JP2005225816A - Production method for fluorine-containing allyl ether - Google Patents

Production method for fluorine-containing allyl ether Download PDF

Info

Publication number
JP2005225816A
JP2005225816A JP2004036529A JP2004036529A JP2005225816A JP 2005225816 A JP2005225816 A JP 2005225816A JP 2004036529 A JP2004036529 A JP 2004036529A JP 2004036529 A JP2004036529 A JP 2004036529A JP 2005225816 A JP2005225816 A JP 2005225816A
Authority
JP
Japan
Prior art keywords
atom
following formula
compound represented
cof
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004036529A
Other languages
Japanese (ja)
Inventor
Kazuya Oharu
一也 大春
Masazumi Nagai
政澄 永井
Masao Iwatani
真男 岩谷
Hiromasa Yamamoto
弘賢 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004036529A priority Critical patent/JP2005225816A/en
Publication of JP2005225816A publication Critical patent/JP2005225816A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a fluorine-containing allyl ether having a desired structure by a short process by using an inexpensive compound as a raw material. <P>SOLUTION: In the production method, a compound having at least one -O(CF<SB>2</SB>)<SB>3</SB>COF group, e.g. a compound represented by R<SP>F</SP>O(CF<SB>2</SB>)<SB>3</SB>COF (wherein R<SP>F</SP>is a monovalent organic group unchangeable by a thermal decomposition reaction), is subjected to a thermal decomposition reaction to change at least one -O(CF<SB>2</SB>)<SB>3</SB>COF group into a -OCF<SB>2</SB>CF=CF<SB>2</SB>group, thus yielding a fluorine-containing allyl ether having at least one -OCF<SB>2</SB>CF=CF<SB>2</SB>group, e.g. a compound represented by R<SP>F</SP>OCF<SB>2</SB>CF=CF<SB>2</SB>. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、含フッ素アリルエーテルの製造方法に関する。   The present invention relates to a method for producing a fluorine-containing allyl ether.

フッ素樹脂は、耐熱性や耐薬品性等の物性に優れ、広い分野で使用されている。ペルフルオロ(アルキルアルケニルエーテル)はフッ素ポリマーのモノマーとして有用であり、ペルフルオロ(アルキルアルケニルエーテル)の1種であるペルフルオロ(アルキルアリルエーテル)についても多くの研究がなされている。   Fluororesin has excellent physical properties such as heat resistance and chemical resistance, and is used in a wide range of fields. Perfluoro (alkyl alkenyl ethers) are useful as monomers for fluoropolymers, and many studies have been made on perfluoro (alkyl allyl ethers), which are a type of perfluoro (alkyl alkenyl ethers).

ペルフルオロ(アルキルアリルエーテル)の製造方法としては、金属フッ化物存在下に含フッ素ケトンまたは含フッ素カルボン酸フルオリドとパーフルオロアリルクロリド、パーフルオロアリルブロミド、またはパーフルオロアリルフルオロサルフェートとを反応させて製造する方法(特許文献1参照)、亜鉛の存在下にペルフルオロ(1,2−ジクロロプロピルエーテル)類を脱塩素化反応させて製造する方法(特許文献2参照)が知られている。   Perfluoro (alkyl allyl ether) is produced by reacting fluorine-containing ketone or fluorine-containing carboxylic acid fluoride with perfluoroallyl chloride, perfluoroallyl bromide, or perfluoroallylfluorosulfate in the presence of a metal fluoride. And a method of producing perfluoro (1,2-dichloropropyl ether) by dechlorination reaction in the presence of zinc (see Patent Document 2) is known.

しかし、特許文献1の方法は入手が困難であるパーフルオロアリルクロリド、パーフルオロアリルブロミド、またはパーフルオロアリルフルオロサルフェートを用いる問題があった。また、特許文献2の方法は亜鉛を別途処理する必要があるため工業的な実施が不利であった。一方、直鎖状ペルフルオロアルカン酸フルオリドを熱分解反応させて2重結合を導入する方法も知られている(特許文献3参照)。しかし、特許文献3に記載される方法は、分離困難で重合性に影響を与える異性体が生成しうる問題があり、モノマーを工業的に製造する方法には適さない。フルオロ(3−アルコキシアルカン酸)フルオリドを熱分解反応する試みもされている(特許文献4参照)が、該酸フルオリドが入手困難である問題もあり、有効に実用化されていない。   However, the method of Patent Document 1 has a problem of using perfluoroallyl chloride, perfluoroallyl bromide, or perfluoroallylfluorosulfate, which is difficult to obtain. Moreover, since the method of patent document 2 needs to process zinc separately, industrial implementation was disadvantageous. On the other hand, a method of introducing a double bond by thermally decomposing linear perfluoroalkanoic acid fluoride is also known (see Patent Document 3). However, the method described in Patent Document 3 has a problem that isomers that are difficult to separate and affect the polymerizability may be generated, and are not suitable for industrially producing monomers. Attempts have been made to thermally decompose fluoro (3-alkoxyalkanoic acid) fluoride (see Patent Document 4), but there is a problem that the acid fluoride is difficult to obtain, and it has not been effectively put into practical use.

米国特許4273728号明細書US Pat. No. 4,273,728 国際公開第01/46108号パンフレットInternational Publication No. 01/46108 Pamphlet 米国特許3020321号明細書U.S. Pat. No. 3,020,321 特開平01−113328号公報JP-A-01-113328

本発明は、安価に入手可能な化合物を原料として、所望の構造を有する含フッ素アリルエーテルを短工程で製造する方法の提供を目的とする。   An object of the present invention is to provide a method for producing a fluorine-containing allyl ether having a desired structure in a short process from a compound available at a low cost.

すなわち、本発明は下記の発明を提供する。
<1>−O(CFCOF基を1個以上有する化合物において熱分解反応を行い、該化合物の−O(CFCOF基の1個以上を−OCFCF=CF基に変換する−OCFCF=CF基を1個以上有する含フッ素アリルエーテルの製造方法。
That is, the present invention provides the following inventions.
<1> A thermal decomposition reaction is performed on a compound having one or more —O (CF 2 ) 3 COF groups, and one or more of the —O (CF 2 ) 3 COF groups of the compound is converted to —OCF 2 CF═CF 2 groups. -OCF 2 CF = process for producing a fluorinated allyl ether of CF 2 groups having 1 or more to convert to.

<2>熱分解反応によって生成した−OCFCF=CF基の総数が、−O(CFCOF基を1個以上有する化合物中の−O(CFCOF基の総数の85モル%以上である<1>に記載の製造方法。 Total -OCF 2 CF = CF 2 group generated by <2> thermal decomposition reaction, -O (CF 2) 3 the COF group in a compound having at least one -O (CF 2) 3 of the total number of COF groups The manufacturing method as described in <1> which is 85 mol% or more.

<3><1>または<2>に記載の製造方法で得た含フッ素アリルエーテルの1種以上を重合する、または該含フッ素アリルエーテルの1種以上と該含フッ素アリルエーテルと共重合する他の単量体の1種以上とを重合をする、ことを特徴とする含フッ素重合体の製造方法。   <3> Polymerize one or more fluorine-containing allyl ethers obtained by the production method according to <1> or <2>, or copolymerize one or more fluorine-containing allyl ethers with the fluorine-containing allyl ether. A method for producing a fluorinated polymer, wherein one or more other monomers are polymerized.

<4>下式(2)で表される化合物において、熱分解反応を行うことを特徴とする下式(1)で表される化合物の製造方法。
O(CFCOF (2)
OCFCF=CF (1)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
<4> A method for producing a compound represented by the following formula (1), wherein the compound represented by the following formula (2) is subjected to a thermal decomposition reaction.
R F O (CF 2) 3 COF (2)
R F OCF 2 CF = CF 2 (1)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.

<5>熱分解反応によって生成した下式(1)で表される化合物の選択率が、下式(2)で表される化合物に対して85モル%以上である<4>に記載の製造方法。
O(CFCOF (2)
OCFCF=CF (1)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
<5> The production according to <4>, wherein the selectivity of the compound represented by the following formula (1) generated by the thermal decomposition reaction is 85 mol% or more with respect to the compound represented by the following formula (2). Method.
R F O (CF 2) 3 COF (2)
R F OCF 2 CF = CF 2 (1)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.

<6><4>または<5>に記載の製造方法で得た下式(1)で表される化合物の1種以上、または該下式(1)で表される化合物の1種以上を重合する、または該下式(1)で表される化合物と共重合する他の単量体の1種類以上とを重合することを特徴とする含フッ素重合体の製造方法。
OCFCF=CF (1)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
<6> One or more compounds represented by the following formula (1) obtained by the production method according to <4> or <5>, or one or more compounds represented by the following formula (1) A method for producing a fluoropolymer, which comprises polymerizing or at least one other monomer copolymerized with the compound represented by the following formula (1).
R F OCF 2 CF = CF 2 (1)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.

<7>下式(6)で表される化合物と下式(5)で表される化合物を反応して下式(4)で表される化合物とし、つぎに該下式(4)で表される化合物をフッ素化反応して下式(3)で表される化合物とし、つぎに該下式(3)で表される化合物のエステル分解反応をすることを特徴とする下式(2)で表される化合物の製造方法。
RO(CHOH (6)
F1COF (5)
RO(CHOCORF1 (4)
O(CFOCORF1 (3)
O(CFCOF (2)
ただし、RおよびRF1は、それぞれ独立に、熱分解反応により変化しない1価有機基を示す。またRは、Rと同一または異なる1価有機基を示し、Rと異なる1価有機基である場合のRは、フッ素化反応によってRとなる1価有機基を示す。
<7> A compound represented by the following formula (6) and a compound represented by the following formula (5) are reacted to form a compound represented by the following formula (4), and then represented by the following formula (4): The compound represented by the following formula (3) is subjected to a fluorination reaction, followed by ester decomposition reaction of the compound represented by the following formula (3). The manufacturing method of the compound represented by these.
RO (CH 2 ) 4 OH (6)
R F1 COF (5)
RO (CH 2 ) 4 OCOR F1 (4)
R F O (CF 2) 4 OCOR F1 (3)
R F O (CF 2) 3 COF (2)
However, R F and R F1 each independently represent a monovalent organic group that does not change due to the thermal decomposition reaction. The R represents an R F and the same or different monovalent organic group, R when it is a monovalent organic group different from R F is a monovalent organic group which becomes R F by fluorination reaction.

<8>HO(CHOHと下式(7−1)で表される化合物とを、ヒドリド化合物の存在下に反応させることを特徴とする下式(6−1)で表される化合物の製造方法。
CX=CX (7−1)
CX=CXO(CHOH (6−1)
ただし、X、X、およびXは、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、エーテル性酸素原子を含んでもよいアルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基であって、Xは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。
<8> HO (CH 2 ) 4 OH and a compound represented by the following formula (7-1) are reacted in the presence of a hydride compound, and represented by the following formula (6-1) Compound production method.
CX 1 X 2 = CX 3 X 4 (7-1)
CX 1 X 2 = CX 3 O (CH 2 ) 4 OH (6-1)
However, X 1 , X 2 , and X 3 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group that may contain an etheric oxygen atom, or a polyvalent compound that may contain an etheric oxygen atom. In the fluoroalkyl group, X 4 is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.

<9>HO(CHOHと下式(7−2)で表される化合物とを、アルカリ金属水酸化物の存在下に反応させることを特徴とする下式(6−2)で表される化合物の製造方法。
CX=CX (7−2)
CHXCXO(CHOH (6−2)
ただし、X、X、およびXは、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、エーテル性酸素原子を含んでもよいアルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基であって、Xは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。
<9> HO (CH 2 ) 4 OH and a compound represented by the following formula (7-2) are reacted in the presence of an alkali metal hydroxide in the following formula (6-2) A method for producing the represented compound.
CX 5 X 6 = CX 7 X 8 (7-2)
CHX 5 X 6 CX 7 X 8 O (CH 2) 4 OH (6-2)
However, X 5 , X 6 , and X 7 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group that may contain an etheric oxygen atom, or a polyvalent compound that may contain an etheric oxygen atom. In the fluoroalkyl group, X 8 is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.

<10>HO(CHOHと下式(7−3)で表される化合物とを反応させることを特徴とする下式(6−3)で表される化合物の製造方法。
(7−3)
O(CHOH (6−3)
ただし、Xは、塩素原子、臭素原子、ヨウ素原子、または−SO(ただし、Rは1価有機基を示す。)を示す。Rは、1価飽和有機基を示す。
<10> A method for producing a compound represented by the following formula (6-3), which comprises reacting HO (CH 2 ) 4 OH with a compound represented by the following formula (7-3).
R 1 X 9 (7-3)
R 1 O (CH 2 ) 4 OH (6-3)
X 9 represents a chlorine atom, a bromine atom, an iodine atom, or —SO 2 R A (wherein R A represents a monovalent organic group). R 1 represents a monovalent saturated organic group.

<11>下式で表される化合物のいずれか(ただし、Mはナトリウム原子、またはカリウム原子を示す。)。
CHFO(CH)OH、
CHFCFO(CH)OH、
CH=CHCHO(CH)OH、
CFCHFCFO(CH)OH、
CFCFCFOCHFCFO(CHOH、
CFO(CFCOF、
CFCFO(CFCOF、
CFClCFClCFO(CFCOF、
CFO(CFCOOM、
CFClCFClCFO(CFCOOM、
CFClCFClCFOCFCF=CF
<11> Any of the compounds represented by the following formula (where M represents a sodium atom or a potassium atom).
CHF 2 O (CH 2 ) 4 OH,
CHF 2 CF 2 O (CH 2 ) 4 OH,
CH 2 = CHCH 2 O (CH 2) 4 OH,
CF 3 CHFCF 2 O (CH 2 ) 4 OH,
CF 3 CF 2 CF 2 OCHFCF 2 O (CH 2 ) 4 OH,
CF 3 O (CF 2 ) 3 COF,
CF 3 CF 2 O (CF 2 ) 3 COF,
CF 2 ClCFClCF 2 O (CF 2 ) 3 COF,
CF 3 O (CF 2 ) 3 COOM,
CF 2 ClCFClCF 2 O (CF 2 ) 3 COOM,
CF 2 ClCFClCF 2 OCF 2 CF = CF 2.

本発明の方法によれば、有用なフッ素樹脂の原料である含フッ素アリルエーテルを極めて工業的に有利な方法で製造できる。また本発明の方法によれば、含フッ素アリルエーテルを重合した含フッ素重合体が提供される。   According to the method of the present invention, a fluorine-containing allyl ether which is a useful raw material for a fluororesin can be produced by a very industrially advantageous method. Moreover, according to the method of the present invention, a fluorine-containing polymer obtained by polymerizing fluorine-containing allyl ether is provided.

本明細書においては、式(1)で表される化合物を化合物(1)と記す。他の式で表される化合物においても同様に記す。本明細書における有機基とは、炭素原子を必須とする基であり、炭素数が1〜30である該基が好ましい。有機基は、飽和の基であっても、不飽和の基であってもよい。また有機基は、直鎖構造、分岐構造、環構造、または環構造を部分的に有する構造が好ましい。   In the present specification, a compound represented by the formula (1) is referred to as a compound (1). The same applies to compounds represented by other formulas. The organic group in the present specification is a group which essentially requires a carbon atom, and the group having 1 to 30 carbon atoms is preferable. The organic group may be a saturated group or an unsaturated group. The organic group is preferably a linear structure, a branched structure, a ring structure, or a structure having a partial ring structure.

有機基のうちハロゲン原子を含有しない有機基としては、アルキル基、エーテル性酸素原子含有アルキル基、アルケニル基、またはエーテル性酸素原子含有アルケニル基、が挙げられる。有機基のうちハロゲン原子を含有する有機基としては、ハロゲン化アルキル基、ハロゲン化(エーテル性酸素原子含有アルキル)基、ハロゲン化アルケニル基、またはハロゲン化(エーテル性酸素原子含有アルケニル)基、が挙げられる。ただしハロゲン化とは、水素原子の少なくとも1個がハロゲン原子に置換されていることを意味する。ハロゲン化のうち「ポリフルオロ」とは、基中の水素原子が2個以上、フッ素原子で置換されていることを意味する。ハロゲン化のうち「ペルフルオロ」とは、基中の水素原子が全てフッ素原子に置換されていることを意味する。またハロゲン化のうち「部分クロロ」とは、基中の水素原子が部分的に塩素原子で置換されていることを意味する。   Examples of the organic group that does not contain a halogen atom among the organic groups include an alkyl group, an etheric oxygen atom-containing alkyl group, an alkenyl group, or an etheric oxygen atom-containing alkenyl group. Among the organic groups, the organic group containing a halogen atom includes a halogenated alkyl group, a halogenated (etheric oxygen atom-containing alkyl) group, a halogenated alkenyl group, or a halogenated (etheric oxygen atom-containing alkenyl) group. Can be mentioned. However, the halogenation means that at least one hydrogen atom is substituted with a halogen atom. In the halogenation, “polyfluoro” means that two or more hydrogen atoms in the group are substituted with fluorine atoms. In the halogenation, “perfluoro” means that all hydrogen atoms in the group are substituted with fluorine atoms. In the halogenation, “partial chloro” means that a hydrogen atom in the group is partially substituted with a chlorine atom.

本発明は、−O(CFCOF基を1個以上有する化合物(以下、単に酸フルオリドともいう。)において、熱分解反応を行う(ただし、−O(CFCOF基中のCFに結合する酸素原子は、エーテル性酸素原子である。)。酸フルオリドとしては、−O(CFCOF基を1〜4個有する化合物が好ましく、−O(CFCOF基を1個または2個有する化合物が特に好ましく、−O(CFCOF基を1個有する化合物がとりわけ好ましい。−O(CFCOF基を1個有する化合物としては、下記化合物(2)が好ましい。
O(CFCOF (2)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
In the present invention, a compound having one or more —O (CF 2 ) 3 COF groups (hereinafter, also simply referred to as acid fluoride) undergoes a thermal decomposition reaction (provided that the —O (CF 2 ) 3 COF group The oxygen atom bonded to CF 2 is an etheric oxygen atom.) The acid fluoride, -O (CF 2) 3 compounds of the COF group having 1-4 preferably, -O (CF 2) particularly preferably one or compounds having two 3 COF group, -O (CF 2 ) 3 compounds of the COF group having one is especially preferred. As a compound having one —O (CF 2 ) 3 COF group, the following compound (2) is preferable.
R F O (CF 2) 3 COF (2)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.

熱分解反応により変化しない1価有機基(R)とは、式−COZで表される基が存在しない基が挙げられる。ただしZは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、または式−OYで表される基(ただし、Yは、ナトリウム原子、カリウム原子、セシウム原子等のアルカリ金属原子を示す。)を示す。Rとしては、フッ素原子を含有する1価有機基が好ましく、ポリフルオロアルキル基、ポリフルオロアルケニル基、ポリフルオロ(エーテル性酸素原子含有アルキル)基、ポリフルオロ(エーテル性酸素原子含有アルケニル)基、ポリフルオロ(部分クロロアルキル)基、ポリフルオロ(部分クロロ(エーテル性酸素原子含有アルキル))基が特に好ましく、ペルフルオロアルキル基、ペルフルオロ(エーテル性酸素原子含有アルキル)基、ペルフルオロ(部分クロロアルキル)基、またはペルフルオロ(部分クロロ(エーテル性酸素原子含有アルキル)基がとりわけ好ましい。 Examples of the monovalent organic group (R F ) that does not change due to the thermal decomposition reaction include groups in which the group represented by the formula —COZ does not exist. However, Z shows a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, or group represented by Formula -OY (however, Y shows alkali metal atoms, such as a sodium atom, a potassium atom, a cesium atom). . R F is preferably a monovalent organic group containing a fluorine atom, such as a polyfluoroalkyl group, a polyfluoroalkenyl group, a polyfluoro (etheric oxygen atom-containing alkyl) group, or a polyfluoro (etheric oxygen atom-containing alkenyl) group. , Polyfluoro (partial chloroalkyl) group, polyfluoro (partial chloro (etheric oxygen atom-containing alkyl)) group is particularly preferred, perfluoroalkyl group, perfluoro (etheric oxygen atom-containing alkyl) group, perfluoro (partial chloroalkyl) The group or perfluoro (partial chloro (etheric oxygen atom-containing alkyl) group is particularly preferred.

化合物(2)の具体例としては、下記の化合物が挙げられる。ただし以下において、Cyはペルフルオロシクロヘキシル基を示す。
CFO(CFCOF、
CFCFO(CFCOF、
CF(CFOCFCFO(CFCOF、
CF(CFO(CFCOF、
(CFCFO(CFCOF、
CyCFO(CFCOF、
CFClCFClO(CFCOF、
CFClCFClCFO(CFCOF。
Specific examples of the compound (2) include the following compounds. In the following, Cy F represents a perfluorocyclohexyl group.
CF 3 O (CF 2 ) 3 COF,
CF 3 CF 2 O (CF 2 ) 3 COF,
CF 3 (CF 2 ) 2 OCF 2 CF 2 O (CF 2 ) 3 COF,
CF 3 (CF 2 ) 2 O (CF 2 ) 3 COF,
(CF 3 ) 2 CFO (CF 2 ) 3 COF,
Cy F CF 2 O (CF 2 ) 3 COF,
CF 2 ClCFClO (CF 2 ) 3 COF,
CF 2 ClCFClCF 2 O (CF 2 ) 3 COF.

本発明においては、酸フルオリドの熱分解反応を行う。熱分解反応とは、酸フルオリドの−O(CFCOF基の少なくとも1個が、加熱により−OCFCF=CF基に変換する反応、または、酸フルオリドの−O(CFCOF基の少なくとも1個を、−O(CFCOOQ基(ただしQは、ナトリウム原子、カリウム原子、またはセシウム原子を示す。)に変換し、つぎに加熱により−OCFCF=CF基に変換する反応をいう。熱分解反応においては、酸フルオリドの−O(CFCOF基の少なくとも1個が−OCFCF=CF基に変換された化合物、すなわち含フッ素アリルエーテルが生成する。さらに本発明における酸フルオリドが、−O(CFCOF基を2個以上有する場合には、該基の一部が−OCFCF=CF基に変換され残余の基が−O(CFCOF基である化合物も生成しうるが、本発明においては−O(CFCOF基の全てが−OCFCF=CF基に変換された化合物が生成するのが特に好ましい。 In the present invention, a thermal decomposition reaction of acid fluoride is performed. The thermal decomposition reaction is a reaction in which at least one of —O (CF 2 ) 3 COF groups of acid fluoride is converted to —OCF 2 CF═CF 2 group by heating, or —O (CF 2 ) of acid fluoride. At least one of the 3 COF groups is converted to —O (CF 2 ) 3 COOQ group (where Q represents a sodium atom, a potassium atom, or a cesium atom), and then heated to —OCF 2 CF═CF This refers to a reaction that converts to two groups. In the thermal decomposition reaction, a compound in which at least one of —O (CF 2 ) 3 COF groups of acid fluoride is converted to —OCF 2 CF═CF 2 groups, that is, fluorine-containing allyl ether is generated. Further, when the acid fluoride in the present invention has two or more —O (CF 2 ) 3 COF groups, a part of the groups are converted to —OCF 2 CF═CF 2 groups, and the remaining groups are converted to —O ( A compound that is a CF 2 ) 3 COF group can also be produced, but in the present invention, a compound in which all of —O (CF 2 ) 3 COF groups are converted to —OCF 2 CF═CF 2 groups is particularly produced. preferable.

本発明の熱分解反応は、酸フルオリドの−O(CFCOF基の総数に対する熱分解反応によって生成した−OCFCF=CF基の総数が、85モル%以上である反応が好ましく、95モル%以上である反応が特に好ましい。また本発明における酸フルオリドが化合物(2)である場合は、化合物(2)に対して化合物(1)の選択率が、85モル%以上である反応が好ましく、95モル%以上である反応が特に好ましい。 The thermal decomposition reaction of the present invention is preferably a reaction in which the total number of —OCF 2 CF═CF 2 groups generated by the thermal decomposition reaction with respect to the total number of —O (CF 2 ) 3 COF groups in acid fluoride is 85 mol% or more. Particularly preferred is a reaction of 95 mol% or more. Moreover, when the acid fluoride in this invention is a compound (2), the reaction whose selectivity of a compound (1) is 85 mol% or more with respect to a compound (2) is preferable, and reaction which is 95 mol% or more is preferable. Particularly preferred.

−O(CFCOF基を1個有する化合物(2)を熱分解反応して生成する化合物としては、下記化合物が挙げられる。
CFOCFCF=CF
CFCFOCFCF=CF
CF(CFOCFCF=CF
CF(CFOCFCFOCFCF=CF
(CFCFOCFCF=CF
CyCFOCFCF=CF
CFClCFClOCFCF=CF
CFClCFClCFOCFCF=CF
Examples of the compound formed by thermal decomposition reaction of the compound (2) having one —O (CF 2 ) 3 COF group include the following compounds.
CF 3 OCF 2 CF = CF 2 ,
CF 3 CF 2 OCF 2 CF = CF 2,
CF 3 (CF 2 ) 2 OCF 2 CF═CF 2 ,
CF 3 (CF 2 ) 2 OCF 2 CF 2 OCF 2 CF═CF 2 ,
(CF 3) 2 CFOCF 2 CF = CF 2,
Cy F CF 2 OCF 2 CF = CF 2,
CF 2 ClCFClOCF 2 CF = CF 2 ,
CF 2 ClCFClCF 2 OCF 2 CF = CF 2.

本発明の熱分解反応は、気相反応で行う、または、液相反応で行うのが好ましく、反応効率の観点から、気相反応で行うのが特に好ましい。
熱分解反応を気相反応で行う場合には、触媒の存在下に行うのが好ましく、ガラス、アルカリ金属塩、およびアルカリ土類金属塩から選ばれる1種以上の触媒の存在下に行うのが特に好ましい。触媒を用いる場合は、流動層で行うのが効率的である観点から、触媒の中心粒度が100〜250μmであるのが好ましい。
The thermal decomposition reaction of the present invention is preferably performed by a gas phase reaction or a liquid phase reaction, and particularly preferably performed by a gas phase reaction from the viewpoint of reaction efficiency.
When the pyrolysis reaction is carried out by a gas phase reaction, it is preferably carried out in the presence of a catalyst, preferably in the presence of one or more catalysts selected from glass, alkali metal salts, and alkaline earth metal salts. Particularly preferred. When using a catalyst, it is preferable that the center particle size of a catalyst is 100-250 micrometers from a viewpoint that it is efficient to carry out with a fluidized bed.

ガラスとしては、ソーダライムガラス(NaO−CaO−SiO系のガラス等。)、鉛クリスタルガラス(KO−PbO−SiO系のガラス等。)、セミクリスタルガラス(KO−PbO−SiOにNaO等を含むガラス等。)、ホウ珪酸塩ガラス(NaO−B−SiO系のガラス等。)が挙げられる。アルカリ金属塩およびアルカリ土類金属塩としては、炭酸塩またはフッ化物が好ましい。アルカリ金属塩としては、炭酸ナトリウム、フッ化ナトリウム、炭酸カリウム、および炭酸リチウム等が挙げられる。アルカリ土類金属塩としては、炭酸カルシウム、フッ化カルシウム、炭酸マグネシウム、および炭酸バリウム等が挙げられる。熱分解反応は、反応収率の観点から、ガラス、炭酸カルシウム、および炭酸バリウムから選ばれる1種の触媒の存在下に実施するのが好ましい。 Examples of the glass include soda lime glass (Na 2 O—CaO—SiO 2 glass, etc.), lead crystal glass (K 2 O—PbO—SiO 2 glass, etc.), and semi-crystal glass (K 2 O—). And glass containing Na 2 O in PbO—SiO 2 ), borosilicate glass (Na 2 O—B 2 O 3 —SiO 2 based glass, etc.). The alkali metal salt and alkaline earth metal salt are preferably carbonates or fluorides. Examples of the alkali metal salt include sodium carbonate, sodium fluoride, potassium carbonate, and lithium carbonate. Examples of the alkaline earth metal salt include calcium carbonate, calcium fluoride, magnesium carbonate, and barium carbonate. The thermal decomposition reaction is preferably carried out in the presence of one kind of catalyst selected from glass, calcium carbonate, and barium carbonate from the viewpoint of reaction yield.

気相反応における反応温度は、酸フルオリドの沸点により適宜変更され、50℃〜400℃が好ましく、100℃〜360℃が特に好ましい。また気相反応における反応圧力は、特に限定されない。   The reaction temperature in the gas phase reaction is appropriately changed depending on the boiling point of the acid fluoride, preferably 50 ° C to 400 ° C, particularly preferably 100 ° C to 360 ° C. The reaction pressure in the gas phase reaction is not particularly limited.

気相反応は、連続反応で行うのが好ましい。連続反応は、酸フルオリドを気化させて、つぎに気化した酸フルオリドを反応温度に加熱した管型反応器に流通させて含フッ素アリルエーテルを含むガスを得て、つぎに該ガスを精製して含フッ素アリルエーテルを得る方法によるのが好ましい。熱分解反応を管型反応器を用いた気相反応で行う場合は、酸フルオリドを不活性ガスで希釈してもよい。不活性ガスとしては、窒素ガス、二酸化炭素ガス、ヘリウムガス、アルゴンガス等が挙げられる。不活性ガス量は、酸フルオリドに対して0.01〜50体積%が好ましい。   The gas phase reaction is preferably performed as a continuous reaction. In the continuous reaction, acid fluoride is vaporized, then the vaporized acid fluoride is passed through a tubular reactor heated to the reaction temperature to obtain a gas containing fluorine-containing allyl ether, and then the gas is purified. It is preferable to use a method for obtaining a fluorinated allyl ether. When the pyrolysis reaction is carried out by a gas phase reaction using a tubular reactor, the acid fluoride may be diluted with an inert gas. Examples of the inert gas include nitrogen gas, carbon dioxide gas, helium gas, and argon gas. The amount of the inert gas is preferably 0.01 to 50% by volume with respect to the acid fluoride.

また該気相反応においては、管型反応器中の滞留時間を調整することにより含フッ素アリルエーテルの2重結合の異性化反応を抑制できる。滞留時間(V/V。単位は時間。)とは、管型反応器中を流通させる酸フルオリドの単位時間当たりの体積(V。単位は体積/時間。)に対する管型反応器の総容積(V。単位は体積。)をいう。滞留時間は、0.1〜600秒であるのが好ましく、0.1〜60秒であるのが特に好ましい。滞留時間が該範囲である場合は、本発明の熱分解反応は、酸フルオリドの−O(CFCOF基の総数に対して生成する−OCFCF=CF基の総数が、85モル%以上となり、後述する重合性単量体の製造方法として好ましい。ただし、酸フルオリドを不活性ガスで希釈した場合のVは、酸フルオリドと不活性ガスの総単位時間当たりの体積であり、管型反応器に触媒を充填して行う場合のVは、触媒の総体積をいう。 In the gas phase reaction, the isomerization reaction of the double bond of the fluorine-containing allyl ether can be suppressed by adjusting the residence time in the tubular reactor. The residence time (V 2 / V 1, unit is hours) is the tube reactor relative to the volume per unit time (V 1, unit is volume / hour) of the acid fluoride flowing through the tubular reactor. Total volume (V 2, unit is volume). The residence time is preferably from 0.1 to 600 seconds, particularly preferably from 0.1 to 60 seconds. If the residence time is the range, the thermal decomposition reaction of the present invention, the total number of -OCF 2 CF = CF 2 group to produce the total number of -O (CF 2) 3 COF group of the acid fluoride, 85 This is preferable as a method for producing a polymerizable monomer described later. However, V 1 when the acid fluoride is diluted with an inert gas is the volume per unit time of the acid fluoride and the inert gas, and V 2 when the tubular reactor is filled with a catalyst is: Refers to the total volume of the catalyst.

含フッ素アリルエーテルを含むガスからの含フッ素アリルエーテルの精製方法は、該ガス中に含まれるカルボニルフルオリド等の含フッ素アリルエーテルよりも低沸点の化合物を除去するために、該ガスを凝縮して含フッ素アリルエーテルを液化させて回収する方法が好ましい。   The purification method of the fluorine-containing allyl ether from the gas containing the fluorine-containing allyl ether is a method of condensing the gas in order to remove a compound having a lower boiling point than the fluorine-containing allyl ether such as carbonyl fluoride contained in the gas. Thus, a method of liquefying and recovering the fluorine-containing allyl ether is preferable.

本発明の熱分解反応は、酸フルオリドの沸点が高い場合は、液相反応で行うのが好ましい。液相反応は、触媒の存在下に行ってよく触媒の不存在下に行ってもよく、触媒の不存在下に行うのが好ましい。触媒を用いる場合には、気相反応における触媒と同様の触媒を用いうる。   The thermal decomposition reaction of the present invention is preferably performed by a liquid phase reaction when the boiling point of the acid fluoride is high. The liquid phase reaction may be performed in the presence of a catalyst, may be performed in the absence of a catalyst, and is preferably performed in the absence of a catalyst. When a catalyst is used, a catalyst similar to the catalyst in the gas phase reaction can be used.

熱分解反応を液相反応で行う場合は、−O(CFCOF基を、まず−O(CFCOOQ基(ただしQは、ナトリウム原子、カリウム原子、またはセシウム原子を示す。)に変換し、つぎに加熱により−OCFCF=CF基に変換する反応であるのが好ましい。−O(CFCOF基を−O(CFCOOQ基(ただしQは、ナトリウム原子、またはカリウム原子を示す。)に変換する方法としては、酸フルオリドにアルカリ金属水酸化物を添加する方法が挙げられる。アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウムが挙げられる。アルカリ金属水酸化物は、そのまま添加してもよく、溶液にしてから添加してもよい。溶液としてはメタノール溶液、エタノール溶液が挙げられる。アルカリ金属水酸化物の量は、酸フルオリドがm個(ただし、mは1〜4の整数を示す。)の−O(CFCOF基を有する)場合、該酸フルオリドに対するアルカリ金属水酸化物の量をm倍モル以上とするのが好ましい。 When the thermal decomposition reaction is carried out by a liquid phase reaction, an —O (CF 2 ) 3 COF group, first an —O (CF 2 ) 3 COOQ group (where Q represents a sodium atom, a potassium atom, or a cesium atom). It is preferable that the reaction be converted to —OCF 2 CF═CF 2 group by heating. As a method of converting —O (CF 2 ) 3 COF group to —O (CF 2 ) 3 COOQ group (where Q represents a sodium atom or a potassium atom), an alkali metal hydroxide is converted to acid fluoride. The method of adding is mentioned. Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. The alkali metal hydroxide may be added as it is, or may be added after forming a solution. Examples of the solution include a methanol solution and an ethanol solution. The amount of alkali metal hydroxide, acid fluoride are m (where, m is. Represents an integer of 1 to 4) having a -O (CF 2) 3 COF groups), the alkali metal hydrosulfide with respect to the acid fluoride The amount of the oxide is preferably m times mol or more.

液相反応における反応温度は、反応時間が長くなることに伴う副反応を抑制する観点から、50℃〜300℃が好ましい。液相反応は、オートクレーブ中、管状反応器中、または固定床型反応器中、で行うのが好ましい。また液相反応は、気相反応と同様に、前記の触媒の存在下に行ってもよい。液相反応で得られる含フッ素アリルエーテルは、蒸留法、シリカゲルカラムクロマトグラフィ法、中和法等で精製するのが好ましく、蒸留法で精製するのが特に好ましい。   The reaction temperature in the liquid phase reaction is preferably 50 ° C. to 300 ° C. from the viewpoint of suppressing side reactions accompanying an increase in the reaction time. The liquid phase reaction is preferably carried out in an autoclave, a tubular reactor, or a fixed bed reactor. The liquid phase reaction may be performed in the presence of the catalyst as in the gas phase reaction. The fluorine-containing allyl ether obtained by the liquid phase reaction is preferably purified by a distillation method, a silica gel column chromatography method, a neutralization method, or the like, and particularly preferably purified by a distillation method.

本発明の熱分解反応の基質である酸フルオリドの入手方法は特に限定されない。たとえば、−O(CFCOF基を2個有する酸フルオリドは、本出願人によるWO02/04397号パンフレットに記載される方法にしたがって製造できる。すなわち、HO(CHO−で表される基を2個有する化合物を、エステル化反応、フッ素化反応、およびエステル分解反応する方法により製造できる。−O(CFCOF基を1個以上有する化合物である化合物(2)は、下記化合物(6)を出発物質とする下記の製造方法で製造するのが好ましい。 The method for obtaining acid fluoride which is a substrate for the thermal decomposition reaction of the present invention is not particularly limited. For example, an acid fluoride having two —O (CF 2 ) 3 COF groups can be produced according to the method described in WO 02/04397 by the applicant. That is, a compound having two groups represented by HO (CH 2 ) 4 O— can be produced by a method of esterification reaction, fluorination reaction, and ester decomposition reaction. Compound (2), which is a compound having one or more —O (CF 2 ) 3 COF groups, is preferably produced by the following production method using the following compound (6) as a starting material.

Figure 2005225816
Figure 2005225816

すなわち、化合物(6)と化合物(5)をエステル化反応して化合物(4)を得て、つぎに化合物(4)をフッ素化反応して化合物(3)を得て、つぎに化合物(3)をエステル分解反応して化合物(2)と化合物(5)を得て、つぎに化合物(2)と化合物(5)を分離して化合物(2)を得るのが好ましい(ただし、n、R、R、およびRF1は、前記と同じ意味を示す。)。エステル化反応、フッ素化反応、およびエステル分解反応は、WO00/56694号パンフレット等に記載される方法にしたがって実施できる。生成した化合物(2)と化合物(5)の分離は、蒸留法が好ましい。 That is, compound (6) and compound (5) are esterified to give compound (4), then compound (4) is fluorinated to give compound (3), and then compound (3) ) To obtain a compound (2) and a compound (5), and then to separate the compound (2) and the compound (5) to obtain the compound (2) (however, n, R , R F and R F1 have the same meaning as described above. The esterification reaction, fluorination reaction, and ester decomposition reaction can be carried out according to the methods described in WO 00/56694 pamphlet and the like. The separation of the produced compound (2) and compound (5) is preferably a distillation method.

F1はペルフルオロアルキル基、またはペルフルオロ(エーテル性酸素原子含有アルキル)基であるのが好ましい。該製造方法において、化合物(5)として、化合物(3)のエステル分解反応で生成した化合物(2)の一部を用いてもよい。またR基中にvic−ジクロロ構造が存在する化合物(2)の製造方法としては、該構造に対応する部分がC=C構造である化合物(6)を準備し、化合物(5)とエステル化反応させ、つぎに塩素と反応させることによってC=C構造に塩素を付加してCCl−CCl構造とし、つぎにフッ素化反応、エステル分解反応を行う方法、またはvic−ジクロロ構造に対応する部分がCHCl−CHCl構造またはCHCl=CCl構造である化合物(6)を準備してエステル化反応、フッ素化反応、およびエステル分解反応を行う方法、が好ましく、前者の方法が特に好ましい。 R F1 is preferably a perfluoroalkyl group or a perfluoro (etheric oxygen atom-containing alkyl) group. In the production method, as the compound (5), a part of the compound (2) produced by the ester decomposition reaction of the compound (3) may be used. In addition, as a method for producing the compound (2) in which a vic-dichloro structure is present in the R F group, a compound (6) in which a portion corresponding to the structure has a C═C structure is prepared, and the compound (5) and an ester are prepared. A method corresponding to a method in which chlorine is added to a C═C structure by reacting with chlorine and then reacting with chlorine to form a CCl—CCl structure, followed by fluorination reaction, ester decomposition reaction, or vic-dichloro structure A method in which a compound (6) having a CH 2 Cl—CHCl structure or a CHCl═CCl structure is prepared and an esterification reaction, a fluorination reaction, and an ester decomposition reaction are performed is preferable, and the former method is particularly preferable.

前者の方法の例として、RがCFClCFClCF−である化合物(2)、たとえばCFClCFClCFO(CFCOFの場合は、化合物(6)としてCH=CHCHO(CHOHを準備し、エステル化してCH=CHCHO(CHOCORF1とした後に、塩素ガスと反応させてCHClCHClCHO(CHOCORF1を得て、つぎにフッ素化反応してCFClCFClCFO(CFOCORF1とし、これをエステル分解反応する方法が挙げられる。 As an example of the former method, in the case of a compound (2) in which R F is CF 2 ClCFClCF 2 —, for example, CF 2 ClCFClCF 2 O (CF 2 ) 3 COF, CH 2 ═CHCH 2 O ( CH 2 ) 4 OH is prepared, esterified to CH 2 = CHCH 2 O (CH 2 ) 4 OCOR F1 , and then reacted with chlorine gas to obtain CH 2 ClCHClCH 2 O (CH 2 ) 4 OCOR F1. Then, fluorination reaction is performed to obtain CF 2 ClCFClCF 2 O (CF 2 ) 4 OCOR F1 , which is subjected to ester decomposition reaction.

化合物(6)の具体例としては、下記化合物が挙げられる。ただし、以下においてCyはシクロヘキシル基を示す。
CHO(CH)OH、
CHCHO(CH)OH、
CHFO(CH)OH、
CHFCFO(CH)OH、
CF(CF)OCFHCFO(CH)OH、
CFCFHCFO(CH)OH、
CFCF=CFO(CH)OH、
(CF)(CHF)CFO(CH)OH、
CF=C(CF)O(CH)OH、
CyCHO(CH)OH、
CHCl=CClO(CH)OH、
CHClCHClCHO(CH)OH。
Specific examples of the compound (6) include the following compounds. In the following, Cy represents a cyclohexyl group.
CH 3 O (CH 2 ) 4 OH,
CH 3 CH 2 O (CH 2 ) 4 OH,
CHF 2 O (CH 2 ) 4 OH,
CHF 2 CF 2 O (CH 2 ) 4 OH,
CF 3 (CF 2 ) 2 OCHFHCF 2 O (CH 2 ) 4 OH,
CF 3 CFHCF 2 O (CH 2 ) 4 OH,
CF 3 CF═CFO (CH 2 ) 4 OH,
(CF 3 ) (CHF 2 ) CFO (CH 2 ) 4 OH,
CF 2 = C (CF 3) O (CH 2) 4 OH,
CyCH 2 O (CH 2 ) 4 OH,
CHCl = CClO (CH 2 ) 4 OH,
CH 2 ClCHClCH 2 O (CH 2 ) 4 OH.

化合物(5)の具体例としては、下記化合物が挙げられる。
CFCOF、
CFCFCOF、
(CF)CFCOF、
F(CFCOF、
F(CFOCF(CF)COF、
F(CFOCF(CF)CFOCF(CF)COF。
化合物(4)の具体例としては、前記化合物(6)と前記化合物(5)とをエステル化反応させた化合物が挙げられる。
Specific examples of the compound (5) include the following compounds.
CF 3 COF,
CF 3 CF 2 COF,
(CF 3 ) 2 CFCOF,
F (CF 2 ) 3 COF,
F (CF 2 ) 3 OCF (CF 3 ) COF,
F (CF 2) 3 OCF ( CF 3) CF 2 OCF (CF 3) COF.
Specific examples of the compound (4) include compounds obtained by esterifying the compound (6) and the compound (5).

化合物(3)の具体例としては、下記化合物が挙げられる。
CFO(CF)OCOCF
CFCFO(CF)OCOCF
CF(CF)O(CF)OCOCF
CF(CF)OCFCFO(CF)OCOCF
(CF)CFO(CF)OCOCF
CyCFO(CF)OCOCF
CClFCClFO(CF)OCOCF
CClFCClFCFO(CF)OCOCF
CFO(CF)OCOCF(CF)
CFCFO(CF)OCOCF(CF)
CF(CF)OCFCFO(CF)OCOCF(CF)
CFCFCFO(CF)OCOCF(CF)
(CF)CFO(CF)OCOCF(CF)
CyCFO(CF)OCOCF(CF)
CClFCClFO(CF)OCOCF(CF)
CClFCClFCFO(CF)OCOCF(CF)
Specific examples of the compound (3) include the following compounds.
CF 3 O (CF 2 ) 4 OCOCF 3 ,
CF 3 CF 2 O (CF 2 ) 4 OCOCF 3 ,
CF 3 (CF 2 ) 2 O (CF 2 ) 4 OCOCF 3 ,
CF 3 (CF 2 ) 2 OCF 2 CF 2 O (CF 2 ) 4 OCOCF 3 ,
(CF 3 ) 2 CFO (CF 2 ) 4 OCOCF 3 ,
Cy F CF 2 O (CF 2 ) 4 OCOCF 3 ,
CClF 2 CClFO (CF 2 ) 4 OCOCF 3 ,
CClF 2 CClFCF 2 O (CF 2 ) 4 OCOCF 3 ,
CF 3 O (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
CF 3 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
CF 3 (CF 2 ) 2 OCF 2 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
CF 3 CF 2 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
(CF 3 ) 2 CFO (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
Cy F CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
CClF 2 CClFO (CF 2 ) 4 OCOCF (CF 3 ) 2 ,
CClF 2 CClFCF 2 O (CF 2 ) 4 OCOCF (CF 3 ) 2 .

CFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
CFCFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
CF(CF)OCFCFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
CFCFCFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
(CF)CFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
CyCFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
CClFCClFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F、
CClFCClFCFO(CF)OCOCF(CF)OCFCF(CF)O(CF)F。
CF 3 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F,
CF 3 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F,
CF 3 (CF 2 ) 2 OCF 2 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F,
CF 3 CF 2 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F,
(CF 3 ) 2 CFO (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F,
Cy F CF 2 O (CF 2 ) 4 OCOCF (CF 3) OCF 2 CF (CF 3) O (CF 2) 3 F,
CClF 2 CClFO (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F,
CClF 2 CClFCF 2 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F.

前記の化合物(2)の製造方法の出発物質である化合物(6)は、下記の方法1〜3を用いて製造するのが好ましい。
[方法1]
HO(CHOHと下式(7−1)で表される化合物とを、ヒドリド化合物の存在下に反応させることを特徴とする下式(6−1)で表される化合物の製造方法。
CX=CX (7−1)
CX=CXO(CHOH (6−1)
ただし、X、X、およびXは、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、エーテル性酸素原子を含んでもよいアルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基を示し、Xは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子を示す。
Compound (6), which is a starting material for the production method of compound (2), is preferably produced using the following methods 1 to 3.
[Method 1]
Production of a compound represented by the following formula (6-1), wherein HO (CH 2 ) 4 OH is reacted with a compound represented by the following formula (7-1) in the presence of a hydride compound. Method.
CX 1 X 2 = CX 3 X 4 (7-1)
CX 1 X 2 = CX 3 O (CH 2 ) 4 OH (6-1)
However, X 1 , X 2 , and X 3 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group that may contain an etheric oxygen atom, or a polyvalent compound that may contain an etheric oxygen atom. Represents a fluoroalkyl group, and X 4 represents a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.

〜Xとしては、XおよびXが、それぞれ独立に、水素原子、フッ素原子、またはエーテル性酸素原子を含んでもよいペルフルオロアルキル基、Xが、水素原子、またはフッ素原子、かつXが、フッ素原子であるのが好ましい。
ヒドリド化合物としては、水素化ナトリウム、水素化ホウ素ナトリウム、水素化リチウムアルミニウム等が挙げられる。ヒドリド化合物はHO(CHOHに対して、0.5〜1.0倍モルを用いるのが好ましく、副生成物である下記化合物(6−1a)の生成を抑制する観点から、0.6〜0.9倍モルを用いるのが特に好ましい。
CX=CXO(CHOCX=CX (6−1a)。
As X 1 to X 4 , X 1 and X 2 are each independently a hydrogen atom, a fluorine atom, or a perfluoroalkyl group that may contain an etheric oxygen atom, X 3 is a hydrogen atom or a fluorine atom, and X 4 is preferably a fluorine atom.
Examples of the hydride compound include sodium hydride, sodium borohydride, lithium aluminum hydride and the like. The hydride compound is preferably used in an amount of 0.5 to 1.0 moles with respect to HO (CH 2 ) 4 OH. From the viewpoint of suppressing the production of the following compound (6-1a), which is a byproduct, 0 It is particularly preferable to use 6 to 0.9 moles.
CX 1 X 2 = CX 3 O (CH 2) 4 OCX 3 = CX 1 X 2 (6-1a).

[方法2]
HO(CHOHと下式(7−2)で表される化合物とを、アルカリ金属水酸化物の存在下に反応させることを特徴とする(6−2)で表される化合物の製造方法。
CX=CX (7−2)
CHXCXO(CHOH (6−2)
ただし、X、X、およびXは、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、エーテル性酸素原子を含んでもよいアルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基を示し、Xは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。
[Method 2]
HO (CH 2 ) 4 OH and a compound represented by the following formula (7-2) are reacted in the presence of an alkali metal hydroxide, and the compound represented by (6-2) Production method.
CX 5 X 6 = CX 7 X 8 (7-2)
CHX 5 X 6 CX 7 X 8 O (CH 2) 4 OH (6-2)
However, X 5 , X 6 , and X 7 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group that may contain an etheric oxygen atom, or a polyvalent compound that may contain an etheric oxygen atom. Represents a fluoroalkyl group, and X 8 represents a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.

〜Xとしては、XおよびXが、それぞれ独立に、水素原子、フッ素原子、またはエーテル性酸素原子を含んでもよいペルフルオロアルキル基、Xが、水素原子、またはフッ素原子、かつXが、フッ素原子であるのが好ましい。
アルカリ金属水酸化物としては、水酸化ナトリウム、水酸化カリウム等が挙げられる。アルカリ金属水酸化物はHO(CHOHに対して、0.1〜1.0倍モルを用いるのが好ましく、副生成物である下記化合物(6−2a)の生成を抑制する観点から、0.1〜0.5倍モルを用いるのが特に好ましい。
CXHCXO(CHOCXCHX (6−2a)。
As X 5 to X 8 , X 5 and X 6 are each independently a hydrogen atom, a fluorine atom, or a perfluoroalkyl group that may contain an etheric oxygen atom, X 7 is a hydrogen atom or a fluorine atom, and X 8 is preferably a fluorine atom.
Examples of the alkali metal hydroxide include sodium hydroxide and potassium hydroxide. The alkali metal hydroxide is preferably used in an amount of 0.1 to 1.0 moles with respect to HO (CH 2 ) 4 OH, and the viewpoint of suppressing the production of the following compound (6-2a) as a by-product. Therefore, it is particularly preferable to use 0.1 to 0.5 moles.
CX 5 X 6 HCX 7 X 8 O (CH 2) 4 OCX 5 X 6 CHX 7 X 8 (6-2a).

方法1における化合物(7−1)および方法2における化合物(7−2)としては、CH=CHF、CH=CHCl、CHF=CHF、CHCl=CHCl、CF=CH、CClF=CClF、CCl=CH、CF=CHF、CF=CFCl、CCl=CHCl、CF=CF、CCl=CCl、CH=CHR(ただし、Rは1価有機基を示し、アルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基が好ましい。)、CF=CFR(ただし、Rは1価有機基を示し、アルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基を示す。)が挙げられる。CF=CFRとしては、CF=CFCF、CF=CFOCFCFCFが挙げられる。 The compound (7-1) in Method 1 and the compound (7-2) in Method 2 include CH 2 = CHF, CH 2 = CHCl, CHF = CHF, CHCl = CHCl, CF 2 = CH 2 , CClF = CClF, CCl 2 = CH 2 , CF 2 = CHF, CF 2 = CFCl, CCl 2 = CHCl, CF 2 = CF 2 , CCl 2 = CCl 2 , CH 2 = CHR 2 (where R 2 represents a monovalent organic group) , An alkyl group, or a polyfluoroalkyl group which may contain an etheric oxygen atom is preferred.), CF 2 ═CFR 3 (wherein R 3 represents a monovalent organic group and contains an alkyl group or an etheric oxygen atom) A polyfluoroalkyl group that may be present.). Examples of CF 2 = CFR 3 include CF 2 = CFCF 3 and CF 2 = CFOCF 2 CF 2 CF 3 .

[方法3]
HO(CHOHと下式(7−3)で表される化合物とを、反応させることを特徴とする下式(6−3)で表される化合物の製造方法。
(7−3)
O(CHOH (6−3)
は、塩素原子、臭素原子、ヨウ素原子、または−SO(ただしRは、1価有機基を示す。)を示し、Rは、エーテル性酸素原子を含有してもよいアルキル基、またはエーテル性酸素原子を含有してもよいアルケニル基を示す。
[Method 3]
A process for producing a compound represented by the following formula (6-3), which comprises reacting HO (CH 2 ) 4 OH with a compound represented by the following formula (7-3).
R 1 X 9 (7-3)
R 1 O (CH 2 ) 4 OH (6-3)
X 9 represents a chlorine atom, a bromine atom, an iodine atom, or —SO 2 R A (wherein R A represents a monovalent organic group), and R 1 may contain an etheric oxygen atom. An alkyl group or an alkenyl group which may contain an etheric oxygen atom is shown.

方法3は、前記のヒドリド化合物の存在下、または前記のアルカリ金属水酸化物の存在下に行うのが好ましい。ヒドリド化合物を用いる場合は、HO(CHOHに対して、0.5〜1.0倍モルを用いるのが好ましく、0.6〜0.9倍モルを用いるのが特に好ましい。アルカリ金属水酸化物を用いる場合は、HO(CHOHに対して、0.1〜1.0倍モルを用いるのが好ましく、0.1〜0.5倍モルを用いるのが特に好ましい。 Method 3 is preferably carried out in the presence of the hydride compound or in the presence of the alkali metal hydroxide. When using a hydride compound, relative HO (CH 2) 4 OH, it is preferable to use 0.5 to 1.0 moles, particularly preferable to use 0.6 to 0.9 moles. In the case of using an alkali metal hydroxide, it is preferable to use 0.1 to 1.0 times mol, particularly 0.1 to 0.5 times mol for HO (CH 2 ) 4 OH. preferable.

化合物(7−3)としては、CHI、CHCl、CHBr、CHCHI、CHCHCl、CHCHBr、CHCHI、CHCHCl、CHCHBr、CH=CHCHCl、CH=CHCHBr、CH=CHCHI、CHClF、CHClF、CHClが挙げられる。 As the compound (7-3), CH 3 I, CH 3 Cl, CH 3 Br, CH 3 CH 2 I, CH 3 CH 2 Cl, CH 3 CH 2 Br, CH 3 CH 2 I, CH 3 CH 2 Cl , CH 3 CH 2 Br, CH 2 = CHCH 2 Cl, CH 2 = CHCH 2 Br, CH 2 = CHCH 2 I, is CHClF 2, CHCl 2 F, CHCl 3 and the like.

方法1、方法2、および方法3は、溶媒の存在下に行ってもよく、溶媒の不存在下に行ってもよく、容積効率の観点から、溶媒の不存在下に行うのが好ましい。溶媒を使用する場合は、ジオキサン、ジグライム、テトラグライム等のエーテル系溶媒、N,N−ジメチルホルムアミド、水等が挙げられる。溶媒の量は、たとえば方法1の場合には、化合物(7−1)とHO(CHOHの総質量に対して50〜500質量%であるのが好ましい。方法2および方法3における溶媒の量も同様である。方法1、方法2、および方法3における反応温度は、−50℃を下限とし、+100℃または溶媒の沸点を上限とするのが好ましい。また方法1、方法2、および方法3における反応圧力は、0〜2MPa(ゲージ圧)が好ましい。 Method 1, Method 2, and Method 3 may be performed in the presence of a solvent or in the absence of a solvent, and are preferably performed in the absence of a solvent from the viewpoint of volume efficiency. When a solvent is used, ether solvents such as dioxane, diglyme and tetraglyme, N, N-dimethylformamide, water and the like can be mentioned. For example, in the case of Method 1, the amount of the solvent is preferably 50 to 500% by mass with respect to the total mass of the compound (7-1) and HO (CH 2 ) 4 OH. The amount of solvent in method 2 and method 3 is the same. The reaction temperature in Method 1, Method 2, and Method 3 is preferably −50 ° C. as the lower limit and + 100 ° C. or the boiling point of the solvent as the upper limit. The reaction pressure in Method 1, Method 2, and Method 3 is preferably 0 to 2 MPa (gauge pressure).

本発明の方法で得られる含フッ素アリルエーテルは重合性の−OCFCF=CF基を1個以上有する重合性単量体であるため、該重合性単量体を重合させて重合体を製造できる。すなわち該含フッ素アリルエーテルの1種以上を重合する、または該含フッ素アリルエーテルの1種以上と該含フッ素アリルエーテルと共重合する他の単量体(以下、コモノマーともいう。)の1種以上とを重合をする、ことにより含フッ素重合体を製造できる。 Since fluorine-containing allyl ether obtained by the process of the present invention is a polymerizable monomer having a polymerizable -OCF 2 CF = CF 2 group 1 or more, a polymer by polymerizing a polymerizable monomer Can be manufactured. In other words, one or more of the fluorine-containing allyl ethers are polymerized, or one or more of the fluorine-containing allyl ethers are copolymerized with one or more of the fluorine-containing allyl ethers (hereinafter also referred to as comonomer). By polymerizing the above, a fluoropolymer can be produced.

コモノマーとしては、特に限定されず、公知の重合性単量体の中から選択されうる。重合反応の方法も、公知の方法をそのまま適用できる。たとえば化合物(1)がペルフルオロ(アルキルアリルエーテル)である場合、これと重合しうる重合性単量体としては、CF=CF、CF=CFCl、CF=CH等のフルオロエチレン類、CF=CHCF、CF=CFCF等のポリフルオロプロピレン類、F(CFCH=CH等の炭素数が4以上のポリフルオロアルキル基を有する(ポリフルオロアルキル)エチレン類、CHOCOCFCFCFOCF=CF等のカルボン酸基に変換可能な基を有するビニルエーテル類、エチレン、プロピレン、イソブチレン等のオレフィン等が挙げられる。 The comonomer is not particularly limited, and can be selected from known polymerizable monomers. As a polymerization reaction method, a known method can be applied as it is. For example, when the compound (1) is perfluoro (alkyl allyl ether), the polymerizable monomer that can be polymerized therewith is fluoroethylenes such as CF 2 = CF 2 , CF 2 = CFCl, CF 2 = CH 2 , CF 2 = CHCF 3 , polyfluoropropylenes such as CF 2 = CFCF 3 , and (polyfluoroalkyl) ethylenes having a polyfluoroalkyl group having 4 or more carbon atoms such as F (CF 2 ) 4 CH═CH 2 , vinyl ethers having a CH 3 OCOCF 2 CF 2 CF 2 OCF = CF 2 group convertible to a carboxylic acid group such as ethylene, propylene, olefins such as isobutylene and the like.

本発明の方法により得られた含フッ素重合体は、フッ素樹脂として有用である。フッ素樹脂は、耐熱性や耐薬品性等の性質に優れるため、広い分野で使用できる。   The fluoropolymer obtained by the method of the present invention is useful as a fluororesin. Since the fluororesin is excellent in properties such as heat resistance and chemical resistance, it can be used in a wide range of fields.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。実施例中においてはCClFCClFをR−113、ジクロロペンタフルオロプロパンをR−225、と略記する。圧力は特に表記しないかぎり、ゲージ圧で記す。純度および選択率は、ガスクロマトグラフィー分析によるピーク面積比から求めた。収率は、ヘキサフルオロベンゼンを基準とした19F−NMR分析から求めた。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. In the examples, CCl 2 FCClF 2 is abbreviated as R-113, and dichloropentafluoropropane is abbreviated as R-225. Unless otherwise indicated, pressure is indicated in gauge pressure. Purity and selectivity were determined from the peak area ratio by gas chromatography analysis. The yield was determined from 19 F-NMR analysis based on hexafluorobenzene.

[例1(実施例)]CHCHO(CHOHの製造例
フラスコ(内容積300mL)にHO(CHOH(90.01g)を投入し、NaH(20.00g)を撹拌しながら1時間かけて投入した。フラスコを撹拌しながら、65℃まで加熱しCHCHI(81.75g)を1時間かけて滴下した。つぎにフラスコの内容物を加圧ろ過して得た反応粗液を減圧蒸留し、109.5℃/13.33kPa(絶対圧)の留分(26.50g)を得た。留分をH−NMRで分析した結果、標記化合物の生成を確認した。なお標記化合物と他の留分として得たCHCHO(CHOCHCHの生成比は、標記化合物:CHCHO(CHOCHCH=7:1(モル比)であった。
[Example 1 (Example)] Production example of CH 3 CH 2 O (CH 2 ) 4 OH HO (CH 2 ) 4 OH (90.01 g) was charged into a flask (internal volume 300 mL) and NaH (20.00 g). ) Was added over 1 hour with stirring. While stirring the flask, the flask was heated to 65 ° C., and CH 3 CH 2 I (81.75 g) was added dropwise over 1 hour. Next, the reaction crude liquid obtained by pressure filtration of the contents of the flask was distilled under reduced pressure to obtain a fraction (26.50 g) of 109.5 ° C./13.33 kPa (absolute pressure). As a result of analyzing the fraction by 1 H-NMR, it was confirmed that the title compound was produced. Note the title compound generation ratio of CH 3 CH 2 O (CH 2 ) 4 OCH 2 CH 3 to give the other fraction, the title compound: CH 3 CH 2 O (CH 2) 4 OCH 2 CH 3 = 7: 1 (molar ratio).

標記化合物のH−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):3.64(2H)、3.5(4H)、3.25(1H)、1.68(4H)、1.20(3H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm) of the title compound: 3.64 (2H), 3.5 (4H), 3.25 (1H), 1.68 (4H), 1.20 (3H).

[例2(実施例)]CHCHO(CHOCOCF(CF)OCFCF(CF)O(CFFの製造例
オートクレーブ(内容積200mL、ハステロイ製)に、例1と同様の方法で得たCHCHO(CHOH(45.00g)を投入して窒素ガスでバブリングしながら撹拌した。つぎに、オートクレーブの内温を25〜31℃に保持して、F(CFOCF(CF)CFOCF(CF)COF(201.73g)を40分かけて滴下した。オートクレーブを、窒素ガスでバブリングしながら25℃で24時間撹拌して反応粗液(214.79g)を得た。反応粗液をNMRで分析した結果、標記化合物の生成を確認した。
[Example 2 (Example)] Production example of CH 3 CH 2 O (CH 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F In an autoclave (internal volume 200 mL, manufactured by Hastelloy) Then, CH 3 CH 2 O (CH 2 ) 4 OH (45.00 g) obtained in the same manner as in Example 1 was added and stirred while bubbling with nitrogen gas. Next, the internal temperature of the autoclave was maintained at 25 to 31 ° C., and F (CF 2 ) 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF (201.73 g) was added dropwise over 40 minutes. The autoclave was stirred at 25 ° C. for 24 hours while bubbling with nitrogen gas to obtain a reaction crude liquid (214.79 g). As a result of analyzing the reaction crude liquid by NMR, it was confirmed that the title compound was produced.

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.2(3H)、1.65(2H)、1.8(2H)、3.5(4H)、4.4(2H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−79〜−80(4F)、−82(5F)、−82.8(3F)、−85(1F)、−130(2F)、−132(1F)、−145.5(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.2 (3H), 1.65 (2H), 1.8 (2H), 3.5 (4H) 4.4 (2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −79 to −80 (4F), −82 (5F), −82.8 (3F), −85 ( 1F), -130 (2F), -132 (1F), -145.5 (1F).

[例3(実施例)]CFCFO(CFOCOCF(CF)OCFCF(CF)O(CFFの製造例
オートクレーブ(内容積500mL、ニッケル製)に、R−113(312g)を加えて25℃で撹拌した。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−10℃に保持した冷却器を直列に設置した。−10℃に保持した冷却器からは、凝縮した液をオートクレーブに戻すための液体返送ラインを設置した。オートクレーブに窒素ガスを1時間導入した後、窒素ガスで20体積%に希釈したフッ素ガス(以下、20%フッ素ガスという。)を、5.80L/hで1時間導入した。
[Example 3 (Example)] Production example of CF 3 CF 2 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F To an autoclave (internal volume 500 mL, made of nickel) , R-113 (312 g) was added and stirred at 25 ° C. At the autoclave gas outlet, a cooler maintained at 20 ° C., a packed bed of NaF pellets, and a cooler maintained at −10 ° C. were installed in series. From the cooler maintained at −10 ° C., a liquid return line for returning the condensed liquid to the autoclave was installed. After introducing nitrogen gas into the autoclave for 1 hour, fluorine gas diluted to 20% by volume with nitrogen gas (hereinafter referred to as 20% fluorine gas) was introduced at 5.80 L / h for 1 hour.

つぎに、オートクレーブに20%フッ素ガスを同じ流量で導入しながら、例2で得た反応粗液(5.0g)をR−113(100g)に溶解させた溶液を、3時間かけて注入した。つづいて、オートクレーブの出口バルブを閉め、20%フッ素ガスを同じ流量で導入しながら、ベンゼン濃度が0.013g/mLであるR−113溶液(13.95g)を30分かけてオートクレーブに注入して、さらに1時間撹拌した。オートクレーブに20%フッ素ガスの導入を止め、窒素ガスを1時間導入してオートクレーブからフッ素ガスを除いた。オートクレーブ中の内容物をデカンテーションして得た反応粗液をエバポレータで濃縮して濃縮物を得た。濃縮物の一部を減圧蒸留して得た留分をNMRで分析した結果、収率90.4%で標記化合物の生成を確認した。   Next, while introducing 20% fluorine gas into the autoclave at the same flow rate, a solution prepared by dissolving the reaction crude liquid (5.0 g) obtained in Example 2 in R-113 (100 g) was injected over 3 hours. . Next, the autoclave outlet valve was closed, and while introducing 20% fluorine gas at the same flow rate, an R-113 solution (13.95 g) having a benzene concentration of 0.013 g / mL was poured into the autoclave over 30 minutes. And further stirred for 1 hour. The introduction of 20% fluorine gas into the autoclave was stopped, and nitrogen gas was introduced for 1 hour to remove the fluorine gas from the autoclave. The reaction crude liquid obtained by decanting the contents in the autoclave was concentrated by an evaporator to obtain a concentrate. As a result of analyzing the fraction obtained by distilling a part of the concentrate under reduced pressure by NMR, it was confirmed that the title compound was produced in a yield of 90.4%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−77.5〜−79.5(4F)、−80.8(5F)、−81.2(3F)、−82.6(2F)、−83.5(1F)、−85.9(2F)、−86.4(3F)、−87.7(2F)、−124.9(2F)、−125.0(2F)、−129.0(2F)、−130.5(1F)、−143.8(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −77.5 to −79.5 (4F), −80.8 (5F), −81.2 ( 3F), -82.6 (2F), -83.5 (1F), -85.9 (2F), -86.4 (3F), -87.7 (2F), -124.9 (2F) -125.0 (2F), -129.0 (2F), -130.5 (1F), -143.8 (1F).

[例4(実施例)]CFCFO(CFCOFの製造例
蒸留塔を備えたフラスコに、NaF粉末(4.38g)と例3と同様の方法で得た濃縮物(583.27g)を投入した。フラスコを、撹拌しながら100℃で12時間に加熱して得た留出液(147.44g)をNMRで分析した結果、収率98.5%で標記化合物の生成を確認した。
Example 4 (Example) Production Example of CF 3 CF 2 O (CF 2 ) 3 COF In a flask equipped with a distillation column, NaF powder (4.38 g) and a concentrate obtained in the same manner as in Example 3 ( 58.37 g) was charged. A distillate (147.44 g) obtained by heating the flask at 100 ° C. for 12 hours with stirring was analyzed by NMR. As a result, it was confirmed that the title compound was produced in a yield of 98.5%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):25.8(1F)、−81.0(2F)、−85.2(3F)、−86.2(2F)、−116.4(2F)、−124.6(2F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): 25.8 (1F), −81.0 (2F), −85.2 (3F), −86. 2 (2F), -116.4 (2F), -124.6 (2F).

[例5(実施例)]CFCFOCFCF=CFの製造例(その1)
ガラスビーズ(131.29g、中心粒度160μm、比重1.47g/mL)を充填した流動層の管型反応器(内径16mm、高さ600mm、SUS製)を、350℃の塩浴に浸した。管型反応器の出口には、液体窒素トラップを設置した。つぎに、窒素ガス(14.40L/h)と例4で得た留出液(3.68L/h)との管型反応器への導入を1時間続けた。導入に伴い液体窒素トラップに留出した液体(16.96g)を回収した。液体をNMRで分析した結果、収率96.0%で標記化合物の生成を確認した。
[Example 5 (Example)] Production example of CF 3 CF 2 OCF 2 CF = CF 2 (Part 1)
A fluidized bed tubular reactor (inner diameter 16 mm, height 600 mm, manufactured by SUS) packed with glass beads (131.29 g, center particle size 160 μm, specific gravity 1.47 g / mL) was immersed in a 350 ° C. salt bath. A liquid nitrogen trap was installed at the outlet of the tubular reactor. Next, introduction of nitrogen gas (14.40 L / h) and the distillate obtained in Example 4 (3.68 L / h) into the tubular reactor was continued for 1 hour. A liquid (16.96 g) distilled into the liquid nitrogen trap with the introduction was recovered. As a result of analyzing the liquid by NMR, it was confirmed that the title compound was produced in a yield of 96.0%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−69.8(2F)、−85.7(3F)、−87.1(2F)、−91.2(1F)、−103.8(1F)、−189.0(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −69.8 (2F), −85.7 (3F), −87.1 (2F), −91 .2 (1F), -103.8 (1F), -189.0 (1F).

[例6(実施例)]CH=CHCHO(CHOHの製造例
水浴下、フラスコにHO(CHOH(48.5g)を投入し、KOH(16.3g)を撹拌しながら投入した。フラスコに撹拌しながら、CH=CHCHBr(32.0g)を1.5時間かけて滴下した。フラスコを25℃で24時間撹拌してから静置して、2層分離液を得た。つぎに2層分離液の有機層、および2層分離液の水層を塩酸(1mol/L)で酸性にしてからトルエン(50mL)で3回抽出した抽出液、とからなる反応粗液を得た。反応粗液を飽和食塩水(20mL)で3回洗浄し硫酸マグネシウムで乾燥してから、エバポレータで濃縮して濃縮物を得た。濃縮物をNMRで分析した結果、収率85.3%でCH=CHCHO(CHOHの生成を確認した。
EXAMPLE 6 (Example)] CH 2 = CHCH 2 O (CH 2) 4 OH Preparation water bath under was charged with HO (CH 2) 4 OH ( 48.5g) in a flask, KOH (16.3 g) Was added with stirring. While stirring the flask, CH 2 = CHCH 2 Br (32.0 g) was added dropwise over 1.5 hours. The flask was stirred at 25 ° C. for 24 hours and then allowed to stand to obtain a two-layer separated liquid. Next, a reaction crude liquid comprising an organic layer of the two-layer separated liquid and an extract obtained by acidifying the aqueous layer of the two-layer separated liquid with hydrochloric acid (1 mol / L) and then extracting three times with toluene (50 mL) is obtained. It was. The reaction crude liquid was washed 3 times with saturated brine (20 mL), dried over magnesium sulfate, and concentrated by an evaporator to obtain a concentrate. As a result of analyzing the concentrate by NMR, it was confirmed that CH 2 = CHCH 2 O (CH 2 ) 4 OH was produced in a yield of 85.3%.

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.65〜1.75(m、4H)、3.49(t、J=6.0Hz、2H)、3.65(t、J=6.0Hz、2H)、3.99(dt、J=1.4、5.7Hz、2H)、5.18(d、J=11.1Hz、1H)、5.28(d、J=17.1Hz、1H)、5.85〜5.95(m、1H)。 1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.65 to 1.75 (m, 4H), 3.49 (t, J = 6.0 Hz, 2H) 3.65 (t, J = 6.0 Hz, 2H), 3.99 (dt, J = 1.4, 5.7 Hz, 2H), 5.18 (d, J = 11.1 Hz, 1H), 5.28 (d, J = 17.1 Hz, 1H), 5.85 to 5.95 (m, 1H).

[例7(実施例)]CH=CHCHO(CHOCOCF(CF)O(CFFの製造例
フラスコに、NaF(16.8g)、R−225(100g)および例6で得たCH=CHCHO(CHOH(29.4g)を投入した。つぎに、フラスコの内温を0〜10℃に保持して、フラスコを撹拌しながらF(CFOCF(CF)COF(110.8g)を4時間かけて滴下した。オートクレーブを25℃で4時間撹拌してから、フラスコの内温を15℃以下にして、飽和炭酸水素ナトリウム水溶液(100mL)を投入して水溶液を得た。水溶液をR−225(200mL)で3回抽出して得た抽出液を、硫酸マグネシウムで乾燥してからエバポレータで濃縮して濃縮物を得た。濃縮物をNMRで分析した結果、収率95.3%で標記化合物の生成を確認した。
Example 7 (Example) CH 2 = CHCH 2 O (CH 2 ) 4 OCOCF (CF 3 ) O (CF 2 ) 3 F Production Example NaF (16.8 g), R-225 (100 g) in a flask And CH 2 ═CHCH 2 O (CH 2 ) 4 OH (29.4 g) obtained in Example 6 was added. Then, while holding the internal temperature of the flask 0~10 ℃, F (CF 2) while stirring the flask 3 OCF (CF 3) was added dropwise over COF a (110.8 g) 4 hours. After the autoclave was stirred at 25 ° C. for 4 hours, the internal temperature of the flask was adjusted to 15 ° C. or lower, and a saturated aqueous sodium hydrogen carbonate solution (100 mL) was added to obtain an aqueous solution. The extract obtained by extracting the aqueous solution three times with R-225 (200 mL) was dried over magnesium sulfate and then concentrated with an evaporator to obtain a concentrate. As a result of analyzing the concentrate by NMR, it was confirmed that the title compound was produced in a yield of 95.3%.

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.68(m、2H)、1.85(m、2H)、3.47(t、J=6.0Hz、2H)、3.99(dt、J=1.4、5.9Hz、2H)、4.45(m、2H)、5.18(d、J=11.1Hz、1H)、5.28(d、J=17.1Hz、1H)、5.85〜5.95(m、1H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−80.0(1F)、−81.8(3F)、−82.8(3F)、−86.8(1F)、−130.2(2F)、−132.0(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.68 (m, 2H), 1.85 (m, 2H), 3.47 (t, J = 6 0.0 Hz, 2H), 3.99 (dt, J = 1.4, 5.9 Hz, 2H), 4.45 (m, 2H), 5.18 (d, J = 11.1 Hz, 1H), 5 .28 (d, J = 17.1 Hz, 1H), 5.85 to 5.95 (m, 1H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −80.0 (1F), −81.8 (3F), −82.8 (3F), −86 .8 (1F), -130.2 (2F), -132.0 (1F).

[例8(実施例)]CHClCHClCHO(CHOCOCF(CF)O(CFFの製造例
フラスコに、例7で得た濃縮物(50.0g)とCCl(50mL)を投入した。つぎに、フラスコの内温を−15℃に保持して、フラスコに塩素ガスを2.27L/hで2時間導入した。フラスコに窒素ガスを2時間導入して塩素ガスを除いてから、フラスコの内溶液を濃縮して濃縮物を得た。濃縮物をNMRで分析した結果、収率77%で標記化合物の生成を確認した。
Example 8 (Example) Preparation of CH 2 ClCHClCH 2 O (CH 2 ) 4 OCOCF (CF 3 ) O (CF 2 ) 3 F In a flask, concentrate (50.0 g) obtained in Example 7 and CCl. 4 (50 mL) was added. Next, the internal temperature of the flask was kept at −15 ° C., and chlorine gas was introduced into the flask at 2.27 L / h for 2 hours. After introducing nitrogen gas into the flask for 2 hours to remove chlorine gas, the solution in the flask was concentrated to obtain a concentrate. As a result of analyzing the concentrate by NMR, it was confirmed that the title compound was produced in a yield of 77%.

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.68(m、2H)、1.85(m、2H)、3.55(t、J=5.9Hz、2H)、3.75(m、2H)、3.80(m、2H)、4.15(tt、J=5.1、5.1Hz、1H)、4.43(m、2H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−80.0(1F)、−81.8(3F)、−82.8(3F)、−86.8(1F)、−130.2(2F)、−132.0(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.68 (m, 2H), 1.85 (m, 2H), 3.55 (t, J = 5 .9 Hz, 2H), 3.75 (m, 2H), 3.80 (m, 2H), 4.15 (tt, J = 5.1, 5.1 Hz, 1H), 4.43 (m, 2H) ).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −80.0 (1F), −81.8 (3F), −82.8 (3F), −86 .8 (1F), -130.2 (2F), -132.0 (1F).

[例9(実施例)]CFClCFClCFO(CFOCOCF(CF)O(CFFの製造例
例3と同じオートクレーブを用意し、20%フッ素ガスを10.8L/hで1時間導入した。つぎに、オートクレーブに20%フッ素ガスを同じ流量で導入しながら、例8で得た濃縮物(5g)をR−113(100g)に溶解した溶液を、4時間かけて注入した。オートクレーブの出口バルブを閉め、20%フッ素ガスを同じ流量で導入しながら、ベンゼン濃度が0.01g/mLであるR−113溶液(9mL)を25℃から40℃にまで加熱しながら注入した。つぎにオートクレーブのベンゼン注入口を閉め、圧力が0.20MPaになってからオートクレーブのフッ素ガス入り口バルブを閉めて、0.4時間撹拌を続けた。さらに同様の操作を2回繰り返した。ベンゼンの総注入量は0.21g、R−113の総注入量は21mLであった。
[Example 9 (Example)] Production Example of CF 2 ClCFClCF 2 O (CF 2 ) 4 OCOCF (CF 3 ) O (CF 2 ) 3 F The same autoclave as in Example 3 was prepared, and 10.8 L of 20% fluorine gas was prepared. / H for 1 hour. Next, while introducing 20% fluorine gas into the autoclave at the same flow rate, a solution obtained by dissolving the concentrate (5 g) obtained in Example 8 in R-113 (100 g) was injected over 4 hours. The autoclave outlet valve was closed, and while introducing 20% fluorine gas at the same flow rate, R-113 solution (9 mL) having a benzene concentration of 0.01 g / mL was injected while heating from 25 ° C to 40 ° C. Next, the benzene inlet of the autoclave was closed, and after the pressure reached 0.20 MPa, the fluorine gas inlet valve of the autoclave was closed and stirring was continued for 0.4 hours. Further, the same operation was repeated twice. The total injection amount of benzene was 0.21 g, and the total injection amount of R-113 was 21 mL.

つぎに、オートクレーブに窒素ガスを1時間導入してフッ素ガスを除いてから、オートクレーブの内溶液をデカンテーションして反応粗液を得た。反応粗液を濃縮して得た濃縮物をNMRで分析した結果、収率95%で標記化合物の生成を確認した。   Next, nitrogen gas was introduced into the autoclave for 1 hour to remove the fluorine gas, and then the inner solution of the autoclave was decanted to obtain a reaction crude liquid. As a result of NMR analysis of the concentrate obtained by concentrating the reaction crude liquid, it was confirmed that the title compound was produced in a yield of 95%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−63.0〜66.0(2F)、−78.5(2F)、−79.9(1F)、−81.9(6F)、−84.0(1F)、−87.2(4F)、−126.3(4F)、−130.2(2F)、−132.2(1F)、−133.6(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −63.0 to 66.0 (2F), −78.5 (2F), −79.9 (1F) ), -81.9 (6F), -84.0 (1F), -87.2 (4F), -126.3 (4F), -130.2 (2F), -132.2 (1F), -133.6 (1F).

[例10(実施例)]CFClCFClCFO(CFCOFの製造例
蒸留塔を備えたフラスコに、例9と同様の方法で得た濃縮物(144.1g)とKF粉末(2.1g)を投入した。フラスコを、100℃に加熱して4時間撹拌してから減圧すると、65℃/13.33kPa(絶対圧)の留分が得られた。留分をNMRで分析した結果、収率63%で標記化合物の生成を確認した。
[Example 10 (Example)] Production example of CF 2 ClCFClCF 2 O (CF 2 ) 3 COF In a flask equipped with a distillation column, a concentrate (144.1 g) obtained in the same manner as in Example 9 and KF powder ( 2.1 g) was charged. When the flask was heated to 100 ° C. and stirred for 4 hours and then depressurized, a fraction of 65 ° C./13.33 kPa (absolute pressure) was obtained. As a result of analyzing the fraction by NMR, it was confirmed that the title compound was produced in a yield of 63%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):25.4(1F)、−64.6(2F)、−78.5(2F)、−83.7(2F)、−118.9(2F)、−126.8(2F)、−133.6(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): 25.4 (1F), −64.6 (2F), −78.5 (2F), −83. 7 (2F), -118.9 (2F), -126.8 (2F), -133.6 (1F).

[例11(実施例)]CFClCFClCFOCFCF=CFの製造例
フラスコに、例10で得た留分(23.9g)を投入し1質量%のフェノールフタレイン数滴を加えて撹拌すると、フラスコ内溶液が青色に呈色した。つぎに、フラスコを撹拌しながら、10質量%のNaOHを含むエタノール溶液をフラスコの内容液が赤色になるまで滴下した。
[Example 11 (Example)] Production example of CF 2 ClCFClCF 2 OCF 2 CF = CF 2 The flask was charged with the fraction (23.9 g) obtained in Example 10 and several drops of 1% by mass phenolphthalein were added. When stirred, the solution in the flask turned blue. Next, while stirring the flask, an ethanol solution containing 10% by mass of NaOH was added dropwise until the content of the flask became red.

該内溶液を、エバポレーターで濃縮し、真空乾燥器(80℃)で24時間乾燥した結果、CFClCFClCFO(CFCOONa(24.8g)を得た。つぎに、メタノール−ドライアイストラップ、液体窒素トラップを順に塔頂部に設置した蒸留塔を備えたフラスコに、CFClCFClCFO(CFCOONa(24.8g)を投入した。フラスコ内を減圧にし、250℃で6時間加熱すると、メタノール−ドライアイストラップと液体窒素トラップに留出液が溜まった。留出液をNMRで分析した結果、収率87%で標記化合物の生成を確認した。 The inner solution was concentrated with an evaporator and dried in a vacuum dryer (80 ° C.) for 24 hours. As a result, CF 2 ClCFClCF 2 O (CF 2 ) 3 COONa (24.8 g) was obtained. Next, CF 2 ClCFClCF 2 O (CF 2 ) 3 COONa (24.8 g) was charged into a flask equipped with a distillation tower in which a methanol-dry ice trap and a liquid nitrogen trap were installed in this order. When the inside of the flask was evacuated and heated at 250 ° C. for 6 hours, the distillate accumulated in the methanol-dry ice strap and the liquid nitrogen trap. As a result of analyzing the distillate by NMR, it was confirmed that the title compound was produced in a yield of 87%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−64.4(2F)、−71.9(2F)、−79.1(2F)、−90.9(1F)、−104.3(1F)、−133.4(1F)、−190.2(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): -64.4 (2F), -71.9 (2F), -79.1 (2F), -90 .9 (1F), -104.3 (1F), -133.4 (1F), -190.2 (1F).

[例12(実施例)]CHO(CHOHの製造例
フラスコ(内容積300mL)にHO(CHOH(90.01g)を投入し、撹拌しながらNaH(20.00g)を1時間かけて滴下した。フラスコを45℃に昇温して、CHI(75.03g)を1時間かけて滴下した。フラスコの内容液を加圧ろ過して得た反応粗液を減圧蒸留し、留分を得た。留分をH−NMRにより分析した結果、標記化合物の生成を確認した。なお標記化合物と他の留分として得たCHO(CHOCHの生成比は、標記化合物:CHO(CHOCH=8:1(モル比)であった。
Example 12 (Example) Production Example of CH 3 O (CH 2 ) 4 OH HO (CH 2 ) 4 OH (90.01 g) was charged into a flask (internal volume 300 mL), and NaH (20. 00 g) was added dropwise over 1 hour. The temperature of the flask was raised to 45 ° C., and CH 3 I (75.03 g) was added dropwise over 1 hour. The reaction crude liquid obtained by pressure filtration of the contents of the flask was distilled under reduced pressure to obtain a fraction. As a result of analyzing the fraction by 1 H-NMR, it was confirmed that the title compound was produced. Note the title compound and CH 3 O (CH 2) obtained as another fraction 4 production ratio of OCH 3, the title compound: CH 3 O (CH 2) 4 OCH 3 = 8: was 1 (molar ratio) .

標記化合物のH−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):3.64(2H),3.44(2H),3.35(3H),3.1(1H),1.65(4H)。 1 H-NMR of the title compound (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 3.64 (2H), 3.44 (2H), 3.35 (3H), 3.1 (1H), 1.65 (4H).

[例13(実施例)]CHO(CHOCOCF(CF)OCFCF(CF)O(CFFの製造例
オートクレーブ(内容積200mL、ハステロイ製)に例12で得たCHO(CHOH(39.70g)を投入し、窒素ガスをバブリングさせながら撹拌した。F(CFOCF(CF)CFOCF(CF)COF(199.41g)をフラスコの内温を25〜31℃に保ちながら40分かけて滴下した。つづいて、25℃で撹拌しながら24時間窒素ガスでバブリングして反応粗液(219.25g)を得た。反応粗液のNMRで分析した結果、主成分として標記化合物の生成を確認した。
Example 13 (Example) Production Example of CH 3 O (CH 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F Example 12 in an autoclave (internal volume 200 mL, manufactured by Hastelloy) CH 3 O (CH 2 ) 4 OH (39.70 g) obtained in the above was added and stirred while bubbling nitrogen gas. F (CF 2 ) 3 OCF (CF 3 ) CF 2 OCF (CF 3 ) COF (199.41 g) was added dropwise over 40 minutes while maintaining the internal temperature of the flask at 25 to 31 ° C. Subsequently, nitrogen gas was bubbled for 24 hours while stirring at 25 ° C. to obtain a reaction crude liquid (219.25 g). As a result of analyzing the reaction crude liquid by NMR, it was confirmed that the title compound was formed as the main component.

H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.65(2H)、1.8(2H)、3.3(3H)、3.45(2H)、4.45(2H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−79〜−80(4F)、−82(5F)、−82.8(3F)、−85(1F)、−130(2F)、−132(1F)、−145.5(1F)。
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm): 1.65 (2H), 1.8 (2H), 3.3 (3H), 3.45 (2H) 4.45 (2H).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): −79 to −80 (4F), −82 (5F), −82.8 (3F), −85 ( 1F), -130 (2F), -132 (1F), -145.5 (1F).

[例14(実施例)]CFO(CFOCOCF(CF)OCFCF(CF)O(CFFの製造例
例3と同じオートクレーブを用意し、20%フッ素ガスを6.05L/hで1時間導入した。つぎに、オートクレーブに20%フッ素ガスを同じ流量で導入しながら、例13で得たCHO(CHOCOCF(CF)OCFCF(CF)O(CFF(5.81g)をR−113(116g)に溶解させた溶液を3時間かけて注入した。つぎに、窒素ガスで20%に希釈したフッ素ガスを、同じ流量で導入しながら0.013g/mLのベンゼンを溶解したR−113溶液(13.95g)を30分かけて注入し、1時間撹拌を続ける操作を行った。つづいて、窒素ガスを1時間導入して、オートクレーブ内容物をデカンテーションした内容液をエバポレーターで濃縮して濃縮物を得た。濃縮物をNMRで分析した結果、収率83.9%で標記化合物の生成を確認した。
Example 14 (Example) CF 3 O (CF 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F Production Example The same autoclave as in Example 3 was prepared and 20% fluorine Gas was introduced at 6.05 L / h for 1 hour. Next, while introducing 20% fluorine gas into the autoclave at the same flow rate, CH 3 O (CH 2 ) 4 OCOCF (CF 3 ) OCF 2 CF (CF 3 ) O (CF 2 ) 3 F (Example 13) A solution prepared by dissolving 5.81 g) in R-113 (116 g) was injected over 3 hours. Next, while introducing fluorine gas diluted to 20% with nitrogen gas at the same flow rate, an R-113 solution (13.95 g) in which 0.013 g / mL of benzene was dissolved was injected over 30 minutes, and 1 hour. The operation of continuing stirring was performed. Subsequently, nitrogen gas was introduced for 1 hour, and the content liquid obtained by decanting the autoclave contents was concentrated by an evaporator to obtain a concentrate. As a result of analyzing the concentrate by NMR, it was confirmed that the title compound was produced in a yield of 83.9%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−55.2(3F),−78.0〜−80.0(4F),−81.3〜−82.0(8F),−84.5(1F),−85.2(2F),−86.5(2F),−125.6(2F),−126.0(2F),−129.5(2F),−131.3(1F),−144.6(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −55.2 (3F), −78.0 to −80.0 (4F), −81.3 to -82.0 (8F), -84.5 (1F), -85.2 (2F), -86.5 (2F), -125.6 (2F), -126.0 (2F), -129 .5 (2F), -131.3 (1F), -144.6 (1F).

[例15(実施例)]CFO(CFCOFの製造例
蒸留塔を備えたフラスコに、KF粉末(5.31g)と例14で得た濃縮物(802.10g)を投入した。フラスコを、100℃で12時間撹拌して反応粗液を得た。反応粗液を蒸留して得た留分(183.64g)を、19F−NMRで分析した結果、収率69.8%で標記化合物の生成を確認した。
[Example 15 (Example)] Production example of CF 3 O (CF 2 ) 3 COF A flask equipped with a distillation column was charged with KF powder (5.31 g) and the concentrate (802.10 g) obtained in Example 14. did. The flask was stirred at 100 ° C. for 12 hours to obtain a reaction crude liquid. The fraction (183.64 g) obtained by distilling the reaction crude liquid was analyzed by 19 F-NMR. As a result, it was confirmed that the title compound was produced in a yield of 69.8%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):24.9(1F),−55.5(3F),−85.8(2F),−119.2(2F),−127.2(2F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm): 24.9 (1F), −55.5 (3F), −85.8 (2F), −119. 2 (2F), -127.2 (2F).

[例16(実施例)]CFOCFCF=CFの製造例(その1)
フラスコ(内容積2L)に、例15と同様の方法で得た液体(501.01g)と1質量%のフェノールフタレイン(3滴)を投入すると、フラスコ内溶液が青色に呈色した。つぎにフラスコを撹拌しながら、10%質量%のNaOH水溶液をフラスコの内溶液が赤色になるまで滴下した。つぎに内溶液をエバポレーターで濃縮し、乾燥固体を得た。乾燥固体とR−225(1001.20g)をフラスコに投入し、フラスコ上部にモレキュラーシーブの入ったソクスレーを取り付けてから加熱した。つづいてフラスコ内容物をエバポレーターで濃縮して濃縮物(595.79g)を得た。
[Example 16 (Example)] Production example of CF 3 OCF 2 CF = CF 2 (Part 1)
When a liquid (501.01 g) obtained in the same manner as in Example 15 and 1% by mass of phenolphthalein (3 drops) were added to the flask (internal volume 2 L), the solution in the flask was colored blue. Next, while stirring the flask, a 10% by mass NaOH aqueous solution was added dropwise until the inner solution of the flask turned red. Next, the inner solution was concentrated with an evaporator to obtain a dry solid. The dry solid and R-225 (1001.20 g) were put into a flask, and a Soxhlet containing molecular sieve was attached to the upper part of the flask, followed by heating. Subsequently, the contents of the flask were concentrated with an evaporator to obtain a concentrate (595.79 g).

液体窒素トラップを塔頂部に設置したフラスコ(内容積3L)に濃縮物を投入してから、フラスコを180℃に加熱した。加熱に伴い液体窒素トラップに留出した液体を捕集した。留出が終了してから液体窒素トラップを氷浴に浸して生成物(346.24g)を得た。生成物をNMRで分析した結果、収率87.7%で標記化合物の生成を確認した。   The concentrate was put into a flask (with an internal volume of 3 L) provided with a liquid nitrogen trap at the top of the tower, and then the flask was heated to 180 ° C. The liquid distilled into the liquid nitrogen trap with heating was collected. After the distillation was completed, a liquid nitrogen trap was immersed in an ice bath to obtain a product (346.24 g). As a result of NMR analysis of the product, it was confirmed that the title compound was produced in a yield of 87.7%.

19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−55.5(3F),−74.1(2F),−90.7(1F),−104.5(1F),−190.4(1F)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , reference: CFCl 3 ) δ (ppm): −55.5 (3F), −74.1 (2F), −90.7 (1F), −104 .5 (1F), -190.4 (1F).

[例17(実施例)]CFCFOCFCF=CFの製造例(その2)
撹拌器を備えた反応容器(内容積500mL、ステンレス製)に、ジグライム(62.38g)、HO(CHOH(184.37g)、およびKOH(10.07g)を投入した。反応容器を、密閉して液体窒素で冷却して脱気した。反応容器を、60℃まで加熱してからCF=CF(75g)を2時間かけて投入した。つぎに反応容器に水(150mL)を投入して得た2層分離液の有機層を回収した。有機層を蒸留して留分(77.3g)を得た。該留分をNMRで分析した結果、CHFCFO(CHOHの生成を確認した。なお、CHFCFO(CHOHとCHFCFO(CHOCFCHFの生成比は、CHFCFO(CHOH:CHFCFO(CHOCFCHF=12:1(モル比)であった。
[Example 17 (Example)] Production example of CF 3 CF 2 OCF 2 CF = CF 2 (Part 2)
Diglime (62.38 g), HO (CH 2 ) 4 OH (184.37 g), and KOH (10.07 g) were charged into a reaction vessel (internal volume 500 mL, made of stainless steel) equipped with a stirrer. The reaction vessel was sealed and degassed by cooling with liquid nitrogen. The reaction vessel was heated to 60 ° C. and then CF 2 ═CF 2 (75 g) was added over 2 hours. Next, water (150 mL) was added to the reaction vessel, and the organic layer of the two-layer separated liquid obtained was recovered. The organic layer was distilled to obtain a fraction (77.3 g). As a result of analyzing the fraction by NMR, it was confirmed that CHF 2 CF 2 O (CH 2 ) 4 OH was formed. Incidentally, CHF 2 CF 2 O (CH 2) 4 OH and CHF 2 CF 2 O (CH 2 ) 4 product ratio OCF 2 CHF 2 is, CHF 2 CF 2 O (CH 2) 4 OH: CHF 2 CF 2 O (CH 2) 4 OCF 2 CHF 2 = 12: was 1 (molar ratio).

つぎにCHFCFO(CHOHを例2〜4と同様の方法で反応して、CFCFO(CFCOFが生成する。つぎに、得られるCFCFO(CFCOFを例5と同様の方法で反応させると、標記化合物が生成する。 Next, CHF 2 CF 2 O (CH 2 ) 4 OH is reacted in the same manner as in Examples 2 to 4 to produce CF 3 CF 2 O (CF 2 ) 3 COF. Next, when the obtained CF 3 CF 2 O (CF 2 ) 3 COF is reacted in the same manner as in Example 5, the title compound is produced.

[例18(実施例)]CFOCFCF=CFの製造例(その2)
撹拌機を備えた反応容器(内容積2500mL、ステンレス製)に、1,4−ジオキサン(490.14g)、HO(CHOH(500.01g)、および48質量%のKOH水溶液(648.92g)を投入した。反応容器を、密閉して液体窒素で冷却して脱気した。つづいて反応容器を、60℃まで加熱してからCClFH(75g)を2時間かけて投入した。反応容器の内容物をNMRで分析した結果、CHFO(CHOHとCHFO(CHOCHFが、CHFO(CHOH:CHFO(CHOCHF=10:1の割合で生成していることを確認した。
[Example 18 (Example)] Production example of CF 3 OCF 2 CF = CF 2 (Part 2)
In a reaction vessel equipped with a stirrer (internal volume 2500 mL, made of stainless steel), 1,4-dioxane (490.14 g), HO (CH 2 ) 4 OH (500.01 g), and 48 mass% KOH aqueous solution (648) .92 g) was charged. The reaction vessel was sealed and degassed by cooling with liquid nitrogen. Subsequently, the reaction vessel was heated to 60 ° C., and then CClF 2 H (75 g) was added over 2 hours. As a result of analyzing the contents of the reaction vessel by NMR, CHF 2 O (CH 2 ) 4 OH and CHF 2 O (CH 2 ) 4 OCHF 2 were converted into CHF 2 O (CH 2 ) 4 OH: CHF 2 O (CH 2 4 ) OCHF 2 = 10: 1 was confirmed to be produced.

つぎにCHFO(CHOHを例2〜4と同様の方法で反応させると、CFO(CFCOFが生成する。つぎに、得られるCFO(CFCOFを例5と同様の方法で反応させると、標記化合物が生成する。 Next, when CHF 2 O (CH 2 ) 4 OH is reacted in the same manner as in Examples 2 to 4, CF 3 O (CF 2 ) 3 COF is produced. The resulting CF 3 O (CF 2 ) 3 COF is then reacted in the same manner as in Example 5 to produce the title compound.

[例19(実施例)]F(CFOCFCF=CFの製造例
撹拌機を備えた反応容器(内容積500mL、ステンレス製)に、1,4−ジオキサン(120g)、HO(CHOH(36.04g)、およびKOH(3.1g)を投入し、反応容器を密閉した。つづいて反応容器を、95℃まで加熱してからCFCF=CF(50g)を9時間かけて投入した。つぎに反応容器に水(150mL)を投入して得た2層分離液の有機層を回収した。有機層を減圧蒸留し、61〜62℃/0.31kPa(絶対圧)の留分(6.23g)を得た。留分をNMRで分析した結果、CFCHFCFO(CHOHの生成を確認した。
EXAMPLE 19 (Example)] F (CF 2) 3 OCF 2 CF = reaction vessel equipped with a production example stirrer CF 2 (inner volume 500 mL, stainless steel) in 1,4-dioxane (120 g), HO (CH 2 ) 4 OH (36.04 g) and KOH (3.1 g) were added, and the reaction vessel was sealed. Subsequently, the reaction vessel was heated to 95 ° C., and then CF 3 CF═CF 2 (50 g) was added over 9 hours. Next, water (150 mL) was added to the reaction vessel, and the organic layer of the two-layer separated liquid obtained was recovered. The organic layer was distilled under reduced pressure to obtain a fraction (6.23 g) of 61 to 62 ° C./0.31 kPa (absolute pressure). As a result of analyzing the fraction by NMR, formation of CF 3 CHFCF 2 O (CH 2 ) 4 OH was confirmed.

つぎにCFCHFCFO(CHOHを例2〜4と同様の方法で反応させると、F(CFO(CFCOFが生成する。つぎに、得られるF(CFO(CFCOFを例5と同様の方法で反応させると、標記化合物が生成する。 Next, when CF 3 CHFCF 2 O (CH 2 ) 4 OH is reacted in the same manner as in Examples 2 to 4, F (CF 2 ) 3 O (CF 2 ) 3 COF is generated. Next, the obtained F (CF 2 ) 3 O (CF 2 ) 3 COF is reacted in the same manner as in Example 5 to produce the title compound.

CFCHFCFO(CHOHのH−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm)1.59(S、1H、OH)、1.61〜1.73(m、2H、CHCHOH)、1.72〜1.84(m、2H、CFCOCHCH)、3.69(t、J=6.3Hz、2H、CHOH)、4.04(t、J=6.3Hz、2H、CFOCH)、4.79(m、1H、CFHCF)。
CFCHFCFO(CHOHの19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−75.5(m、3F、CF)、−80.4 and −82.8(AB quartet、J=144.0Hz、2F、CFOCH)、−211.0(m、1F、CHF)。
CF 3 CHFCF 2 O (CH 2 ) 4 OH 1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm) 1.59 (S, 1H, OH), 1.61-1 .73 (m, 2H, CH 2 CH 2 OH), 1.72~1.84 (m, 2H, CF 2 COCH 2 CH 2), 3.69 (t, J = 6.3Hz, 2H, CH 2 OH), 4.04 (t, J = 6.3Hz, 2H, CF 2 OCH 2), 4.79 (m, 1H, CFHCF 2).
19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm) of CF 3 CHFCF 2 O (CH 2 ) 4 OH: −75.5 (m, 3F, CF 3 ), − 80.4 and -82.8 (AB quartet, J = 144.0Hz, 2F, CF 2 OCH 2), - 211.0 (m, 1F, CHF).

[例20(実施例)]F(CFOCFCFOCFCF=CFの製造例
撹拌機を備えた反応容器(内容積50mL、ステンレス製)に、1,4−ジオキサン(30g)、CFCFCFOCF=CF(10g)、HO(CHOH(13.55g)、およびKOH(0.55g)を投入し、反応容器を密閉した。つづいて反応容器を、70℃まで加熱してから8時間反応をさせた。つぎに、反応容器に水(50mL)を投入して得た2層分離液の有機層を回収した。有機層を減圧蒸留した結果、71℃/0.53kPa(絶対圧)の留分(12.8g)を得た。留分をIRとNMRを用いて分析した結果、F(CFOCHFCFO(CHOHの生成を確認した。
EXAMPLE 20 (Example)] F (CF 2) 3 OCF 2 CF 2 OCF 2 CF = reaction vessel equipped with a production example stirrer CF 2 (inner volume 50 mL, stainless steel) in 1,4-dioxane ( 30 g), CF 3 CF 2 CF 2 OCF═CF 2 (10 g), HO (CH 2 ) 4 OH (13.55 g), and KOH (0.55 g) were charged, and the reaction vessel was sealed. Subsequently, the reaction vessel was heated to 70 ° C. and reacted for 8 hours. Next, the organic layer of the two-layer separated liquid obtained by adding water (50 mL) to the reaction vessel was recovered. As a result of vacuum distillation of the organic layer, a fraction (12.8 g) of 71 ° C./0.53 kPa (absolute pressure) was obtained. As a result of analyzing the fraction using IR and NMR, it was confirmed that F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OH was formed.

なおF(CFOCHFCFO(CHOHと他の留分として得たF(CFOCHFCFO(CHOCFCHFO(CFFの生成比は、F(CFOCHFCFO(CHOH:F(CFOCHFCFO(CHOCFCHFO(CFF=94:6(モル比)であった。 Note F (CF 2) 3 OCHFCF 2 O (CH 2) 4 OH and F obtained as another fraction (CF 2) 3 OCHFCF 2 O (CH 2) 4 OCF 2 CHFO (CF 2) 3 F generation ratio Is F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OH: F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OCF 2 CHFO (CF 2 ) 3 F = 94: 6 (molar ratio) there were.

つぎにF(CFOCHFCFO(CHOHを例2〜4と同様の方法で反応させると、F(CFOCFCFO(CFCOFが生成する。つぎに、得られるF(CFOCFCFO(CFCOFを例5と同様の方法で反応させると、標記化合物が生成する。 Next, when F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OH is reacted in the same manner as in Examples 2 to 4, F (CF 2 ) 3 OCF 2 CF 2 O (CF 2 ) 3 COF is produced. To do. Next, the obtained F (CF 2 ) 3 OCF 2 CF 2 O (CF 2 ) 3 COF is reacted in the same manner as in Example 5 to produce the title compound.

F(CFOCHFCFO(CHOHのIR(neat):3349、2951、1341、1237、1199、1153、987cm−1
F(CFOCHFCFO(CHOHのH−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.39(s、1H、OH)、1.60〜1.73(m、2H、CHCHOH)、1.73〜1.86(m、2H、CFOCHCH)、3.63〜3.76(m、2H、CHOH)、4.03(t、J=6.3Hz,2H、CFOCH)、5.86(d、t、53.7Hz、2.8Hz、1H、CFHCF)。
IR (neat) of F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OH: 3349, 2951, 1341, 1237, 1199, 1153, 987 cm −1 .
1 H-NMR (300.4 MHz, solvent: CDCl 3 , standard: TMS) δ (ppm) of F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OH: 1.39 (s, 1H, OH), 1.60~1.73 (m, 2H, CH 2 CH 2 OH), 1.73~1.86 (m, 2H, CF 2 OCH 2 CH 2), 3.63~3.76 (m, 2H , CH 2 OH), 4.03 (t, J = 6.3 Hz, 2H, CF 2 OCH 2 ), 5.86 (d, t, 53.7 Hz, 2.8 Hz, 1H, CFHCF 2 ).

F(CFOCHFCFO(CHOHの19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−81.4(t、J=7.5Hz、3F、CF)、−84.86 and −86.86(AB quartet、J=145.0Hz、2F、CFOCFH)、−89.30and−89.94(AB quartet、144.0Hz、2F、CFOCH)、−129.5〜−129.6(m、2F、CFCF)、−144.2(d、quintet、J=53.7Hz、8.6Hz、1F、CFH)。 19 F-NMR (282.7 MHz, solvent: CDCl 3 , standard: CFCl 3 ) δ (ppm) of F (CF 2 ) 3 OCHFCF 2 O (CH 2 ) 4 OH: −81.4 (t, J = 7 .5 Hz, 3F, CF 3 ), −84.86 and −86.86 (AB quartet, J = 145.0 Hz, 2F, CF 2 OCFH), −89.30 and −89.94 (AB quartet, 144.0 Hz) 2F, CF 2 OCH 2 ), −129.5 to −129.6 (m, 2F, CF 2 CF 3 ), −144.2 (d, quintet, J = 53.7 Hz, 8.6 Hz, 1F, CFH).

[例21(実施例)]重合体(1)の製造例
撹拌器を備えた重合槽(内容積30mL)に、例5で得たCFCFOCFCF=CF(10.1g)、溶媒としてCFClCFCHClF(15.9g)、および重合開始剤として5質量%のt−ブチルパーオキシピバレートを含むCFClCFCHClF溶液(0.63g)を仕込み、凍結脱気を2度行った。つぎに重合槽の内温を66℃とし、重合槽の内圧が1.3MPa(ただしゲージ圧、以下も同様。)になるまでCF=CFを導入した。引き続き、重合槽の内温を66℃で保持し、重合槽の内圧が1.3MPaになるようにCF=CFを5時間添加した。
EXAMPLE 21 (Example)] In a polymerization tank equipped with a production example stirrer of the polymer (1) (internal capacity 30 mL), CF obtained in Example 5 3 CF 2 OCF 2 CF = CF 2 (10.1g) , CF 2 ClCF 2 CHClF (15.9 g) as a solvent, and CF 2 ClCF 2 CHClF solution (0.63 g) containing 5% by mass of t-butyl peroxypivalate as a polymerization initiator were charged, and freeze deaeration was performed. I went twice. Next, the internal temperature of the polymerization tank was 66 ° C., and CF 2 = CF 2 was introduced until the internal pressure of the polymerization tank reached 1.3 MPa (however, the gauge pressure, the same applies hereinafter). Subsequently, the internal temperature of the polymerization tank was kept at 66 ° C., and CF 2 = CF 2 was added for 5 hours so that the internal pressure of the polymerization tank became 1.3 MPa.

つぎに重合槽を25℃とし、重合槽から未反応のCF=CFを除くと、スラリー状の重合体が得られた。該ポリマーを乾燥して白色の重合体(1)(2.34g)を得た。重合体(1)は、融点が303.4℃、熱分解開始温度が350℃であった。 Next, when the polymerization tank was set to 25 ° C. and unreacted CF 2 ═CF 2 was removed from the polymerization tank, a slurry polymer was obtained. The polymer was dried to obtain a white polymer (1) (2.34 g). The polymer (1) had a melting point of 303.4 ° C. and a thermal decomposition start temperature of 350 ° C.

[例22(実施例)]重合体(2)の製造例
撹拌器を備えた重合槽(内容積30mL)に、例16で得たCFOCFCF=CF(8.2g)、R−113(18.3g)、および重合開始剤として5質量%のt−ブチルパーオキシピバレートを含むCFClCFCHClF溶液(0.12g)を仕込み、凍結脱気を2度行った。つぎに重合槽の内温を67℃とし、重合槽の内圧が1.3MPa(ただしゲージ圧、以下も同様。)になるまでCF=CFを導入した。引き続き、重合槽の内温を66℃で保持し、重合槽の内圧が1.3MPaになるようにCF=CFを6時間添加して反応を行った。
[Example 22 (Example)] Production example of polymer (2) In a polymerization tank equipped with a stirrer (internal volume 30 mL), CF 3 OCF 2 CF = CF 2 (8.2 g) obtained in Example 16, R -113 (18.3 g) and a CF 2 ClCF 2 CHClF solution (0.12 g) containing 5% by mass of t-butyl peroxypivalate as a polymerization initiator were charged, and freeze deaeration was performed twice. Next, the internal temperature of the polymerization tank was set to 67 ° C., and CF 2 = CF 2 was introduced until the internal pressure of the polymerization tank became 1.3 MPa (however, the gauge pressure, the same applies hereinafter). Subsequently, the internal temperature of the polymerization tank was kept at 66 ° C., and CF 2 = CF 2 was added for 6 hours so that the internal pressure of the polymerization tank became 1.3 MPa, and the reaction was performed.

つぎに重合槽を25℃とし、重合槽から未反応のCF=CFを除くと、スラリー状の重合体が得られた。該重合体を乾燥して白色の重合体(2)(4.04g)を得た。重合体(2)は、融点が307.6℃、熱分解開始温度が370℃であった。フローテスターを用い380℃、荷重7kgで、重合体(2)をオリフィス(直径2.01mm、長さ8mm)中に押出した場合の容量流速は、20.9mm/sであった。また重合体(2)を340℃で圧縮成形すると良好な成形体が得られた。
Next, when the polymerization tank was set to 25 ° C. and unreacted CF 2 ═CF 2 was removed from the polymerization tank, a slurry polymer was obtained. The polymer was dried to obtain a white polymer (2) (4.04 g). The polymer (2) had a melting point of 307.6 ° C. and a thermal decomposition start temperature of 370 ° C. When the polymer (2) was extruded into an orifice (diameter 2.01 mm, length 8 mm) at 380 ° C. under a load of 7 kg using a flow tester, the volume flow rate was 20.9 mm 3 / s. Further, when the polymer (2) was compression molded at 340 ° C., a good molded body was obtained.

Claims (11)

−O(CFCOF基を1個以上有する化合物において熱分解反応を行い、該化合物の−O(CFCOF基の1個以上を−OCFCF=CF基に変換することを特徴とする−OCFCF=CF基を1個以上有する含フッ素アリルエーテルの製造方法。 A compound having one or more —O (CF 2 ) 3 COF groups is subjected to a thermal decomposition reaction to convert one or more —O (CF 2 ) 3 COF groups of the compounds into —OCF 2 CF═CF 2 groups. -OCF 2 CF = process for producing a fluorinated allyl ether of CF 2 groups having 1 or more, characterized in that. 熱分解反応によって生成した−OCFCF=CF基の総数が、−O(CFCOF基を1個以上有する化合物中の−O(CFCOF基の総数の85モル%以上である請求項1に記載の製造方法。 Total -OCF 2 CF = CF 2 group generated by the thermal decomposition reaction, -O (CF 2) 3 -O in the compound of the COF group having 1 or more (CF 2) 3 85 mol% of the total number of COF groups It is the above, The manufacturing method of Claim 1. 請求項1または2に記載の製造方法で得た含フッ素アリルエーテルの1種以上を重合する、または該含フッ素アリルエーテルの1種以上と該含フッ素アリルエーテルと共重合する他の単量体の1種以上とを重合をする、ことを特徴とする含フッ素重合体の製造方法。   The other monomer which polymerizes 1 or more types of the fluorine-containing allyl ether obtained by the manufacturing method of Claim 1 or 2 or copolymerizes with 1 or more types of this fluorine-containing allyl ether and this fluorine-containing allyl ether. A method for producing a fluorinated polymer, wherein one or more of the above are polymerized. 下式(2)で表される化合物において、熱分解反応を行うことを特徴とする下式(1)で表される化合物の製造方法。
O(CFCOF (2)
OCFCF=CF (1)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
A method for producing a compound represented by the following formula (1), wherein the compound represented by the following formula (2) is subjected to a thermal decomposition reaction.
R F O (CF 2) 3 COF (2)
R F OCF 2 CF = CF 2 (1)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.
熱分解反応によって生成した下式(1)で表される化合物の選択率が、下式(2)で表される化合物に対して85モル%以上である請求項4に記載の製造方法。
O(CFCOF (2)
OCFCF=CF (1)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
The production method according to claim 4, wherein the selectivity of the compound represented by the following formula (1) produced by the thermal decomposition reaction is 85 mol% or more with respect to the compound represented by the following formula (2).
R F O (CF 2) 3 COF (2)
R F OCF 2 CF = CF 2 (1)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.
請求項4または5に記載の製造方法で得た下式(1)で表される化合物の1種以上、または該下式(1)で表される化合物の1種以上を重合する、または該下式(1)で表される化合物と共重合する他の単量体の1種類以上とを重合することを特徴とする含フッ素重合体の製造方法。
OCFCF=CF (1)
ただし、Rは熱分解反応により変化しない1価有機基を示す。
Polymerizing at least one compound represented by the following formula (1) obtained by the production method according to claim 4 or 5, or at least one compound represented by the following formula (1), or A method for producing a fluoropolymer, comprising polymerizing one or more other monomers copolymerized with the compound represented by the following formula (1).
R F OCF 2 CF = CF 2 (1)
However, R F is a monovalent organic group which does not change by a thermal decomposition reaction.
下式(6)で表される化合物と下式(5)で表される化合物を反応して下式(4)で表される化合物とし、つぎに該下式(4)で表される化合物をフッ素化反応して下式(3)で表される化合物とし、つぎに該下式(3)で表される化合物のエステル分解反応をすることを特徴とする下式(2)で表される化合物の製造方法。
RO(CHOH (6)
F1COF (5)
RO(CHOCORF1 (4)
O(CFOCORF1 (3)
O(CFCOF (2)
ただし、RおよびRF1は、それぞれ独立に、熱分解反応により変化しない1価有機基を示す。またRは、Rと同一または異なる1価有機基を示し、Rと異なる1価有機基である場合のRは、フッ素化反応によってRとなる1価有機基を示す。
A compound represented by the following formula (4) and a compound represented by the following formula (5) are reacted to form a compound represented by the following formula (4), and then the compound represented by the following formula (4) Is converted to a compound represented by the following formula (3), and then subjected to an ester decomposition reaction of the compound represented by the following formula (3). A method for producing a compound.
RO (CH 2 ) 4 OH (6)
R F1 COF (5)
RO (CH 2 ) 4 OCOR F1 (4)
R F O (CF 2) 4 OCOR F1 (3)
R F O (CF 2) 3 COF (2)
However, R F and R F1 each independently represent a monovalent organic group that does not change due to the thermal decomposition reaction. The R represents an R F and the same or different monovalent organic group, R when it is a monovalent organic group different from R F is a monovalent organic group which becomes R F by fluorination reaction.
HO(CHOHと下式(7−1)で表される化合物とを、ヒドリド化合物の存在下に反応させることを特徴とする下式(6−1)で表される化合物の製造方法。
CX=CX (7−1)
CX=CXO(CHOH (6−1)
ただし、X、X、およびXは、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、エーテル性酸素原子を含んでもよいアルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基であって、Xは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。
Production of a compound represented by the following formula (6-1), wherein HO (CH 2 ) 4 OH is reacted with a compound represented by the following formula (7-1) in the presence of a hydride compound. Method.
CX 1 X 2 = CX 3 X 4 (7-1)
CX 1 X 2 = CX 3 O (CH 2 ) 4 OH (6-1)
However, X 1 , X 2 , and X 3 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group that may contain an etheric oxygen atom, or a polyvalent compound that may contain an etheric oxygen atom. In the fluoroalkyl group, X 4 is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
HO(CHOHと下式(7−2)で表される化合物とをアルカリ金属水酸化物の存在下に反応させることを特徴とする下式(6−2)で表される化合物の製造方法。
CX=CX (7−2)
CHXCXO(CHOH (6−2)
ただし、X、X、およびXは、それぞれ独立に、水素原子、塩素原子、臭素原子、ヨウ素原子、エーテル性酸素原子を含んでもよいアルキル基、またはエーテル性酸素原子を含んでもよいポリフルオロアルキル基であって、Xは、フッ素原子、塩素原子、臭素原子、またはヨウ素原子である。
A compound represented by the following formula (6-2), wherein HO (CH 2 ) 4 OH and a compound represented by the following formula (7-2) are reacted in the presence of an alkali metal hydroxide. Manufacturing method.
CX 5 X 6 = CX 7 X 8 (7-2)
CHX 5 X 6 CX 7 X 8 O (CH 2) 4 OH (6-2)
However, X 5 , X 6 , and X 7 are each independently a hydrogen atom, a chlorine atom, a bromine atom, an iodine atom, an alkyl group that may contain an etheric oxygen atom, or a polyvalent compound that may contain an etheric oxygen atom. In the fluoroalkyl group, X 8 is a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
HO(CHOHと下式(7−3)で表される化合物とを反応させることを特徴とする下式(6−3)で表される化合物の製造方法。
(7−3)
O(CHOH (6−3)
ただし、Xは、塩素原子、臭素原子、ヨウ素原子、または−SO(ただし、Rは1価有機基を示す。)を示す。Rは、1価飽和有機基を示す。
A process for producing a compound represented by the following formula (6-3), which comprises reacting HO (CH 2 ) 4 OH with a compound represented by the following formula (7-3).
R 1 X 9 (7-3)
R 1 O (CH 2 ) 4 OH (6-3)
X 9 represents a chlorine atom, a bromine atom, an iodine atom, or —SO 2 R A (wherein R A represents a monovalent organic group). R 1 represents a monovalent saturated organic group.
下式で表される化合物のいずれか(ただし、Mはナトリウム原子、またはカリウム原子を示す。)。
CHFO(CH)OH、
CHFCFO(CH)OH、
CH=CHCHO(CH)OH、
CFCHFCFO(CH)OH、
CFCFCFOCHFCFO(CHOH、
CFO(CFCOF、
CFCFO(CFCOF、
CFClCFClCFO(CFCOF、
CFO(CFCOOM、
CFClCFClCFO(CFCOOM、
CFClCFClCFOCFCF=CF
Any of the compounds represented by the following formula (where M represents a sodium atom or a potassium atom).
CHF 2 O (CH 2 ) 4 OH,
CHF 2 CF 2 O (CH 2 ) 4 OH,
CH 2 = CHCH 2 O (CH 2) 4 OH,
CF 3 CHFCF 2 O (CH 2 ) 4 OH,
CF 3 CF 2 CF 2 OCHFCF 2 O (CH 2 ) 4 OH,
CF 3 O (CF 2 ) 3 COF,
CF 3 CF 2 O (CF 2 ) 3 COF,
CF 2 ClCFClCF 2 O (CF 2 ) 3 COF,
CF 3 O (CF 2 ) 3 COOM,
CF 2 ClCFClCF 2 O (CF 2 ) 3 COOM,
CF 2 ClCFClCF 2 OCF 2 CF = CF 2.
JP2004036529A 2004-02-13 2004-02-13 Production method for fluorine-containing allyl ether Pending JP2005225816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004036529A JP2005225816A (en) 2004-02-13 2004-02-13 Production method for fluorine-containing allyl ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004036529A JP2005225816A (en) 2004-02-13 2004-02-13 Production method for fluorine-containing allyl ether

Publications (1)

Publication Number Publication Date
JP2005225816A true JP2005225816A (en) 2005-08-25

Family

ID=35000811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004036529A Pending JP2005225816A (en) 2004-02-13 2004-02-13 Production method for fluorine-containing allyl ether

Country Status (1)

Country Link
JP (1) JP2005225816A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016092900A1 (en) * 2014-12-12 2017-04-27 株式会社Moresco Method for producing fluoropolyether
CN109762091A (en) * 2018-12-29 2019-05-17 山东华夏神舟新材料有限公司 Tetrafluoroethene base co-polymer and preparation method thereof
US20190185599A1 (en) * 2016-08-17 2019-06-20 3M Innovative Properties Company Fluoropolymers comprising tetrafluoroethylene and one or more perfluorinated alkyl allyl ether comonomers

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016092900A1 (en) * 2014-12-12 2017-04-27 株式会社Moresco Method for producing fluoropolyether
US10053538B2 (en) 2014-12-12 2018-08-21 Moresco Corporation Method for producing fluoropolyether
US20190185599A1 (en) * 2016-08-17 2019-06-20 3M Innovative Properties Company Fluoropolymers comprising tetrafluoroethylene and one or more perfluorinated alkyl allyl ether comonomers
EP3500603B1 (en) 2016-08-17 2020-06-17 3M Innovative Properties Company Fluoropolymers comprising tetrafluoroethylene and one or more perfluorinated alkyl allyl ether comonomers
CN109762091A (en) * 2018-12-29 2019-05-17 山东华夏神舟新材料有限公司 Tetrafluoroethene base co-polymer and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4285000B2 (en) Method for producing fluorine-containing ester, fluorine-containing acyl fluoride and fluorine-containing vinyl ether
JP6288094B2 (en) Method for producing fluorine-containing compound
RU2252210C2 (en) Method for production of vic-dichlorofluoroanhydride
JP2006241302A (en) New perfluoro(2-vinyl-1,3-dioxolane) structure-having compound and fluorine-containing polymer
JP4961656B2 (en) Process for producing perfluoroacyl fluorides
JP2001139509A (en) Method for production of unsaturated compound by thermal decomposition reaction
JP4802438B2 (en) Process for producing unsaturated compounds by pyrolysis reaction
JP2005225816A (en) Production method for fluorine-containing allyl ether
JP2008044863A (en) Perfluoro-organic peroxide, its manufacturing method and manufacturing method of polymer
JP5092192B2 (en) Process for producing perfluoro compounds and derivatives thereof
JP5126936B2 (en) Process for producing fluoro (alkyl vinyl ether) and its derivatives
JP4956856B2 (en) Method for producing fluoride compound
WO2002020445A1 (en) Process for the preparation of fluorinated unsaturated compounds and process for the production of fluoropolymers
JPWO2002026682A1 (en) Method for producing fluorine-containing vinyl ether compound
JP4370912B2 (en) Method for producing diene compound
WO2001046093A2 (en) Process for producing a fluoride compound
JP2010195937A (en) Fluorine-containing organic peroxide, polymerization initiator, and method for producing fluorine-containing polymer
WO2005123650A1 (en) Novel fluorinated adamantane derivative
JP2019014667A (en) Method for producing perfluoro (polyoxyalkylene alkyl vinyl ether) and novel perfluoro (polyoxyethylene alkyl vinyl ether)
JPWO2004050649A1 (en) Perfluoro five-membered ring compound
JP2005002014A (en) Method for preparing perfluorocyclic lactone derivative and mixture containing perfluorocyclic lactone
JP2003238461A (en) Method for producing perfluoroolefin
WO2008007594A1 (en) Fluorine-containing compound having highly fluorinated norbornane structure, fluorine-containing polymer, and their production methods
WO2005121118A1 (en) Compound having perfluoro(4-methylene-1,3-dioxolane) structure and novel polymer
JP2004323413A (en) Method for producing perfluorovinyl ether and new compound usable for the method