JP2019014667A - Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether) - Google Patents

Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether) Download PDF

Info

Publication number
JP2019014667A
JP2019014667A JP2017131933A JP2017131933A JP2019014667A JP 2019014667 A JP2019014667 A JP 2019014667A JP 2017131933 A JP2017131933 A JP 2017131933A JP 2017131933 A JP2017131933 A JP 2017131933A JP 2019014667 A JP2019014667 A JP 2019014667A
Authority
JP
Japan
Prior art keywords
compound
ocf
formula
perfluoro
compound represented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017131933A
Other languages
Japanese (ja)
Inventor
真吾 野村
Shingo Nomura
真吾 野村
聡史 河口
Satoshi Kawaguchi
聡史 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2017131933A priority Critical patent/JP2019014667A/en
Publication of JP2019014667A publication Critical patent/JP2019014667A/en
Pending legal-status Critical Current

Links

Abstract

To provide a method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and a novel perfluoro (polyoxyethylene alkyl vinyl ether).SOLUTION: A R(OQ)OCF=CFproduction method includes subjecting R(OQ)OCF(CFX)COF to a thermal decomposition reaction in the presence of silicate glass and in a gas phase with a moisture content of 1-10000 ppm. There is also provided a novel compound, R(OCFCF)OCF=CF(where Ris a C1-4 perfluoro alkyl group, Qis a C1-4 perfluoro alkylene group, X is a halogen atom, n is an integer of 1-9, Ris -CF, -CFCFor -CFCFCF, n1 is an integer of 3-6).SELECTED DRAWING: None

Description

本発明は、ペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)の製造方法及び新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)に関する。   The present invention relates to a method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and a novel perfluoro (polyoxyethylene alkyl vinyl ether).

含フッ素重合体は、耐熱性や耐薬品性等の物性に優れ、広い分野で使用されている。ペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)は、含フッ素重合体の単量体としてユニークな物性を示す有用な化合物であり、その製造方法に関する報告もされている。   Fluoropolymers have excellent physical properties such as heat resistance and chemical resistance, and are used in a wide range of fields. Perfluoro (polyoxyalkylene alkyl vinyl ether) is a useful compound showing unique physical properties as a monomer of a fluoropolymer, and a method for producing the same has also been reported.

特許文献1には、CFCFCF(OCF(CF)CFOCF(CF)COFを無水炭酸カリウムに接触させつつ熱分解反応させる、CFCFCF(OCF(CF)CFOCF=CFの製造方法(ただし、mは1又は2を示す。)が記載されている。
特許文献2には、炭酸ナトリウムの存在下かつ無水状態の気相にて、CFOCFCFCFOCF(CF)COFを熱分解反応させる、CFOCFCFCFOCF=CFの製造方法が記載されている。
In Patent Document 1, CF 3 CF 2 CF 2 (OCF (CF 3 ) CF 2 ) m OCF (CF 3 ) COF is subjected to a thermal decomposition reaction in contact with anhydrous potassium carbonate, and CF 3 CF 2 CF 2 (OCF ( A production method of CF 3 ) CF 2 ) m OCF═CF 2 (where m represents 1 or 2) is described.
Patent Document 2, the presence of sodium carbonate and in the gas in an anhydrous state phase, CF 3 OCF 2 CF 2 CF 2 OCF (CF 3) COF and to thermal decomposition reaction, CF 3 OCF 2 CF 2 CF 2 OCF = A method for producing CF 2 is described.

特開平6−9474号公報JP-A-6-9474 国際公開第2007/005430号International Publication No. 2007/005430

本発明者らは、ペルフルオロ(ポリオキシアルキレン)基と酸フロリド基とを有する特定化合物からペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)を製造する方法である、特許文献1及び2の方法は、その実施例にも記載されるとおり、フッ化水素付加体(特許文献1におけるCFCFCF(OCF(CF)CFOCHFCF又はCFCFCF(OCF(CF)CFOCFCHF、特許文献2におけるCFOCFCFCFOCHFCF)の副生を充分に抑制できない点を知見している。さらに、目的物であるペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)の構造によっては、目的物とそのフッ化水素付加体との分離精製が著しく困難であり、含フッ素重合体の単量体として使用できる高純度な目的物を効率よく製造できない点を知見している。 The inventors of the present invention are a method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) from a specific compound having a perfluoro (polyoxyalkylene) group and an acid fluoride group. As described in the above, a hydrogen fluoride adduct (CF 3 CF 2 CF 2 (OCF (CF 3 ) CF 2 ) m OCHFCF 3 or CF 3 CF 2 CF 2 (OCF (CF 3 ) CF 2 in Patent Document 1) is used. ) m OCF 2 CHF 2, have found out that they can not sufficiently suppress the by-production of CF 3 OCF 2 CF 2 CF 2 OCHFCF 3) of Patent Document 2. In addition, depending on the structure of the target product, perfluoro (polyoxyalkylene alkyl vinyl ether), separation and purification of the target product and its hydrogen fluoride adduct are extremely difficult, and it can be used as a monomer for a fluoropolymer. We know that it is not possible to efficiently produce pure objects.

本発明は、上記課題を鑑みて、フッ化水素付加体の副生が抑制された、フルオロ(ポリオキシアルキレンアルキルビニルエーテル)の効率よい製造方法、及び、新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)の提供を課題とする。   In view of the above problems, the present invention provides an efficient method for producing fluoro (polyoxyalkylene alkyl vinyl ether) in which by-product of a hydrogen fluoride adduct is suppressed, and a novel perfluoro (polyoxyethylene alkyl vinyl ether). Offering is an issue.

本発明者らは、上記課題について鋭意検討した結果、ペルフルオロ(ポリオキシアルキレン)基と酸フロリド基とを有する特定化合物を、特定条件下にて気相熱分解すれば、効率よく高純度なペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)を製造できること、及び、新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)を見い出した。すなわち、本発明者は、以下の構成により上記課題が解決できるのを見出した。
[1] ケイ酸塩ガラスの存在下かつ含水率が20000ppm未満の気相にて、下式(1)で表される化合物を熱分解反応させて下式(2)で表される化合物を得ることを特徴とする、下式(2)で表される化合物の製造方法。
式(1) R(OQOCF(CFX)COF
式(2) R(OQOCF=CF
(式中、Rは炭素数1〜4のペルフルオロアルキル基を、Qは炭素数1〜4のペルフルオロアルキレン基を、Xはハロゲン原子を、nは1〜9の整数を、示す。)
[2] 含水率が、1ppm以上である、[1]に記載の製造方法。
[3] ケイ酸塩ガラスが、酸化ナトリウム又は酸化カリウムを含むケイ酸塩ガラスである、[1]又は[2]の製造方法。
[4] 熱分解反応を、350℃未満にて行う、[1]〜[3]のいずれかの製造方法。
[5] [1]〜[4]のいずれかの製造方法にて、前記式(2)で表される化合物と下式(H1)で表される化合物又は下式(H2)で表される化合物とを含み、前記式(2)で表される化合物に対する、式(H1)で表される化合物及び式(H2)で表される化合物の総含有量が1モル%以下である組成物を得る、前記式(2)で表される化合物を含む組成物の製造方法。
式(H1) R(OQOCHFCF
式(H2) R(OQOCFCHF
(式中の記号は、前記と同じ意味を示す。)
[6] Qが−CF−、−CFCF−又は−CFCFCF−であり、nが3〜6の整数である、[1]〜[5]のいずれかの製造方法。
[7] 下式(21)で表される化合物。
式(21) RF1(OCFCFn1OCF=CF
(RF1は−CF3、−CFCF又は−CFCFCFを、n1は3〜6の整数を、示す。)
As a result of intensive studies on the above problems, the present inventors have found that a specific compound having a perfluoro (polyoxyalkylene) group and an acid fluoride group can be efficiently and highly purified perfluorinated by gas phase pyrolysis under specific conditions. (Polyoxyalkylene alkyl vinyl ether) can be produced, and a novel perfluoro (polyoxyethylene alkyl vinyl ether) has been found. That is, the present inventor has found that the above problem can be solved by the following configuration.
[1] In the presence of silicate glass and in a gas phase having a water content of less than 20000 ppm, the compound represented by the following formula (1) is thermally decomposed to obtain the compound represented by the following formula (2). The manufacturing method of the compound represented by the following Formula (2) characterized by the above-mentioned.
Formula (1) R F (OQ F ) n OCF (CF 2 X) COF
Formula (2) R F (OQ F ) n OCF═CF 2
(In the formula, R F represents a perfluoroalkyl group having 1 to 4 carbon atoms, Q F represents a perfluoroalkylene group having 1 to 4 carbon atoms, X represents a halogen atom, and n represents an integer of 1 to 9)
[2] The production method according to [1], wherein the moisture content is 1 ppm or more.
[3] The production method of [1] or [2], wherein the silicate glass is silicate glass containing sodium oxide or potassium oxide.
[4] The production method according to any one of [1] to [3], wherein the thermal decomposition reaction is performed at less than 350 ° C.
[5] In the production method of any one of [1] to [4], the compound represented by the formula (2) and the compound represented by the following formula (H1) or the following formula (H2) And a composition having a total content of the compound represented by the formula (H1) and the compound represented by the formula (H2) with respect to the compound represented by the formula (2) of 1 mol% or less. A method for producing a composition comprising a compound represented by the formula (2).
Formula (H1) R F (OQ F ) n OCHFCF 3
Formula (H2) R F (OQ F ) n OCF 2 CHF 2
(The symbols in the formula have the same meaning as described above.)
[6] Q F is -CF 2 -, - CF 2 CF 2 - or -CF 2 CF 2 CF 2 - a, n is an integer from 3 to 6, [1] one of - [5] Production method.
[7] A compound represented by the following formula (21).
Formula (21) R F1 (OCF 2 CF 2 ) n1 OCF═CF 2
(R F1 represents —CF 3, —CF 2 CF 3, or —CF 2 CF 2 CF 3 , and n 1 represents an integer of 3 to 6.)

本発明によれば、高純度なペルフルオロ(ポリオキシアルキレンアルキルビニルエーテル)の製造方法、及び、含フッ素重合体の単量体として有用な新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the novel perfluoro (polyoxyethylene alkyl vinyl ether) useful as a monomer of a highly purified perfluoro (polyoxyalkylene alkyl vinyl ether) and a fluorine-containing polymer can be provided.

本発明における用語の意味は以下の通りである。
本明細書において、式(1)で表される化合物を化合物1とも記す。他の式で表される化合物も同様に記す。
本明細書において、「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
The meanings of terms in the present invention are as follows.
In the present specification, the compound represented by the formula (1) is also referred to as Compound 1. The same applies to compounds represented by other formulas.
In this specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.

本発明の製造方法は、ケイ酸塩ガラスの存在下かつ含水率が20000ppm未満の気相にて、下記化合物1を熱分解反応させる下記化合物2の製造方法である。
式(1) R(OQOCF(CFX)COF
式(2) R(OQOCF=CF
The production method of the present invention is a production method of the following compound 2 in which the following compound 1 is subjected to a thermal decomposition reaction in a gas phase in the presence of silicate glass and having a water content of less than 20000 ppm.
Formula (1) R F (OQ F ) n OCF (CF 2 X) COF
Formula (2) R F (OQ F ) n OCF═CF 2

式中の記号は、以下の意味を示す。
は、炭素数1〜4のペルフルオロアルキル基であり、−CF、−CFCF又は−CFCFCFが特に好ましい。
は、炭素数1〜4のペルフルオロアルキレン基であり、−CF−、−CFCF−、−CFCFCF−又は−CF(CF)CF−が好ましく、−CF−、−CFCF−又は−CFCFCF−がより好ましく、−CFCF−が特に好ましい。なお、nが2以上の整数である場合、Qは、1種のみから構成されていてもよく、2種以上から構成されていてもよい。Qが、2種以上から構成される場合としては、Qが−CF−と−CFCF−とから形成される場合が挙げられる。
Xは、ハロゲン原子であり、フッ素原子、塩素原子又は臭素原子が好ましく、入手容易の観点から、フッ素原子が特に好ましい。
nは、1〜9の整数であり、化合物1の気化の制御が容易であり、気相で反応させやすい観点から、3〜6の整数が好ましい。
The symbols in the formula have the following meanings.
R F is a perfluoroalkyl group having 1 to 4 carbon atoms, and —CF 3 , —CF 2 CF 3, or —CF 2 CF 2 CF 3 is particularly preferable.
Q F is a C 1-4 perfluoroalkylene group, preferably —CF 2 —, —CF 2 CF 2 —, —CF 2 CF 2 CF 2 — or —CF (CF 3 ) CF 2 —, CF 2 —, —CF 2 CF 2 — or —CF 2 CF 2 CF 2 — is more preferable, and —CF 2 CF 2 — is particularly preferable. Incidentally, when n is an integer of 2 or more, Q F may be composed of only one kind, or may be composed of two or more. Q F is as if composed of two or more, Q F is -CF 2 - and the like may be formed from a - and -CF 2 CF 2.
X is a halogen atom, preferably a fluorine atom, a chlorine atom or a bromine atom, and particularly preferably a fluorine atom from the viewpoint of easy availability.
n is an integer of 1 to 9, and an integer of 3 to 6 is preferable from the viewpoint of easy control of vaporization of Compound 1 and easy reaction in the gas phase.

本発明の製造方法によれば、フッ化水素付加体(後述する化合物H1又は後述する化合物H2。)の副生成が抑制され、高純度な化合物2が効率よく得られる。その理由は必ずしも明確ではないが、次の様に考えられる。
化合物1がケイ酸塩ガラス存在下の気相雰囲気にあると、化合物1の酸フロリド基(−COF)とケイ酸塩ガラスの表面水酸基との相互作用により化合物1が化合物2に高選択率にて化学変換されるが、化合物1の転化率は未だ高くない。しかし、気相雰囲気の含水率が所定の範囲にあれば、ケイ酸塩ガラスの表面状態が活性化され(ケイ酸塩ガラスの表面に、Si−F結合が生成すると考えられる。)、高選択率かつ高転化率で反応が進行して、高純度な化合物2が効率よく得られることを、本発明者らは知見したのである。
つまり、気相雰囲気の含水率が所定の範囲未満であれば化合物2の転化率が低下して生産性が低く、気相雰囲気の含水率が所定の範囲超であれば化合物2の加水分解と脱炭酸反応が進行してフッ化水素付加体量が増加するとも言える。また、加水分解により副生するフッ化水素酸により、化合物1又は化合物2のペルフルオロ(ポリオキシアルキレン)鎖が分解する等して、反応収率が低下するとも考えられる。
According to the production method of the present invention, by-production of a hydrogen fluoride adduct (compound H1 described later or compound H2 described later) is suppressed, and high-purity compound 2 can be obtained efficiently. The reason is not necessarily clear, but it can be considered as follows.
When Compound 1 is in a gas phase atmosphere in the presence of silicate glass, Compound 1 becomes highly selective to Compound 2 due to the interaction between the acid fluoride group (—COF) of Compound 1 and the surface hydroxyl group of silicate glass. However, the conversion rate of Compound 1 is not yet high. However, if the moisture content of the gas phase atmosphere is within a predetermined range, the surface state of the silicate glass is activated (it is considered that Si—F bonds are generated on the surface of the silicate glass), and the selection is high. The present inventors have found that the reaction proceeds at a high rate and a high conversion rate, and a highly pure compound 2 can be obtained efficiently.
That is, if the moisture content of the gas phase atmosphere is less than the predetermined range, the conversion rate of the compound 2 is lowered and the productivity is low, and if the moisture content of the gas phase atmosphere exceeds the predetermined range, the hydrolysis of the compound 2 It can also be said that the amount of hydrogen fluoride adduct increases as the decarboxylation reaction proceeds. In addition, it is considered that the reaction yield is lowered by hydrofluoric acid by-produced by hydrolysis, such as decomposition of the perfluoro (polyoxyalkylene) chain of Compound 1 or Compound 2.

かかる本発明の効果は、化合物2とそのフッ化水素付加体との分離精製が著しく困難であり、フッ化水素酸による化合物1又は化合物2の分解が進行しやすい場合、特に顕著となる。例えば、本発明の効果は、Rが−CF又は−CFCFであり、Qが−CF−、−CFCF−又は−CFCFCF−であり、nが3〜6の整数である化合物2の様に、一定の基数の直鎖状のペルフルオロオキシアルキレン基を有する化合物2であり、そのフッ化水素付加体との物性差(分子量差、極性差、沸点差等。)が小さい場合に顕著となる。 Such an effect of the present invention is particularly remarkable when the separation and purification of Compound 2 and its hydrogen fluoride adduct are extremely difficult, and decomposition of Compound 1 or Compound 2 by hydrofluoric acid tends to proceed. For example, the effect of the present invention is that R F is —CF 3 or —CF 2 CF 3 , Q F is —CF 2 —, —CF 2 CF 2 — or —CF 2 CF 2 CF 2 —, n Is a compound 2 having a linear perfluorooxyalkylene group having a certain number of groups, such as compound 2 in which is an integer of 3 to 6, and a difference in physical properties (molecular weight difference, polarity difference, This is noticeable when the difference in boiling points is small.

本発明の製造方法は、ケイ酸塩ガラスの存在下かつ含水率が20000ppm未満の気相にて行う。
気相における含水率は、10000ppm以下が好ましく、1000ppm以下が特に好ましい。また、気相における含水率は、効果的にケイ酸塩ガラスが活性化する観点から、1ppm以上が好ましく、10ppm以上が特に好ましい。なお、気相における含水率は、熱分解反応の開始直前における気相ガスをサンプリングし、気相ガス中の水蒸気が過塩素酸マグネシウムに吸収されて塩基性となり指示薬が紫色を呈する検知管(株式会社ガステック製、検知管名「水蒸気No6」。)を備えた水蒸気用検知管式気体測定器にて分析して決定する。具体的には、気相ガス(100mL)を、水蒸気用検知管式気体測定器に流通させ、45秒間静止した後の検知管の紫呈色幅が示す指示値を含水率とする。
気相における含水率は、含水状態にあるケイ酸塩ガラスを使用する、含水状態にある不活性ガスを連続又は断片的に供給する等の方法によって、上記範囲に保持するのが好ましい。
The production method of the present invention is carried out in the gas phase in the presence of silicate glass and having a water content of less than 20000 ppm.
The water content in the gas phase is preferably 10,000 ppm or less, particularly preferably 1000 ppm or less. Further, the water content in the gas phase is preferably 1 ppm or more, and particularly preferably 10 ppm or more, from the viewpoint of effectively activating the silicate glass. The water content in the gas phase is determined by sampling the gas phase gas immediately before the start of the pyrolysis reaction, and the water vapor in the gas phase gas is absorbed into magnesium perchlorate and becomes basic, and the indicator tube becomes purple (stock) It is determined by analyzing with a detector tube type gas measuring device for water vapor equipped with a detector tube name “Steam No. 6” manufactured by Gastec. Specifically, gas phase gas (100 mL) is circulated through a water vapor detector tube-type gas meter, and the indicated value indicated by the purple color width of the detector tube after standing still for 45 seconds is taken as the moisture content.
The water content in the gas phase is preferably maintained in the above range by a method such as using a silicate glass in a water-containing state, or supplying an inert gas in a water-containing state continuously or fragmentally.

ケイ酸塩ガラスは、化合物2の化合物1への化学変換を促進する観点から、アルカリ金属酸化物を含むのが好ましく、酸化ナトリウム又は酸化カリウムを含むのがより好ましく、ソーダライムガラス(NaO−CaO−SiO系のガラス等。)、鉛クリスタルガラス(KO−PbO−SiO系のガラス等。)、セミクリスタルガラス(KO−PbO−SiOにNaO等を含むガラス等。)又はホウ珪酸塩ガラス(NaO−B−SiO系のガラス等。)が特に好ましい。 From the viewpoint of promoting chemical conversion of Compound 2 to Compound 1, the silicate glass preferably contains an alkali metal oxide, more preferably contains sodium oxide or potassium oxide, soda lime glass (Na 2 O -CaO-SiO 2 glass, etc.), lead crystal glass (K 2 O—PbO—SiO 2 glass, etc.), semi-crystal glass (K 2 O—PbO—SiO 2 contains Na 2 O, etc.) Glass or the like) or borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 based glass or the like) is particularly preferable.

ケイ酸塩ガラスの形状は、ウール状であってもよく、ビーズ状であってよく、ビーズ状であるのが好ましい。後者の場合には、中心粒径が100〜250μmのガラスビーズであるのが好ましい。
ケイ酸塩ガラスの密度は、0.5〜2.0g/cmが好ましく、0.8〜1.5g/cmが特に好ましい。
The shape of the silicate glass may be a wool shape, may be a bead shape, and is preferably a bead shape. In the latter case, glass beads having a center particle size of 100 to 250 μm are preferable.
Density of silicate glass is preferably from 0.5 to 2.0 g / cm 3, particularly preferably 0.8 to 1.5 g / cm 3.

熱分解反応における反応温度は、化合物1の沸点以上であれば特に限定されず、フッ化水素付加体の副生を抑制する観点から、350℃未満が好ましく、340℃以下が特に好ましい。
熱分解反応における反応圧力は、化合物1の沸点以上であれば、特に限定されない。
The reaction temperature in the thermal decomposition reaction is not particularly limited as long as it is equal to or higher than the boiling point of Compound 1, and is preferably less than 350 ° C., particularly preferably 340 ° C. or less, from the viewpoint of suppressing the by-product of the hydrogen fluoride adduct.
The reaction pressure in the thermal decomposition reaction is not particularly limited as long as it is equal to or higher than the boiling point of Compound 1.

熱分解反応の態様としては、流動層を用いた連続反応であるのが、生産効率の観点から好ましい。
連続反応の態様としては、化合物1を気化させて、つぎに気化した化合物1を反応温度に加熱したケイ酸塩ガラスを充填した流動層に流通させて化合物2を含む気体を得て、つぎに該気体を冷却して化合物2を得る態様が好ましい。
化合物1の流通は、化合物1を不活性ガスで希釈した状態で行ってもよい。不活性ガスとしては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガス等が挙げられる。不活性ガス量は、化合物1に対して50〜99体積%が好ましい。
流動層は、管型反応器を使用するのが好ましい。
As a mode of the thermal decomposition reaction, a continuous reaction using a fluidized bed is preferable from the viewpoint of production efficiency.
As an aspect of the continuous reaction, the compound 1 is vaporized, and then the vaporized compound 1 is passed through a fluidized bed filled with silicate glass heated to the reaction temperature to obtain a gas containing the compound 2, and then An embodiment in which compound 2 is obtained by cooling the gas is preferred.
The circulation of Compound 1 may be performed in a state where Compound 1 is diluted with an inert gas. Examples of the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas. The amount of the inert gas is preferably 50 to 99% by volume with respect to Compound 1.
The fluidized bed preferably uses a tubular reactor.

管型反応器を使用すれば、化合物1のケイ酸塩ガラスとの接触時間(滞留時間)の調整が容易となり、化合物1の化合物2への転化率と選択率をより容易に制御しやすい。
接触時間とは、管型反応器中を流通させる化合物1の単位時間当たりの体積に対する管型反応器中のケイ酸塩ガラスの充填体積を意味する。接触時間は、0.1〜600秒が好ましく、0.1〜60秒が特に好ましい。
接触時間を該範囲に制御すれば、本発明の熱分解反応は、化合物1の化合物2への転化率を、90〜100モル%に制御しやすい。なお、化合物1を不活性ガスで希釈した場合の化合物1の単位時間当たりの体積は、化合物1と不活性ガスの総単位時間当たりの体積である。
If a tubular reactor is used, the contact time (residence time) of Compound 1 with silicate glass can be easily adjusted, and the conversion and selectivity of Compound 1 to Compound 2 can be more easily controlled.
The contact time means the filling volume of silicate glass in the tubular reactor with respect to the volume per unit time of Compound 1 flowing through the tubular reactor. The contact time is preferably from 0.1 to 600 seconds, particularly preferably from 0.1 to 60 seconds.
If the contact time is controlled within this range, the thermal decomposition reaction of the present invention can easily control the conversion rate of compound 1 to compound 2 to 90 to 100 mol%. The volume per unit time of Compound 1 when Compound 1 is diluted with an inert gas is the volume per unit time of Compound 1 and the inert gas.

化合物2を含む気体からの化合物2を単離する方法は、該気体に含まれる未反応の化合物1等の低沸点の化合物を除去するために、該気体を冷却により凝縮して化合物2を液化させて単離する方法が好ましい。なお、未反応の化合物1は、別途回収し、再び反応に供してもよい。   In the method of isolating compound 2 from the gas containing compound 2, compound 2 is liquefied by condensing the gas by cooling in order to remove low-boiling compounds such as unreacted compound 1 contained in the gas. And isolating them in a preferred manner. The unreacted compound 1 may be separately collected and used for the reaction again.

本発明の製造方法で得られる化合物2は、前述したとおり、フッ化水素付加体である下記化合物H1又は下記化合物H2の含有量が少ない(式中の記号と好適な範囲は、前記と同じである。)。
式(H1) R(OQOCHFCF
式(H2) R(OQOCFCHF
As described above, the compound 2 obtained by the production method of the present invention has a low content of the following compound H1 or the following compound H2 which is a hydrogen fluoride adduct (the symbols and preferred ranges in the formula are the same as described above). is there.).
Formula (H1) R F (OQ F ) n OCHFCF 3
Formula (H2) R F (OQ F ) n OCF 2 CHF 2

つまり、本発明の製造方法により、化合物2と化合物H1又は化合物H2とを含み、化合物2に対する、化合物H1及び化合物H2の総含有量が1モル%以下である組成物を得るのが好ましい。該総含有量は、1モル%以下が好ましく、1.0モル%以下がより好ましく、0.7モル%未満が特に好ましい。また、該含有量は、0モル%超が好ましく、0.1モル%以上が特に好ましい。なお、それぞれの化合物の含有量は、組成物のガスクロマトグラフィー法分析(検出器:FID)において、化合物2のピーク保持時間を1とした場合の相対保持時間が1.09と1.12のピークを順に化合物H1と化合物H2のピークとして算出される。また、ガスクロマトフィー法分析における、それぞれの化合物のピーク面積%をモル%と見なす。
この範囲における組成物は、化合物2の重合性を損なうフッ化水素付加体の含有量が少ない、高純度な化合物2を含む組成物であり、含フッ素重合体の単量体成分として有用であり、保存安定性にも優れる。
That is, it is preferable to obtain a composition containing Compound 2 and Compound H1 or Compound H2 and having a total content of Compound H1 and Compound H2 of 1 mol% or less based on Compound 2 by the production method of the present invention. The total content is preferably 1 mol% or less, more preferably 1.0 mol% or less, and particularly preferably less than 0.7 mol%. The content is preferably more than 0 mol%, particularly preferably 0.1 mol% or more. In addition, the content of each compound is a relative retention time of 1.09 and 1.12 when the peak retention time of compound 2 is 1 in the gas chromatography analysis (detector: FID) of the composition. The peak is calculated as the peak of compound H1 and compound H2 in order. Further, the peak area% of each compound in the gas chromatography analysis is regarded as mol%.
The composition in this range is a composition containing high-purity compound 2 with a low content of the hydrogen fluoride adduct that impairs the polymerizability of compound 2, and is useful as a monomer component of the fluoropolymer. Excellent storage stability.

本発明の下記化合物21は、ペルフルオロ(ポリオキシエチレン)基を特定数有する、新規なペルフルオロ(ポリオキシエチレンアルキルビニルエーテル)である。
式(21) RF1(OCFCFn1OCF=CF
The following compound 21 of the present invention is a novel perfluoro (polyoxyethylene alkyl vinyl ether) having a specific number of perfluoro (polyoxyethylene) groups.
Equation (21) R F1 (OCF 2 CF 2) n1 OCF = CF 2.

式中の記号は、以下の意味を示す。
F1は、−CF3、−CFCF又は−CFCFCFであり、−CF又は−CFCFが特に好ましい。
n1は、3〜6の整数であり、3又は4が好ましい。
化合物21の具体例としては、CFCF(OCFCFOCF=CF、CFCF(OCFCFOCF=CFが挙げられる。
The symbols in the formula have the following meanings.
R F1 is —CF 3, —CF 2 CF 3, or —CF 2 CF 2 CF 3 , and —CF 3 or —CF 2 CF 3 is particularly preferable.
n1 is an integer of 3-6, and 3 or 4 is preferable.
Specific examples of the compound 21 include CF 3 CF 2 (OCF 2 CF 2 ) 3 OCF═CF 2 and CF 3 CF 2 (OCF 2 CF 2 ) 4 OCF═CF 2 .

化合物21は、下記化合物F1と下記化合物E1とをエステル化反応させて下記化合物D1を得て、該化合物D1を液相フッ素化反応させて下記化合物C1を得て、該化合物C1を分解反応せしめて下記化合物B1を得て、該化合物B1と下記化合物A1を反応させて得られる化合物11を得て、該化合物11を本発明の製造方法により熱分解反応させることにより製造できる。
式(F1) RH1(OCHCHn1−1OCHCHOH
式(E1) YCOF
式(D1) RH1(OCHCHn1−1OCHCHOC(O)Y
式(C1) RF1(OCFCFn1−1OCFCFOC(O)Y
式(B1) RF1(OCFCFn1−1OCFCOF
Compound 21 is obtained by esterifying the following compound F1 and the following compound E1 to obtain the following compound D1, and subjecting the compound D1 to a liquid phase fluorination reaction to obtain the following compound C1 to decompose the compound C1. The following compound B1 is obtained, the compound 11 obtained by reacting the compound B1 and the following compound A1 is obtained, and the compound 11 can be produced by a thermal decomposition reaction by the production method of the present invention.
Formula (F1) R H1 (OCH 2 CH 2 ) n1-1 OCH 2 CH 2 OH
Formula (E1) Y F COF
Formula (D1) R H1 (OCH 2 CH 2 ) n1-1 OCH 2 CH 2 OC (O) Y F
Formula (C1) R F1 (OCF 2 CF 2 ) n1-1 OCF 2 CF 2 OC (O) Y F
Formula (B1) R F1 (OCF 2 CF 2 ) n1-1 OCF 2 COF

Figure 2019014667
Figure 2019014667

式(11) RF1(OCFCFn1OCF(CFX)COF
式(21) RF1(OCFCFn1OCF=CF
Formula (11) R F1 (OCF 2 CF 2 ) n1 OCF (CF 2 X) COF
Formula (21) R F1 (OCF 2 CF 2 ) n1 OCF═CF 2

式中の記号は、以下の意味を示す。
F1、n1及びXは、前記と同じ意味を示す。
H1は、液相フッ素化反応により、RF1を形成する基を示す。
は、炭素数2〜12のエーテル性酸素原子を含んでいてもよいペルフルオロアルキル基を示す。
The symbols in the formula have the following meanings.
R F1 , n1 and X have the same meaning as described above.
R H1 represents a group that forms R F1 by a liquid phase fluorination reaction.
Y F represents a perfluoroalkyl group which may contain an etheric oxygen atom having 2 to 12 carbon atoms.

化合物F1の具体例としては、CHCH(OCHCHOCHCHOH、CHCH(OCHCHOCHCHOHが挙げられる。
化合物E1の具体例としては、CFCFCFOCF(CF)CFOCF(CF)COF、CFCFCF(OCF(CF)CFOCF(CF)COFが挙げられる。
化合物11の具体例としては、CFCF(OCFCFOCF(CF)COF、CFCF(OCFCFOCF(CF)COFが挙げられる。
Specific examples of the compound F1 include CH 3 CH 2 (OCH 2 CH 2 ) 2 OCH 2 CH 2 OH and CH 3 CH 2 (OCH 2 CH 2 ) 3 OCH 2 CH 2 OH.
Specific examples of the compound E1 include CF 3 CF 2 CF 2 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF, CF 3 CF 2 CF 2 (OCF (CF 3 ) CF 2 ) 2 OCF (CF 3 ) COF Is mentioned.
Specific examples of the compound 11 include CF 3 CF 2 (OCF 2 CF 2 ) 3 OCF (CF 3 ) COF and CF 3 CF 2 (OCF 2 CF 2 ) 4 OCF (CF 3 ) COF.

エステル化反応、液相フッ素化反応、及び分解反応は、それぞれ本出願人による国際公開第00/56694号に記載される方法にしたがって実施できる。また、化合物B1と化合物A1との反応も公知の方法にしたがって実施できる。   The esterification reaction, liquid phase fluorination reaction, and decomposition reaction can each be carried out according to the methods described in WO 00/56694 by the applicant. The reaction between compound B1 and compound A1 can also be carried out according to a known method.

本発明の化合物は、ペルフルオロ(ポリオキシエチレン)基を特定数有するユニークな物性を示す有用な新規化合物であり、Oリング、シートガスケット、オイルシール、ダイヤフラム、V−リング、半導体装置用シール材、耐薬品性シール材、塗料、電線被覆材等のゴム製品に使用される、低温特性に優れた含フッ素重合体の単量体として有用である。   The compound of the present invention is a useful novel compound having a unique physical property having a specific number of perfluoro (polyoxyethylene) groups, such as an O-ring, a sheet gasket, an oil seal, a diaphragm, a V-ring, a semiconductor device sealing material, It is useful as a monomer for fluorine-containing polymers having excellent low-temperature properties, which are used in rubber products such as chemical-resistant sealing materials, paints, and wire coating materials.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。 実施例中においてはCClFCClFをR−113、ジクロロペンタフルオロプロパンをR−225、と略記する。圧力は特に表記しないかぎり、ゲージ圧で記す。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. In the examples, CCl 2 FCClF 2 is abbreviated as R-113, and dichloropentafluoropropane is abbreviated as R-225. Unless otherwise indicated, pressure is indicated in gauge pressure.

[例1]CFCF(OCFCFOCF(CF)COF(化合物1)の製造例
オートクレーブに、CHCH(OCHCHOCHCHOH(45.00g)を投入して窒素ガスでバブリングしながら撹拌した。つぎに、オートクレーブの内温を25〜31℃に保持して、F(CFOCF(CF)CFOCF(CF)COF(175.17g)を40分かけて滴下した。オートクレーブを、窒素ガスでバブリングしながら25℃で24時間撹拌して、CHCH(OCHCHOCHCHOC(O)CF(CF)OCFCF(CF)O(CFFを含む反応液(210.03g)を得た。
Example 1 Production Example of CF 3 CF 2 (OCF 2 CF 2 ) 3 OCF (CF 3 ) COF (Compound 1 1 ) In an autoclave, CH 3 CH 2 (OCH 2 CH 2 ) 2 OCH 2 CH 2 OH (45 0.000 g) was added and stirred while bubbling with nitrogen gas. Next, the internal temperature of the autoclave was kept at 25 to 31 ° C., and F (CF 2 ) 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF (175.17 g) was added dropwise over 40 minutes. The autoclave was stirred at 25 ° C. for 24 hours while bubbling with nitrogen gas, and CH 3 CH 2 (OCH 2 CH 2 ) 2 OCH 2 CH 2 OC (O) CF (CF 3 ) OCF 2 CF (CF 3 ) O A reaction solution (210.03 g) containing (CF 2 ) 3 F was obtained.

オートクレーブ(内容積500mL、ニッケル製)に、R−113(312g)を加えて25℃で撹拌した。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、及び10℃に保持した冷却器を直列に設置した。−10℃に保持した冷却器からは、凝縮した液をオートクレーブに戻すための液体返送ラインを設置した。オートクレーブに窒素ガスを1時間導入した後、窒素ガスで20体積%に希釈したフッ素ガス(以下、20%フッ素ガスという。)を、5.80L/hで1時間導入した。   R-113 (312 g) was added to an autoclave (internal volume 500 mL, made of nickel) and stirred at 25 ° C. At the autoclave gas outlet, a cooler maintained at 20 ° C., a NaF pellet packed bed, and a cooler maintained at 10 ° C. were installed in series. From the cooler maintained at −10 ° C., a liquid return line for returning the condensed liquid to the autoclave was installed. After introducing nitrogen gas into the autoclave for 1 hour, fluorine gas diluted to 20% by volume with nitrogen gas (hereinafter referred to as 20% fluorine gas) was introduced at 5.80 L / h for 1 hour.

つぎに、オートクレーブに20%フッ素ガスを同じ流量で導入しながら、反応液(5.0g)をR−113(100g)に溶解させた溶液を、3時間かけて注入した。つづいて、オートクレーブの出口バルブを閉め、20%フッ素ガスを同じ流量で導入しながら、ベンゼン濃度が0.013g/mLであるR−113溶液(13.95g)を30分かけてオートクレーブに注入して、さらに1時間撹拌した。オートクレーブに20%フッ素ガスの導入を止め、窒素ガスを1時間導入してオートクレーブからフッ素ガスを除いた。オートクレーブ中の内容液をエバポレータで濃縮してCFCF(OCFCFOCFCFOC(O)CF(CF)OCFCF(CF)O(CFFを含む濃縮物を得た。 Next, while introducing 20% fluorine gas into the autoclave at the same flow rate, a solution in which the reaction solution (5.0 g) was dissolved in R-113 (100 g) was injected over 3 hours. Next, the autoclave outlet valve was closed, and while introducing 20% fluorine gas at the same flow rate, an R-113 solution (13.95 g) having a benzene concentration of 0.013 g / mL was poured into the autoclave over 30 minutes. And further stirred for 1 hour. The introduction of 20% fluorine gas into the autoclave was stopped, and nitrogen gas was introduced for 1 hour to remove the fluorine gas from the autoclave. The content liquid in the autoclave is concentrated by an evaporator to obtain CF 3 CF 2 (OCF 2 CF 2 ) 2 OCF 2 CF 2 OC (O) CF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F. A concentrate containing was obtained.

蒸留塔を備えたフラスコに、KF粉末(2.00g)と内容液(583.27g)を投入した。フラスコを、撹拌しながら100℃で12時間に加熱してCFCF(OCFCFOCFCOF(127.88g)を得た。
つぎに、オートクレーブ(内容積200mL、ハステロイ製)に、KF粉末(0.28g)、テトラグライム(3.84g)及びCFCF(OCFCFOCFCOF(45.00g)を投入した。つぎに、オートクレーブの内温を25〜31℃に保持して、ヘキサフルオロプロピレンオキシド(416.00g)を40分かけて供給した。テトラグライムを分液によって除去後、反応液(54.90g)を得た。反応液をNMRで分析した結果、収率94.2%で化合物1の生成を確認した。
A flask equipped with a distillation tower was charged with KF powder (2.00 g) and the content liquid (583.27 g). The flask was heated at 100 ° C. with stirring for 12 hours to obtain CF 3 CF 2 (OCF 2 CF 2 ) 2 OCF 2 COF (127.88 g).
Next, KF powder (0.28 g), tetraglyme (3.84 g) and CF 3 CF 2 (OCF 2 CF 2 ) 2 OCF 2 COF (45.00 g) were added to an autoclave (internal volume 200 mL, manufactured by Hastelloy). I put it in. Next, the internal temperature of the autoclave was maintained at 25 to 31 ° C., and hexafluoropropylene oxide (416.00 g) was supplied over 40 minutes. After removing tetraglyme by liquid separation, a reaction liquid (54.90 g) was obtained. As a result of analyzing the reaction solution by NMR, it was confirmed that Compound 11 was produced in a yield of 94.2%.

化合物119F−NMRデータを以下に示す。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−87.1(3F)、−87.7(2F)、−88.4(10F)、−90.4(2F)、−115.4(1F)、−122.6(1F)、−135.7(1F)。
The 19 F-NMR data of Compound 1 1 are shown below.
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −87.1 (3F), −87.7 (2F), −88.4 (10F), −90 .4 (2F), -115.4 (1F), -122.6 (1F), and -135.7 (1F).

[例2]CFCF(OCFCFOCF=CF(化合物2)の製造例1
ガラスビーズ(酸化ナトリウムを含むケイ酸塩ガラス、中心粒度150μm、比重1.28g/mL。)を充填した流動層の管型反応器(内径21.4mm、高さ400mm、SUS316L製。)を、325℃の塩浴に浸した。管型反応器の出口には、液体窒素トラップを設置した。
つぎに、窒素ガス(24.61L/h)を管型反応器へ導入して、管型反応器内の含水率が30ppmにあることを確認し、さらに窒素ガス(24.61L/h)と化合物1のガス(1.27L/h)との混合ガスを管型反応器へ導入して熱分解反応を開始した。1時間後、液体窒素トラップに留出した液体(13.09g)を回収した。液体をNMRで分析した結果、収率95.4%で化合物2の生成を確認した。フッ化水素付加体の副生量(化合物2に対する、CFCF(OCFCFOCHFCFとCFCF(OCFCFOCFCHFの総副生量。)は、0.5モル%であった。
Example 2 Production Example 1 of CF 3 CF 2 (OCF 2 CF 2 ) 3 OCF═CF 2 (Compound 2 1 )
A fluidized bed tubular reactor (inner diameter 21.4 mm, height 400 mm, made of SUS316L) filled with glass beads (silicate glass containing sodium oxide, center particle size 150 μm, specific gravity 1.28 g / mL), It was immersed in a salt bath at 325 ° C. A liquid nitrogen trap was installed at the outlet of the tubular reactor.
Next, nitrogen gas (24.61 L / h) was introduced into the tubular reactor, and it was confirmed that the moisture content in the tubular reactor was 30 ppm. Further, nitrogen gas (24.61 L / h) and A gas mixture of compound 11 and gas (1.27 L / h) was introduced into a tubular reactor to initiate a thermal decomposition reaction. After 1 hour, a liquid (13.09 g) distilled in a liquid nitrogen trap was recovered. Results liquid was analyzed by NMR, it was confirmed the formation of Compound 2 1 95.4% yield. By-product of hydrogen fluoride adduct (for Compound 2 1, CF 3 CF 2 ( OCF 2 CF 2) 3 OCHFCF 3 and CF 3 CF 2 (OCF 2 CF 2) 3 Total-product of OCF 2 CHF 2. ) Was 0.5 mol%.

化合物219F−NMRデータを以下に示す。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−87.1(3F)、−87.7(2F)、−88.4(10F)、−90.4(2F)、−115.4(1F)、−122.6(1F)、−135.7(1F)。
The 19 F-NMR data of Compound 2 1 below.
19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −87.1 (3F), −87.7 (2F), −88.4 (10F), −90 .4 (2F), -115.4 (1F), -122.6 (1F), and -135.7 (1F).

[例3]化合物2の製造例2
例2の塩浴温度を350℃にした以外は同じ条件で熱分解反応をして得られた液体をNMRで分析した結果、収率74.9%で化合物2の生成を確認した。フッ化水素付加体の副生量は0.7%であった。
Example 3 Production Example 2 of Compound 2 1
Example 2 of the salt bath temperature except for the 350 ° C. The results of the liquid obtained by the thermal decomposition reaction under the same conditions was analyzed by NMR, it was confirmed the formation of Compound 2 1 74.9% yield. The amount of by-produced hydrogen fluoride adduct was 0.7%.

[例4]化合物2の製造例3
例2のガラスビーズの含水率を20000ppmにした以外は同じ条件で熱分解反応をして得られた液体をNMRで分析した結果、収率92.5%で化合物2の生成を確認した。 フッ化水素付加体の副生量は2.5%であった。
Example 4 Production Example 3 of Compound 2 1
Example except that the water content of the glass beads 2 to 20000ppm result of liquid obtained by the thermal decomposition reaction under the same conditions was analyzed by NMR, it was confirmed the formation of Compound 2 1 92.5% yield. The amount of by-produced hydrogen fluoride adduct was 2.5%.

[例5]化合物2の重合評価例
反応器に、超純水(804g)、CFCFOCFCFOCFCOONHの30質量%水溶液(80.1g)、例2と同様にして得た化合物2(88.1g)、CF=CFO(CFOCF=CF(1.2g)、NaHPO・12HOの5質量%水溶液(1.8g)及びI(CFI(0.6g)を仕込み、窒素ガスで置換した。反応器内を撹拌しながら内温80℃にて、反応器内に、CF=CF(25g)、CF=CFOCF(45g)、及び(NHの1質量%水溶液(20mL)を圧入して重合を開始した。重合中、CF=CF(71g)とCF=CFOCF(37g)を追加圧入した。重合時間は150分間にて反応器を冷却して重合を停止し、化合物(2)に基づく単位を含む含フッ素重合体を得た。
[Example 5] Polymerization evaluation example of compound 2 1 In a reactor, ultrapure water (804 g), a 30 mass% aqueous solution of CF 3 CF 2 OCF 2 CF 2 OCF 2 COONH 4 (80.1 g), Compound 2 1 (88.1 g), CF 2 ═CFO (CF 2 ) 3 OCF═CF 2 (1.2 g), Na 2 HPO 4 · 12H 2 O 5 mass% aqueous solution (1.8 g) and I (CF 2 ) 4 I (0.6 g) was charged and replaced with nitrogen gas. 1 mass of CF 2 = CF 2 (25 g), CF 2 = CFOCF 3 (45 g), and (NH 4 ) 2 S 2 O 8 in the reactor at an internal temperature of 80 ° C. while stirring in the reactor. % Aqueous solution (20 mL) was injected to initiate the polymerization. During the polymerization, CF 2 = CF 2 (71 g) and CF 2 = CFOCF 3 (37 g) were additionally injected. The polymerization time was 150 minutes to cool the reactor to stop the polymerization, and a fluoropolymer containing units based on the compound (2 1 ) was obtained.

さらに、含フッ素重合体と架橋成分(カーボンブラック、イソシアヌレート及び有機過酸化物を含む。)の混練物を150℃にて熱プレスし、さらに250℃にて焼成して、シート片を得た。シート片は、ゴム弾性に優れ、JIS K 6261:2006に準拠したTR10値(凍結シート片が温度上昇に伴い弾性回復する際のシート収縮率が10%に達する温度)が−7.6℃であり、低温特性に特に優れていた。   Further, a kneaded product of the fluoropolymer and the crosslinking component (including carbon black, isocyanurate and organic peroxide) was hot-pressed at 150 ° C. and further baked at 250 ° C. to obtain a sheet piece. . The sheet piece is excellent in rubber elasticity, and the TR10 value (temperature at which the sheet shrinkage rate when the frozen sheet piece is elastically recovered as the temperature rises reaches 10%) in accordance with JIS K 6261: 2006 is −7.6 ° C. And low temperature characteristics were particularly excellent.

Claims (7)

ケイ酸塩ガラスの存在下かつ含水率が20000ppm未満の気相にて、下式(1)で表される化合物を熱分解反応させて下式(2)で表される化合物を得ることを特徴とする、下式(2)で表される化合物の製造方法。
式(1) R(OQOCF(CFX)COF
式(2) R(OQOCF=CF
(式中、Rは炭素数1〜4のペルフルオロアルキル基を、Qは炭素数1〜4のペルフルオロアルキレン基を、Xはハロゲン原子を、nは1〜9の整数を、示す。)
A compound represented by the following formula (2) is obtained by subjecting the compound represented by the following formula (1) to a thermal decomposition reaction in the presence of silicate glass and a water content of less than 20000 ppm. The manufacturing method of the compound represented by the following Formula (2).
Formula (1) R F (OQ F ) n OCF (CF 2 X) COF
Formula (2) R F (OQ F ) n OCF═CF 2
(In the formula, R F represents a perfluoroalkyl group having 1 to 4 carbon atoms, Q F represents a perfluoroalkylene group having 1 to 4 carbon atoms, X represents a halogen atom, and n represents an integer of 1 to 9)
含水率が、1ppm以上である、請求項1に記載の製造方法。   The manufacturing method of Claim 1 whose moisture content is 1 ppm or more. ケイ酸塩ガラスが、酸化ナトリウム又は酸化カリウムを含むケイ酸塩ガラスである、請求項1又は2に記載の製造方法。   The manufacturing method according to claim 1 or 2, wherein the silicate glass is a silicate glass containing sodium oxide or potassium oxide. 熱分解反応を、350℃未満にて行う、請求項1〜3のいずれか1項に記載の製造方法。   The manufacturing method of any one of Claims 1-3 which perform a thermal decomposition reaction at less than 350 degreeC. 請求項1〜4のいずれか1項に記載の製造方法にて、前記式(2)で表される化合物と下式(H1)で表される化合物又は下式(H2)で表される化合物とを含み、前記式(2)で表される化合物に対する、式(H1)で表される化合物及び式(H2)で表される化合物の総含有量が1モル%以下である組成物を得る、前記式(2)で表される化合物を含む組成物の製造方法。
式(H1) R(OQOCHFCF
式(H2) R(OQOCFCHF
(式中の記号は、前記と同じ意味を示す。)
The compound represented by the said Formula (2), the compound represented by the following Formula (H1), or the compound represented by the following Formula (H2) in the manufacturing method of any one of Claims 1-4. And a total content of the compound represented by the formula (H1) and the compound represented by the formula (H2) with respect to the compound represented by the formula (2) is 1 mol% or less. The manufacturing method of the composition containing the compound represented by said Formula (2).
Formula (H1) R F (OQ F ) n OCHFCF 3
Formula (H2) R F (OQ F ) n OCF 2 CHF 2
(The symbols in the formula have the same meaning as described above.)
が−CF−、−CFCF−又は−CFCFCF−であり、nが3〜6の整数である、請求項1〜5のいずれか1項に記載の製造方法。 Q F is -CF 2 -, - CF 2 CF 2 - or -CF 2 CF 2 CF 2 - a and, n is an integer from 3 to 6, prepared according to any one of claims 1 to 5 Method. 下式(21)で表される化合物。
式(21) RF1(OCFCFn1OCF=CF
(RF1は−CF3、−CFCF又は−CFCFCFを、n1は3〜6の整数を、示す。)
A compound represented by the following formula (21):
Formula (21) R F1 (OCF 2 CF 2 ) n1 OCF═CF 2
(R F1 represents —CF 3, —CF 2 CF 3, or —CF 2 CF 2 CF 3 , and n 1 represents an integer of 3 to 6.)
JP2017131933A 2017-07-05 2017-07-05 Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether) Pending JP2019014667A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017131933A JP2019014667A (en) 2017-07-05 2017-07-05 Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017131933A JP2019014667A (en) 2017-07-05 2017-07-05 Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)

Publications (1)

Publication Number Publication Date
JP2019014667A true JP2019014667A (en) 2019-01-31

Family

ID=65358324

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017131933A Pending JP2019014667A (en) 2017-07-05 2017-07-05 Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)

Country Status (1)

Country Link
JP (1) JP2019014667A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138659A1 (en) * 2020-12-25 2022-06-30 Agc株式会社 Method for producing fluorovinyl ether compound

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233610A (en) * 1975-09-09 1977-03-14 Teijin Ltd Process for preparation of perfluorovinylether
JPS54109918A (en) * 1978-02-17 1979-08-29 Asahi Glass Co Ltd Preparation of perfluorovinyl ether having fluorocarbonyl group
JPS58201739A (en) * 1982-02-27 1983-11-24 ヘキスト・アクチエンゲゼルシヤフト Vinylether perfluoride having secondary hydrogen atom, manufacture and polymer therefrom
JPS6036454A (en) * 1983-08-08 1985-02-25 Asahi Chem Ind Co Ltd Preparation of vinyl fluoride ether compound
JPH069474A (en) * 1992-06-26 1994-01-18 Daikin Ind Ltd Production of fluorinated vinyl ether
JPH09286824A (en) * 1995-11-15 1997-11-04 Bayer Ag Peroxide-cross-linkable fluororubber and its production and use
WO2002026682A1 (en) * 2000-09-26 2002-04-04 Asahi Glass Company, Limited Process for producing fluorinated vinyl ethers
JP2003518051A (en) * 1999-12-22 2003-06-03 ダイネオン エルエルシー Fluorine-containing vinyl ether
JP2009500330A (en) * 2005-06-30 2009-01-08 スリーエム イノベイティブ プロパティズ カンパニー Method for producing fluorinated vinyl ethers
JP2009203172A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Method for producing perfluoro multifunctional vinyl ether compound
CN103694417A (en) * 2013-12-14 2014-04-02 衢州市中通化工有限公司 Preparation method of polytetrafluoroethylene and high density polyethylene blended compatibilizer
WO2015029839A1 (en) * 2013-08-26 2015-03-05 旭硝子株式会社 Method for producing fluorinated compound
WO2015080002A1 (en) * 2013-11-26 2015-06-04 旭硝子株式会社 Perfluoroelastomer, perfluoroelastomer composition, crosslinked rubber product, and method for manufacturing perfluoroelastomer

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233610A (en) * 1975-09-09 1977-03-14 Teijin Ltd Process for preparation of perfluorovinylether
JPS54109918A (en) * 1978-02-17 1979-08-29 Asahi Glass Co Ltd Preparation of perfluorovinyl ether having fluorocarbonyl group
JPS58201739A (en) * 1982-02-27 1983-11-24 ヘキスト・アクチエンゲゼルシヤフト Vinylether perfluoride having secondary hydrogen atom, manufacture and polymer therefrom
JPS6036454A (en) * 1983-08-08 1985-02-25 Asahi Chem Ind Co Ltd Preparation of vinyl fluoride ether compound
JPH069474A (en) * 1992-06-26 1994-01-18 Daikin Ind Ltd Production of fluorinated vinyl ether
JPH09286824A (en) * 1995-11-15 1997-11-04 Bayer Ag Peroxide-cross-linkable fluororubber and its production and use
JP2003518051A (en) * 1999-12-22 2003-06-03 ダイネオン エルエルシー Fluorine-containing vinyl ether
WO2002026682A1 (en) * 2000-09-26 2002-04-04 Asahi Glass Company, Limited Process for producing fluorinated vinyl ethers
JP2009500330A (en) * 2005-06-30 2009-01-08 スリーエム イノベイティブ プロパティズ カンパニー Method for producing fluorinated vinyl ethers
JP2009203172A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Method for producing perfluoro multifunctional vinyl ether compound
WO2015029839A1 (en) * 2013-08-26 2015-03-05 旭硝子株式会社 Method for producing fluorinated compound
WO2015080002A1 (en) * 2013-11-26 2015-06-04 旭硝子株式会社 Perfluoroelastomer, perfluoroelastomer composition, crosslinked rubber product, and method for manufacturing perfluoroelastomer
CN103694417A (en) * 2013-12-14 2014-04-02 衢州市中通化工有限公司 Preparation method of polytetrafluoroethylene and high density polyethylene blended compatibilizer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CIRKVA, VLADIMIR; PALETA, OLDRICH: "Radical addition reactions of fluorinated species. Part 7. Highly selective two-step synthesis of 1-", JOURNAL OF FLUORINE CHEMISTRY, vol. 94(2), JPN6021000799, 1999, pages 141 - 156, ISSN: 0004544770 *
DEMIDOV, S. V.; KIM, I. P.; MIKHAILOV, A. I.; BARKALOV, I. M.: "Radiolysis of perfluorovinyl ethers", KHIMIYA VYSOKIKH ENERGII, vol. 23(2), JPN6021000803, 1989, pages 124 - 7, ISSN: 0004544772 *
GLAZKOV, A. A.; IGNATENKO, A. V.; KRUKOVSKII, S. P.; PONOMARENKO, V. A.: "Cycloaddition of perfluorovinyl ethers to dienes", IZVESTIYA AKADEMII NAUK SSSR, SERIYA KHIMICHESKAYA, vol. (10), JPN6021000800, 1988, pages 2372 - 7, ISSN: 0004544771 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138659A1 (en) * 2020-12-25 2022-06-30 Agc株式会社 Method for producing fluorovinyl ether compound

Similar Documents

Publication Publication Date Title
JP5149885B2 (en) Fluorosulfates of hexafluoroisobutylene and its higher homologues and their derivatives
JP4934939B2 (en) Method for producing fluorine-containing ketone
US9783483B2 (en) Process for producing fluorinated compound
GB2058763A (en) Preparation of Fluorocarbonyl and Compounds
JPWO2002055471A1 (en) Process for producing fluorinated ester, fluorinated acyl fluoride and fluorinated vinyl ether
US5902908A (en) Method for preparing fluorinated vinyl ether
RU2252210C2 (en) Method for production of vic-dichlorofluoroanhydride
RU2671967C1 (en) Methods for obtaining halogenated fluoridated ether containing compounds
JP2019014667A (en) Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)
KR100758163B1 (en) Processes for the preparation of fluorinated acyl fluorides and fluorinated vinyl ethers
WO2002044138A1 (en) Process for producing fluorosulfonyl fluoride compound
EP3436424B1 (en) Method for the manufacture of fluorinated compounds
US7053238B2 (en) Process for producing fluorinated polyvalent carbonyl compound
CA2516342A1 (en) Process for producing perfluorodiacyl fluorinated compounds
JP5092192B2 (en) Process for producing perfluoro compounds and derivatives thereof
EP1288183A1 (en) Process for preparing unsaturated compounds by pyrolysis
JP2010195937A (en) Fluorine-containing organic peroxide, polymerization initiator, and method for producing fluorine-containing polymer
JPWO2002026682A1 (en) Method for producing fluorine-containing vinyl ether compound
JPH0356435A (en) Oligomerization of perfluoro(vinyl ether)
US8232416B2 (en) Method of manufacturing perfluorinated polyfunctional vinyl ether compound
JPWO2004050649A1 (en) Perfluoro five-membered ring compound
JP2005225816A (en) Production method for fluorine-containing allyl ether
JP2016013994A (en) Method for producing tetrafluoroethylene and/or hexafluoropropylene
JP2006282619A (en) New compound having perfluoro(2,2-divinyl-1,3-dioxolane) structure and fluorine-containing polymer
JP2006282619A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210119

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210713