JP4655176B2 - Novel vic-dichloro acid fluoride compound - Google Patents
Novel vic-dichloro acid fluoride compound Download PDFInfo
- Publication number
- JP4655176B2 JP4655176B2 JP2001054313A JP2001054313A JP4655176B2 JP 4655176 B2 JP4655176 B2 JP 4655176B2 JP 2001054313 A JP2001054313 A JP 2001054313A JP 2001054313 A JP2001054313 A JP 2001054313A JP 4655176 B2 JP4655176 B2 JP 4655176B2
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- compound
- solvent
- gas
- preferable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、フッ素樹脂原料モノマーの製造中間体として有用なvic−ジクロロ構造を有する新規なvic−ジクロロ酸フルオリド化合物に関する。
【0002】
【従来の技術】
ペルフルオロアルキル鎖の末端にvic−ジクロロ構造(炭素とその炭素に隣接する炭素に、それぞれ塩素原子が1個結合した構造)を有し、かつフルオロカルボニル基(−COF)を併有するvic−ジクロロ酸フルオリド化合物は、フッ素樹脂原料モノマーの製造中間体として有用な化合物である。たとえば、CF2ClCFCl−部分を有する化合物は、亜鉛と反応させ、次に脱塩素化することにより、ペルフルオロビニル基(CF2=CF−)を有する酸フルオリド化合物とすることができる。該化合物のペルフルオロビニル基は重合性基であり、これを重合させることにより種々のフッ素樹脂が製造できる。フッ素樹脂は耐熱性および耐薬品性に優れた有用な樹脂である。
【0003】
【発明が解決しようとする課題】
本発明の目的は、フッ素樹脂の原料として有用な新規なvic−ジクロロ構造を有する酸フルオリド化合物を提供することにある。
【0004】
【課題を解決するための手段】
本発明は、下式(1)で表される化合物を提供する。
【0005】
CF2ClCFClCF(ORf)COF ・・・(1)
【0006】
ただし、Rfはペルフルオロアルキル基を示す。
【0007】
【発明の実施の形態】
本明細書においては、式(1)で表される化合物を、化合物(1)のように記す。他の式で表される化合物においても同様である。
【0008】
式(1)中のRfはペルフルオロアルキル基を示す。ペルフルオロアルキル基とは、アルキル基中の水素原子の全てがフッ素化された基をいう。Rfの炭素数は1〜10が好ましく、特に1〜6が好ましく、とりわけ−CF3が好ましい。
【0009】
化合物(1)の具体例としては、下記化合物が挙げられる。ただし、nは1〜9の整数を示す。これらのうちRfが−CF3である場合の下式(1A)で表される化合物が好ましい。
【0010】
CF2ClCFClCF(OCF3)COF ・・・(1A)
CF2ClCFClCF(O(CF2)nCF3)COF
【0011】
本発明の化合物(1)は、下記方法1または方法2により製造されるのが好ましい。
【0012】
方法1:
下式(A)で表される化合物を下式(B)で表される化合物とエステル化反応させて下式(C)で表される化合物とし、該式(C)で表される化合物をフッ素化して下式(D)で表される化合物とし、該式(D)で表される化合物のエステル結合を分解させることにより製造する方法。
【0013】
CH2ClCHClCH(OR)CH2OH ・・・(A)
Rf2COX ・・・(B)
CH2ClCHClCH(OR)CH2OCORf2 ・・・(C)
CF2ClCFClCF(ORf)CF2OCORf2 ・・・(D)
【0014】
ただし、Rはフッ素化されてRfとなる基を示し、Rfは上記と同じ意味を示し、Rf2は、ペルフルオロ1価飽和有機基を示す。Xはハロゲン原子を示す。
【0015】
方法2:
下式(A1)で表される化合物を下式(B1)で表される化合物とエステル化反応させて下式(C1)で表される化合物とし、該式(C1)で表される化合物を塩素化して下式(C2)で表される化合物とし、該式(C2)で表される化合物をフッ素化して下式(D)で表される化合物とし、該式(D)で表される化合物のエステル結合を分解させることにより製造する方法。
【0016】
CH2=CHCH(OR)CH2OH …(A1)
Rf20COX …(B1)
CH2=CHCH(OR)CH2OCORf20 …(C1)
CH2ClCHClCH(OR)CH2OCORf20 …(C2)
CF2ClCFClCF(ORf)CF2OCORf2 …(D)
【0017】
ただし、R、Rf、Xは、それぞれ上記と同じ意味を示す。Rf20は、Rf2と同一のペルフルオロ1価飽和有機基またはCF2=CFCF(ORf)CF2−(ただし、Rfは上記と同じ意味を示す。)を示す。
【0018】
Rとしては、目的とするRfのフッ素原子の1個以上を水素原子に置換した基、該置換した基の炭素−炭素結合の1個以上を不飽和結合にした基、Rf基の炭素−炭素結合の1個以上を不飽和結合に置換した基が挙げられる。該不飽和結合としては、二重結合であっても三重結合であってもよい。
【0019】
Rの具体例としては、CH3−、H(CH2)nCH3−(ただし、nは1〜9の整数を示す。)が挙げられ、CH3−が好ましい。
【0020】
Rfとしては、前記の例と同様の例が挙げられる。
【0021】
Rf2としては、ペルフルオロアルキル基、ペルフルオロ(エーテル性酸素原子含有アルキル)基、ペルフルオロ(部分クロロアルキル)基、ペルフルオロ(部分クロロ(エーテル性酸素原子含有アルキル))基が好ましく、特にペルフルオロ(部分クロロ(エーテル性酸素原子含有アルキル))基が好ましく、CF2ClCFClCF(ORf)CF2−がとりわけ好ましい。
【0022】
Rf2の具体例としては、以下の基が挙げられる。ただし、nは上記と同じ意味を示し、mおよびpは0以上の整数を示し、0〜10の整数が好ましく、kは1以上の整数を示し、1〜10の整数が好ましい。
【0023】
CF3−、
CF3(CF2)n−、
CF3(CF2)mO(CF2)k−、
CF3(CF2)mOCF(CF3)−
CF2ClCFCl(CF2)p−
CF2ClCFClCF(OCF3)CF2−、
CF2ClCFClCF(O(CF2)nCF3)CF2−。
【0024】
さらに、Rf2としては、CF2ClCFClCF(ORf)−が好ましい。
【0025】
Rf20がRf2と同一である例としては上記Rf2と同様の例が挙げられる。Rf20がCF2=CFCF(ORf)CF2−である場合には、以下の基が例示されうる。ただし、nは上記と同じ意味を示す。
【0026】
CFCl=CClCF(OCF3)CF2−、
CFCl=CClCF(O(CF2)nCF3)CF2−。
【0027】
Xは、具体的にはフッ素原子、塩素原子、臭素原子、またはヨウ素原子であり、フッ素原子、塩素原子、または臭素原子が好ましく、特にはフッ素原子が好ましい。
【0028】
上記の方法1および2において、エステル化反応は、通常のエステル化反応の条件で実施できる。該反応は、溶媒(以下、エステル化溶媒という。)を使用して実施してもよいが、エステル化溶媒は使用しないのが容積効率の点から好ましい。
【0029】
エステル化反応では、HXが副生する。Xがフッ素原子である化合物を用いてエステル化反応を行った場合には、HFが発生するため、HFの捕捉剤として、アルカリ金属フッ化物(たとえばNaF、KF等)や、トリアルキルアミン、ピリジン等の塩基を反応系中に存在させてもよい。HF捕捉剤を用いる場合の量は、化合物(B)または化合物(B1)に対して1〜10倍モルとするのが好ましい。HFの捕捉剤を使用しない場合には、HFが気化しうる反応温度で反応を行い、かつ、HFを窒素気流に同伴させて反応系外に排出するのが好ましい。
【0030】
該エステル化反応の下限温度は、通常の場合、−50℃以上が好ましく、上限は、+100℃またはエステル化溶媒の沸点のうち、低い温度が好ましい。また、反応時間は、原料の供給速度と反応に用いる化合物量に応じて適宜変更されうる。反応圧力(ゲージ圧、以下同様)は0〜2MPaが好ましい。
【0031】
方法2においてエステル化反応で生成した化合物(C1)については、塩素化を行い、化合物(C2)とする。塩素化反応は、塩素化剤を用いて通常の塩素化反応の操作および反応条件で実施できる。塩素化剤としては、塩素(Cl2)が好ましい。塩素を使用する場合の量は、化合物(C1)に対して1〜10倍モルが好ましく、1〜5倍モルが特に好ましい。化合物(C1)と塩素化剤との反応は、溶媒(以下、塩素化溶媒という。)を使用して実施してもよいが、塩素化溶媒は容積効率の点から使用しないのが好ましい。塩素化溶媒を用いる場合には、ハロゲン化炭化水素系溶媒を用いるのが好ましい。ハロゲン化炭化水素系溶媒としては、ジクロロメタン、クロロホルム等が挙げられる。塩素化溶媒の使用量は、化合物(C1)の質量に対して0.5〜5倍量であるのが好ましい。また、塩素化反応の温度は−78℃〜+200℃が好ましい。
【0032】
方法1の化合物(C)、方法2の化合物(C2)については、つぎにフッ素化反応を行う。以下、化合物(C)と化合物(C2)を総称してフッ素化基質という。フッ素化反応は、電気化学的フッ素化法(ECF法)、フッ化コバルトを用いてフッ素化する方法、気相でフッ素ガスと反応させる方法によっても実施できるが、上記方法は、フッ素化反応生成物の収量がきわめて少ない、特殊な装置を必要とする、操作が困難、等の問題があることから、液相中でフッ素と反応させることによる液相フッ素化法により行うのが、高収量、操作の簡便性等の点から好ましい。以下、液相フッ素化法について説明する。
【0033】
フッ素化基質中のフッ素含量は、フッ素化反応に用いる液相の種類に応じて適宜変更するのが好ましく、通常はフッ素含量(フッ素化基質の分子量に対するフッ素原子の総量の割合)の下限は10質量%以上が好ましく、特に30質量%以上が好ましい。また、上限は86質量%以下が好ましく、特に80質量%以下が好ましい。
【0034】
さらに、フッ素化基質の分子量が300〜1000となるように、それぞれRf2とRf20の構造を調節するのが好ましい。分子量が上記範囲にある場合には、液相中でのフッ素化反応を円滑に実施できる点で好ましい。分子量が小さすぎるとフッ素化基質が気化しやすくなるため、液相でのフッ素化反応時に気相中で分解反応が起こるおそれがある。一方、分子量が大きすぎるとフッ素化基質の精製が困難になるおそれがある。
【0035】
フッ素化基質である化合物(C)および化合物(C2)の例としては、以下の例が挙げられる。ただし、下式中のmは上記と同じ意味を示す。
【0036】
CH2ClCHClCH(OCH3)CH2OCOCF(CF3)O(CF2)mCF3、
CH2ClCHClCH(OCH3)CH2OCOCF2CF(OCF3)CFClCF2Cl、
CH2=CHCH(OR)CH2OCOCF(CF3)O(CF2)mCF3、
CH2=CHCH(OR)CH2OCOCF2CF(OCF3)CFClCF2Cl。
【0037】
液相フッ素化は、液相を形成する溶媒中でフッ素を導入して化合物と反応させることにより実施するのが好ましい。フッ素は、100%のフッ素ガスを用いても、不活性ガスで希釈したフッ素ガスを用いてもよい。不活性ガスとしては、窒素ガス、ヘリウムガスが好ましく、窒素ガスが特に好ましい。不活性ガスとフッ素ガスの混合ガス中のフッ素ガス量は、5体積%以上とするのが効率の点で好ましく、なかでも5〜30体積%とするのが塩素の引き抜きや塩素のマイグレーションを防ぐ点で特に好ましい。
【0038】
溶媒(以下、フッ素化溶媒という。)としては、C−H結合を含まずC−F結合を必須とする溶媒が好ましい。さらに、ペルフルオロアルカン類、または、塩素原子、窒素原子、および酸素原子から選ばれる1種以上の原子を構造中に有する公知の有機溶剤をペルフルオロ化した有機溶剤が好ましい。さらにフッ素化溶媒としては、フッ素化基質に対する溶解性が高い溶媒を用いるのが好ましく、特に、溶媒とフッ素化基質との総量に対して、フッ素化基質が1質量%以上溶解する溶媒、特には5質量%以上溶解する溶媒を用いるのが好ましい。
【0039】
フッ素化溶媒の例としては、フッ素化反応の生成物である化合物(D)、化合物(1)、化合物(B)、ペルフルオロアルカン類(商品名:FC−72等)、ペルフルオロエーテル類(商品名:FC−75、FC−77等)、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等)、クロロフルオロカーボン類(商品名:フロンルーブ)、クロロフルオロポリエーテル類、ペルフルオロアルキルアミン(たとえば、ペルフルオロトリアルキルアミン等)、不活性流体(商品名:フロリナート)等が挙げられる。このうち、フッ素化溶媒としては、化合物(D)が好ましい。特に、化合物(D)を用いた場合には反応後の後処理が容易になる利点がある。フッ素化溶媒の量は、フッ素化基質に対して、5倍質量以上が好ましく、特に10〜100倍質量が好ましい。
【0040】
液相フッ素化反応の反応形式は、バッチ方式または連続方式が好ましく、特に、反応収率と選択率の点から、連続方式が好ましい。またフッ素ガスは、バッチ方式で実施する場合においても、連続方式で実施する場合においても、窒素ガス等の不活性ガスで希釈したものを使用してもよい。連続方式によるフッ素化反応の方法としては、以下の例が挙げられる。
【0041】
[フッ素化反応1]
反応器に、フッ素化基質とフッ素化溶媒とを仕込み、撹拌を開始する。ついで、所定の反応温度と反応圧力下で、フッ素ガスを、フッ素化溶媒中に連続的に供給しながら反応させる方法である。
【0042】
[フッ素化反応2]
反応器にフッ素化溶媒を仕込み、撹拌する。ついで、所定の反応温度と反応圧力下で、フッ素化基質とフッ素ガスとを、所定のモル比で、フッ素化溶媒中に連続的かつ同時に供給する方法である。
【0043】
フッ素化反応2においてフッ素化基質化を供給する際には、フッ素化溶媒で希釈してもしなくてもよい。希釈する場合には、フッ素化基質の質量に対するフッ素化溶媒の量を、5倍量以上とするのが好ましく、特に10倍量以上とするのが好ましい。
【0044】
液相フッ素化反応においては、フッ素化反応を効率的に進行させるためには、反応の後段で、フッ素化基質中に存在する水素原子に対して、フッ素の量が常に過剰当量となるようにフッ素ガスを仕込むのが好ましく、特に1.5倍当量以上(すなわち、1.5倍モル以上)となるようにフッ素ガスを仕込むのが選択率の点から好ましい。
【0045】
液相フッ素化反応の反応温度は、−60℃以上かつフッ素化基質の沸点以下が好ましく、反応収率、選択率、および工業的実施のしやすさの点から−50℃〜+100℃が特に好ましく、−20℃〜+50℃が塩素の引き抜きや塩素のマイグレーションを防ぐ点でとりわけ好ましい。フッ素化反応の反応圧力は特に限定されず、常圧〜2MPaであるのが、反応収率、選択率、工業的実施の容易さ、の観点から特に好ましい。
【0046】
さらに、液相フッ素化においては、反応系中にC−H結合含有化合物を存在させるか、または、紫外線照射を行う、のが好ましい。たとえば、フッ素化反応後期にC−H結合含有化合物を反応系中に添加する、または、紫外線照射を行うのが好ましい。これにより、フッ素化基質中に存在するフッ素化されにくい水素原子を効率的にフッ素化でき、反応率を飛躍的に向上させうる。紫外線照射時間は、0.1〜3時間であるのが好ましい。
【0047】
C−H結合含有化合物としては、フッ素化基質以外の有機化合物であり、特に芳香族炭化水素が好ましく、とりわけベンゼン、トルエン等が好ましい。該C−H結合含有化合物の添加量は、フッ素化基質中の水素原子に対して0.1〜10モル%であるのが好ましく、特に0.1〜5モル%であるのが好ましい。
【0048】
C−H結合含有化合物は、反応系中にフッ素が存在する状態で添加するのが好ましい。さらに、C−H結合含有化合物を加えた場合には、反応系を加圧するのが好ましい。加圧時の圧力としては、0.01〜5MPaが好ましい。
【0049】
液相フッ素化反応は、フッ素化基質の水素原子がペルフルオロ化されるまで反応を行う。液相フッ素化反応では、水素原子がフッ素原子に置換され、また、不飽和結合が存在する場合には、不飽和結合部分にフッ素原子が付加する。
【0050】
液相中フッ素化反応では、HFが副生する。副生したHFを除去するには、反応系中にHFの捕捉剤を共存させる、または反応器ガス出口でHF捕捉剤と出口ガスを接触させるのが好ましい。該HF捕捉剤としては、アルカリ金属フッ化物(たとえばNaF、KF等)などの塩基が好ましく、該塩基は反応系中に存在させてもよい。HFの捕捉剤としてはNaFが特に好ましい。
【0051】
反応系中にHF捕捉剤を共存させる場合の量は、フッ素化基質中に存在する全水素原子量に対して1〜20倍モルが好ましく、1〜5倍モルが好ましい。反応器ガス出口にHF捕捉剤をおく場合には、(a)冷却器(10℃〜室温に保持するのが好ましく、特には約20℃に保持するのが好ましい。)、(b)NaFペレットなどのHF捕捉剤の充填層、および(c)冷却器(−78℃〜+10℃に保持するのが好ましく、−30℃〜0℃に保持するのが好ましい。)を(a)−(b)−(c)の順に直列に設置するのが好ましい。なお、(c)の冷却器からは凝集した液を反応器に戻すための液体返送ラインを設置してもよい。
【0052】
つぎに、化合物(D)のエステル結合の分解反応を行うことにより、目的とする化合物(1)を得る。
【0053】
該分解反応は、−CF2OCO−を切断して2つの−COF基を形成する反応である。該反応は、熱分解反応または求核剤もしくは求電子剤の存在下に行う分解反応により実施するのが好ましい。
【0054】
熱分解反応は、化合物(D)を加熱することにより実施できる。熱分解反応の反応形式としては、化合物(D)の沸点とその安定性により選択するのが好ましい。
【0055】
たとえば、化合物(D)が気化しやすい化合物である場合の熱分解反応は、気相で連続的に分解させて、得られた化合物(1)を含む出口ガスを凝縮し、回収する気相熱分解法を採用しうる。気相熱分解法の反応温度は50〜350℃が好ましく、50〜300℃が特に好ましく、とりわけ150〜250℃が好ましい。また、反応系中に、反応には直接関与しない不活性ガスを共存させてもよい。不活性ガスとしては、窒素ガス、二酸化炭素ガス等が挙げられる。不活性ガスは化合物(D)に対して0.01〜50体積%程度を添加するのが好ましい。不活性ガスの添加量が多いと、生成物回収量が低減することがある。
【0056】
一方、化合物(D)が気化しにくい化合物である場合の熱分解反応は、反応器内で液のまま加熱する液相熱分解法を採用するのが好ましい。この場合の反応圧力は限定されない。通常の場合、エステル分解の生成物は、より低沸点であることから、該反応は蒸留塔を付けた反応器を用いて低沸点の生成物を連続的に抜き出しながら行うのが好ましい。また加熱終了後に反応器中から一括して生成物を抜き出す方法であってもよい。この液相熱分解法の反応温度は50〜300℃が好ましく、特に100〜250℃が好ましい。
【0057】
液相熱分解法で熱分解を行う場合には、無溶媒で行うのが好ましい。溶媒(以下、分解反応溶媒という。)の存在下に行ってもよい。分解反応溶媒を用いる場合には、化合物(D)と反応せず、化合物(D)と相溶する溶媒であって、化合物(1)と反応しないものであれば特に限定されない。また、分解反応溶媒としては、生成物の精製時に分離しやすいものを選定するのが好ましい。
【0058】
分解反応溶媒の具体例としては、ペルフルオロトリアルキルアミン、ペルフルオロナフタレンなどの不活性溶媒、クロロフルオロカーボン類等のなかでも高沸点であるクロロトリフルオロエチレンオリゴマー(たとえば、旭硝子社商品名:フロンルーブ)、が好ましい。また、分解反応溶媒の量は化合物(D)に対して10〜1000質量%が好ましい。
【0059】
また、化合物(D)を液相中で求核剤または求電子剤と反応させてエステル結合を分解してもよい。この場合、該反応は、無溶媒で行っても、分解反応溶媒の存在下に行ってもよい。求核剤としてはフッ素イオン(F-)が好ましく、特にアルカリ金属のフッ化物由来のフッ素イオンが好ましい。アルカリ金属のフッ化物としては、NaF、NaHF2、KF、CsFが好ましく、NaFが特に好ましい。NaFの存在下で熱分解反応を実施することにより、熱分解反応を低い温度で実施でき、化合物の分解反応を防止できる。
【0060】
反応の開始時に用いる求核剤は、触媒量であるのが好ましいが、過剰に用いてもよい。求核剤の量は化合物(D)に対して1〜500モル%が好ましく、10〜100モル%が特に好ましく、とりわけ5〜50モル%が好ましい。反応温度の下限は、−30℃以上であるのが好ましく、上限は、溶媒または化合物(D)の沸点のうち低い温度が好ましく、通常は−20℃〜250℃が特に好ましい。
エステル分解反応は、蒸留塔を付けた反応器を用いて実施するのが好ましい。
【0061】
エステル結合の分解反応においては、化合物(1)とともに化合物(B)が生成する。
【0062】
Rf2が、CF2ClCFClCF(ORf)CF2−である場合には、該化合物(B)は化合物(1)と同一化合物であることから、生成物の分離操作は必要はない。しかし、Rf2がCF2ClCFClCF(ORf)CF2−以外の基である場合には、生成物中の化合物(B)を分離するのが好ましい。そして、該化合物(B)は、化合物(B)として、または化合物(B1)として再利用するのが好ましい。
【0063】
本発明により提供される化合物(1)は、種々のフッ素樹脂の製造用モノマーの中間体として有用な新規化合物である。たとえば、化合物(1)は、ペルフルオロプロピレンオキシドと反応させて化合物(10)とし、これを熱分解して化合物(11)とし、該化合物(11)を亜鉛の存在下で反応させることによりフッ素樹脂原料として有用な化合物(12)へと導かれる。該化合物(12)を重合させたフッ素樹脂は、透明でありかつ高Tg値(Tg:ガラス転移温度)を有する有用なフッ素樹脂である。
【0064】
CF2ClCFClCF(OCF3)CF2OCF(CF3)COF …(10)
CF2ClCFClCF(OCF3)CF2OCF=CF2 ・・・(11)
CF2=CFCF(OCF3)CF2OCF=CF2 ・・・(12)
【0065】
【実施例】
以下に実施例を挙げて本発明を具体的に説明するが、これらによって本発明は限定されない。なお、以下においてガスクロマトグラフィをGC、核磁気共鳴スペクトル分析をNMR、ガスクロマトグラフィ質量分析をGC−MS、テトラメチルシランをTMS、ジクロロペンタフルオロプロパンをAK−225、リットルはLで記す。また、GC純度とはガスクロマトグラフィによるピーク面積比から求めた純度をいう。
【0066】
[例1]エステル化反応によるCH2=CHCH(OCH3)CH2OCOCF(CF3)OCF2CF2CF3の製造例
CH2=CHCH(OCH3)CH2OH(270g)をNaF(334g)とともに20℃の冷媒を循環させた還流器をもつ2L耐圧反応器中に仕込み、−10℃で撹拌した。
【0067】
反応器中に窒素ガスをバブリングすることにより、反応によって副生するHFを上部還流器より系外に排出しながら、FCOCF(CF3)OCF2CF2CF3(1055g)を1.5時間かけて滴下した。この際、反応器の内温が0℃以下になるように温度を調節した。滴下終了後30℃で18時間撹拌し反応を終了した。
【0068】
反応終了後の粗液中に含まれるNaFを濾別することにより粗生成物(981g)を得た(収率86.4%)。NMRによる分析の結果、標記化合物の生成を確認した。
【0069】
1H−NMR(300.4MHz,溶媒:CDCl3,基準:TMS)δ(ppm):3.29(s,3H),3.85〜3.90(m,1H),4.24〜4.45(m,2H),5.34(s,1H),5.39(d,J=8.4Hz,1H),5.59〜5.71(m,1H)。
【0070】
19F−NMR(282.7MHz,溶媒:CDCl3,基準:CFCl3)δ(ppm):−81.8(3F),−82.6(3F),−79.9〜−87.5(2F),−130.2(2F),−132.3(1F)。
【0071】
[例2]塩素化反応によるCH2ClCHClCH(OCH3)CH2OCOCF(CF3)OCF2CF2CF3の製造例
例1で得たCH2=CHCH(OCH3)CH2OCOCF(CF3)OCF2CF2CF3(981g)を0℃に冷却したジムロートを取り付けた2Lの3つ口フラスコ中に仕込み、−10〜0℃で撹拌を行いながら塩素ガスを0.8g/分の速度で導入し反応を行った。170gの塩素ガスを導入した時点で反応を終了し粗液1084gを得た。
【0072】
得られた粗液を6〜7mmHgの減圧下に蒸留精製し744gの生成物を得た。NMRおよびガスクロマトグラフによる分析の結果、標記化合物がGC純度98%で3種のジアステレオマー混合物として生成していることを確認した。
【0073】
1H−NMR(300.4MHz,溶媒:CDCl3,基準:TMS)δ(ppm):3.45(d,J=1.5Hz) and 3.47(s) and 3.55(d J=0.6Hz) total 3H,3.56〜3.80(m,2H),3.82〜4.12(m,2H),4.43〜4.57(m,1H),4.65(dd,J=6.3Hz,11.4Hz) and 4.89(ddd,J=42.4Hz,12.0Hz,3.0Hz) and 5.49(q,J=5.1Hz) total 1H。
【0074】
19F−NMR(376.0MHz,溶媒:CDCl3、基準:CFCl3)δ(ppm):−79.93〜−80.65(1F),−81.72〜−81.80(3F),−82.47〜−82.56(3F),−86.46〜−87.22(1F),−130.07〜−130.19(2F),−132.26〜−132.47(1F)。
【0075】
[例3]フッ素化反応によるCF2ClCFClCF(OCF3)CF2OCOCF(CF3)OCF2CF2CF3の製造例
3000ccのニッケル製オートクレーブに、CF3CF2CF2OCF(CF3)CF2OCF(CF3)COF(3523g、以下溶媒Aと記す。)を加えて撹拌し、5℃に保った。オートクレーブガス出口には−10℃に保持した冷却器を設置した。窒素ガスを3.5時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガス(以下、希釈フッ素ガスと記す。)を、流速26.52L/hで1時間吹き込んだ。つぎに、フッ素ガスを同じ流速で吹き込みながら、例2で得たCH2ClCHClCH(OCH3)CH2OCOCF(CF3)OCF2CF2CF3の一部(415g)を22.5時間かけて注入した。反応粗液を261g抜き出した。
【0076】
つぎに、希釈フッ素ガスを同じ流速で吹き込みながら、CH2ClCHClCH(OCH3)CH2OCOCF(CF3)OCF2CF2CF3(642g)を22.0時間かけて注入した。反応粗液を533g抜き出した。
【0077】
さらに、希釈フッ素ガスを同じ流速で吹き込みながら、CH2ClCHClCH(OCH3)CH2OCOCF(CF3)OCF2CF2CF3(471g)を22.8時間かけて注入した。反応粗液を270g抜き出した。
【0078】
つぎに、希釈フッ素ガスを同じ流速で吹き込みながら、反応温度を25℃に22時間調整した。次に窒素ガスを3.0時間吹き込んだ。反応粗液3530gを回収した。反応粗液をGC−MSにより分析した結果、溶媒Aと標記化合物が主成分として得られた。標記化合物の反応収率は71%であった。
【0079】
[例4]液相熱分解によるCF2ClCFClCF(OCF3)COFの製造例撹拌器、還流コンデンサーを備えた300mLの4つ口フラスコに、例3で得たCF2ClCFClCF(OCF3)CF2OCOCF(CF3)OCF2CF2CF3(200g、0.31mol)を9.0g(0.155mol)のKF粉末と共に仕込み、よく攪拌を行いながらオイルバス中で90〜95℃で0.5〜1時間加熱した。反応が進行することにより生じる還流を確認した後、反応系を減圧にし、生成物を5時間かけて留出させ反応系から抜き出すことにより回収した。さらに粗生成物を蒸留することによりGC純度99.9%以上の標記化合物(74g)を得た(収率:79%)。NMRスペクトルより、標記化合物が主成分であることを確認した。
【0080】
19F−NMR(282.7MHz、溶媒:CDCl3、基準:CFCl3)δ(ppm):28.4,28.0(1F),−55.1,−55.4(3F),−61.6〜−63.9(2F),−121.9,−123.9(1F),−128.7,−129.0(1F)。
【0081】
沸点:62℃/33.3kPa。
【0082】
【発明の効果】
本発明によれば、新規で有用なvic−ジクロロ酸フルオリド化合物が提供される。本発明の化合物は、末端にCF2ClCFCl−部分を有する。該部分は公知の方法により重合性の炭素−炭素二重結合に導き、これを重合させることにより耐熱性と耐薬品性に優れ、かつ透明である有用なフッ素樹脂が得られる。また本発明の化合物の−CF(CF3)COF末端は、公知の反応により−CF=CF2末端に変換できる。該化合物もまた、フッ素樹脂原料として有用である。また本発明の化合物は、従来のvic−ジクロロ酸フルオリド化合物のような、製造工程において異性体が副生したり、副生する異性体量を制御することが困難であるという問題がない。また、反応工程も少なく、原料も低廉で、経済的に有利である。さらに反応試薬の取り扱いも簡易である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel vic-dichloro acid fluoride compound having a vic-dichloro structure, which is useful as an intermediate for producing a fluororesin raw material monomer.
[0002]
[Prior art]
Vic-dichloro acid having a vic-dichloro structure (a structure in which one chlorine atom is bonded to each of carbon and carbon adjacent to the carbon) at the end of the perfluoroalkyl chain and also having a fluorocarbonyl group (-COF) A fluoride compound is a useful compound as an intermediate for producing a fluororesin raw material monomer. For example, CF 2 A compound having a ClCFCl- moiety is reacted with zinc and then dechlorinated to produce a perfluorovinyl group (CF 2 = CF-). The perfluorovinyl group of the compound is a polymerizable group, and various fluororesins can be produced by polymerizing the group. A fluororesin is a useful resin excellent in heat resistance and chemical resistance.
[0003]
[Problems to be solved by the invention]
An object of the present invention is to provide an acid fluoride compound having a novel vic-dichloro structure useful as a raw material for a fluororesin.
[0004]
[Means for Solving the Problems]
The present invention provides a compound represented by the following formula (1).
[0005]
CF 2 ClCFClCF (OR f ) COF (1)
[0006]
However, R f Represents a perfluoroalkyl group.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present specification, a compound represented by the formula (1) is described as a compound (1). The same applies to compounds represented by other formulas.
[0008]
R in formula (1) f Represents a perfluoroalkyl group. A perfluoroalkyl group refers to a group in which all of the hydrogen atoms in the alkyl group have been fluorinated. R f The number of carbon atoms is preferably from 1 to 10, particularly preferably from 1 to 6, especially Three Is preferred.
[0009]
Specific examples of the compound (1) include the following compounds. However, n shows the integer of 1-9. R of these f -CF Three The compound represented by the following formula (1A) is preferred.
[0010]
CF 2 ClCFClCF (OCF Three ) COF (1A)
CF 2 ClCFClCF (O (CF 2 ) n CF Three COF
[0011]
The compound (1) of the present invention is preferably produced by the following method 1 or method 2.
[0012]
Method 1:
The compound represented by the following formula (A) is esterified with the compound represented by the following formula (B) to obtain a compound represented by the following formula (C). A method for producing a compound represented by the following formula (D) by fluorination and decomposing an ester bond of the compound represented by the formula (D).
[0013]
CH 2 ClCHClCH (OR) CH 2 OH (A)
R f2 COX (B)
CH 2 ClCHClCH (OR) CH 2 OCOR f2 ... (C)
CF 2 ClCFClCF (OR f CF 2 OCOR f2 ... (D)
[0014]
However, R is fluorinated and R f Represents the group R f Means the same as above, R f2 Represents a perfluoro monovalent saturated organic group. X represents a halogen atom.
[0015]
Method 2:
The following formula (A 1 ) Is represented by the following formula (B 1 ) And a compound represented by the following formula (C 1 And a compound represented by the formula (C 1 The compound represented by the following formula (C 2 And a compound represented by the formula (C 2 ) Is fluorinated to obtain a compound represented by the following formula (D), and the ester bond of the compound represented by the formula (D) is decomposed.
[0016]
CH 2 = CHCH (OR) CH 2 OH ... (A 1 )
R f20 COX (B 1 )
CH 2 = CHCH (OR) CH 2 OCOR f20 ... (C 1 )
CH 2 ClCHClCH (OR) CH 2 OCOR f20 ... (C 2 )
CF 2 ClCFClCF (OR f CF 2 OCOR f2 ... (D)
[0017]
However, R, R f , X each have the same meaning as described above. R f20 Is R f2 Perfluoro monovalent saturated organic group or CF 2 = CFCF (OR f CF 2 -(However, R f Indicates the same meaning as above. ).
[0018]
R is the target R f A group in which one or more fluorine atoms are substituted with hydrogen atoms, a group in which at least one carbon-carbon bond of the substituted group is an unsaturated bond, R f And groups in which one or more carbon-carbon bonds of the group are substituted with unsaturated bonds. The unsaturated bond may be a double bond or a triple bond.
[0019]
Specific examples of R include CH Three -, H (CH 2 ) n CH Three -(Wherein n represents an integer of 1 to 9), CH Three -Is preferred.
[0020]
R f Examples of these are the same as the above examples.
[0021]
R f2 Are preferably a perfluoroalkyl group, a perfluoro (etheric oxygen atom-containing alkyl) group, a perfluoro (partial chloroalkyl) group, or a perfluoro (partial chloro (etheric oxygen atom-containing alkyl)) group, and more particularly perfluoro (partial chloro (ether) Oxygen group-containing alkyl)) group is preferred, CF 2 ClCFClCF (OR f CF 2 -Is particularly preferred.
[0022]
R f2 Specific examples of include the following groups. However, n shows the same meaning as the above, m and p show an integer greater than or equal to 0, the integer of 0-10 is preferable, k shows the integer of 1 or more, and the integer of 1-10 is preferable.
[0023]
CF Three −,
CF Three (CF 2 ) n −,
CF Three (CF 2 ) m O (CF 2 ) k −,
CF Three (CF 2 ) m OCF (CF Three ) −
CF 2 ClCFCl (CF 2 ) p −
CF 2 ClCFClCF (OCF Three CF 2 −,
CF 2 ClCFClCF (O (CF 2 ) n CF Three CF 2 -.
[0024]
In addition, R f2 As CF 2 ClCFClCF (OR f )-Is preferred.
[0025]
R f20 Is R f2 As an example that is the same as R f2 The same example is given. R f20 Is CF 2 = CFCF (OR f CF 2 In the case of-, the following groups can be exemplified. However, n has the same meaning as described above.
[0026]
CFCl = CClCF (OCF Three CF 2 −,
CFCl = CClCF (O (CF 2 ) n CF Three CF 2 -.
[0027]
X is specifically a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom, preferably a fluorine atom, a chlorine atom, or a bromine atom, and particularly preferably a fluorine atom.
[0028]
In the above methods 1 and 2, the esterification reaction can be carried out under the conditions of a normal esterification reaction. The reaction may be carried out using a solvent (hereinafter referred to as an esterification solvent), but it is preferable not to use an esterification solvent from the viewpoint of volume efficiency.
[0029]
In the esterification reaction, HX is by-produced. When an esterification reaction is carried out using a compound in which X is a fluorine atom, HF is generated. Therefore, alkali metal fluorides (for example, NaF, KF, etc.), trialkylamines, pyridines are used as HF scavengers. Etc. may be present in the reaction system. When using an HF scavenger, the amount of compound (B) or compound (B 1 ) To 1 to 10 times mol. When an HF scavenger is not used, it is preferable to carry out the reaction at a reaction temperature at which HF can be vaporized, and to discharge HF out of the reaction system with a nitrogen stream.
[0030]
In general, the lower limit temperature of the esterification reaction is preferably −50 ° C. or higher, and the upper limit is preferably a lower temperature of + 100 ° C. or the boiling point of the esterification solvent. The reaction time can be appropriately changed according to the feed rate of the raw material and the amount of compound used for the reaction. The reaction pressure (gauge pressure, hereinafter the same) is preferably 0 to 2 MPa.
[0031]
Compound (C) produced by esterification reaction in Method 2 1 ) Is chlorinated and compound (C 2 ). The chlorination reaction can be carried out using a chlorinating agent under ordinary chlorination reaction operations and reaction conditions. As a chlorinating agent, chlorine (Cl 2 ) Is preferred. When chlorine is used, the amount of compound (C 1 ) To 1 to 10 moles, and particularly preferably 1 to 5 moles. Compound (C 1 ) And a chlorinating agent may be carried out using a solvent (hereinafter referred to as a chlorinated solvent), but it is preferable not to use a chlorinated solvent from the viewpoint of volume efficiency. When a chlorinated solvent is used, it is preferable to use a halogenated hydrocarbon solvent. Examples of the halogenated hydrocarbon solvent include dichloromethane and chloroform. The amount of chlorinated solvent used is the compound (C 1 ) Is preferably 0.5 to 5 times the mass. The temperature of the chlorination reaction is preferably −78 ° C. to + 200 ° C.
[0032]
Compound (C) of Method 1 and Compound (C) of Method 2 2 Next, a fluorination reaction is carried out. Hereinafter, compound (C) and compound (C 2 ) Are collectively referred to as fluorinated substrates. The fluorination reaction can be carried out by an electrochemical fluorination method (ECF method), a method of fluorination using cobalt fluoride, or a method of reacting with a fluorine gas in a gas phase. High yields can be obtained by the liquid phase fluorination method by reacting with fluorine in the liquid phase due to problems such as extremely low product yield, special equipment required, and difficult operation. This is preferable from the viewpoint of ease of operation. Hereinafter, the liquid phase fluorination method will be described.
[0033]
The fluorine content in the fluorinated substrate is preferably changed as appropriate according to the type of liquid phase used in the fluorination reaction. Usually, the lower limit of the fluorine content (the ratio of the total amount of fluorine atoms to the molecular weight of the fluorinated substrate) is 10 It is preferably at least 30% by mass, particularly preferably at least 30% by mass. Further, the upper limit is preferably 86% by mass or less, and particularly preferably 80% by mass or less.
[0034]
Further, each R is adjusted so that the molecular weight of the fluorinated substrate is 300 to 1000. f2 And R f20 It is preferable to adjust the structure. When the molecular weight is in the above range, it is preferable in that the fluorination reaction in the liquid phase can be carried out smoothly. If the molecular weight is too small, the fluorinated substrate is likely to vaporize, so that a decomposition reaction may occur in the gas phase during the fluorination reaction in the liquid phase. On the other hand, if the molecular weight is too large, it may be difficult to purify the fluorinated substrate.
[0035]
Compound (C) and compound (C) which are fluorinated substrates 2 The following examples are given as examples of However, m in the following formula has the same meaning as described above.
[0036]
CH 2 ClCHClCH (OCH Three ) CH 2 OCOCF (CF Three ) O (CF 2 ) m CF Three ,
CH 2 ClCHClCH (OCH Three ) CH 2 OCOCF 2 CF (OCF Three CFClCF 2 Cl,
CH 2 = CHCH (OR) CH 2 OCOCF (CF Three ) O (CF 2 ) m CF Three ,
CH 2 = CHCH (OR) CH 2 OCOCF 2 CF (OCF Three CFClCF 2 Cl.
[0037]
Liquid phase fluorination is preferably carried out by introducing fluorine in a solvent that forms a liquid phase and reacting with the compound. Fluorine may be 100% fluorine gas or fluorine gas diluted with an inert gas. As the inert gas, nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable. The amount of fluorine gas in the mixed gas of inert gas and fluorine gas is preferably 5% by volume or more from the viewpoint of efficiency, and in particular, 5-30% by volume prevents chlorine extraction or chlorine migration. Particularly preferred in terms.
[0038]
As the solvent (hereinafter referred to as a fluorinated solvent), a solvent which does not contain a C—H bond and essentially requires a C—F bond is preferable. Furthermore, perfluoroalkanes or organic solvents obtained by perfluorinating a known organic solvent having at least one atom selected from a chlorine atom, a nitrogen atom and an oxygen atom in the structure are preferred. Further, as the fluorinated solvent, it is preferable to use a solvent having high solubility in the fluorinated substrate. In particular, the solvent in which the fluorinated substrate is dissolved by 1% by mass or more with respect to the total amount of the solvent and the fluorinated substrate, particularly It is preferable to use a solvent that dissolves 5% by mass or more.
[0039]
Examples of the fluorinated solvent include compound (D), compound (1), compound (B), perfluoroalkanes (trade name: FC-72, etc.), perfluoroethers (trade name), which are products of the fluorination reaction. : FC-75, FC-77, etc.), perfluoropolyethers (trade names: Krytox, Fomblin, Galden, demnam, etc.), chlorofluorocarbons (trade name: CFC), chlorofluoropolyethers, perfluoroalkylamine (For example, perfluorotrialkylamine etc.), inert fluid (trade name: Florinato) and the like. Among these, as a fluorinated solvent, a compound (D) is preferable. In particular, when the compound (D) is used, there is an advantage that post-treatment after the reaction becomes easy. The amount of the fluorinated solvent is preferably 5 times or more, more preferably 10 to 100 times the mass of the fluorinated substrate.
[0040]
The reaction mode of the liquid phase fluorination reaction is preferably a batch method or a continuous method, and particularly a continuous method is preferable from the viewpoint of reaction yield and selectivity. In addition, the fluorine gas diluted with an inert gas such as nitrogen gas may be used in the batch method or the continuous method. Examples of the continuous fluorination reaction method include the following examples.
[0041]
[Fluorination reaction 1]
A reactor is charged with a fluorinated substrate and a fluorinated solvent, and stirring is started. Next, the reaction is carried out while continuously supplying fluorine gas into the fluorinated solvent under a predetermined reaction temperature and reaction pressure.
[0042]
[Fluorination reaction 2]
Charge the reactor with fluorinated solvent and stir. Next, the fluorinated substrate and the fluorine gas are continuously and simultaneously supplied into the fluorinated solvent at a predetermined molar ratio under a predetermined reaction temperature and pressure.
[0043]
When supplying the fluorinated substrate in the fluorination reaction 2, it may or may not be diluted with a fluorinated solvent. In the case of dilution, the amount of the fluorinated solvent with respect to the mass of the fluorinated substrate is preferably 5 times or more, particularly preferably 10 times or more.
[0044]
In the liquid phase fluorination reaction, in order for the fluorination reaction to proceed efficiently, the amount of fluorine is always in excess equivalent to the hydrogen atoms present in the fluorinated substrate at the latter stage of the reaction. It is preferable to charge fluorine gas, and it is particularly preferable from the viewpoint of selectivity that fluorine gas is charged so as to be 1.5 times equivalent or more (that is, 1.5 times mole or more).
[0045]
The reaction temperature of the liquid phase fluorination reaction is preferably −60 ° C. or higher and not higher than the boiling point of the fluorinated substrate, and is particularly preferably −50 ° C. to + 100 ° C. from the viewpoint of reaction yield, selectivity, and ease of industrial implementation. A temperature of −20 ° C. to + 50 ° C. is particularly preferable in terms of preventing chlorine extraction and chlorine migration. The reaction pressure of the fluorination reaction is not particularly limited, and it is particularly preferably from normal pressure to 2 MPa from the viewpoint of reaction yield, selectivity, and ease of industrial implementation.
[0046]
Further, in the liquid phase fluorination, it is preferable that a C—H bond-containing compound is present in the reaction system or ultraviolet irradiation is performed. For example, it is preferable to add a C—H bond-containing compound to the reaction system in the latter stage of the fluorination reaction or to perform ultraviolet irradiation. Thereby, it is possible to efficiently fluorinate hydrogen atoms that are hardly fluorinated in the fluorinated substrate, and to dramatically improve the reaction rate. The ultraviolet irradiation time is preferably 0.1 to 3 hours.
[0047]
The C—H bond-containing compound is an organic compound other than the fluorinated substrate, and aromatic hydrocarbons are particularly preferable, and benzene, toluene and the like are particularly preferable. The amount of the C—H bond-containing compound added is preferably from 0.1 to 10 mol%, particularly preferably from 0.1 to 5 mol%, based on the hydrogen atoms in the fluorinated substrate.
[0048]
The C—H bond-containing compound is preferably added in a state where fluorine is present in the reaction system. Furthermore, when a C—H bond-containing compound is added, it is preferable to pressurize the reaction system. The pressure at the time of pressurization is preferably 0.01 to 5 MPa.
[0049]
The liquid phase fluorination reaction is performed until the hydrogen atom of the fluorinated substrate is perfluorinated. In the liquid phase fluorination reaction, when a hydrogen atom is substituted with a fluorine atom and an unsaturated bond is present, the fluorine atom is added to the unsaturated bond portion.
[0050]
In the fluorination reaction in the liquid phase, HF is by-produced. In order to remove by-produced HF, it is preferable to allow a HF scavenger to coexist in the reaction system, or to contact the HF scavenger and the outlet gas at the reactor gas outlet. The HF scavenger is preferably a base such as an alkali metal fluoride (for example, NaF, KF, etc.), and the base may be present in the reaction system. As the HF scavenger, NaF is particularly preferable.
[0051]
When the HF scavenger is allowed to coexist in the reaction system, the amount is preferably 1 to 20 times by mole and more preferably 1 to 5 times by mole with respect to the total amount of hydrogen atoms present in the fluorinated substrate. When the HF scavenger is placed at the reactor gas outlet, (a) a cooler (preferably kept at 10 ° C. to room temperature, particularly preferably about 20 ° C.), (b) NaF pellets And (c) a cooler (preferably held at −78 ° C. to + 10 ° C., preferably held at −30 ° C. to 0 ° C.) (a)-(b )-(C) in order. In addition, you may install the liquid return line for returning the condensed liquid to the reactor from the cooler of (c).
[0052]
Next, the target compound (1) is obtained by decomposing | disassembling the ester bond of a compound (D).
[0053]
The decomposition reaction is -CF 2 This is a reaction in which OCO- is cleaved to form two -COF groups. The reaction is preferably carried out by a thermal decomposition reaction or a decomposition reaction performed in the presence of a nucleophile or an electrophile.
[0054]
The thermal decomposition reaction can be carried out by heating the compound (D). The reaction mode of the thermal decomposition reaction is preferably selected depending on the boiling point of the compound (D) and its stability.
[0055]
For example, the thermal decomposition reaction in the case where the compound (D) is a compound that is easily vaporized is a gas phase heat in which the outlet gas containing the obtained compound (1) is condensed and recovered by continuously decomposing in the gas phase. A decomposition method can be employed. The reaction temperature in the gas phase pyrolysis method is preferably 50 to 350 ° C, particularly preferably 50 to 300 ° C, and particularly preferably 150 to 250 ° C. Further, an inert gas that does not directly participate in the reaction may coexist in the reaction system. Examples of the inert gas include nitrogen gas and carbon dioxide gas. The inert gas is preferably added in an amount of about 0.01 to 50% by volume based on the compound (D). When the addition amount of the inert gas is large, the product recovery amount may be reduced.
[0056]
On the other hand, it is preferable to employ a liquid phase pyrolysis method in which the compound (D) is a compound that is difficult to vaporize, and is heated in a liquid state in the reactor. The reaction pressure in this case is not limited. In general, since the ester decomposition product has a lower boiling point, the reaction is preferably carried out while continuously extracting the low boiling product using a reactor equipped with a distillation column. Moreover, the method of extracting a product collectively from the inside of a reactor after completion | finish of a heating may be sufficient. The reaction temperature in this liquid phase pyrolysis method is preferably 50 to 300 ° C, particularly preferably 100 to 250 ° C.
[0057]
When thermal decomposition is performed by a liquid phase thermal decomposition method, it is preferably performed without a solvent. The reaction may be performed in the presence of a solvent (hereinafter referred to as a decomposition reaction solvent). When a decomposition reaction solvent is used, it is not particularly limited as long as it is a solvent that does not react with compound (D) but is compatible with compound (D) and does not react with compound (1). In addition, it is preferable to select a decomposition reaction solvent that can be easily separated during purification of the product.
[0058]
Specific examples of the decomposition reaction solvent include inert solvents such as perfluorotrialkylamine and perfluoronaphthalene, and chlorotrifluoroethylene oligomers having a high boiling point among chlorofluorocarbons (for example, Asahi Glass Co., Ltd. trade name: CFC). preferable. The amount of the decomposition reaction solvent is preferably 10 to 1000% by mass with respect to the compound (D).
[0059]
Further, the ester bond may be decomposed by reacting the compound (D) with a nucleophile or an electrophile in a liquid phase. In this case, the reaction may be performed without a solvent or in the presence of a decomposition reaction solvent. Nucleophiles include fluorine ions (F - ), And fluorine ions derived from alkali metal fluorides are particularly preferred. Alkali metal fluorides include NaF and NaHF 2 , KF and CsF are preferable, and NaF is particularly preferable. By carrying out the thermal decomposition reaction in the presence of NaF, the thermal decomposition reaction can be carried out at a low temperature and the decomposition reaction of the compound can be prevented.
[0060]
The nucleophile used at the start of the reaction is preferably a catalytic amount, but may be used in excess. The amount of the nucleophilic agent is preferably from 1 to 500 mol%, particularly preferably from 10 to 100 mol%, particularly preferably from 5 to 50 mol%, based on the compound (D). The lower limit of the reaction temperature is preferably −30 ° C. or higher, and the upper limit of the boiling point of the solvent or compound (D) is preferably lower, and usually −20 ° C. to 250 ° C. is particularly preferable.
The ester decomposition reaction is preferably carried out using a reactor equipped with a distillation column.
[0061]
In the ester bond decomposition reaction, compound (B) is produced together with compound (1).
[0062]
R f2 But CF 2 ClCFClCF (OR f CF 2 In the case of-, since the compound (B) is the same compound as the compound (1), it is not necessary to separate the product. But R f2 Is CF 2 ClCFClCF (OR f CF 2 When it is a group other than-, it is preferable to separate the compound (B) in the product. And this compound (B) is used as a compound (B) or a compound (B 1 ) Is preferably reused.
[0063]
The compound (1) provided by the present invention is a novel compound useful as an intermediate for monomers for producing various fluororesins. For example, compound (1) is reacted with perfluoropropylene oxide to give compound (10), which is thermally decomposed to give compound (11), and this compound (11) is reacted in the presence of zinc to obtain a fluororesin. It leads to the compound (12) useful as a raw material. The fluororesin obtained by polymerizing the compound (12) is a useful fluororesin that is transparent and has a high Tg value (Tg: glass transition temperature).
[0064]
CF 2 ClCFClCF (OCF Three CF 2 OCF (CF Three ) COF (10)
CF 2 ClCFClCF (OCF Three CF 2 OCF = CF 2 (11)
CF 2 = CFCF (OCF Three CF 2 OCF = CF 2 (12)
[0065]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited thereto. In the following, gas chromatography is denoted by GC, nuclear magnetic resonance spectrum analysis by NMR, gas chromatography mass spectrometry by GC-MS, tetramethylsilane by TMS, dichloropentafluoropropane by AK-225, and liter by L. Moreover, GC purity means the purity calculated | required from the peak area ratio by a gas chromatography.
[0066]
[Example 1] CH by esterification reaction 2 = CHCH (OCH Three ) CH 2 OCOCF (CF Three OCF 2 CF 2 CF Three Example of manufacturing
CH 2 = CHCH (OCH Three ) CH 2 OH (270 g) was charged into a 2 L pressure-resistant reactor having a refluxer in which a 20 ° C. refrigerant was circulated together with NaF (334 g), and stirred at −10 ° C.
[0067]
By bubbling nitrogen gas into the reactor, HF generated as a by-product by the reaction is discharged out of the system from the upper reflux, while FCOCF (CF Three OCF 2 CF 2 CF Three (1055 g) was added dropwise over 1.5 hours. At this time, the temperature was adjusted so that the internal temperature of the reactor was 0 ° C. or lower. After completion of the dropping, the reaction was terminated by stirring at 30 ° C. for 18 hours.
[0068]
The crude product (981 g) was obtained by filtering off NaF contained in the crude liquid after completion of the reaction (yield 86.4%). As a result of analysis by NMR, the production of the title compound was confirmed.
[0069]
1 H-NMR (300.4 MHz, solvent: CDCl Three Standard: TMS) δ (ppm): 3.29 (s, 3H), 3.85 to 3.90 (m, 1H), 4.24 to 4.45 (m, 2H), 5.34 (s , 1H), 5.39 (d, J = 8.4 Hz, 1H), 5.59-5.71 (m, 1H).
[0070]
19 F-NMR (282.7 MHz, solvent: CDCl Three Standard: CFCl Three ) Δ (ppm): −81.8 (3F), −82.6 (3F), −79.9 to −87.5 (2F), −130.2 (2F), −132.3 (1F) .
[0071]
[Example 2] CH by chlorination reaction 2 ClCHClCH (OCH Three ) CH 2 OCOCF (CF Three OCF 2 CF 2 CF Three Example of manufacturing
CH obtained in Example 1 2 = CHCH (OCH Three ) CH 2 OCOCF (CF Three OCF 2 CF 2 CF Three (981 g) was charged into a 2 L three-necked flask equipped with a Dimroth cooled to 0 ° C., and a reaction was carried out by introducing chlorine gas at a rate of 0.8 g / min while stirring at −10 to 0 ° C. . When 170 g of chlorine gas was introduced, the reaction was terminated to obtain 1084 g of a crude liquid.
[0072]
The obtained crude liquid was purified by distillation under reduced pressure of 6 to 7 mmHg to obtain 744 g of a product. As a result of analysis by NMR and gas chromatography, it was confirmed that the title compound was produced as a mixture of three diastereomers with a GC purity of 98%.
[0073]
1 H-NMR (300.4 MHz, solvent: CDCl Three , Standard: TMS) δ (ppm): 3.45 (d, J = 1.5 Hz) and 3.47 (s) and 3.55 (d J = 0.6 Hz) total 3H, 3.56-3. 80 (m, 2H), 3.82 to 4.12 (m, 2H), 4.43 to 4.57 (m, 1H), 4.65 (dd, J = 6.3 Hz, 11.4 Hz) and 4.89 (ddd, J = 42.4 Hz, 12.0 Hz, 3.0 Hz) and 5.49 (q, J = 5.1 Hz) total 1H.
[0074]
19 F-NMR (376.0 MHz, solvent: CDCl Three Standard: CFCl Three ) Δ (ppm): −79.93 to −80.65 (1F), −81.72 to −81.80 (3F), −82.47 to −82.56 (3F), −86.46 to −87.22 (1F), −130.07 to −130.19 (2F), −132.26 to −132.47 (1F).
[0075]
[Example 3] CF by fluorination reaction 2 ClCFClCF (OCF Three CF 2 OCOCF (CF Three OCF 2 CF 2 CF Three Example of manufacturing
In a 3000cc nickel autoclave, CF Three CF 2 CF 2 OCF (CF Three CF 2 OCF (CF Three ) COF (3523 g, hereinafter referred to as Solvent A) was added and stirred and kept at 5 ° C. A cooler maintained at −10 ° C. was installed at the autoclave gas outlet. After blowing nitrogen gas for 3.5 hours, fluorine gas diluted to 20% with nitrogen gas (hereinafter referred to as diluted fluorine gas) was blown for 1 hour at a flow rate of 26.52 L / h. Next, the CH obtained in Example 2 while blowing fluorine gas at the same flow rate. 2 ClCHClCH (OCH Three ) CH 2 OCOCF (CF Three OCF 2 CF 2 CF Three A portion (415 g) of was injected over 22.5 hours. 261 g of the reaction crude liquid was extracted.
[0076]
Next, while blowing diluted fluorine gas at the same flow rate, CH 2 ClCHClCH (OCH Three ) CH 2 OCOCF (CF Three OCF 2 CF 2 CF Three (642 g) was injected over 22.0 hours. 533 g of reaction crude liquid was extracted.
[0077]
Furthermore, while blowing diluted fluorine gas at the same flow rate, CH 2 ClCHClCH (OCH Three ) CH 2 OCOCF (CF Three OCF 2 CF 2 CF Three (471 g) was injected over 22.8 hours. 270 g of the reaction crude liquid was extracted.
[0078]
Next, the reaction temperature was adjusted to 25 ° C. for 22 hours while diluting fluorine gas at the same flow rate. Next, nitrogen gas was blown in for 3.0 hours. The reaction crude liquid 3530g was recovered. As a result of analyzing the reaction crude liquid by GC-MS, solvent A and the title compound were obtained as main components. The reaction yield of the title compound was 71%.
[0079]
[Example 4] CF by liquid phase pyrolysis 2 ClCFClCF (OCF Three ) Production example of COF CF obtained in Example 3 was added to a 300 mL four-necked flask equipped with a stirrer and a reflux condenser. 2 ClCFClCF (OCF Three CF 2 OCOCF (CF Three OCF 2 CF 2 CF Three (200 g, 0.31 mol) was charged with 9.0 g (0.155 mol) of KF powder, and heated in an oil bath at 90 to 95 ° C. for 0.5 to 1 hour while thoroughly stirring. After confirming the reflux caused by the progress of the reaction, the reaction system was decompressed, and the product was recovered by distilling over 5 hours and withdrawing from the reaction system. Further, the crude product was distilled to obtain the title compound (74 g) having a GC purity of 99.9% or more (yield: 79%). From the NMR spectrum, it was confirmed that the title compound was the main component.
[0080]
19 F-NMR (282.7 MHz, solvent: CDCl Three Standard: CFCl Three ) Δ (ppm): 28.4, 28.0 (1F), −55.1, −55.4 (3F), −61.6 to −63.9 (2F), −121.9, −123 .9 (1F), -128.7, -129.0 (1F).
[0081]
Boiling point: 62 ° C./33.3 kPa.
[0082]
【The invention's effect】
According to the present invention, a novel and useful vic-dichloro acid fluoride compound is provided. The compound of the present invention has a terminal CF 2 It has a ClCFCl- moiety. This part is led to a polymerizable carbon-carbon double bond by a known method, and by polymerizing this, a useful fluororesin having excellent heat resistance and chemical resistance and being transparent can be obtained. In addition, —CF (CF Three ) The COF end is -CF = CF by a known reaction. 2 Can be converted to the end. The compound is also useful as a fluororesin raw material. Moreover, the compound of this invention does not have the problem that it is difficult to control the amount of the isomer byproduced as a by-product in a manufacturing process like the conventional vic-dichloro acid fluoride compound, or a by-product. Moreover, there are few reaction processes, raw materials are inexpensive, and it is economically advantageous. Furthermore, handling of the reaction reagent is easy.
Claims (2)
CF2ClCFClCF(ORf)COF ・・・(1)
ただし、Rfはペルフルオロアルキル基を示す。A compound represented by the following formula (1).
CF 2 ClCFClCF (OR f ) COF (1)
Rf represents a perfluoroalkyl group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001054313A JP4655176B2 (en) | 2001-02-28 | 2001-02-28 | Novel vic-dichloro acid fluoride compound |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001054313A JP4655176B2 (en) | 2001-02-28 | 2001-02-28 | Novel vic-dichloro acid fluoride compound |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002255901A JP2002255901A (en) | 2002-09-11 |
JP4655176B2 true JP4655176B2 (en) | 2011-03-23 |
Family
ID=18914665
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001054313A Expired - Fee Related JP4655176B2 (en) | 2001-02-28 | 2001-02-28 | Novel vic-dichloro acid fluoride compound |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4655176B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006028023A (en) * | 2004-07-12 | 2006-02-02 | Asahi Glass Co Ltd | Method for producing chlorine- and fluorine-containing compound |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143843A (en) * | 1987-12-01 | 1989-06-06 | Asahi Glass Co Ltd | Novel fluorine-containing compound and production thereof |
JPH0242038A (en) * | 1988-08-02 | 1990-02-13 | Asahi Glass Co Ltd | Novel fluorine-containing compound and production thereof |
JPH02311438A (en) * | 1989-05-24 | 1990-12-27 | Asahi Glass Co Ltd | Novel fluorine-containing compound, its production and use |
JPH07206750A (en) * | 1994-11-28 | 1995-08-08 | Asahi Glass Co Ltd | Novel fluorine-containing compound |
JP2000081519A (en) * | 1998-07-03 | 2000-03-21 | Asahi Glass Co Ltd | Optical waveguide |
JP2000154158A (en) * | 1998-11-18 | 2000-06-06 | Asahi Glass Co Ltd | Fluorine-containing compound and its production |
JP2001139509A (en) * | 1999-08-31 | 2001-05-22 | Asahi Glass Co Ltd | Method for production of unsaturated compound by thermal decomposition reaction |
JP2001240576A (en) * | 1999-12-20 | 2001-09-04 | Asahi Glass Co Ltd | Preparation method of fluoride compound |
WO2001092194A1 (en) * | 2000-05-31 | 2001-12-06 | Asahi Glass Company, Limited | Novel fluorine compound, process for producing the same, and polymer thereof |
-
2001
- 2001-02-28 JP JP2001054313A patent/JP4655176B2/en not_active Expired - Fee Related
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01143843A (en) * | 1987-12-01 | 1989-06-06 | Asahi Glass Co Ltd | Novel fluorine-containing compound and production thereof |
JPH0242038A (en) * | 1988-08-02 | 1990-02-13 | Asahi Glass Co Ltd | Novel fluorine-containing compound and production thereof |
JPH02311438A (en) * | 1989-05-24 | 1990-12-27 | Asahi Glass Co Ltd | Novel fluorine-containing compound, its production and use |
JPH07206750A (en) * | 1994-11-28 | 1995-08-08 | Asahi Glass Co Ltd | Novel fluorine-containing compound |
JP2000081519A (en) * | 1998-07-03 | 2000-03-21 | Asahi Glass Co Ltd | Optical waveguide |
JP2000154158A (en) * | 1998-11-18 | 2000-06-06 | Asahi Glass Co Ltd | Fluorine-containing compound and its production |
JP2001139509A (en) * | 1999-08-31 | 2001-05-22 | Asahi Glass Co Ltd | Method for production of unsaturated compound by thermal decomposition reaction |
JP2001240576A (en) * | 1999-12-20 | 2001-09-04 | Asahi Glass Co Ltd | Preparation method of fluoride compound |
WO2001092194A1 (en) * | 2000-05-31 | 2001-12-06 | Asahi Glass Company, Limited | Novel fluorine compound, process for producing the same, and polymer thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2002255901A (en) | 2002-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6951957B2 (en) | Process for producing a fluorine-containing compound by liquid phase fluorination | |
USRE41806E1 (en) | Process for producing a fluorine atom-containing sulfonyl fluoride compound | |
US6956138B2 (en) | Method for producing a fluorine-containing compound | |
JP4934940B2 (en) | Method for producing fluorine-containing ester compound | |
US7501540B2 (en) | Process for producing perfluorodiacyl fluorinated compounds | |
TWI296615B (en) | Process for preparation of fluorinated ketones | |
JP4626118B2 (en) | Method for producing vic-dichloro acid fluoride compound | |
EP1323704B1 (en) | Process for producing fluorinated polyvalent carbonyl compound | |
JP4655176B2 (en) | Novel vic-dichloro acid fluoride compound | |
JP4126542B2 (en) | Method for producing decomposition reaction product of fluorine-containing ester compound | |
JPWO2002026693A1 (en) | Method for producing fluorine-containing amine compound | |
JP4362710B2 (en) | Method for producing fluorine-containing carbonyl compound | |
JP2006028023A (en) | Method for producing chlorine- and fluorine-containing compound | |
JP2003313152A (en) | Method for producing chlorodifluoroacetic acid fluoride and derivative thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20101125 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20101208 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140107 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |