorine gas diluted with an inert gas.
  • an inert gas nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable for economic reasons.
  • the amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10% by volume or more from the viewpoint of efficiency, and particularly preferably 20% by volume or more.
  • the solution As the medium, a solvent that does not contain a C—H bond and requires a C—F bond is preferable.
  • An organic solvent obtained by perfluorinating a known organic solvent having the above atoms in the structure is preferable.
  • the solvent it is preferable to use a solvent having high solubility of the compound (3). Particularly, when the compound (4), the compound (5) or the compound (6) is used, the post-treatment after the reaction becomes easy. Advantageous and preferred.
  • the amount of the solvent to be used is preferably at least 5 times, more preferably 10 to 100 times, the mass of the compound (3).
  • the reaction system of the fluorination reaction is preferably a continuous system rather than a batch system.
  • the following continuous method is preferable from the viewpoint of reaction yield and selectivity. That is, the solvent is charged into the reactor, and stirring is started. Next, a continuous method in which the compound (3) and fluorine gas are continuously and simultaneously supplied at a predetermined molar ratio to a liquid phase in a reactor at a predetermined reaction temperature and a predetermined reaction pressure.
  • the compound (3) may or may not be diluted with the solvent.
  • the compound (3) diluted with the solvent is supplied. Is preferred.
  • the amount of the solvent with respect to the compound (3) is preferably at least 5 times, more preferably at least 10 times the mass.
  • the amount of fluorine used in the fluorination reaction is always an excess equivalent to the hydrogen atom in compound (3). It is preferable to use fluorine as described above, and it is particularly preferable to use fluorine so as to be 1.5 times equivalent or more (that is, 1.5 times mole or more) in terms of selectivity.
  • the upper limit of the amount of fluorine is preferably 3.0 times or less.
  • the reaction temperature of the fluorination reaction is usually preferably 160 ° C. or higher and the boiling point of the compound (3) or lower, and is preferably 150 ° C. in view of the reaction yield, selectivity, and industrial easiness. To + 100 ° C is particularly preferable, and ⁇ 20 ° C to 150 ° C is particularly preferable. Fluorination
  • the reaction pressure of the reaction is not particularly limited, and 0 to 2 MPa (cage pressure; the same applies hereinafter) is particularly preferable from the viewpoints of reaction yield, selectivity, and industrial easiness.
  • a CH bond-containing compound to the reaction system or to perform ultraviolet irradiation. That is, it is preferable to add a C—H bond-containing compound to the reaction system at a later stage of the fluorination reaction, or to perform ultraviolet irradiation at a later stage of the reaction.
  • the compound (3) present in the reaction system can be efficiently fluorinated, and the reaction rate can be dramatically improved.
  • the amount of the C-H bond-containing compound is 0.1 to 10 mol% based on the hydrogen atoms in the compound (3). And preferably 0.1 to 5 mol%.
  • the C-H bond-containing compound is preferably added in a state where fluorine gas is present in the reaction system. Further, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system. The pressure at the time of pressurization is preferably 0.01 to 5 MPa.
  • HF is produced as a by-product, so it is preferable to coexist an HF scavenger in the reaction system for the purpose of removing HF, or to contact the HF scavenger with the outlet gas at the reactor gas outlet.
  • the HF scavenger NaF is preferable.
  • the amount is preferably 1 to 20 moles, more preferably 1 to 5 moles, based on the total amount of hydrogen atoms present in the compound (3).
  • a cooler preferably maintained at 10 ° C to room temperature, particularly preferably maintained at about 20
  • the cooling layer preferably maintained at a temperature of 78 ° C to + 10 ° C, more preferably maintained at a temperature of 30 ° C to 0 ° C
  • a liquid return line for returning the condensed liquid from the cooler in (c) to the reactor may be provided.
  • the crude product containing the compound (4) obtained by the fluorination reaction may be used as it is in the next step, or may be purified to high purity.
  • Examples of the purification method include a method of distilling the crude product as it is under normal pressure or reduced pressure. .
  • the best method as an industrial process for obtaining compounds (5) and Z or compound (6) by the production method of the present invention is as follows.
  • the compound (1A) is reacted with the compound (2A) to give a compound (3A), and the compound (3A) is reacted with fluorine in a liquid phase to give a compound (4A).
  • This is a method for obtaining a compound (2A) from a reaction product obtained by performing the above-described ester bond decomposition reaction. Further, by reacting compound (2A) with compound (1A) again, compound (2A) can be continuously and efficiently produced. Examples>
  • CF 3 (CF 2 ) 20 CF (CF 3 ) COF (hereinafter abbreviated as “(HFPO) 2 ”) is generated at a rate of 110 g / h. It was confirmed. The yield of (HFPO) 2 was 99%.
  • Example 2 The same operation as in Example 1 was performed except that the reaction temperature was 73 ° C and the feed amount of the crude perfluoroester solution was 215 gZh.
  • the yield of (HFPO) 2 was 99%.
  • the CF 3 CF 2 CF 2 OCF (CF 3 ) COF (2340 g) obtained in Example 4-11 was added to a 300 OmL nickel autoclave, and the mixture was stirred and kept at 25 ° C.
  • a cooler kept at 2 Ot, a packed bed of NaF pellets, and a cooler kept at 10 ° C were installed in series.
  • a liquid return line was installed to return the coagulated liquid from the cooler kept at 10 ⁇ to the autoclave.
  • fluorine gas diluted to 20% by volume with nitrogen gas hereinafter abbreviated as diluted fluorine gas
  • reaction mixture (106 g) obtained in Example 4-11 was injected over 45.6 hours while blowing the diluted fluorine gas at the same flow rate.
  • the CF 3 CF 2 CF 2 OCF (CF 3 ) COF solution (18 mL) with a benzene concentration of 0.01 gZmL was heated from 25 ⁇ to 40.
  • the autoclave's benzene inlet valve was closed, the autoclave's outlet valve was closed, and when the pressure reached 0.2 MPa, the autoclave's fluorine gas inlet valve was closed and stirring continued for 1 hour. I did.
  • the pressure was adjusted to normal pressure, the benzene solution (6 mL) was injected while maintaining the temperature in the reactor at 40 ° C, the benzene inlet valve of the autoclave was closed, and the outlet valve of the autoclave was closed.
  • the pressure reached 0.2 MPa, the fluorine gas inlet valve of the autoclave was closed, and stirring was continued for 1 hour. Further The operation of benzene injection was repeated once.
  • the total amount of benzene injected was 0.309 g
  • the total amount of CF 3 CF 2 CF 2 OCF (CF 3 ) COF injected was 3 OmL, and nitrogen gas was blown for 2.0 hours.
  • the product was purified by distillation to obtain a product containing the title compound (85.3 g) and CF 3 CF 2 CF 2 OCF (CF 3 ) COF.
  • Tetrahydrid furfuryl alcohol (20 g) and triethylamine (21.8 g) were placed in a flask and stirred in an ice bath.
  • FCOCF (CF 3 ) 0CF 2 CF 2 CF 3 (71.5 g) was added dropwise over 1 hour while maintaining the internal temperature at 10 ° C or lower. After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours, and 5 OmL of water was added at an internal temperature of 15 ° C or lower.
  • the obtained crude liquid was separated, and the lower layer was washed twice with 5 OmL of water, dried over magnesium sulfate, and then filtered to obtain a crude liquid.
  • the desired ester compound (66.3 g) was obtained by distillation under reduced pressure as a fraction at 88 to 89 ° CZ 2.7 kPa. GC purity was 98%.
  • R-113 (1614 g) was added to a 300 OmL nickel autoclave, stirred, and kept at 25 ⁇ .
  • a liquid return line was installed to return the condensed liquid from the cooler kept at 110 ° C to the autoclave.
  • fluorine gas diluted to 20% by volume with nitrogen gas hereinafter abbreviated as diluted fluorine gas was blown at a flow rate of 17.04 L / hl for 1 hour.
  • the benzene concentration was 0.05 g / mL: — 113 solution was injected while increasing the temperature from 25 ° C to 40 ° C, and the benzene inlet of the autoclave was closed. Stirring was continued for 0.3 hours. Next, while injecting the diluted fluorine gas at the same flow rate, maintaining the reactor pressure at 0.15 MPa and maintaining the reactor temperature at 40 ° C, inject 2 OmL of the above benzene solution, and stir for 0.3 hours. Continued
  • Example 5-3 Production example of the following compound 56.5 of the crude reaction solution obtained in Example 5-2 was charged into a flask together with 0.95 g of KF powder, and heated at 90 to 110 ° C. for 4 hours in an oil bath with vigorous stirring. A reflux condenser adjusted to a temperature of 5 was installed at the top of the flask, and a liquid sample was collected with a dry ice ethanol trap at the exit of the reflux condenser. 44.0 g after cooling Of the liquid sample was collected. As a result of analysis by GC-MS, CF 3 CF ( ⁇ CF 2 CF 2 CF 3 ) COF and the title compound were confirmed as main products. The yield of the title compound determined by NMR was 87%.
  • Compound B—1 A mixture of compound A—1 and compound B—1: 59:41 (molar ratio) (100.0 g) and triethylamine (10.7 g) are placed in a flask, and the internal temperature is 10 ° C. Stirred below. FCOCF (CF 3 ) OCF 2 CF 2 CF 3 (351.0 g) was added dropwise over 400 minutes while maintaining the internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour, and water (50 OmL) was added while keeping the internal temperature not exceeding 15 ° C.
  • Example 5-2 Using the same reactor as in Example 5-2, R-113 (1701 g) was added, stirred, and kept at 25 ° C. Diluted fluorine gas was blown at a flow rate of 17.04 L_ / h for 1 hour. Next, while diluting fluorine gas was blown in at the same flow rate, a solution obtained by dissolving the reaction crude solution (115 g) obtained in Example 6-1 in R-113 (863 g) was injected over 24.8 hours.
  • the R-113 solution with a benzene concentration of 0.04 gZmL was raised from 25 ° C to 40 ° C. While heating, 3 OmL was injected, the benzene inlet of the autoclave was closed, and stirring was continued for 0.3 hour. Next, while injecting the diluted fluorine gas at the same flow rate, while maintaining the reactor pressure at 0.15 MPa and the reactor temperature at 40 ° C, 2 OmL of the above benzene solution was injected, and the mixture was stirred for 0.3 hours. Continued. The same operation was repeated once, and the stirring was further continued for 1.0 hour.
  • the total injection amount of benzene was 3.14 g R-113 was 7 OmL.
  • the desired product was quantified by 19 F-NMR (internal standard: C 6 F 6 ). As a result, the yield of compound A-3 was 68%, and the yield of compound B-3 was 93%.
  • the ester bond of the fluorinated ester compound can be separated at a low reaction temperature. Can be done. Moreover, according to the method of the present invention, the reaction can be efficiently performed at an unexpectedly high reaction rate without lowering the reaction rate even when the reaction temperature is lowered. That is, the method of the present invention is a very advantageous method in industrial practice.
  • the decomposition reaction of the ester bond can be carried out while producing an arbitrary fluorine-containing ester compound by an advantageous method.

Abstract

A process for production with high productivity which comprises efficiently decomposing a fluorinated ester compound at a low temperature and a high reaction rate. In the process, a fluorinated ester compound having a decomposable ester bond is decomposed at the ester bond to obtain a decomposition product. The ester bond decomposition reaction is conducted in the presence of KF at a temperature of 200°C or lower substantially without using a solvent. The reaction is conducted while continuously supplying the fluorinated ester compound to the reaction zone and continuously discharging the decomposition products from the reaction zone.

Description

明 細 書  Specification
含フッ素エステル化合物の分解反応生成物の製造方法 ぐ技術分野 >  Method for producing a decomposition reaction product of a fluorine-containing ester compound
本発明は、 エステル結合分解反応生成物、 特には有用な含フッ素化合物の製造 方法に関する。 さらに詳しくは、 含フッ素エステル化合物のエステル結合を効率 良く分解して分解反応生成物を製造する方法に関し、 さらには、 該方法に用いる 含フッ素エステル化合物を効率良く製造する方法に関する。 ぐ背景技術 >  The present invention relates to a method for producing an ester bond decomposition reaction product, particularly a useful fluorine-containing compound. More specifically, the present invention relates to a method for efficiently decomposing an ester bond of a fluorine-containing ester compound to produce a decomposition reaction product, and further relates to a method for efficiently producing a fluorine-containing ester compound used in the method. Background technology>
従来より、 C一 H含有化合物中の C一 H部分の全てを C一 Fにフッ素化する方 法として、 三フッ化コバルトを用いる方法、 フッ素ガスを用いて直接フッ素化す る方法、 または、 フッ化水素 ¾電気分解してフッ素化反応を行う方法 ( electrochemical f luorination, 以下 「ECF法」 と称する。 ) が知られている 。 これらの方法のうち、 フッ素ガスを用いて直接フッ素化する方法には、 気相で 行う方法と、 液相で行う方法が知られている。 しかし、 気相で行う方法では、 フ ッ素化反応中に C一 C単結合の切断が起こり、 多種類の副生成物が生じる問題が あり、 液相で行う方法が有利である (WO 00/56694) 。  Conventionally, as a method of fluorinating all of the C-H portion in a C-H-containing compound to C-F, a method of using cobalt trifluoride, a method of directly fluorinating using fluorine gas, or a method of fluorinating. Hydrogen chloride 方法 A method of performing a fluorination reaction by electrolysis (electrofluorination, hereinafter referred to as “ECF method”) is known. Among these methods, direct fluorination using fluorine gas is known to be performed in a gas phase or in a liquid phase. However, the method performed in the gas phase has a problem that a C—C single bond is broken during the fluorination reaction and various types of by-products are generated, and the method performed in the liquid phase is advantageous (WO 00 / 56694).
また、 (1) ペルフルォロエステル化合物のエステル結合を 224〜254°C で分解する方法 aAm.Chem.Soc.1998, 120, 7117) 、 (2) ペルフルォロエステ ル化合物を N a Fの存在下に 80〜200 °Cでエステル分解反応する方法 (US 3900372) 、 (3) ペルフルォロエステルを、 溶媒と NaFや KFの存在 下に、 バッチ式反応でエステル分解反応する方法 (US 5466877) 、 が知 られている。  Also, (1) a method of decomposing the ester bond of the perfluoroester compound at 224 to 254 ° C aAm. Chem. Soc. 1998, 120, 7117), (2) a method of decomposing the perfluoroester compound by Na Method of performing ester decomposition reaction at 80 to 200 ° C in the presence of F (US 3900372), (3) Method of performing ester decomposition reaction of perfluoroester by batch reaction in the presence of solvent and NaF or KF (US 5466877), are known.
しかし、 (1) の文献には、 アルカリ.金属フッ化物の存在下に反応させること は記載もなく示唆もない。 また、 (1) の文献に記載される方法は反応温度が高 く、 反応を実施できる基質が限定される問題がある。 (2) や (3) の文献に記 載の方法では収率が低く反応速度が低い問題がある。 (3) の文献には、 溶媒を 存在させずに反応を行った場合には、 反応が進まない例が記載されている。 ぐ発明の開示 > However, the literature in (1) requires that the reaction be carried out in the presence of alkali metal fluoride. Is neither described nor suggested. In addition, the method described in the document (1) has a problem that the reaction temperature is high and the substrate on which the reaction can be performed is limited. The methods described in the references (2) and (3) have a problem that the yield is low and the reaction rate is low. Reference (3) describes an example in which the reaction does not proceed when the reaction is performed in the absence of a solvent. Invention disclosure>
本発明は、 上記の問題を解決する目的でなされた発明であり、 含フッ素エステ ル化合物のエステル結合を効果的に分解して連続的に分解反応生成物を製造する 方法を提供する。 さらに本発明は、 該方法に用いる含フッ素エステル化合物をも 効率良く製造する方法を提供する。  The present invention has been made to solve the above problems, and provides a method for continuously decomposing a fluorine-containing ester compound by effectively decomposing an ester bond of the fluorine-containing ester compound. Further, the present invention provides a method for efficiently producing the fluorine-containing ester compound used in the method.
すなわち本発明は、 以下の製造方法を提供する。  That is, the present invention provides the following manufacturing method.
1. エステル結合が分解されうる含フッ素エステル化合物のエステル結合を分 解することにより分 反応生成物を得る方法において、 エステル結合の分解反応 を溶媒を実質的に用いずに KFの存在下に 200°C以下の反応温度で行い、 かつ 、 前記含フッ素エステル化合物を反応域に連続供給し、 分解反応生成物を反応域 から連続的に抜き出しながら反応を行うことを特徴とする分解反応生成物の製造 方法。  1. A method for obtaining a decomposition reaction product by decomposing an ester bond of a fluorine-containing ester compound in which an ester bond can be decomposed, wherein the ester bond decomposition reaction is carried out in the presence of KF without substantially using a solvent. At a reaction temperature of not more than ° C, and continuously supplying the fluorinated ester compound to the reaction zone, and performing the reaction while continuously extracting the decomposition reaction product from the reaction zone. Production method.
2. 含フッ素エステル化合物が式 (4) で表される化合物であり、 分解反応生 成物が式 (5) で表される化合物および Zまたは式 (6) で表される化合物であ る上記製造方法。  2. The fluorine-containing ester compound is a compound represented by the formula (4), and the decomposition reaction product is a compound represented by the formula (5) and a compound represented by Z or the formula (6). Production method.
RCFCO〇CFRAFRBF (4) R CF CO〇CFR AF R BF (4)
RAF RBF C = 0 (5) RAF R BF C = 0 (5)
RCF COF (6) R CF COF (6)
ここで、 RAFはフッ素原子または 1価有機基であり、 RBFは 1価有機基であり 、 または RAFと RBFは互いに結合して 2価有機基を形成していてもよく、 RCFは 1価有機基であり、 かつ、 RAF、 RBF、 および RCFから選ばれる少なくとも 1つ の基中にはフッ素原子が存在する。 Here, R AF is a fluorine atom or a monovalent organic group, R BF is a monovalent organic group, or R AF and R BF may be bonded to each other to form a divalent organic group, CF A fluorine atom is present in at least one group selected from R AF , R BF and R CF which is a monovalent organic group.
3. 式 (4) で表される化合物が、 式 (1) で表される化合物と式 (2) で 表される化合物とを反応させて式 (3) で表される化合物とし、 該式 (3) で表 される化合物を液相中でフッ素と反応させることにより製造された化合物である 上記製造方法。  3. A compound represented by the formula (4) is reacted with a compound represented by the formula (1) and a compound represented by the formula (2) to form a compound represented by the formula (3); (3) The production method described above, which is a compound produced by reacting the compound represented by (3) with fluorine in a liquid phase.
HOCHRARB (1)  HOCHRARB (1)
Rc COX (2) R c COX (2)
RcC〇OCHRARB (3) R c C〇OCHR A R B (3)
ここで、 RAFがフッ素原子である場合の RAは水素原子であり、 RAと RAFとが 同一の 1価有機基である場合の R Aはフッ素化されない 1価有機基であり、 と RAFとが異なる 1価有機基である場合の RAはフッ素化される 1価有機基であり 、 RBと RBFとが同一の 1価有機基である場合の: Bはフッ素化されない 1価有機 基であり、 RBと RBFとが異なる 1価有機基である場合の RBはフッ素化される 1 価有機基である。 Here, when R AF is a fluorine atom, RA is a hydrogen atom, and when R A and R AF are the same monovalent organic group, R A is a non-fluorinated monovalent organic group, and When R AF is a different monovalent organic group, R A is a monovalent organic group to be fluorinated, and when R B and R BF are the same monovalent organic group: B is not fluorinated When R B and R BF are monovalent organic groups that are different monovalent organic groups, RB is a monovalent organic group to be fluorinated.
また、 RAFと: RBFが互いに結合して 2価有機基を形成している場合の RAと RB は、 互いに結合して 2価有機基を形成しており、 RAと RBから形成される 2価有 機基が、 RAFと RBFから形成される 2価有機基と同一である場合の RAと RBから 形成される 2価有機基はフッ素化されない 2価有機基であり、 異なる場合の RA と RBから形成される 2価有機基はフッ素化される 2価有機基である。 When R AF and R BF are bonded to each other to form a divalent organic group, R A and R B are bonded to each other to form a divalent organic group, and R A and R B 2 Ataiyu machine group formed from the, R AF and a divalent organic group is a divalent organic not fluorinated formed from R a and R B when it is identical to the divalent organic group formed from R BF a group, a divalent organic group formed from R a and R B when different is a divalent organic radical fluorination.
RCと RCFとが同一の 1価有機基である場合の Rt;はフッ素化されない 1価有機 基であり、 RGと ReFとが異なる 1価有機基である場合の Reはフッ素化される 1 価有機基である。 When RC and RCF are the same monovalent organic group, R t; is a non-fluorinated monovalent organic group, and when R G and R eF are different monovalent organic groups, R e is fluorinated Is a monovalent organic group.
Xはハロゲン原子である。  X is a halogen atom.
4. 式 (3) で表わされる化合物のフッ素原子含有量が 30〜84質量%で ある上記製造方法。 4. The compound represented by the formula (3) has a fluorine atom content of 30 to 84% by mass. The above-mentioned manufacturing method.
5 . RAが、 水素原子、 1価飽和炭化水素基、 部分ハロゲノ 1価飽和炭化水 素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 または部分ハロゲノ (エー テル性酸素原子含有 1価飽和炭化水素基) 基であり、 RA Fがフッ素原子または R Aに存在する水素原子の実質的に全てがフッ素原子に置換された基であり、 5. RA is a hydrogen atom, a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, or a partial halogeno (a monovalent saturated hydrocarbon group containing an etheric oxygen atom) A saturated hydrocarbon group), wherein R AF is a fluorine atom or a group in which substantially all of the hydrogen atoms present in R A have been replaced by fluorine atoms,
RBが、 1価飽和炭化水素基、 部分ハロゲノ 1価飽和炭化水素基、 エーテル性 酸素原子含有 1価飽和炭化水素基、 または部分八ロゲノ (エーテル性酸素原子含 有 1価飽和炭化水素) 基であり、 RB Fが RBに存在する水素原子の実質的に全て がフッ素原子に置換された基であり、 R B is a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, an etheric oxygen atom-containing monovalent saturated hydrocarbon group, or a partial octalogeno (etheric oxygen atom-containing monovalent saturated hydrocarbon) group Wherein R BF is a group in which substantially all of the hydrogen atoms present in R B have been replaced by fluorine atoms;
または、 RAと RBが互いに結合して 2価飽和炭化水素基、 部分ハロゲノ 2価飽 和炭化水素基、 エーテル性酸素原子含有 2価飽和炭化水素基、 または部分ハロゲ ノ (エーテル性酸素原子含有 2価飽和炭化水素) 基を形成し、 RA Fと RB Fが RA と RBから形成される基中の水素原子の実質的に全てがフッ素原子に置換された 基であり、 Or combines R A and R B are each other bivalent saturated hydrocarbon group, partially halogeno 2 Atai飽sum hydrocarbon group, an etheric oxygen atom-containing bivalent saturated hydrocarbon group or moiety halogenoalkyl (etheric oxygen atom, A divalent saturated hydrocarbon) group, wherein R AF and R BF are groups in which substantially all of the hydrogen atoms in the group formed from R A and R B have been replaced by fluorine atoms;
Rcおよび Re Fが同一の基であって、 1価飽和炭化水素基、 部分ハロゲノ 1価 飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 および部分ハロ ゲノ (エーテル性酸素原子含有 1価飽和炭化水素) 基から選ばれる基の基中に存 在する水素原子の実質的に全てがフッ素原子に置換された基である上記製造方法 R c and R e F are the same group, and are a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogeno (etheric oxygen The above-described production method, wherein substantially all of the hydrogen atoms present in the group selected from the group consisting of an atom-containing monovalent saturated hydrocarbon group are substituted with fluorine atoms.
6 . 式 (3 ) で表わされる化合物の分子量が 2 0 0〜1 0 0 0である上記製 造方法。 6. The above-mentioned production method, wherein the compound represented by the formula (3) has a molecular weight of from 200 to 100.
7 . エステル結合の分解反応を液相反応で行う上記製造方法。  7. The above production method wherein the ester bond decomposition reaction is carried out by a liquid phase reaction.
8 . エステル結合の分解反応を、 分解反応生成物の沸点以上であり、 かつ 1 0 0 以下の反応温度で気相反応で行う上記製造方法。 ぐ発明を実施するための最良の形態 > 8. The above production method, wherein the decomposition reaction of the ester bond is carried out by a gas phase reaction at a reaction temperature not lower than the boiling point of the decomposition reaction product and not higher than 100. BEST MODE FOR CARRYING OUT THE INVENTION>
本明細書の以下の説明においては、 式 (4 ) で表される化合物を化合物 (4 ) のように記す。 他の式で表される化合物についても同様に記す。  In the following description of the present specification, a compound represented by the formula (4) is referred to as a compound (4). The same applies to compounds represented by other formulas.
本明細書において、 有機基とは、 炭素原子を必須とする基をいい、 飽和、 不飽 和のいずれの構造のものも含む。  In the present specification, the organic group refers to a group essentially including a carbon atom, and includes a saturated or unsaturated structure.
有機基としては、 炭化水素基、 八ロゲノ炭化水素基、 ヘテロ原子含有炭化水素 基、 またはハロゲノ (ヘテロ原子含有炭化水素) 基が好ましい。 これらの有機基 は、 フッ素化反応時に用いる液相への溶解性の観点からは、 炭素数が 1〜 2 0で ある基が好ましく、 特に炭素数が 1〜1 0である基が好ましい。  As the organic group, a hydrocarbon group, an octogeno hydrocarbon group, a hetero atom-containing hydrocarbon group, or a halogeno (hetero atom-containing hydrocarbon) group is preferable. From the viewpoint of solubility in the liquid phase used in the fluorination reaction, these organic groups are preferably groups having 1 to 20 carbon atoms, and particularly preferably groups having 1 to 10 carbon atoms.
炭化水素基としては、 脂肪族炭化水素基であっても芳香族炭化水素基であって もよく、 脂肪族炭化水素基が好ましく、 飽和の脂肪族炭化水素基が好ましい。 1 価飽和脂肪族炭化水素基としては、 アルキル基、 またはシクロアルキル基が挙げ られ、 アルキル基の構造は、 直鎖構造、 分岐構造、 環構造、 または部分的に環で ある構造のいずれであってもよい。 2価飽和炭化水素基としては、 アルキレン基 またはシクロアルキレン基が挙げられ、 アルキレン基の構造は、 直鎖構造、 分岐 構造、 または環部分を有する構造、 のいずれであってもよい。  The hydrocarbon group may be either an aliphatic hydrocarbon group or an aromatic hydrocarbon group, preferably an aliphatic hydrocarbon group, and more preferably a saturated aliphatic hydrocarbon group. Examples of the monovalent saturated aliphatic hydrocarbon group include an alkyl group and a cycloalkyl group, and the structure of the alkyl group may be any of a straight-chain structure, a branched structure, a ring structure, and a partially ring-shaped structure. You may. Examples of the divalent saturated hydrocarbon group include an alkylene group and a cycloalkylene group, and the structure of the alkylene group may be any of a linear structure, a branched structure, and a structure having a ring portion.
アルキル基またはアルキレン基の炭素数は 1〜1 0が好ましい。 アルキル基と しては、 メチル基、 ェチル基、 プロピル基、 ブチル基、 イソプロピル基、 イソブ チル基、 s e c—プチル基、 t e r t _ブチル基、 シクロアルキルアルキル基、 またはシクロアルキル基部分がさらにアルキル基で置換されたシクロアルキルァ ルキル基が挙げられる。  The alkyl group or the alkylene group preferably has 1 to 10 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, an isopropyl group, an isobutyl group, a sec-butyl group, a tert-butyl group, a cycloalkylalkyl group, and a cycloalkyl group part in which the alkyl group is an alkyl group. And a cycloalkylalkyl group.
また、 アルキレン基としては、 上記アルキル基の水素原子の 1個が結合手とな つた基が挙げられ、 直鎖または分岐構造のアルキレン基が好ましい。  Examples of the alkylene group include groups in which one hydrogen atom of the above-mentioned alkyl group is a bond, and a linear or branched alkylene group is preferable.
また、 シクロアルキル基としては、 3〜 6員環のシクロアルキル基が挙げられ 、 シクロペンチル基、 シクロへキシル基が好ましい。 シクロアルキレン基として はシクロペンチレン基、 シクロへキシレン基が好ましい。 Examples of the cycloalkyl group include a 3- to 6-membered cycloalkyl group, and a cyclopentyl group and a cyclohexyl group are preferable. As a cycloalkylene group Is preferably a cyclopentylene group or a cyclohexylene group.
本明細書において、 ハロゲノ基とは、 水素原子の 1個以上がハロゲン原子に置 換された基をいう。 ハロゲノ基は、 水素原子が存在する基であってもよく、 存在 しない基であってもよい。 部分ハロゲノ基とは水素原子の一部がハロゲン原子に 置換された基をいう。 すなわち、 部分ハロゲノ基は、 水素原子が存在する基であ る。 ベルハ口ゲノ基は水素原子の全てがフッ素化された基であり、 水素原子が存 在しない基である。 ハロゲノ、 部分ハロゲノ、 ベルハ口ゲノの用語の意味は、 ノ、 ロゲン原子が特定された場合においても同様の意味を示す。  In the present specification, a halogeno group refers to a group in which one or more hydrogen atoms have been replaced by halogen atoms. The halogeno group may be a group having a hydrogen atom or a group not having a hydrogen atom. A partial halogeno group refers to a group in which part of a hydrogen atom has been replaced by a halogen atom. That is, the partial halogeno group is a group having a hydrogen atom. The Belha geno group is a group in which all of the hydrogen atoms are fluorinated, and is a group in which no hydrogen atoms are present. The meanings of the terms halogeno, partial halogeno, and bergha-geno have the same meaning even when the ノ and ゲ ン atoms are specified.
ハロゲノ基におけるハロゲン原子としては、 フッ素原子、 塩素原子、 臭素原子 、 またはヨウ素原子が挙げられ、 フッ素原子、 塩素原子、 または臭素原子が好ま しく、 とりわけ化合物の有用性の観点からフッ素原子のみ、 またはフッ素原子と 塩素原子からなるのが好ましい。  Examples of the halogen atom in the halogeno group include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a fluorine atom, a chlorine atom, or a bromine atom is preferable.From the viewpoint of the usefulness of the compound, only a fluorine atom, or It preferably comprises a fluorine atom and a chlorine atom.
ハロゲノ炭化水素基とは、 炭化水素基中に存在する水素原子の 1個以上がハロ ゲン原子によって置換された基をいう。  A halogeno hydrocarbon group is a group in which one or more of the hydrogen atoms present in the hydrocarbon group has been replaced by a halogen atom.
1価ハロゲノ飽和炭化水素基としては、 フルォロアルキル基またはフルォロ ( 部分クロ口アルキル) 基等が好ましく、 ペルフルォロアルキル基またはペルフル ォロ (部分クロ口アルキル) 基 (すなわち、 部分クロ口アルキル基中の水素原子 の全てがフッ素原子に置換された基) が好ましい。 2価ハロゲノ飽和炭化水素基 としては、 フルォロアルキレン基またはフルォロ (部分クロ口アルキレン) 基等 が好ましく、 ペルフルォロアルキレン基またはペルフルォロ (部分クロロアルキ レン) 基 (すなわち、 部分クロ口アルキレン基中の水素原子の全てがフッ素原子 に置換された基) が好ましい。 なお、 ペルフルォロ (部分フルォロアルキル) 基 は、 ペルフルォロアルキル基と同じであり、 ペルフルォロ (部分フルォロアルキ レン) 基は、 ペルフルォロアルキレン基と同じである。  The monovalent halogeno saturated hydrocarbon group is preferably a fluoroalkyl group or a fluoro (partial cycloalkyl) group, etc., and is preferably a perfluoroalkyl group or a perfluoro (partial cycloalkyl) group (ie, a partial cycloalkyl group). In which all of the hydrogen atoms in the group are replaced by fluorine atoms). As the divalent halogeno saturated hydrocarbon group, a fluoroalkylene group or a fluoro (partial cycloalkylene) group is preferable, and a perfluoroalkylene group or a perfluoro (partial chloroalkylene) group (that is, a partial cycloalkylene group) is preferred. Wherein all of the hydrogen atoms in the group are replaced by fluorine atoms). The perfluoro (partially fluoroalkyl) group is the same as the perfluoroalkyl group, and the perfluoro (partially alkylene) group is the same as the perfluoroalkylene group.
ヘテロ原子含有炭化水素基とは、 酸素原子、 窒素原子、 または硫黄原子等のへ テロ原子と、 炭素原子と、 水素原子とからなる基をいう。 ヘテロ原子としては、 エーテル性酸素原子 (c _o— Cの o) が特に好ましい。 ヘテロ原子は、 炭化水 素基の炭素一炭素原子間または前記炭化水素基の結合末端に存在するのが好まし い。 A hetero atom-containing hydrocarbon group is a group such as an oxygen atom, a nitrogen atom, or a sulfur atom. A group consisting of a terrorist atom, a carbon atom, and a hydrogen atom. As the hetero atom, an etheric oxygen atom (o of c_o—C) is particularly preferred. The heteroatom is preferably present between the carbon-carbon atoms of the hydrocarbon group or at the bonding terminus of said hydrocarbon group.
ヘテロ原子含有炭化水素基としては、 化合物の有用性、 入手しやすさ、 製造し やすさ、 および生成物の有用性の点から、 1価の基としてはエーテル性酸素原子 を含むアルキル基 (たとえば、 アルコキシアルキル基等。 ) が好ましく、 2価の 基としてはエーテル性酸素原子を含むアルキレン基 (たとえば、 ポリオキシアル キレン基) が好ましい。  As the heteroatom-containing hydrocarbon group, an alkyl group containing an etheric oxygen atom as a monovalent group (for example, from the viewpoint of the usefulness of the compound, availability, ease of production, and usefulness of the product) , An alkoxyalkyl group, etc.) are preferable, and the divalent group is preferably an alkylene group containing an etheric oxygen atom (eg, a polyoxyalkylene group).
アルコキシアルキル基としては、 アルコキシ基部分の炭素数が 1〜1 0である 基が好ましい。 アルコキシアルキル基としては、 エトキシメチル基、 1一プロボ キシェチル基、 2—プロポキシェチル基等が挙げられる。 ポリオキシアルキレン 基としては、 ポリオキシエチレン基、 ポリオキシプロピレン基が好ましい。 ハロゲノ (ヘテロ原子含有炭化水素) 基とは、 前記へテロ原子含有炭化水素基 の水素原子の 1個以上が、 ハロゲン原子に置換された基、 をいう。 1価の基とし てはフルォロ (アルコキシアルキル) 基またはフルォロ (部分クロ口 (アルコキ シアルキル) ) 基が好ましく、 ペルフルォロ (アルコキシアルキル) 基またはべ ルフルォロ (部分クロ口 (アルコキシアルキル) ) 基がとりわけ好ましい。 2価 の基としては、 フルォロ (ポリオキシアルキレン) 基が好ましく、 特にペルフル ォロ (ポリオキシアルキレン) 基、 が好ましい。  As the alkoxyalkyl group, a group having 1 to 10 carbon atoms in the alkoxy group is preferable. Examples of the alkoxyalkyl group include an ethoxymethyl group, an 11-propoxyl group, and a 2-propoxyl group. As the polyoxyalkylene group, a polyoxyethylene group and a polyoxypropylene group are preferable. The halogeno (hetero atom-containing hydrocarbon) group refers to a group in which one or more of the hydrogen atoms of the hetero atom-containing hydrocarbon group has been substituted with a halogen atom. As the monovalent group, a fluoro (alkoxyalkyl) group or a fluoro (partial alkyl (alkoxyalkyl)) group is preferred, and a perfluoro (alkoxyalkyl) group or a Belfluoro (partial alkyl (alkoxyalkyl)) group is particularly preferred. . As the divalent group, a fluoro (polyoxyalkylene) group is preferable, and a perfluoro (polyoxyalkylene) group is particularly preferable.
本発明においては、 エステル結合が分解反応されうる含フッ素エステル化合物 のエステル結合を分解する。 エステル結合が分解されうる含フッ素エステル化合 物としては、 エステル結合を形成する酸素原子に隣接する炭素原子にフッ素原子 が結合した部分構造 (一 C (0) 0 - C F -) を有する化合物が挙げられる。 こ の部分構造中のフッ素原子が結合する炭素原子には、 さらに結合手が存在する。 該結合手には、 1価原子 (フッ素原子が入手しやすさの点で好ましい。 ) または 1価有機基 (トリフルォロメチル基が入手しやすさの点で好ましい。 ) が結合し ていてもよい。 または、 該フッ素原子が結合する炭素原子は環を形成する炭素原 子であってもよい。 また、 含フッ素エステル化合物中の該部分構造は 1個以上で あり、 1〜 10個が好ましく、 特に化合物の有用性の観点や反応操作のしゃすさ の点から 1または 2個が好ましい。 In the present invention, the ester bond of the fluorine-containing ester compound which can undergo a decomposition reaction of the ester bond is decomposed. Examples of the fluorine-containing ester compound in which an ester bond can be decomposed include a compound having a partial structure (a C (0) 0-CF-) in which a fluorine atom is bonded to a carbon atom adjacent to an oxygen atom forming an ester bond. Can be The carbon atom to which the fluorine atom in this partial structure is bonded has an additional bond. A monovalent atom (a fluorine atom is preferred in terms of availability) or a monovalent organic group (a trifluoromethyl group is preferred in terms of availability) is bonded to the bond. Is also good. Alternatively, the carbon atom to which the fluorine atom is bonded may be a carbon atom forming a ring. The partial structure in the fluorinated ester compound is one or more, preferably 1 to 10, and more preferably 1 or 2 from the viewpoint of the usefulness of the compound and the ease of the reaction operation.
以下、 分解されうるエステル結合が 1個である化合物を例に挙げて説明する。 分解されうるエステル結合が 1個である含フッ素エステル化合物としては、 下記 化合物 (4) が好ましい。  Hereinafter, a compound having one decomposable ester bond will be described as an example. As the fluorine-containing ester compound having one decomposable ester bond, the following compound (4) is preferable.
RCFCO〇CFRAFRBF (4) R CF CO〇CFR AF R BF (4)
ここで、 RAF、 RBF、 ReFは前記のとおりである。 化合物 (4) は実質的にぺ ルフルォロ化された化合物であるのが好ましい。 実質的にペルフルォロ化された 化合物とは、 フッ素化されない水素原子が存在したとしても、 化合物としての性 質がペルフルォロ化された化合物と同等である化合物をいう。 さらに RAF、 RBF 、 RGFは、 ペルフルォロ 1価飽和炭化水素基、 ペルフルォロ (部分クロ口 (1価 飽和炭化水素) ) 基、 ペルフルォロ (エーテル性酸素原子含有 1価飽和炭化水素 ) 基、 ペルフルォロ (部分クロ口 (エーテル性酸素原子含有 1価飽和炭化水素) ) 基が好ましく、 RAFにおいては、 前記に加えてフッ素原子もまた好ましい。 さらに RAF、 RBF、 RCFとしては、 ペルフルォロアルキル基、 ペルフルォロ ( 部分クロ口アルキル) ) 基、 ペルフルォロアルコキシアルキル基、 ペルフルォロ (部分クロ口 (アルコキシアルキル) ) 基が特に好ましく、 また RAFにおいては 、 前記に加えてフッ素原子もまた好ましい。 Here, R AF , R BF , and R eF are as described above. The compound (4) is preferably a substantially perfluorinated compound. A substantially perfluorinated compound refers to a compound whose properties as a compound are equivalent to those of a perfluorinated compound, even when a non-fluorinated hydrogen atom is present. Further, R AF , R BF , and R GF are a perfluoro monovalent saturated hydrocarbon group, a perfluoro (partial chromate (monovalent saturated hydrocarbon)) group, a perfluoro (a monovalent saturated hydrocarbon containing an etheric oxygen atom) group, and a perfluoro group. (Partial port (etheric oxygen atom-containing monovalent saturated hydrocarbon)) group is preferable, and in RAF , a fluorine atom is also preferable in addition to the above. Further, as R AF , R BF and R CF , a perfluoroalkyl group, a perfluoro (partially alkyl)) group, a perfluoroalkoxyalkyl group, and a perfluoro (partially alkoxyalkyl) group are particularly preferred. In addition, in RAF , a fluorine atom is also preferable in addition to the above.
また、 RAFと RBFは共同で、 ペルフルォロ 2価飽和炭化水素基、 ペルフルォロ (部分ハロゲノ (2価飽和炭化水素) ) 基、 ペルフルォロ (エーテル性酸素原子 含有 2価飽和炭化水素) 基、 またはペルフルォロ (部分ハロゲノ (エーテル性酸 素原子含有 2価飽和炭化水素) ) 基が好ましく、 特に In addition, R AF and R BF jointly form a perfluoro divalent saturated hydrocarbon group, a perfluoro (partially halogeno (divalent saturated hydrocarbon)) group, a perfluoro (a divalent saturated hydrocarbon containing an etheric oxygen atom) group, or a perfluoro group. (Partial halogeno (etheric acid Divalent saturated hydrocarbons containing carbon atoms))
、 ペルフルォロ (部分クロ口アルキレン) ) 基、 ペルフルォロアルキレンォキシ アルキレン基、 またはペルフルォロ (部分クロ口 (アルキレンォキシアルキレン ) ) 基が好ましい。 And a perfluoro (partial cycloalkylene)) group, a perfluoroalkyleneoxyalkylene group, or a perfluoro (partial cycloalkylenealkylene) group.
化合物 (4 ) の具体例としては下式で表わされる化合物が挙げられる。 ただし Specific examples of the compound (4) include a compound represented by the following formula. However
、 下記式中、 C yFはペルフルォロシクロへキシル基、 R 1 Fおよび R "はそれぞ れ独立してフッ素原子または卜リフルォロメチル基を示す。 In the following formulas, C y F is pel full O b a cyclohexyl group, R 1 F and R "represents an independently, respectively It fluorine atom or Bok Rifuruoromechiru group.
CF3 CF2 CF20CFR2 F C00CFR1 F (CF3 ) CF 3 CF 2 CF 2 0CFR 2 F C00CFR 1 F (CF 3 )
CF3 CF2 CF2 OCFR2 F COOCFR1 F CF2 CFC 1CF2 C1 CF 3 CF 2 CF 2 OCFR 2 F COOCFR 1 F CF 2 CFC 1 CF 2 C1
CF3 CF2 CF2 OCFR2 F COOCFR1 F CF2 CF3 CF 3 CF 2 CF 2 OCFR 2 F COOCFR 1 F CF 2 CF 3
CF3 CF2 CF2 OCFR2 F COOCFR1 F CF2 CF2 CF3 CF 3 CF 2 CF 2 OCFR 2 F COOCFR 1 F CF 2 CF 2 CF 3
CF3 CF2 CF20CFR2 F C00CyF CF 3 CF 2 CF 2 0CFR 2 F C00Cy F
CF3 CF2 CF2 OCF 2 COOCFR1 F CF20CF2 CF2CF3 CF 3 CF 2 CF 2 OCF 2 COOCFR 1 F CF 2 0CF 2 CF 2 CF 3
CF3 CF2 CF2 OCF (CF3 ) CF2 OCFR2 F COOCFR1 F (CF3 )
Figure imgf000010_0001
CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCFR 2 F COOCFR 1 F (CF 3 )
Figure imgf000010_0001
本発明においては、 該含フッ素エステル化合物のエステル結合を分解する。 ェ ステル結合の分解反応の条件や方法は、 含フッ素エステル化合物の種類や目的と する含フッ素化合物 (目的化合物が、 化合物 (5 ) であるのか化合物 (6 ) であ るのか等。 ) により適宜変更されうる。 また、 このエステル結合の分解反応は、 含フッ素エステル化合物を反応域に連続供給し、 分解反応生成物を反応域から連 続的に抜き出しながら行われる。  In the present invention, the ester bond of the fluorinated ester compound is decomposed. The conditions and method of the ester bond decomposition reaction are appropriately determined depending on the type of the fluorinated ester compound and the intended fluorinated compound (whether the target compound is the compound (5) or the compound (6)). Can be changed. The decomposition reaction of the ester bond is performed while continuously supplying the fluorine-containing ester compound to the reaction zone and continuously extracting the decomposition reaction product from the reaction zone.
本発明の反応は、 溶媒を実質的に用いずに反応を行う。 ここで、 溶媒とは、 反 応に関与する化合物 (すなわち、 含フッ素エステル化合物およびその分解反応生 成物) 以外の液状混合物をいう。 含フッ素エステル化合物の供給速度と、 分解反応の反応生成物の抜き出し速度 は、 含フッ素エステル化合物の反応性、 装置の種類、 反応条件等により適宜変更 されうる。 たとえば含フッ素エステル化合物がエステル結合の分解反応温度より も低沸点の化合物である場合には、 気相反応の反応形式でエステル結合の分解反 応を行うことができる。 The reaction of the present invention is carried out substantially without using a solvent. Here, the solvent refers to a liquid mixture other than the compounds involved in the reaction (ie, the fluorine-containing ester compound and its decomposition reaction product). The supply rate of the fluorinated ester compound and the withdrawal rate of the reaction product of the decomposition reaction can be appropriately changed depending on the reactivity of the fluorinated ester compound, the type of the apparatus, the reaction conditions and the like. For example, when the fluorinated ester compound is a compound having a boiling point lower than the decomposition reaction temperature of the ester bond, the decomposition reaction of the ester bond can be performed in a gas phase reaction mode.
気相反応の反応形式で実施する場合には、 KFを固定床または流動層とする反 応装置内に、 気体の含フッ素エステル化合物を通過させればよい。 一方、 含フッ 素エステル化合物の沸点がエステル結合の分解反応温度以上である場合には、 液 相反応の反応方式で行うのが好ましい。 液相反応の反応形式で実施する場合には 、 反応槽中に KFと含フッ素エステル化合物を充填して撹拌し、 そこに含フッ素 エステル化合物を供給して反応を行うのが好ましい。 このとき分解反応生成物を 効率よく抜き出すために、 反応温度は目的とする分解反応生成物の沸点以上にす るのが好ましい。 さらにこの場合、 蒸留等を付けた反応装置を用いて、 反応と蒸 留を同時に行うことにより、 反応生成物を反応の場から連続的に留去しながら反 応を行うのが好ましい。 エステル結合の分解反応生成物は、 通常は化合物 (4) よりも低沸点となるので、 蒸留により連続的に効率良く抜き出すことができる。 エステル結合の分解反応は、 KFの存在下に行う。 KFは求核剤として作用し 、 KFに由来する F—は、 化合物 (4) のエステル結合中に存在するカルボニル 基に求核的に付加し、 RAFRBFCFO—が脱離すると共に化合物 (6) が生成す る。 RAFRBFCFO—からはさらに F—が脱離して化合物 (5) が生成する。 脱離 した F—は別の化合物 (4) の分子と同様に反応する。 したがって、 反応の最初 に用いる KFは触媒量であってもよく、 過剰に用いてもよい。 すなわち、 KFの 量は化合物 (4) に対して 1〜500モル%が好ましく、 とりわけ 5〜50モル %が好ましい。 When the reaction is carried out in a gas phase reaction mode, the gaseous fluorinated ester compound may be passed through a reactor in which KF is a fixed bed or a fluidized bed. On the other hand, when the boiling point of the fluorine-containing ester compound is equal to or higher than the decomposition reaction temperature of the ester bond, the reaction is preferably performed by a liquid phase reaction method. When the reaction is carried out in a liquid phase reaction mode, it is preferred that KF and the fluorinated ester compound are charged into the reaction vessel and stirred, and the fluorinated ester compound is supplied thereto to carry out the reaction. At this time, in order to efficiently extract the decomposition reaction product, the reaction temperature is preferably set to be equal to or higher than the boiling point of the target decomposition reaction product. Furthermore, in this case, it is preferable that the reaction and distillation are simultaneously performed using a reaction apparatus provided with distillation or the like, so that the reaction is performed while continuously distilling the reaction product from the reaction site. Since the decomposition reaction product of the ester bond usually has a lower boiling point than that of compound (4), it can be continuously and efficiently extracted by distillation. The decomposition reaction of the ester bond is performed in the presence of KF. KF acts as a nucleophile, and F— derived from KF nucleophilically adds to the carbonyl group present in the ester bond of compound (4), and R AF R BF CFO— (6) is generated. F— is further eliminated from R AF R BF CFO— to produce compound (5). The eliminated F— reacts in the same manner as another compound (4). Therefore, KF used at the beginning of the reaction may be a catalytic amount or may be used in excess. That is, the amount of KF is preferably from 1 to 500 mol%, more preferably from 5 to 50 mol%, based on compound (4).
本発明においては、 KFを用いて反応を行うことにより、 N a F等の他のアル カリ金属フッ化物を用いる場合よりも低い温度で効率的に分解反応生成物が得ら れる。 反応温度の上限は 200°Cであり、 150°Cが好ましく、 100°Cが特に 好ましい。 気相反応における反応温度の下限は分解反応の反応生成物の沸点であ るのが好ましく、 特に一 20°Cであるのが好ましい。 本発明のエステル結合の分 解反応は、 低い反応温度で実施できることから、 製造上有利であり、 工業的製造 方法として適した方法である。 In the present invention, by performing the reaction using KF, other alcohols such as NaF can be used. Decomposition reaction products can be obtained more efficiently at lower temperatures than when using potassium metal fluoride. The upper limit of the reaction temperature is 200 ° C, preferably 150 ° C, particularly preferably 100 ° C. The lower limit of the reaction temperature in the gas phase reaction is preferably the boiling point of the reaction product of the decomposition reaction, and particularly preferably 120 ° C. Since the decomposition reaction of the ester bond of the present invention can be carried out at a low reaction temperature, it is advantageous in production and is suitable as an industrial production method.
また、 含フッ素エステル化合物が分解反応条件において ΐ夜体状であった場合に は、 該化合物自身が液相を形成することから溶媒を必要としない。 また気体状で あった場合には溶媒を用いずに反応ができる。 すなわち、 従来のエステル結合の 分解反応が、 溶媒の存在下に液相で行われていたのに対して、 本発明の方法は、 溶媒を実質的に用いることなく無溶媒で実施できるため容積効率や副生物抑制の 観点から有利である。 また気相反応で実施する場合にも液相反応で実施する場合 にも低い反応温度で反応を実施できる。  Further, when the fluorinated ester compound is in a night state under the decomposition reaction conditions, a solvent is not required since the compound itself forms a liquid phase. When it is gaseous, the reaction can be performed without using a solvent. That is, while the conventional ester-bond decomposition reaction was carried out in the liquid phase in the presence of a solvent, the method of the present invention can be carried out without using a solvent with substantially no solvent, so that the volumetric efficiency is improved. This is also advantageous from the viewpoint of controlling by-products. The reaction can be carried out at a low reaction temperature both in the case of carrying out the reaction in the gas phase and in the case of carrying out the reaction in the liquid phase.
さらに、 本発明の方法によれば KFの存在下に反応を行うことにより、 エステ ル結合の分解反応の反応速度が顕著に向上する。 よって、 分解反応を連続的に行 つた場合の単位時間当たりの目的化合物の製造量が飛躍的に向上し、 生産効率の 点において極めて有利である。  Furthermore, according to the method of the present invention, by performing the reaction in the presence of KF, the reaction rate of the ester bond decomposition reaction is significantly improved. Therefore, when the decomposition reaction is continuously performed, the production amount of the target compound per unit time is dramatically improved, which is extremely advantageous in terms of production efficiency.
本発明においては、 エステル結合の分解反応の反応生成物から目的とする化合 物を得る。 該反応生成物中としては、 末端構造が一 COFである化合物や、 ケト ン化合物が挙げられ、 たとえば、 化合物 (4) のエステル結合の分解反応では、 下記化合物 (5) および Ζまたは化合物 (6) が生成しうる。  In the present invention, a target compound is obtained from a reaction product of a decomposition reaction of an ester bond. Examples of the reaction product include a compound having a terminal structure of one COF and a ketone compound. For example, in the decomposition reaction of the ester bond of the compound (4), the following compounds (5) and Ζ or the compound (6) ) Can be generated.
RAF RBF C = 0 (5) R AF R BF C = 0 (5)
RCFCOF (6) R CF COF (6)
ここで、 RAF、 RBF、 ReFは、 化合物 (4) に対応する同一の基であり、 好ま しい態様も同一である。 化合物 (5) の具体例としては、 下記化合物が挙げられる。 化合物 (6) の具 体例としては、 化合物 (5) の上記具体例として挙げた化合物のうち、 R1Fがフ ッ素原子である化合物が挙げられる。 ただし、 下記式中 R1Fはフッ素原子または トリフルォロメチル基を示す。 Here, R AF , R BF and R eF are the same groups corresponding to compound (4), and the preferred embodiments are also the same. Specific examples of the compound (5) include the following compounds. Specific examples of the compound (6) include compounds in which R 1F is a fluorine atom among the compounds mentioned as the specific examples of the compound (5). However, in the following formula, R 1F represents a fluorine atom or a trifluoromethyl group.
CF3 COR1 F CF 3 COR 1 F
CF3 CF2 COR1 F CF 3 CF 2 COR 1 F
CF, 3 CF', 2 C ^F, 2 COR1 F CF, 3 CF ', 2 C ^ F, 2 COR 1 F
Figure imgf000013_0001
Figure imgf000013_0001
CF3 CF2 CF20CF2 COR1 F CF 3 CF 2 CF 2 0 CF 2 COR 1 F
CF3 CF2 CF2 OCF (CF3 ) CF2 OCF (CF3 ) COR' F
Figure imgf000013_0002
CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COR ' F
Figure imgf000013_0002
さらに、 化合物 (5) における RAFがフッ素原子である場合には、 エステル結 合の分解反応により生成する化合物 (5) と化合物 (6) とが同一構造になるよ うにするのが好ましい。 化合物 (5) と化合物 (6) とが同一構造である場合に は、 分解反応生成物の精製工程を大幅に簡略化でき、 効率的な製造方法が達成で さる。 Further, when R AF in the compound (5) is a fluorine atom, it is preferable that the compound (5) and the compound (6) formed by the decomposition reaction of the ester bond have the same structure. When the compound (5) and the compound (6) have the same structure, the purification process of the decomposition reaction product can be greatly simplified, and an efficient production method can be achieved.
このような、 化合物 (4) としては、 下記化合物 (4A) が好ましい。 化合物 (4A) は後述する化合物 (3A) のフッ素化反応により入手できる。  As such a compound (4), the following compound (4A) is preferable. Compound (4A) can be obtained by a fluorination reaction of compound (3A) described below.
RBFCOOCF2RBF (4A) R BF COOCF 2 R BF (4A)
ただし、 RBFは上記と同じ意味を示し、 好ましい態様も同じである。 However, R BF has the same meaning as described above, and the preferred embodiment is also the same.
化合物 (4) の入手方法としては、 化合物 (1) と化合物 (2) とを反応させ て化合物 (3) とし、 該化合物 (3) を液相中でフッ素と反応させることにより 製造された化合物 (4) が好ましい。 該方法は、 本発明者らによる WOO 0Z5 6694の方法にしたがって実施でき、 任意の構造の化合物が入手できる。 化合物 (1 ) としては、 フッ素を含まないアルコール類が容易に入手できる理 由から、 RAおよび RBとしては、 水素原子、 1価飽和炭化水素基、 部分クロ口 1 価飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 または部分ク ロロ (エーテル性酸素原子含有 1価飽和炭化水素) 基が好ましく、 RAとしては 前記に加えて水素原子も好ましい。 さらに RAおよび RBとしては、 アルキル基、 部分クロ口アルキル基、 アルコキシアルキル基、 部分クロ口アルコキシアルキル 基が特に好ましく、 RAとしては前記に加えて水素原子もまた好ましい。 Compound (4) can be obtained by reacting compound (1) with compound (2) to give compound (3), and reacting compound (3) with fluorine in a liquid phase to produce compound (3). (4) is preferred. The method can be carried out according to the method of WOOZ5 6694 by the present inventors, and a compound having an arbitrary structure can be obtained. As the compound (1), because a fluorine-free alcohol can be easily obtained, R A and R B are a hydrogen atom, a monovalent saturated hydrocarbon group, a partially saturated monovalent saturated hydrocarbon group, A monovalent saturated hydrocarbon group containing an etheric oxygen atom or a partial chloro (monovalent saturated hydrocarbon containing an etheric oxygen atom) group is preferable, and RA is preferably a hydrogen atom in addition to the above. Further, as R A and R B , an alkyl group, a partially substituted alkyl group, an alkoxyalkyl group, and a partially substituted alkoxyalkyl group are particularly preferable, and as R A , a hydrogen atom is also preferable in addition to the above.
または、 化合物 (1 ) の RAと RBは共同で、 2価飽和炭化水素基、 部分クロ口Or R A and R B of compound (1) are jointly a divalent saturated hydrocarbon group,
( 2価飽和炭化水素) 基、 エーテル性酸素原子含有 2価飽和炭化水素基、 部分ク ロロ (エーテル性酸素原子含有 2価飽和炭化水素) 基を形成しているのが好まし く、 特にアルキレン基、 部分クロ口アルキレン基、 アルキレンォキシアルキレン 基、 部分クロ口 (アルキレンォキシアルキレン) 基を形成しているのが好ましい 。 化合物 (1 ) は、 種々の構造の化合物が容易に入手できる理由から、 化合物 ( 4 ) の構造に応じた化合物 (1 ) を容易に入手して、 任意の構造を有する化合物(Divalent saturated hydrocarbon) group, etheric oxygen atom-containing divalent saturated hydrocarbon group, and partial chloro (etheric oxygen atom-containing divalent saturated hydrocarbon) group, preferably alkylene It is preferable to form a group, a partial cycloalkylene group, an alkyleneoxyalkylene group or a partial cycloalkylene (alkyleneoxyalkylene) group. As the compound (1), a compound having an arbitrary structure can be obtained by easily obtaining the compound (1) corresponding to the structure of the compound (4) because compounds having various structures can be easily obtained.
( 4 ) を容易に製造できる。 (4) can be easily manufactured.
化合物 (1 ) の具体例として下記式で表わされる化合物が挙げられる。 ただし Specific examples of the compound (1) include a compound represented by the following formula. However
、 下記式中、 C yはシクロへキシル基を示し、 R 1は水素原子またはメチル基を 示す。 In the following formula, Cy represents a cyclohexyl group, and R 1 represents a hydrogen atom or a methyl group.
CH3 CHR1 OH CH 3 CHR 1 OH
CH3 C¾ CHR1 OH CH 3 C¾ CHR 1 OH
C¾ =CHCH ' OH  C¾ = CHCH 'OH
CH3 CH2 C¾ CHR1 OH CH 3 CH 2 C¾ CHR 1 OH
CH2 C1CHC1CH2 CHR1 OH CH 2 C1CHC1CH 2 CHR 1 OH
CF2 C1CFC1CH2 CHR1 OH CF 2 C1CFC1CH 2 CHR 1 OH
CyOH
Figure imgf000015_0001
CyOH
Figure imgf000015_0001
また、 化合物 (2) における Rcはフッ素原子を有する 1価有機基であるのが 好ましく、 1価飽和炭化水素基、 部分八ロゲノ 1価飽和炭化水素基、 エーテル性 酸素原子含有 1価飽和炭化水素基、 および部分八ロゲノ (エーテル性酸素原子含 有 1価飽和炭化水素) 基から選ばれる基に存在する水素原子の実質的に全てがフ ッ素原子に置換された基が好ましく、 特にペルフルォロ 1価飽和炭化水素基、 ぺ ルフルォロ (部分クロ口 (1価飽和炭化水素) ) 基、 ペルフルォロ (エーテル性 酸素原子含有 1価飽和炭化水素) 基、 ペルフルォロ (部分クロ口 (エーテル性酸 素原子含有 1価飽和炭化水素) ) 基が好ましく、 とりわけペルフルォロアルキル 基、 ペルフルォロ (部分クロ口アルキル) 基、 ペルフルォロアルコキシアルキル 基、 ペルフルォロ (部分クロ口 (アルコキシアルキル) ) 基が好ましい。 R c in compound (2) is preferably a monovalent organic group having a fluorine atom, and is a monovalent saturated hydrocarbon group, a partially octalogeno monovalent saturated hydrocarbon group, or a monovalent saturated hydrocarbon group containing an etheric oxygen atom. A group in which substantially all of the hydrogen atoms present in a group selected from a hydrogen group and a partial octalogeno (monovalent saturated hydrocarbon containing an etheric oxygen atom) group are substituted with a fluorine atom is preferable, and in particular, perfluoro Monovalent saturated hydrocarbon group, perfluoro (partial chromate (monovalent saturated hydrocarbon)) group, perfluoro (etheric oxygen atom-containing monovalent saturated hydrocarbon) group, perfluoro (partial chromate (etheric oxygen atom containing) Monovalent saturated hydrocarbon)) groups are preferred, and especially perfluoroalkyl groups, perfluoro (partial cycloalkyl) groups, perfluoroalkoxyalkyl groups, Furuoro (partial black port (alkoxyalkyl)) group is preferred.
化合物 (2) の具体例としては、 化合物 (6) と同様の化合物が挙げられる。 RAFがフッ素原子である化合物 (5) を得る場合において、 化合物 (1) として は、 下記化合物 (1A) が、 化合物 (2) としては下記化合物 (2A) が好まし く、 化合物 (1A) と化合物 (2A) の反応では下記ィ匕合物 (3A) が生成する Specific examples of the compound (2) include the same compounds as the compound (6). In the case of obtaining the compound (5) in which R AF is a fluorine atom, the following compound (1A) is preferable as the compound (1), and the following compound (2A) is preferable as the compound (2). And the compound (2A) produce the following compound (3A)
RB CH2 OH (1 A) R B CH 2 OH (1 A)
RBF COF (2 A) R BF COF (2 A)
RB COOCH2 RBF (3 A) R B COOCH 2 R BF (3 A)
つぎに、 化合物 (1) と化合物 (2) との反応により生成する化合物 (3) を 液相中でフッ素と反応させることにより化合物 (4) を得る。 化合物 (1) と化 合物 (2) との反応は、 公知のエステル反応の方法および条件を適用して実施で きる。  Next, compound (4) is obtained by reacting compound (3) produced by the reaction between compound (1) and compound (2) with fluorine in a liquid phase. The reaction between compound (1) and compound (2) can be carried out by applying known ester reaction methods and conditions.
化合物 (1) と化合物 (2) との反応では、 HFが発生するため、 HF捕捉剤 としてアルカリ金属フッ化物 (NaF、 KFが好ましい) やトリアルキルアミン を反応系中に存在させてもよい。 HF捕捉剤は、 化合物 (1) または化合物 (2 ) が酸に不安定な化合物である場合には、 使用した方がよい。 また、 HF捕捉剤 を使用しない場合には、 HFを窒素気流に同伴させて反応系外に排出するのが好 ましい。 アルカリ金属フッ化物を用いる場合は、 化合物 (2) に対して 1〜10 倍モルとするのが好ましい。 In the reaction between compound (1) and compound (2), HF is generated. For example, an alkali metal fluoride (preferably NaF or KF) or a trialkylamine may be present in the reaction system. The HF scavenger is preferably used when compound (1) or compound (2) is an acid-labile compound. When an HF scavenger is not used, it is preferable to discharge HF out of the reaction system by entraining HF in a nitrogen stream. When an alkali metal fluoride is used, it is preferably 1 to 10 moles per mole of the compound (2).
化合物 (1) と化合物 (2) との反応温度は、 通常の場合、 一 50T:以上であ るのが好ましく、 +100°C以下または溶媒の沸点温度以下が好ましい。 また該 反応の反応時間は、 原料の供給速度と、 反応に用いる化合物量に応じて適宜変更 され得る。 反応圧力 (ゲージ圧、 以下同様) は 0〜2MP aが好ましい。  In general, the reaction temperature of the compound (1) with the compound (2) is preferably not less than 50 T :, more preferably not more than + 100 ° C or not more than the boiling point of the solvent. The reaction time of the reaction can be appropriately changed depending on the supply rate of the raw materials and the amount of the compound used in the reaction. The reaction pressure (gauge pressure, the same applies hereinafter) is preferably from 0 to 2 MPa.
化合物 (1) と化合物 (2) の量比は、 化合物 (1) に対する化合物 (2) の 量を 0. 5〜 5倍モルとするのが好ましく、 特に 1〜 2倍モルとするのが好まし い。  The molar ratio of the compound (1) to the compound (2) is preferably such that the amount of the compound (2) was 0.5 to 5 times, more preferably 1 to 2 times, the mole of the compound (1). Better.
化合物 (1) と化合物 (2) との反応で生成した化合物 (3) を含む粗生成 物は、 目的に応じて精製を行っても、 そのまま、 つぎの反応等に用いてもよく、 次の工程におけるフッ素化反応を安定に行う観点から、 分離精製するのが望まし い。  The crude product containing the compound (3) produced by the reaction of the compound (1) with the compound (2) may be purified according to the purpose or used as it is for the next reaction or the like. From the viewpoint of stably performing the fluorination reaction in the process, it is desirable to carry out separation and purification.
化合物 (1) と化合物 (2) を反応させて得られる化合物 (3) のフッ素含有 量 (フッ素含有量とは、 分子量に対するフッ素原子の質量の割合) は 30質量% 以上であることが好ましい。 このフッ素含有量は、 好ましくは 30〜 84質量% であり、 特に 30〜76質量%であるのが好ましい。 フッ素含有量が少なすぎる と化合物 (3) の液相中への溶解性が極端に低くなり、 フッ素化反応の際の反応 系が不均一になり、 連続反応で実施するときに化合物 (3) をうまく反応系中に フィードできない問題が生じる。 また、 フッ素含有量の上限は特に限定されない が、 あまりに高すぎるものは、 入手が困難であり、 価格が高く経済的ではない。 また、 化合物 (3) の分子量は 200〜1000であるのが、 気相中での好ま しくないフッ素化反応を防止し、 液相中でのフッ素化反応を円滑に行い得る点で 好ましい。 分子量が小さすぎると、 化合物 (3) が気化し易くなるため、 液相で のフッ素化反応時に気相中で分解反応が起こる恐れがある。 一方、 分子量が大き すぎると、 化合物(3)の精製が困難になる恐れがある。 The fluorine content (the fluorine content is the ratio of the mass of fluorine atoms to the molecular weight) of compound (3) obtained by reacting compound (1) with compound (2) is preferably 30% by mass or more. The fluorine content is preferably from 30 to 84% by mass, more preferably from 30 to 76% by mass. If the fluorine content is too low, the solubility of compound (3) in the liquid phase will be extremely low, and the reaction system during the fluorination reaction will be non-uniform. Can not be fed into the reaction system. The upper limit of the fluorine content is not particularly limited, but those that are too high are difficult to obtain, are expensive, and are not economical. Further, the molecular weight of the compound (3) is preferably from 200 to 1,000 in that an undesirable fluorination reaction in the gas phase can be prevented and the fluorination reaction in the liquid phase can be carried out smoothly. If the molecular weight is too small, the compound (3) is likely to evaporate, so that a decomposition reaction may occur in the gas phase during the fluorination reaction in the liquid phase. On the other hand, if the molecular weight is too large, purification of compound (3) may be difficult.
化合物 (3) の具体例として下記式で表わされる化合物が挙げられる。 ただし Specific examples of the compound (3) include a compound represented by the following formula. However
、 下記式中、 Cyはシクロアルキル基を示し、 R1は水素原子またはメチル基を 示し、 R2Fはフッ素原子またはトリフルォロメチル基を示す。 In the following formulas, Cy represents a cycloalkyl group, R 1 represents a hydrogen atom or a methyl group, and R 2F represents a fluorine atom or a trifluoromethyl group.
CF3 CF2 CF20CFR2FC00CHR' (CH3) CF 3 CF 2 CF 2 0CFR 2F C00CHR '(CH 3 )
CF3 CF2 CF2 OCFR2 F COOCHR1 C¾ CHC 1CH2C1 CF 3 CF 2 CF 2 OCFR 2 F COOCHR 1 C¾ CHC 1CH 2 C1
CF3 CF2 CF2 OCFR2 F COOCHR1 CH2 CH3 CF 3 CF 2 CF 2 OCFR 2 F COOCHR 1 CH 2 CH 3
CF3 CF2 CF2 OCFR2 F COOCHR1 CH2 C¾ CH3 CF 3 CF 2 CF 2 OCFR 2 F COOCHR 1 CH 2 C¾ CH 3
CF3 CF2 CF20CFR2FC00Cy CF 3 CF 2 CF 2 0CFR 2F C00Cy
CF3 CF2 CF2 OCFR2 F COOCHR1 C¾ CFC1CF2C1 CF 3 CF 2 CF 2 OCFR 2 F COOCHR 1 C¾ CFC1 CF 2 C1
CF3 CF2 CF2 OCF (CF3 ) CF2 OCFR2 F COOCHR1 (CH3 )
Figure imgf000017_0001
CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCFR 2 F COOCHR 1 (CH 3 )
Figure imgf000017_0001
上記化合物 (3) は、 次いでフッ素化して化合物 (4) を得る。 このフッ素化 は、 化合物(3)を液相中でフッ素と反応させるフッ素化反応により行われる。 こ こでいうフッ素化反応とは、 化合物( 3 )の分子中に少なくともフッ素原子が 1原 子結合する反応である。 化合物(4)における RAF、 RBF、 RGFは、 化合物(3)に おける置換基 RA、 RB、 RGにそれぞれ対応する基であり、 これらの基において はフッ素化反応の前後で炭素原子の並び方に変更はない。 また、 化合物 (4) の RAF、 RBF、 または RAFと RBFから形成される 2価有機基は、 それぞれ RA、 RB 、 または RAと RBから形成される 2価有機基と異なる基であるのが好ましく、 こ れらの基がフッ素化された基であるのが好ましい。 フッ素化反応では、 炭素原子 に結合する水素原子がフッ素に置換される。 また炭素一炭素不飽和結合には、 フ ッ素原子が付加する。 該フッ素化反応は、 フッ素化されうる構造の一部におきて も、 全部におきてもよく、 全部におきるのが好ましい。 The compound (3) is then fluorinated to obtain a compound (4). This fluorination is performed by a fluorination reaction in which compound (3) is reacted with fluorine in a liquid phase. The fluorination reaction here is a reaction in which at least one fluorine atom is bonded to the molecule of the compound (3) by one atom. R AF , R BF , and R GF in compound (4) are groups corresponding to substituents R A , R B , and RG in compound (3), respectively. There is no change in the arrangement of the atoms. The divalent organic group formed from R AF , R BF , or R AF and R BF of compound (4) is R A , R B , or the divalent organic group formed from R A and R B , respectively. Preferably, these groups are different from each other, and these groups are preferably fluorinated groups. In the fluorination reaction, the carbon atom Is replaced by fluorine. A fluorine atom is added to the carbon-carbon unsaturated bond. The fluorination reaction may be performed on a part of the structure that can be fluorinated, on the whole, or preferably on the whole.
化合物 (4 ) は、 RA Fが 1価飽和炭化水素基、 部分八ロゲノ 1価飽和炭化水素 基、 エーテル性酸素原子含有 1価飽和炭化水素基、 および部分ハロゲノ (エーテ ル性酸素原子含有 1価飽和炭化水素) 基から選ばれる基に存在する水素原子の実 質的に全てがフッ素原子に置換された基またはフッ素原子であるのが好ましく、 フッ素原子または RAに存在する水素原子の全てがフッ素化された基であるのが 特に好ましい。 また、 RB Fが 1価飽和炭化水素基、 部分ハロゲノ 1価飽和炭化水 素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 および部分ハロゲノ (エー テル性酸素原子含有 1価飽和炭化水素) 基から選ばれる基に存在する水素原子の 実質的に全てがフッ素原子に置換された基であるのが好ましく、 RBに存在する 水素原子の全てがフッ素化された基であるのが特に好ましい。 RG Fは Reと同一 の基であって、 1価飽和炭化水素基、 部分八ロゲノ 1価飽和炭化水素基、 エーテ ル性酸素原子含有 1価飽和炭化水素基、 および部分八ロゲノ (エーテル性酸素原 子含有 1価飽和炭化水素) 基から選ばれる基に存在する水素原子の実質的に全て がフッ素原子に置換された基であるのが好ましく、 特に全てがフッ素化されたこ れらの基であるのが好ましい。 In the compound (4), R AF is a monovalent saturated hydrocarbon group, a partially octalogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogeno (a monovalent saturated hydrocarbon group containing an etheric oxygen atom). saturated hydrocarbon) is preferably substantive all of the hydrogen atoms present in radicals are radicals or fluorine atoms substituted by fluorine atoms selected from the group, all of the hydrogen atoms present in the fluorine atom or R a Particularly preferred are fluorinated groups. In addition, RBF is a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial halogeno (a monovalent saturated hydrocarbon containing an etheric oxygen atom) preferably substantially all of the hydrogen atoms present in groups are substituted groups where a fluorine atom selected from group, particularly preferably all of the hydrogen atoms present in R B is fluorinated groups . R GF is a same group as R e, monovalent saturated hydrocarbon groups, moieties eight Rogeno monovalent saturated hydrocarbon group, ether oxygen atom-containing monovalent saturated hydrocarbon group, and partially eight Rogeno (etheric It is preferable that substantially all of the hydrogen atoms present in the group selected from the oxygen atom-containing monovalent saturated hydrocarbon groups are substituted with fluorine atoms, and particularly those groups in which all are fluorinated. It is preferred that
化合物(3 )を液相中でフッ素化する場合には、 フッ素ガスを、 化合物(3 )が存 在する溶媒中に導入して行うのが好ましい。 フッ素ガスは、 そのままを用いても 、 不活性ガスで希釈されたフッ素ガスを用いてもよい。 不活性ガスとしては、 窒 素ガス、 ヘリウムガスが好ましく、 経済的な理由から窒素ガスが特に好ましい。 窒素ガス中のフッ素ガス量は特に限定されず、 1 0体積%以上とするのが効率の 点で好ましく、 2 0体積%以上とするのが特に好ましい。  When fluorinating compound (3) in a liquid phase, it is preferable to introduce fluorine gas into a solvent in which compound (3) is present. The fluorine gas may be used as it is, or may be a fluorine gas diluted with an inert gas. As the inert gas, nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable for economic reasons. The amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10% by volume or more from the viewpoint of efficiency, and particularly preferably 20% by volume or more.
液相としては、 フッ素 (F, ) を溶解し得る溶媒を用いるのが好ましい。 該溶 媒としては、 C一 H結合を含まず C一 F結合を必須とする溶媒が好ましく、 さら に、 ペルフルォロアルカン類、 または、 塩素原子、 窒素原子、 および酸素原子か ら選ばれる 1種以上の原子を構造中に有する公知の有機溶剤をペルフルォロ化し た有機溶剤が好ましい。 さらに、 溶媒としては、 化合物 (3 ) の溶解性が高い溶 媒を用いるのが好ましく、 特に化合物 (4 ) 、 化合物 (5 ) または化合物 (6 ) を用いると反応後の後処理が容易になる利点があり好ましい。 As the liquid phase, it is preferable to use a solvent that can dissolve fluorine (F,). The solution As the medium, a solvent that does not contain a C—H bond and requires a C—F bond is preferable. In addition, a perfluoroalkane or one selected from a chlorine atom, a nitrogen atom, and an oxygen atom An organic solvent obtained by perfluorinating a known organic solvent having the above atoms in the structure is preferable. Further, as the solvent, it is preferable to use a solvent having high solubility of the compound (3). Particularly, when the compound (4), the compound (5) or the compound (6) is used, the post-treatment after the reaction becomes easy. Advantageous and preferred.
溶媒の使用量は、 化合物 (3 ) に対して、 5倍質量以上が好ましく、 特に 1 0 〜1 0 0倍質量が好ましい。  The amount of the solvent to be used is preferably at least 5 times, more preferably 10 to 100 times, the mass of the compound (3).
フッ素化反応の反応形式は、 バッチ方式より連続方式が好ましく、 特に、 反応 収率と選択率の点から、 つぎの連続方法が好ましい。 すなわち反応器に溶媒を仕 込み、 撹拌を開始する。 次に、 所定の反応温度と反応圧力下で、 化合物 (3 ) と フッ素ガスとを反応器中の液相に所定のモル比で連続的かつ同時に供給する連続 方法である。 化合物 (3 ) を供給する際には、 溶媒で希釈してもしなくてもよい が、 選択率を向上させ、 副生成物量を抑制させるためには、 溶媒で希釈した化合 物 (3 ) を供給することが好ましい。 また、 化合物 (3 ) を溶媒で希釈する際に は、 化合物 (3 ) に対する溶媒の量を 5倍質量以上とするのが好ましく、 特に 1 0倍質量以上とするのが好ましい。  The reaction system of the fluorination reaction is preferably a continuous system rather than a batch system. In particular, the following continuous method is preferable from the viewpoint of reaction yield and selectivity. That is, the solvent is charged into the reactor, and stirring is started. Next, a continuous method in which the compound (3) and fluorine gas are continuously and simultaneously supplied at a predetermined molar ratio to a liquid phase in a reactor at a predetermined reaction temperature and a predetermined reaction pressure. When supplying the compound (3), the compound (3) may or may not be diluted with the solvent. However, in order to improve the selectivity and suppress the amount of by-products, the compound (3) diluted with the solvent is supplied. Is preferred. When diluting the compound (3) with a solvent, the amount of the solvent with respect to the compound (3) is preferably at least 5 times, more preferably at least 10 times the mass.
フッ素化反応に用いるフッ素量は、 バッチ方式で反応を実施する場合にも連続 方式で実施する場合にも、 化合物 (3 ) 中の水素原子に対して、 フッ素の量が常 に過剰当量となるようにフッ素を用いるのが好ましく、 特に 1 . 5倍当量以上 ( すなわち、 1 . 5倍モル以上) となるようにフッ素を用いるのが選択率の点から 好ましい。 フッ素量の上限は 3 . 0倍モル以下であるのが好ましい。  Regarding the amount of fluorine used in the fluorination reaction, whether the reaction is carried out in a batch mode or in a continuous mode, the amount of fluorine is always an excess equivalent to the hydrogen atom in compound (3). It is preferable to use fluorine as described above, and it is particularly preferable to use fluorine so as to be 1.5 times equivalent or more (that is, 1.5 times mole or more) in terms of selectivity. The upper limit of the amount of fluorine is preferably 3.0 times or less.
フッ素化反応の反応温度は、 通常は一 6 0 °C以上かつ化合物 (3 ) の沸点以下 が好ましく、 反応収率、 選択率、 および工業的実施のし易さの点から一 5 0 °C〜 + 1 0 0 °Cが特に好ましく、 _ 2 0 °C〜十 5 0 °Cがとりわけ好ましい。 フッ素化 反応の反応圧力は特に限定されず、 0〜2MP a (ケージ圧。 以下同様。 ) が、 反応収率、 選択率、 工業的な実施のし易さの観点から特に好ましい。 The reaction temperature of the fluorination reaction is usually preferably 160 ° C. or higher and the boiling point of the compound (3) or lower, and is preferably 150 ° C. in view of the reaction yield, selectivity, and industrial easiness. To + 100 ° C is particularly preferable, and −20 ° C to 150 ° C is particularly preferable. Fluorination The reaction pressure of the reaction is not particularly limited, and 0 to 2 MPa (cage pressure; the same applies hereinafter) is particularly preferable from the viewpoints of reaction yield, selectivity, and industrial easiness.
さらに、 フッ素化を効率的に進行させるためには、 反応系中に C—H結合含有 化合物を添加する、 または、 紫外線照射を行う、 のが好ましい。 すなわち、 フッ 素化反応後期に C一 H結合含有化合物を反応系中に添加する、 または、 反応の後 段において紫外線照射を行う、 のが好ましい。 これにより、 反応系中に存在する 化合物 (3) を効率的にフッ素化でき、 反応率を飛躍的に向上させ得る。  Further, in order to efficiently advance the fluorination, it is preferable to add a CH bond-containing compound to the reaction system or to perform ultraviolet irradiation. That is, it is preferable to add a C—H bond-containing compound to the reaction system at a later stage of the fluorination reaction, or to perform ultraviolet irradiation at a later stage of the reaction. As a result, the compound (3) present in the reaction system can be efficiently fluorinated, and the reaction rate can be dramatically improved.
C一 H結合含有化合物としては、 特にベンゼン、 トルエン等が好ましレ^ 該 C 一 H結合含有化合物の添加量は、 化合物 (3) 中の水素原子に対して 0. 1〜1 0モル%であるのが好ましく、 特 0. 1〜 5モル%であるのが好ましい。  As the C-H bond-containing compound, benzene, toluene and the like are particularly preferable. The amount of the C-H bond-containing compound is 0.1 to 10 mol% based on the hydrogen atoms in the compound (3). And preferably 0.1 to 5 mol%.
C一 H結合含有化合物は、 反応系中にフッ素ガスが存在する状態で添加するの が好ましい。 さらに、 C一 H結合含有化合物を加えた場合には、 反応系を加圧す るのが好ましい。 加圧時の圧力としては、 0. 01〜5MP aが好ましい。 フッ素化反応においては、 HFが副生するため、 HFを除去する目的で反応系 中に HF捕捉剤を共存させる、 または反応器ガス出口で HF捕捉剤と出口ガスを 接触させるのが好ましい。 該 HF捕捉剤としては、 N a Fが好ましい。 反応系中 に HF捕捉剤を共存させる場合の量は、 化合物 (3) 中に存在する全水素原子量 に対して 1〜20倍モルが好ましく、 1〜5倍モルがさらに好ましい。 反応器ガ ス出口に HF捕捉剤をおく場合には、 (ィ) 冷却器 (10°C〜室温に保持するの が好ましく、 特には 20 程度に保持するのが好ましい。 ) (口) NaFペレツ 卜充填層、 および (ハ) 冷却器 (一 78°C〜+10°Cに保持するのが好ましく、 一 30°C〜0°Cに保持するのがさらに好ましい) を (ィ) 一 (口) ― (ハ) の順 に直列に設置するのが好ましい。 なお、 (ハ) の冷却器からは凝集した液を反応 器に戻すための液体返送ラインを設置してもよい。  The C-H bond-containing compound is preferably added in a state where fluorine gas is present in the reaction system. Further, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system. The pressure at the time of pressurization is preferably 0.01 to 5 MPa. In the fluorination reaction, HF is produced as a by-product, so it is preferable to coexist an HF scavenger in the reaction system for the purpose of removing HF, or to contact the HF scavenger with the outlet gas at the reactor gas outlet. As the HF scavenger, NaF is preferable. When the HF scavenger is present in the reaction system, the amount is preferably 1 to 20 moles, more preferably 1 to 5 moles, based on the total amount of hydrogen atoms present in the compound (3). When an HF scavenger is placed at the reactor gas outlet, (a) a cooler (preferably maintained at 10 ° C to room temperature, particularly preferably maintained at about 20) (Port) NaF pellets (A) The cooling layer (preferably maintained at a temperature of 78 ° C to + 10 ° C, more preferably maintained at a temperature of 30 ° C to 0 ° C) -It is preferable to install them in series in the order of (c). In addition, a liquid return line for returning the condensed liquid from the cooler in (c) to the reactor may be provided.
この化合物 (3) のフッ素化は、 この化合物 (3) が実質的にペルフルォロ化 されるまで、 特にはペルフルォロ化されるまで行うのが好ましい。 The fluorination of this compound (3) results in the compound (3) being substantially perfluorinated. It is preferable to carry out until the reaction is completed, especially until the perfluorination is effected.
また、 フッ素化反応で得た化合物 (4) を含む粗生成物は、 そのまま次の工程 に用いてもよく、 精製して高純度のものにしてもよい。 精製方法としては、 粗生 成物をそのまま常圧または減圧下に蒸留する方法等が挙げられる。 .  The crude product containing the compound (4) obtained by the fluorination reaction may be used as it is in the next step, or may be purified to high purity. Examples of the purification method include a method of distilling the crude product as it is under normal pressure or reduced pressure. .
本発明の製造方法によって、 化合物 (5) および Zまたは化合物 (6) を得る 工業的なプロセスとしての最良の方法は、 以下の方法である。  The best method as an industrial process for obtaining compounds (5) and Z or compound (6) by the production method of the present invention is as follows.
すなわち、 化合物 (1A) と化合物 (2A) を反応させて化合物 (3A) とし 、 該化合物 (3A) を液相中でフッ素と反応させて化合物 (4A) とし、 該化合 物 (4A) において、 上記エステル結合の分解反応を行った反応生成物から化合 物 (2A) を得る方法である。 さらに化合物 (2A) を再び化合物 (1A) と反 応させれば、 化合物 (2A) を連続的に効率良く製造できる。 ぐ実施例 >  That is, the compound (1A) is reacted with the compound (2A) to give a compound (3A), and the compound (3A) is reacted with fluorine in a liquid phase to give a compound (4A). In the compound (4A), This is a method for obtaining a compound (2A) from a reaction product obtained by performing the above-described ester bond decomposition reaction. Further, by reacting compound (2A) with compound (1A) again, compound (2A) can be continuously and efficiently produced. Examples>
以下に本発明を実施例を挙げて具体的に説明するが、 これらによって本発明は 限定されない。 なお、 以下において、 1, 1, 2—トリクロ口トリフル口ォェ夕 ンを R— 113、 ガスクロマトグラフィを GCと記す。  Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In the following, the 1,1,2-trichloro- and trifluo- mouths are referred to as R-113, and gas chromatography is referred to as GC.
[例 1 (実施例) ] [Example 1 (Example)]
2 L容量の撹拌機付きステンレス製オートクレープに純度 97%の ?3 (C F2) 2OCF (CF3) COOCF2 CF (CF3) O (CF2) 2CF3粗液 (以下 「ペルフルォロエステル粗液」 と略す。 1800 g) 、 さらにスプレードライ法 で製造した KF粉末 (30 g) を仕込み、 撹拌しながら 70°Cまで昇温した。 所 定温度に達したところでペルフルォロエステル粗液を 115 gZhの速度で連続 フィードした。 反応器上部に備え付けた 60でで加温したステンレス製のジャケ ット付きカラムを通して発生するガスを連続的に抜き出し、 ドライアイストラッ プで捕捉した。 捕捉した生成物の重量と GCによる分析から CF3 (CF2) 20 CF (CF3) COF (以下 「 (HFPO) 2」 と略す。 )が 110 g/hの速度で 生成していることを確認した。 (HFPO) 2の収率は 99%であった。 2 L capacity equipped with a stirrer made of stainless steel autoclave in 97% purity of? 3 (CF 2) 2 OCF (CF 3) COOCF 2 CF (CF 3) O (CF 2) 2 CF 3 crude liquid (hereinafter "Perufuru 1800 g) and KF powder (30 g) produced by the spray drying method were charged, and the temperature was raised to 70 ° C with stirring. When the specified temperature was reached, the crude perfluoroester solution was continuously fed at a rate of 115 gZh. Generated gas is continuously extracted through a stainless steel jacketed column heated at 60 provided at the top of the reactor, Trapped in the pump. From the weight of the captured product and the analysis by GC, CF 3 (CF 2 ) 20 CF (CF 3 ) COF (hereinafter abbreviated as “(HFPO) 2 ”) is generated at a rate of 110 g / h. It was confirmed. The yield of (HFPO) 2 was 99%.
[例 2 (実施例) ] [Example 2 (Example)]
反応温度を 73°C、 ペルフルォロエステル粗液のフィード量を 215 gZhと すること以外は例 1と同様に操作を行つた。 ドライアイストラップで捕捉した生 成物の重量と GCによる分析から (HFPO) 2が 260 g/hの速度で生成し ていることを確認した。 (HFPO) 2の収率は 99 %であった。 The same operation as in Example 1 was performed except that the reaction temperature was 73 ° C and the feed amount of the crude perfluoroester solution was 215 gZh. The weight of the product captured by the dry ice trap and analysis by GC confirmed that (HFPO) 2 was produced at a rate of 260 g / h. The yield of (HFPO) 2 was 99%.
[例 3 (比較例) ] [Example 3 (Comparative example)]
例 1と同じ装置を用いて反応器にペルフルォロエステル粗液を 1700 g、 N aF粉末 (森田化学工業 (株) 製) を 55 g仕込み、 撹拌しながら 140°Cまで 昇温した。 NaF粉末は、 使用前に 120°Cで 2時間熱処理を行った。 所定温度 に達したところでペルフルォロエステル粗液を 60 gZhの速度で連続フィード した。 ドライアイス卜ラップで捕捉した生成物の重量と GCによる分析から (H FPO) 2が 57 gZhの速度で生成していることを確認した。 (HFPO) 2の 収率は 99%であった。 Using the same apparatus as in Example 1, 1700 g of crude perfluoroester and 55 g of NaF powder (manufactured by Morita Chemical Industry Co., Ltd.) were charged into the reactor, and the temperature was raised to 140 ° C. with stirring. The NaF powder was heat-treated at 120 ° C for 2 hours before use. When the temperature reached a predetermined temperature, the crude perfluoroester solution was continuously fed at a rate of 60 gZh. From the weight of the product captured by the dry ice trap and the analysis by GC, it was confirmed that (H FPO) 2 was produced at a rate of 57 gZh. The yield of (HFPO) 2 was 99%.
[例 4 (実施例) ] CF3CF2CF2OCF (CF3) COOCF2CF (CF3 ) OCF2 CF2 CF3の製造例 [Example 4 (Example)] Production example of CF 3 CF 2 CF 2 OCF (CF 3 ) COOCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3
(例 4一 1) CF3CF2CF2OCF (CF3) C〇OCH2CH (CH3) OCH 2 CH2 CH3の製造例 (Example 4-1) CF 3 CF 2 CF 2 OCF (CF 3 ) C〇OCH 2 CH (CH 3 ) OCH 2 CH 2 CH 3 Production Example
CH3 CH2 CH2OCH (CH3) CH2OH (620 g) をフラスコに入れ、 窒素ガスをバブリングしながら撹拌した。 CF3CF2 CF2OCF (CF3) CO F (3604 g) を内温を 25〜35 に保ちながら 8時間かけて滴下した。 滴 下終了後、 標記化合物と CF3CF2CF2OCF (CF3) COFとを含む反応混 合物に、 窒素ガスをパブリングし続けながら室温で 2時間撹拌した。 得られた反 応混合物を例 4— 2の反応に用いた。 CH 3 CH 2 CH 2 OCH (CH 3 ) CH 2 OH (620 g) was charged into the flask and stirred while bubbling nitrogen gas through. CF 3 CF 2 CF 2 OCF (CF 3 ) CO F (3604 g) was added dropwise over 8 hours while maintaining the internal temperature at 25 to 35. After the completion of the dropwise addition, the reaction mixture containing the title compound and CF 3 CF 2 CF 2 OCF (CF 3 ) COF was stirred at room temperature for 2 hours while continuing to bubble nitrogen gas. The resulting reaction mixture was used for the reaction of Example 4-2.
(例 4一 2) CF3CF2CF2OCF (CF3) C〇OCF2 CF (CF3) OCF 2 CF2 CF3の製造例 (Example 4-1-2) CF 3 CF 2 CF 2 OCF (CF 3 ) C〇OCF 2 CF (CF 3 ) OCF 2 CF 2 CF 3
300 OmLのニッケル製オートクレープに、 例 4一 1で得た CF3 CF2 CF2 OCF (CF3) COF (2340 g) を加えて撹拌し、 25°Cに保った。 ォー トクレーブガス出口には、 2 Otに保持した冷却器、 NaFペレット充填層、 お ょぴ— 10°Cに保持した冷却器を直列に設置した。 なお、 一 10^に保持した冷 却器からは凝集した液をオートクレープに戻すための液体返送ラインを設置した 。 窒素ガスを 1. 5時間吹き込んだ後、 窒素ガスで 20体積%に希釈したフッ素 ガス (以下、 希釈フッ素ガスと略記する。 ) を流速 8. 91 L/hで 3時間吹き 込んだ。 The CF 3 CF 2 CF 2 OCF (CF 3 ) COF (2340 g) obtained in Example 4-11 was added to a 300 OmL nickel autoclave, and the mixture was stirred and kept at 25 ° C. At the autoclave gas outlet, a cooler kept at 2 Ot, a packed bed of NaF pellets, and a cooler kept at 10 ° C were installed in series. In addition, a liquid return line was installed to return the coagulated liquid from the cooler kept at 10 一 to the autoclave. After nitrogen gas was blown in for 1.5 hours, fluorine gas diluted to 20% by volume with nitrogen gas (hereinafter abbreviated as diluted fluorine gas) was blown in at a flow rate of 8.91 L / h for 3 hours.
つぎに、 希釈フッ素ガスを同じ流速で吹き込みながら、 例 4一 1で得た反応混 合物 (106 g) を 45. 6時間かけて注入した。  Next, the reaction mixture (106 g) obtained in Example 4-11 was injected over 45.6 hours while blowing the diluted fluorine gas at the same flow rate.
つぎに、 希釈フッ素ガスを同じ流速で吹き込みながら、 ベンゼン濃度が 0. 0 1 gZmLである CF3 CF2 CF2OCF (CF3) C O F溶液( 18 mL)を 25 ^から 40 にまで昇温しながら注入し、 オートクレープのベンゼン注入口バル ブを閉じ、 さらにォ一トクレーブの出口バルブを閉じ、 圧力が 0. 2MPaにな つたところで、 オートクレープのフッ素ガス入口バルブを閉めて 1時間撹拌を続 けた。 つぎに圧力を常圧にし、 反応器内温度を 40°Cに保ちながら、 上記のベン ゼン溶液 (6mL) を注入し、 オートクレーブのベンゼン注入口バルブを閉じ、 さらにオートクレープの出口バルブを閉じ、 圧力が 0. 2 MP aになったところ で、 オートクレープのフッ素ガス入口バルブを閉めて 1時間撹拌を続けた。 さら にベンゼンの注入操作を同様に 1回くり返した。 Next, while blowing the diluted fluorine gas at the same flow rate, the CF 3 CF 2 CF 2 OCF (CF 3 ) COF solution (18 mL) with a benzene concentration of 0.01 gZmL was heated from 25 ^ to 40. The autoclave's benzene inlet valve was closed, the autoclave's outlet valve was closed, and when the pressure reached 0.2 MPa, the autoclave's fluorine gas inlet valve was closed and stirring continued for 1 hour. I did. Next, the pressure was adjusted to normal pressure, the benzene solution (6 mL) was injected while maintaining the temperature in the reactor at 40 ° C, the benzene inlet valve of the autoclave was closed, and the outlet valve of the autoclave was closed. When the pressure reached 0.2 MPa, the fluorine gas inlet valve of the autoclave was closed, and stirring was continued for 1 hour. Further The operation of benzene injection was repeated once.
ベンゼンの注入総量は 0. 309 g、 CF3 CF2 CF2OCF (CF3) COF の注入総量は 3 OmLであった、 さらに、 窒素ガスを 2. 0時間吹き込んだ。 反 応後、 蒸留精製して標記化合物 (85. 3 g) と CF3CF2CF2OCF (CF3 ) COFとを含む生成物を得た。 The total amount of benzene injected was 0.309 g, the total amount of CF 3 CF 2 CF 2 OCF (CF 3 ) COF injected was 3 OmL, and nitrogen gas was blown for 2.0 hours. After the reaction, the product was purified by distillation to obtain a product containing the title compound (85.3 g) and CF 3 CF 2 CF 2 OCF (CF 3 ) COF.
[例 5] [Example 5]
(例 5— 1 ) 下記化合物の製造例
Figure imgf000024_0001
(Example 5-1) Production example of the following compound
Figure imgf000024_0001
テトラハイド口フルフリルアルコール (20 g) と卜リエチルァミン (21. 8 g) をフラスコに入れ、 氷浴下撹拌した。 FCOCF (CF3) 0CF2CF2CF3 (71. 5 g ) を内温を 10°C以下に保ちながら 1時間かけて滴下した。 滴下終了後、 室温で 2時間撹拌し、 水 5 OmLを内温 15 °C以下で加えた。 Tetrahydrid furfuryl alcohol (20 g) and triethylamine (21.8 g) were placed in a flask and stirred in an ice bath. FCOCF (CF 3 ) 0CF 2 CF 2 CF 3 (71.5 g) was added dropwise over 1 hour while maintaining the internal temperature at 10 ° C or lower. After completion of the dropwise addition, the mixture was stirred at room temperature for 2 hours, and 5 OmL of water was added at an internal temperature of 15 ° C or lower.
得られた粗液を分液し、 下層を水 5 OmLで 2回洗浄し、 硫酸マグネシウムで 乾燥した後、 ろ過し、 粗液を得た。 減圧蒸留で目的のエステル化合物 (66. 3 g) を 88〜89°CZ2. 7 k P aの留分として得た。 GC純度は 98%であつ た。  The obtained crude liquid was separated, and the lower layer was washed twice with 5 OmL of water, dried over magnesium sulfate, and then filtered to obtain a crude liquid. The desired ester compound (66.3 g) was obtained by distillation under reduced pressure as a fraction at 88 to 89 ° CZ 2.7 kPa. GC purity was 98%.
(例 5— 2 ) 下記化合物の製造例
Figure imgf000024_0002
(Example 5-2) Production example of the following compound
Figure imgf000024_0002
300 OmLのニッケル製オートクレープに、 R—113 (1614 g) を加 えて撹拌し、 25^に保った。 オートクレープガス出口には、 20°Cに保持した 冷却器、 NaFペレット充填層、 および一 10°Cに保持した冷却器を直列に設置 した。 なお、 一 10°Cに保持した冷却器からは凝集した液をォ一トクレーブに戻 すための液体返送ラインを設置した。 窒素ガスを 1. 0時間吹き込んだ後、 窒素 ガスで 20体積%に希釈したフッ素ガス (以下、 希釈フッ素ガスと略記する。 ) を流速 17. 04L/h l時間吹き込んだ。 R-113 (1614 g) was added to a 300 OmL nickel autoclave, stirred, and kept at 25 保. At the autoclave gas outlet, a cooler maintained at 20 ° C, a packed bed of NaF pellets, and a cooler maintained at 110 ° C are installed in series. did. In addition, a liquid return line was installed to return the condensed liquid from the cooler kept at 110 ° C to the autoclave. After blowing nitrogen gas for 1.0 hour, fluorine gas diluted to 20% by volume with nitrogen gas (hereinafter abbreviated as diluted fluorine gas) was blown at a flow rate of 17.04 L / hl for 1 hour.
つぎに、 希釈フッ素ガスを同じ流速で吹き込みながら、 例 5— 1で得た反応粗 液 (54 g) を R— 113 (510 g) に溶解した溶液 14. 7時間かけて注入 した。  Next, a solution obtained by dissolving the crude reaction solution (54 g) obtained in Example 5-1 in R-113 (510 g) was injected over 14.7 hours while blowing the diluted fluorine gas at the same flow rate.
つぎに、 希釈フッ素ガスを同じ流速で吹き込みながら、 なおかつ反応器圧力を Next, while blowing the diluted fluorine gas at the same flow rate, and while increasing the reactor pressure,
0. 15MP aに保ちながら、 ベンゼン濃度が 0. 05 g/mLの: — 113溶 液を 25°Cから 40でにまで昇温しながら 3 OmL注入し、 オートクレーブのベ ンゼン注入口を閉め、 0. 3時間撹拌を続けた。 つぎに、 希釈フッ素ガスを同じ 流速で吹き込みながら、 反応器圧力を 0. 15MPaに、 反応器内温度を 40°C に保ちながら、 上記のベンゼン溶液を 2 OmL注入し、 0. 3時間撹拌を続けたWhile maintaining the pressure at 0.15 MPa, the benzene concentration was 0.05 g / mL: — 113 solution was injected while increasing the temperature from 25 ° C to 40 ° C, and the benzene inlet of the autoclave was closed. Stirring was continued for 0.3 hours. Next, while injecting the diluted fluorine gas at the same flow rate, maintaining the reactor pressure at 0.15 MPa and maintaining the reactor temperature at 40 ° C, inject 2 OmL of the above benzene solution, and stir for 0.3 hours. Continued
。 同様の操作を 3回くり返し、 さらに 2. 0時間撹拌を続けた。 ベンゼンの注入 総量は 5. 0 O g、 R- 1 13の注入総量は 11 lmLであった。 目的物を19 . The same operation was repeated three times, and the stirring was further continued for 2.0 hours. The total amount of benzene injected was 5.0 Og, and the total amount of R-113 injected was 11 mL. 19 objects
F— NMRで定量 (内部標準: C6F6) したところ、 標記化合物の収率は 75Quantification by F-NMR (internal standard: C 6 F 6 ) gave a yield of the title compound of 75.
%であった。 %Met.
(例 5— 3) 下記化合物の製造例
Figure imgf000025_0001
例 5— 2で得た反応粗液 56. 5 を0. 95 gの KF粉末と共にフラスコに 仕込み、 激しく撹拌を行いながらオイルバス中で 90〜110°Cで 4時間加熱し た。 フラスコ上部には 5 に温度調節した還流器を設置し、 還流器出口にてドラ ィアイス .エタノールトラップにて液状サンプルを回収した。 冷却後 44. 0 g の液状サンプルを回収した。 GC—MSにより分析した結果、 CF3CF (〇C F2CF2CF3) C OF及び標記化合物が主生成物として確認された。 NMRに より標記化合物の収率を求めたところ、 87%であった。
(Example 5-3) Production example of the following compound
Figure imgf000025_0001
56.5 of the crude reaction solution obtained in Example 5-2 was charged into a flask together with 0.95 g of KF powder, and heated at 90 to 110 ° C. for 4 hours in an oil bath with vigorous stirring. A reflux condenser adjusted to a temperature of 5 was installed at the top of the flask, and a liquid sample was collected with a dry ice ethanol trap at the exit of the reflux condenser. 44.0 g after cooling Of the liquid sample was collected. As a result of analysis by GC-MS, CF 3 CF (ΔCF 2 CF 2 CF 3 ) COF and the title compound were confirmed as main products. The yield of the title compound determined by NMR was 87%.
19F— NMR (282. 7MHz、 溶媒 CDC 13、 基準: C F C 13) δ ( p pm) : 26. 3 (I F) , — 82. 8 (I F) , —83. 6 (I F) , 一 1 18. 1 (I F) , -125. 9 (IF) , -126. 8 (I F) , -1 9. 3 (I F) , - 134. 8 (1 F) 19 F- NMR (282. 7MHz, solvent CDC 1 3, reference: CFC 1 3) δ (p pm):. 26. 3 (IF), - 82. 8 (IF), -83 6 (IF), one 1 18.1 (IF), -125. 9 (IF), -126. 8 (IF), -19.3 (IF),-134.8 (1 F)
[例 6] [Example 6]
(例 6
Figure imgf000026_0001
(Example 6
Figure imgf000026_0001
合物 A— 2 合物 B— 2  Compound A— 2 Compound B— 2
Figure imgf000026_0002
1 化合物 B— 1 化合物 A— 1と化合物 B— 1の 59 : 41 (モル比) の混合物 (100. 0 g ) とトリエチルァミン (10. 7 g) をフラスコに入れ、 内温 10 °C以下で撹拌 した。 FCOCF (CF3) OCF2CF2CF3 (351. 0 g) を、 内温を 1 0°C以下に保ちながら、 400分かけて滴下した。 滴下終了後、 室温で 1時間撹 拌し、 水 (50 OmL) を内温を 15°Cを超えないようにしながら添加した。 得 られた粗液にジクロロペン夕フルォロプロパン (1000mL、 旭硝子社製商品 名: AK225) を加えて分液し、 下層を得た。 さらに下層を水 (50 OmL) で 2回洗浄し、 硫酸マグネシウムで乾燥した後、 ろ過し、 粗液を得た。 粗液をェ バポレ一夕一で濃縮し、 次いで減圧蒸留して、 59 62°CZ0. 4kPaの留 分 (328. 0 g) を得た。 GC純度は、 99. 6%であった。
Figure imgf000026_0002
1 Compound B—1 A mixture of compound A—1 and compound B—1: 59:41 (molar ratio) (100.0 g) and triethylamine (10.7 g) are placed in a flask, and the internal temperature is 10 ° C. Stirred below. FCOCF (CF 3 ) OCF 2 CF 2 CF 3 (351.0 g) was added dropwise over 400 minutes while maintaining the internal temperature at 10 ° C. or lower. After completion of the dropwise addition, the mixture was stirred at room temperature for 1 hour, and water (50 OmL) was added while keeping the internal temperature not exceeding 15 ° C. To the obtained crude liquid was added dichloropentylfluoropropane (1000 mL, trade name: AK225, manufactured by Asahi Glass Co., Ltd.), and the mixture was separated to give a lower layer. The lower layer was further washed twice with water (50 OmL), dried over magnesium sulfate, and filtered to obtain a crude liquid. Remove the crude liquid Concentration was performed overnight in a vapore, followed by distillation under reduced pressure to obtain a fraction (328.0 g) of 5962 ° C, 0.4 kPa. GC purity was 99.6%.
[例 6一 2]化合物 A— 3および化合物 B— 3の製造例 [Example 6-1-2] Example of production of compound A-3 and compound B-3
Figure imgf000027_0001
化合物 A— 3
Figure imgf000027_0001
Compound A—3
例 5— 2と同じ反応装置を用い、 R— 113 (1701 g) を加えて撹拌し、 25°Cに保った。 希釈フッ素ガスを流速 17. 04L_/hで 1時間吹き込んだ。 つぎに、 希釈フッ素ガスを同じ流速で吹き込みながら、 例 6—1で得た反応粗 液 (1 15 g) を R— 113 (863 g) に溶解した溶液 24. 8時間かけて注 入した。  Using the same reactor as in Example 5-2, R-113 (1701 g) was added, stirred, and kept at 25 ° C. Diluted fluorine gas was blown at a flow rate of 17.04 L_ / h for 1 hour. Next, while diluting fluorine gas was blown in at the same flow rate, a solution obtained by dissolving the reaction crude solution (115 g) obtained in Example 6-1 in R-113 (863 g) was injected over 24.8 hours.
つぎに、 希釈フッ素ガスを同じ流速で吹き込みながら、 なおかつ反応器圧力を 0. 15MP aに保ちながら、 ベンゼン濃度が 0. 04 gZmLの R— 113溶 液を 25°Cから 40°Cにまで昇温しながら 3 OmL注入し、 ォ一トクレーブのベ ンゼン注入口を閉め、 0. 3時間撹拌を続けた。 つぎに、 希釈フッ素ガスを同じ 流速で吹き込みながら、 反応器圧力を 0. 15MP aに、 反応器内温度を 40°C に保ちながら、 上記のベンゼン溶液を 2 OmL注入し、 0. 3時間撹拌を続けた 。 同様の操作を 1回くり返し、 さらに 1. 0時間撹拌を続けた。 ベンゼンの注入 総量は 3. 14g R— 113の注入総量は 7 OmLであった。 目的物を19 F — NMRで定量 (内部標準: C6F6) したところ、 化合物 A— 3の収率は 68 %、 化合物 B— 3の収率は 93%であった。 Next, while blowing the diluted fluorine gas at the same flow rate and maintaining the reactor pressure at 0.15 MPa, the R-113 solution with a benzene concentration of 0.04 gZmL was raised from 25 ° C to 40 ° C. While heating, 3 OmL was injected, the benzene inlet of the autoclave was closed, and stirring was continued for 0.3 hour. Next, while injecting the diluted fluorine gas at the same flow rate, while maintaining the reactor pressure at 0.15 MPa and the reactor temperature at 40 ° C, 2 OmL of the above benzene solution was injected, and the mixture was stirred for 0.3 hours. Continued. The same operation was repeated once, and the stirring was further continued for 1.0 hour. The total injection amount of benzene was 3.14 g R-113 was 7 OmL. The desired product was quantified by 19 F-NMR (internal standard: C 6 F 6 ). As a result, the yield of compound A-3 was 68%, and the yield of compound B-3 was 93%.
[例 6— 3 ]下記化合物 B _ 4の製造例 F2C-CF 。 [Example 6-3] Production example of the following compound B_4 F 2 C-CF.
0 .0  0 .0
c 化合物 B— 4 例 5— 3と同じ反応装置を用いて反応を行つた。 例 6— 2で得た反応粗液 13 5. l gを 2. 98 gの KF粉末と共にフラスコに仕込み、 激しく撹拌を行いな がらオイルバス中で 91 °Cで 5時間加熱した。 還流器出口で 1 18. 8 gの液状 サンプルを回収した。 GC— MSにより分析した結果、 CF3CF (〇CF2C F2CF3) C OF及び標記化合物が主生成物として確認された。 NMRにより 標記化合物の収率を求めたところ、 標記化合物 A— 4の収率は 62 %、 化合物 B 一 4の収率は 83%であった。 c Compound B-4 The reaction was carried out using the same reactor as in Example 5-3. 13 5. Ig of the crude reaction solution obtained in Example 6-2 was charged into a flask together with 2.98 g of KF powder, and heated at 91 ° C for 5 hours in an oil bath with vigorous stirring. At the outlet of the reflux condenser, 118. 8 g of a liquid sample was collected. As a result of analysis by GC-MS, CF 3 CF (ΔCF 2 CF 2 CF 3 ) COF and the title compound were confirmed as main products. The yield of the title compound was determined by NMR. The yield of the title compound A-4 was 62%, and the yield of the compound B-14 was 83%.
19F-NMR (282. 7MHz、 溶媒 CDC 13、 基準: CFC 13、 内部 標準: C6F6) δ (p pm) 19 F-NMR (282. 7MHz, solvent CDC 1 3, reference: CFC 1 3, internal standard: C 6 F 6) δ ( p pm)
化合物 A— 4 : -51. 2 (2 F) , -79. 9. (4 F) 。  Compound A—4: -51.2 (2 F), -79. 9. (4 F).
化合物 B— 4 : 26. 2 (I F) , -53. 0 (I F) , -57. 6 (I F) Compound B—4: 26.2 (IF), -53.0 (IF), -57.6 (IF)
, -76. 8 (I F) , —87. 7 (I F) , 一 117. 8 (1 F) 。 ぐ産業上の利用の可能性 > , -76.8 (I F), —87.7 (I F), 1 17.8 (1 F). Industrial potential>
本発明の方法によれば、 含フッ素エステル化合物のエステル結合を、 低い反応 温度で分角?させることができる。 しかも、 本発明の方法によれば、 反応温度が低 くしても反応速度を低下させずに、 予想外の速い反応速度で、 効率良く反応を実 施できる。 すなわち、 本発明の方法は、 工業的実施において、 きわめて有利な方 法である。  According to the method of the present invention, the ester bond of the fluorinated ester compound can be separated at a low reaction temperature. Can be done. Moreover, according to the method of the present invention, the reaction can be efficiently performed at an unexpectedly high reaction rate without lowering the reaction rate even when the reaction temperature is lowered. That is, the method of the present invention is a very advantageous method in industrial practice.
さらに本発明によれば、 任意の含フッ素エステル化合物を有利な方法で製造し ながら、 エステル結合の分解反応が実施できる。  Further, according to the present invention, the decomposition reaction of the ester bond can be carried out while producing an arbitrary fluorine-containing ester compound by an advantageous method.

Claims

請求の範囲 The scope of the claims
1. エステル結合が分解されうる含フッ素エステル化合物のエステル結合を分解 することにより分解反応生成物を得る方法において、 エステル結合の分解反応を 溶媒を実質的に用いずに KFの存在下に 200°C以下の反応温度で行い、 かつ、 前記含フッ素エステル化合物を反応域に連続供給し、 分解反応生成物を反応域か ら連続的に抜き出しながら反応を行うことを特徴とする分解反応生成物の製造方 法。 1. A method for obtaining a decomposition reaction product by decomposing an ester bond of a fluorinated ester compound in which an ester bond can be decomposed, wherein the ester bond decomposition reaction is performed at 200 ° C in the presence of KF without substantially using a solvent. C. and a reaction temperature of not more than C, and continuously supplying the fluorinated ester compound to the reaction zone, and performing the reaction while continuously extracting the decomposition reaction product from the reaction zone. Production method.
2. 含フッ素エステル化合物が式 (4) で表される化合物であり、 分解反応生成 物が式 (5) で表される化合物および Zまたは式 (6) で表される化合物である 請求項 1に記載の製造方法。 2. The fluorinated ester compound is a compound represented by the formula (4), and the decomposition reaction product is a compound represented by the formula (5) and a compound represented by Z or the formula (6). The production method described in 1.
RCFCOOCFRAF BF (4) R CF COOCFR AF BF (4)
RA F RB F C = 0 (5) RA F R BF C = 0 (5)
RCFCOF (6) R CF COF (6)
ここで、 RAFはフッ素原子または 1価有機基であり、 RBFは 1価有機基であり 、 または RAFと RBFは互いに結合して 2価有機基を形成していてもよく、 ReFtt 1価有機基であり、 かつ、 RAF、 RBF、 および から選ばれる少なくとも 1つ の基中にはフッ素原子が存在する。 Here, R AF is a fluorine atom or a monovalent organic group, R BF is a monovalent organic group, or R AF and R BF may be bonded to each other to form a divalent organic group, eF tt is a monovalent organic group, and a fluorine atom is present in at least one group selected from R AF , R BF , and
3. 式 (4) で表される化合物が、 式 (1) で表される化合物と式 (2) で表さ れる化合物とを反応させて式 (3) で表される化合物とし、 該式 (3) で表され る化合物を液相中でフッ素と反応させることにより製造された化合物である請求 項 2に記載の製造方法。 3. A compound represented by the formula (4) is reacted with a compound represented by the formula (1) and a compound represented by the formula (2) to form a compound represented by the formula (3); 3. The production method according to claim 2, which is a compound produced by reacting the compound represented by (3) with fluorine in a liquid phase.
HOCHRARB (1) Rc COX (2) HOCHRARB (1) R c COX (2)
RcC〇OCHRARB (3) R c C〇OCHR A R B (3)
ここで、 RAFがフッ素原子である場合の RAは水素原子であり、 RAと RAFとが 同一の 1価有機基である場合の RAはフッ素化されない 1価有機基であり、 RAと RAFとが異なる 1価有機基である場合の RAはフッ素化される 1価有機基であり 、 RBと RBFとが同一の 1価有機基である場合の RBはフッ素化されない 1価有機 基であり、 RBと RBFとが異なる 1価有機基である場合の RBはフッ素化される 1 価有機基である。 Here, when R AF is a fluorine atom, R A is a hydrogen atom, and when R A and R AF are the same monovalent organic group, R A is a non-fluorinated monovalent organic group, When R A and R AF are different monovalent organic groups, R A is a monovalent organic group to be fluorinated, and when R B and R BF are the same monovalent organic group, R B is R B is a monovalent organic group that is not fluorinated, and when R B and R BF are different monovalent organic groups, R B is a monovalent organic group that is fluorinated.
また、 RAFと R8Fが互いに結合して 2価有機基を形成している場合の RAと RB は、 互いに結合して 2価有機基を形成しており、 RAと RBから形成される 2価有 機基が、 RAFと RBFから形成される 2価有機基と同一である場合の RAと から 形成される 2価有機基はフッ素化されない 2価有機基であり、 異なる場合の RA と R Bから形成される 2価有機基はフッ素化される 2価有機基である。 When R AF and R 8F are bonded to each other to form a divalent organic group, R A and R B are bonded to each other to form a divalent organic group, and R A and R B When the divalent organic group formed is the same as the divalent organic group formed from R AF and R BF, the divalent organic group formed from R A is a non-fluorinated divalent organic group. divalent organic group formed from R a and R B when different is a divalent organic radical fluorination.
Rcと ReFとが同一の 1価有機基である場合の Reはフッ素化されない 1価有機 基であり、 Rcと RGFとが異なる 1価有機基である場合の 1^はフッ素化される 1 価有機基である。 When R c and R eF are the same monovalent organic group, R e is a non-fluorinated monovalent organic group, and when R c and R GF are different monovalent organic groups, 1 ^ is fluorine Is a monovalent organic group.
Xはハロゲン原子である。  X is a halogen atom.
4. 式 (3) で表される化合物のフッ素原子含有量が 30〜 84質量%である請 求項 3に記載の製造方法。 4. The production method according to claim 3, wherein the compound represented by the formula (3) has a fluorine atom content of 30 to 84% by mass.
5. RAが、 水素原子、 1価飽和炭化水素基、 部分ハロゲノ 1価飽和炭化水素基5. RA is a hydrogen atom, a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group
、 エーテル性酸素原子含有 1価飽和炭化水素基、 または部分ハロゲノ (エーテル 性酸素原子含有 1価飽和炭化水素) 基であり、 RAFがフッ素原子または RAに存 在する水素原子の実質的に全てがフッ素原子に置換された基であり、 RBが、 1価飽和炭化水素基、 部分ハロゲノ 1価飽和炭化水素基、 エーテル性 酸素原子含有 1価飽和炭化水素基、 または部分ハロゲノ (エーテル性酸素原子含 有 1価飽和炭化水素) 基であり、 RB Fが に存在する水素原子の実質的に全て がフッ素原子に置換された基であり、 A monovalent saturated hydrocarbon group containing an etheric oxygen atom or a partial halogeno (monovalent saturated hydrocarbon containing an etheric oxygen atom) group, wherein R AF is substantially a fluorine atom or a hydrogen atom present in RA. All are groups substituted by fluorine atoms, R B is a monovalent saturated hydrocarbon group, a partial halogeno monovalent saturated hydrocarbon group, an etheric oxygen atom-containing monovalent saturated hydrocarbon group, or a partial halogeno (etheric oxygen atom-containing monovalent saturated hydrocarbon) group R BF is a group in which substantially all of the hydrogen atoms present in have been replaced by fluorine atoms,
または、 RAと RBが互いに結合して 2価飽和炭化水素基、 部分ハロゲノ 2価飽 和炭化水素基、 エーテル性酸素原子含有 2価飽和炭化水素基、 または部分ハロゲ ノ (エーテル性酸素原子含有 2価飽和炭化水素) 基を形成し、 RA Fと RB Fが RA と RBから形成される基に存在する水素原子の実質的に全てがフッ素原子に置換 された基であり、 Or combines R A and R B are each other bivalent saturated hydrocarbon group, partially halogeno 2 Atai飽sum hydrocarbon group, an etheric oxygen atom-containing bivalent saturated hydrocarbon group or moiety halogenoalkyl (etheric oxygen atom, A divalent saturated hydrocarbon) group, wherein R AF and R BF are groups in which substantially all of the hydrogen atoms present in the group formed from R A and R B have been replaced by fluorine atoms;
RGおよび Re Fが同一の基であって、 1価飽和炭化水素基、 部分ハロゲノ 1価 飽和炭化水素基、 エーテル性酸素原子含有 1価飽和炭化水素基、 および部分八口 ゲノ (エーテル性酸素原子含有 1価飽和炭化水素) 基から選ばれる基に存在する 水素原子の実質的に全てがフッ素原子に置換された基である請求項 3または 4に 記載の製造方法。 R G and R e F are the same group, and are a monovalent saturated hydrocarbon group, a partially halogeno monovalent saturated hydrocarbon group, a monovalent saturated hydrocarbon group containing an etheric oxygen atom, and a partial octaenogeno (etheric 5. The production method according to claim 3, wherein substantially all of the hydrogen atoms present in the group selected from the group consisting of an oxygen atom-containing monovalent saturated hydrocarbon) group are substituted with fluorine atoms.
6 . 式 (3 ) で表わされる化合物の分子量が 2 0 0〜1 0 0 0である請求項 3、 4、 または 5に記載の製造方法。 6. The production method according to claim 3, 4, or 5, wherein the compound represented by the formula (3) has a molecular weight of from 200 to 100.
7 . エステル結合の分解反応を液相反応で行う請求項 1〜 6のいずれかに記載の 製造方法。 7. The method according to any one of claims 1 to 6, wherein the decomposition reaction of the ester bond is performed by a liquid phase reaction.
8 . エステル結合の分解反応を分解反応生成物の沸点以上であり、 かつ 1 0 0 °C 以下の反応温度で気相反応で行う請求項 1〜 6のいずれかに記載の製造方法。 8. The production method according to any one of claims 1 to 6, wherein the decomposition reaction of the ester bond is carried out by a gas phase reaction at a reaction temperature not lower than the boiling point of the decomposition reaction product and not higher than 100 ° C.
PCT/JP2001/010889 2000-12-13 2001-12-12 Process for producing product of decomposition of fluorinated ester compound WO2002048085A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002221128A AU2002221128A1 (en) 2000-12-13 2001-12-12 Process for producing product of decomposition of fluorinated ester compound
JP2002549621A JP4126542B2 (en) 2000-12-13 2001-12-12 Method for producing decomposition reaction product of fluorine-containing ester compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000379101 2000-12-13
JP2000-379101 2000-12-13

Publications (1)

Publication Number Publication Date
WO2002048085A1 true WO2002048085A1 (en) 2002-06-20

Family

ID=18847545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/010889 WO2002048085A1 (en) 2000-12-13 2001-12-12 Process for producing product of decomposition of fluorinated ester compound

Country Status (3)

Country Link
JP (1) JP4126542B2 (en)
AU (1) AU2002221128A1 (en)
WO (1) WO2002048085A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050649A1 (en) * 2002-12-04 2004-06-17 Asahi Glass Company, Limited Perfluoro five-membered ring compound
WO2005054336A1 (en) * 2003-12-03 2005-06-16 Asahi Glass Company, Limited Pellicle and novel fluorinated polymer
JPWO2004052832A1 (en) * 2002-12-11 2006-04-13 旭硝子株式会社 Fluorinated adamantane derivatives
JP2006104139A (en) * 2004-10-06 2006-04-20 Fuji Photo Film Co Ltd Method for fluorinating hydrocarbon compound
WO2012014818A1 (en) * 2010-07-30 2012-02-02 日本ゼオン株式会社 Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025082A1 (en) * 1994-03-15 1995-09-21 Minnesota Mining And Manufacturing Company Process for converting perfluorinated esters to perfluorinated acyl fluorides and/or ketones
WO2000056694A1 (en) * 1999-03-23 2000-09-28 Asahi Glass Company, Limited Process for producing fluorine compound through liquid-phase fluorination

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995025082A1 (en) * 1994-03-15 1995-09-21 Minnesota Mining And Manufacturing Company Process for converting perfluorinated esters to perfluorinated acyl fluorides and/or ketones
WO2000056694A1 (en) * 1999-03-23 2000-09-28 Asahi Glass Company, Limited Process for producing fluorine compound through liquid-phase fluorination

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004050649A1 (en) * 2002-12-04 2004-06-17 Asahi Glass Company, Limited Perfluoro five-membered ring compound
JPWO2004052832A1 (en) * 2002-12-11 2006-04-13 旭硝子株式会社 Fluorinated adamantane derivatives
JP4534765B2 (en) * 2002-12-11 2010-09-01 旭硝子株式会社 Fluorinated adamantane derivative and method for producing the same
WO2005054336A1 (en) * 2003-12-03 2005-06-16 Asahi Glass Company, Limited Pellicle and novel fluorinated polymer
US7790811B2 (en) 2003-12-03 2010-09-07 Asahi Glass Company, Limited Pellicle and novel fluoropolymer
JP2006104139A (en) * 2004-10-06 2006-04-20 Fuji Photo Film Co Ltd Method for fluorinating hydrocarbon compound
WO2012014818A1 (en) * 2010-07-30 2012-02-02 日本ゼオン株式会社 Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery
CN103038224A (en) * 2010-07-30 2013-04-10 日本瑞翁株式会社 Ether compound, electrolyte composition for non-aqueous battery, binder composition for non-aqueous battery electrode, slurry composition for non-aqueous battery electrode, electrode for non-aqueous battery and non-aqueous battery
JPWO2012014818A1 (en) * 2010-07-30 2013-09-12 日本ゼオン株式会社 Ether compound, non-aqueous battery electrolyte composition, non-aqueous battery electrode binder composition, non-aqueous battery electrode slurry composition, non-aqueous battery electrode and non-aqueous battery

Also Published As

Publication number Publication date
JPWO2002048085A1 (en) 2004-04-15
JP4126542B2 (en) 2008-07-30
AU2002221128A1 (en) 2002-06-24

Similar Documents

Publication Publication Date Title
KR100699736B1 (en) Process for producing fluorine compound through liquid-phase fluorination
US6894187B2 (en) Method for producing a fluorine-containing compound
JP4934940B2 (en) Method for producing fluorine-containing ester compound
TWI296615B (en) Process for preparation of fluorinated ketones
US6225511B1 (en) Synthesis of fluorinated ethers
JP4285000B2 (en) Method for producing fluorine-containing ester, fluorine-containing acyl fluoride and fluorine-containing vinyl ether
KR100758163B1 (en) Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
EP1208075A1 (en) Process for producing a vic-dichloro acid fluoride
WO2002048085A1 (en) Process for producing product of decomposition of fluorinated ester compound
US6858752B2 (en) Process for producing fluorinated polyvalent carbonyl compound
WO2004080940A1 (en) Process for production of perfluorodiacyl fluorides
WO2002026693A1 (en) Process for producing fluoroamine compound
JP4362710B2 (en) Method for producing fluorine-containing carbonyl compound
JP4864226B2 (en) Method for producing fluorine-containing compound
WO2002066452A1 (en) Processes for producing fluorinated cyclic ethers and use thereof
JP4655176B2 (en) Novel vic-dichloro acid fluoride compound
JP2003261502A (en) Method for producing perfluoro(3-methoxypropionyl fluoride)
JP2006028023A (en) Method for producing chlorine- and fluorine-containing compound
JP2004143079A (en) Straight-chain perfluorocarboxylic acid fluoride and method for producing the same
JP2003183222A (en) Method of fluorine-containing dicarbonyl compound

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002549621

Country of ref document: JP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase