JPWO2003025278A1 - rope - Google Patents

rope Download PDF

Info

Publication number
JPWO2003025278A1
JPWO2003025278A1 JP2003528893A JP2003528893A JPWO2003025278A1 JP WO2003025278 A1 JPWO2003025278 A1 JP WO2003025278A1 JP 2003528893 A JP2003528893 A JP 2003528893A JP 2003528893 A JP2003528893 A JP 2003528893A JP WO2003025278 A1 JPWO2003025278 A1 JP WO2003025278A1
Authority
JP
Japan
Prior art keywords
covering
rope
coating
strands
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003528893A
Other languages
Japanese (ja)
Other versions
JP4096879B2 (en
Inventor
中村 一朗
一朗 中村
大宮 昭弘
昭弘 大宮
岩倉 昭太
昭太 岩倉
正博 楠田
正博 楠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Rope Manufacturing Co Ltd
Original Assignee
Hitachi Ltd
Tokyo Rope Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Tokyo Rope Manufacturing Co Ltd filed Critical Hitachi Ltd
Publication of JPWO2003025278A1 publication Critical patent/JPWO2003025278A1/en
Application granted granted Critical
Publication of JP4096879B2 publication Critical patent/JP4096879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/165Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber inlay
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/16Ropes or cables with an enveloping sheathing or inlays of rubber or plastics
    • D07B1/162Ropes or cables with an enveloping sheathing or inlays of rubber or plastics characterised by a plastic or rubber enveloping sheathing
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B5/00Making ropes or cables from special materials or of particular form
    • D07B5/005Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties
    • D07B5/006Making ropes or cables from special materials or of particular form characterised by their outer shape or surface properties by the properties of an outer surface polymeric coating
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/10Rope or cable structures
    • D07B2201/1028Rope or cable structures characterised by the number of strands
    • D07B2201/1036Rope or cable structures characterised by the number of strands nine or more strands respectively forming multiple layers
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2401/00Aspects related to the problem to be solved or advantage
    • D07B2401/20Aspects related to the problem to be solved or advantage related to ropes or cables
    • D07B2401/2065Reducing wear
    • D07B2401/207Reducing wear internally

Abstract

柔軟、適正摩擦係数で且つ長寿命のロープを提供するため、金属製素線21を撚り合せて構成した構造体20を被覆材23により被覆した被覆構造体20を複数本撚り合わせて構成した。In order to provide a flexible, appropriate friction coefficient, and long-life rope, a plurality of covering structures 20 in which a structure 20 formed by twisting metal strands 21 and covered with a covering material 23 are formed by twisting.

Description

背景技術
本発明はエレベータや荷役機械に用いられるロープに関する。
エレベータは、乗りかごと釣合い錘をロープで結合し、このロープを巻き上げ機のシーブに巻き掛けたロープと駆動シーブとの間に生じる摩擦力で駆動している。又エレベータでも巻胴式のもの或いは荷役機械では負荷を吊るしたロープを巻胴に巻き取って駆動している。
従来のこの種の機械に使用されているロープは、中心に潤滑油を含浸させた繊維ロープを芯として配置し、その周囲に鋼素線を撚り合せて構成した構造体を複数本撚り合せた構造である。このロープでは、小径のシーブやプーリに巻きかけて使用する場合、屈曲に伴う素線の疲労や摩耗によりロープの寿命が極端に短くなる。又、シーブとの間の摩擦係数が小さい為に、小径シーブになるほど駆動摩擦力の確保が難しくなる。
このため、摩擦駆動をするシーブの直径はロープ直径の40倍以上を採用している。即ちシーブ径が大きいために駆動トルクが大きくなり、したがって、駆動装置の寸法も大きくなっている。これまではこのトルクは必要だとしてエレベータ等が設計されてきたが、省スペースの要求が強まるに伴って、要素機器の小形化の要求が強まっている。
これに対し、ロープを使用するときのシーブ径を小さくする新しいロープが提案されている。例えば、特開平07−267534号では有機繊維を強度部材として使用し、この有機繊維が10数μmであることから、ロープの曲率半径を小さくしても強度部材の疲労は発生せず長寿命が維持できるとしている。
また、特開平3−82883には、寄り合わせたワイヤーに潤滑の保護層を設け、それを更に撚り合わせてその外側を更に被覆したロープが提案されている。
発明の開示
上記提案されたものでは、強度部材は従来のワイヤロープ材に比べて縦弾性係数が小さいので、ロープの縦剛性が小さくなる。このために、ロープ長が長くなったとき乗りかごのフワフワ振動を生じやすい。また有機材料であり耐熱性が低く、経年劣化も生じ易い。また、小径のシーブに捲きかけて屈曲を繰り返すと素線間で摩耗を生じ且つ繰返し応力による疲労のために寿命が短くなる。更にシーブとの間の摩擦係数が小さくすべりを生じて大きな駆動力を伝達できない。等の問題があった。
本発明はこれらの従来の欠点を解決し、柔軟、適正摩擦係数で且つ長寿命のロープを提供するにある。
本発明におけるロープは、金属製素線を撚り合せて構成した第一の構造体を被覆材により被覆した第一の被覆構造体を芯とし、その周囲に、金属製素線を撚り合せて構成した第二の構造体を被覆材により被覆した第二の被覆構造体を複数本配置して撚り合せ、更に、該第一の被覆構造体を中心としてその周囲に配置された複数の前記第二の被覆構造体の周囲を被覆する第三の被覆材を配置し、前記第二の被覆材と前記第三の被覆材が接合するように構成した。
ここで接合とは、接着剤による接着や、二つの物質が加熱により融着、そして化学的処理による結合等、を含むように解釈される。
このように、前記構造体或いは第一、第二の構造体を、金属製素線を撚り合わせ構成したため、剛性が高く、経年変化の少ないロープとすることができるばかりか、これを被覆材で被覆するようにしたため、素線が直接接触、滑ることのない耐摩耗性に優れた長寿命のロープを提供できる。
発明を実施するための最良の形態
図1は本発明になるロープを適用したエレベータの一実施例を示す全体構成図である。
図1において、乗客あるいは荷物をはこぶ乗りかご1の下部には、ロープ10を受けるプーリ5a、5bを設け、乗りかご1に定格のほぼ1/2の荷重が積載されたとき吊り合う釣合い錘2の上部には、ロープ10を受けるプーリ5eを設ける。
昇降路7の頂部にはロープ10を受けるプーリ5c、5dを設け、また下部にはシーブ3aを持つ駆動装置3を設ける。本発明になるロープ10は、昇降路頂部に設けたロープ受け6aから乗りかご下のプーリ5a、5b、頂部のプーリ5cを通り、駆動装置3のシーブ3aに捲きかけられる。更に頂部のプーリ5d、釣合い錘のプーリ5eを通り、頂部のロープ受け6bで終わる。
本発明になるロープ10は柔軟で、且つ被覆とシーブ3aとの間の摩擦係数が大きいので、シーブ径が小径でも長寿命且つ確実な駆動力伝達が可能である。例えばシーブ径は従来の1/3〜1/2が実現できる。このことは駆動装置に要求される駆動トルクも1/3〜1/2になる為に、駆動装置が大幅に小型化できる。更にかご下、釣合い錘上部及び昇降路頂部のプーリ類も同様に小径になるので、オーバーヘッド(最上階の床から昇降路天井までの距離)やピット深さ(最下階床から昇降路ピットまでの距離)を短縮できる。
図2及び図9は本発明になるロープの断面構造を示す図である。12はロープ10の中心に配置する第一の被覆構造体、13は第一の被覆構造体12の周囲に配置する複数の第二の被覆構造体で、これら複数の第一、第二の被覆構造体12、13を撚り合せ、その外側に被覆11(外層被覆)を施し、ロープ10とする。被覆構造体12及び13では、その直径が被覆前のロープ径の1/100〜1/15のもので、材質は高張力鋼の素線を使い、この細径素線の集合体に被覆(内層被覆)を施して被覆構造体を構成する。細径素線を使うことで、ロープの柔軟性を実現し、小径シーブやプーリに捲き掛けることを容易にする。
被覆構造体12、13の被覆材(内層)は、素線との接着力があり、適度の弾性がある(熱可塑性)有機材料とし、被覆ロープの被覆材(外層)はシーブとの摩擦係数が適切で、且つ耐摩耗性のある(熱可塑性)有機材料とする。
ロープ10は中心の第一の被覆構造体12の周りに複数の第二の被覆構造体13が撚り合わされているので、被覆ロープ10が屈曲を繰り返されると、各被覆構造体12、13間では少しづつ曲率半径が異なるので、相互に滑りを生じる。
また被覆ロープに張力が作用すると被覆構造体が撚り合わされている事により被覆構造体間に相互の間の押付け力が作用し、更にロープがシーブやプーリに捲きかけられることでロープの半径方向に押付け力が作用する。このように実使用条件下では、ロープの被覆構造体間にはお互いに面圧が作用し、且つ相互滑りを生じる。
このため、被覆構造体12、13に被覆がない場合には素線同士が直接接触して滑り、素線摩耗を生じる。ロープの柔軟性を実現する為に素線径を細くした為に、ロープの寿命を著しく短くする。被覆構造体12及び13の被覆は、構造体間の素線の直接接触を防止するものである。即ち、構造体の素線と隣接する構造体の素線との間に被覆材が入ることで、これらの素線間には直接接触することがなくなり、素線摩耗を抑制できる。しかし隣接する構造体の被覆間には面圧及び相対滑りが生じるが、被覆材の弾性によりこの面圧及び相対滑りが緩和され、耐摩耗性を大幅に向上させる。
構造体への被覆は、隣接する構造体の素線間に働く面圧と相対滑りを緩和させる効果がある。この効果を大きくする為には被覆厚さを大きくしたい。反面この被覆厚さが必要以上に厚いと、構造体の断面積に占める強度部材の面積比率が小さくなる。このことは、この構造体を撚り合せて構成するロープの断面積に占める強度部材比率が小さくなり、同じ強度なら断面積の広いロープになる。このため、被覆厚さは素線間面圧と相対滑りの緩和に必要な最小限の厚さとして、極力薄くする。ちなみに0.2〜0.5mmが適当である。
第一の被覆構造体12の周囲に配置する第二の被覆構造体13ではお互いの隣接する構造体間には隙間δを設け、外層被覆を成形する時被覆材が、被覆構造体間にも容易に浸透しやすい構造にしている。これにより、外層被覆11は、第二の被覆構造体13との接触面積は勿論、第一の被覆構造体12との接触面積が拡大し、内層被覆と外層被覆の接着或いは融着強度が向上する。
外層被覆はシーブとの間の摩擦力により駆動力を伝達する。このことは被覆材の摩耗を余儀なくされることを意味しており、外層に用いる被覆材は耐摩耗性を向上させるために、適度の硬度と厚みを持たせる。
図3は被覆構造体12、或いは13の具体的な構造を示す図である。素線21を複数本撚り合せて構造体22を構成し、その外側に被覆23を施した被覆構造体20である。ここで、素線21の直径は前述のように。外層被覆前のロープ径の1/15〜1/100とする。この実施例の場合は構造体の構成を(1+6+12)として(2層捲き)、19本の素線を平行に並べた場合を示している。このような構造にすることにより素線間の接触は線接触になり、ロープに作用する長さ方向荷重及び半径方向荷重に対して、素線間の接触面圧が点接触に比較して緩和される。構造体22を構成する素線径が小径であるので、ロープの屈曲に伴う構造体内の素線間の相対滑り距離が小さくなる。このことは、素線の摩耗量を決定する面圧と滑り距離の積(一般にPV値と言う)を小さくし、素線摩耗を抑制できる。また素線径が小さいので、ロープの屈曲に伴う素線の疲労も緩和できる。
素線21を撚り合わせた構造体22に被覆23を施す時、構造体22を洗浄剤で洗浄し、接着剤塗布後被覆材23を成形する方法、或いは素線に適切な表面処理を施し、被覆材を成形して化学的に素線表面と被覆材を結合する。例えば、素線をブラスメッキしておき、構造体22に硫黄を含む被覆材を成形して、加硫により素線表面のメッキ成分と被覆材成分を化学結合させる方法がある。
構造体22の外層に位置する素線は被覆と接着されていて拘束されているが、その内部に位置する素線はその動きを拘束されていない。このことは小さな曲率半径に曲げても抵抗が小さいことを意味しており、柔軟なロープを実現できる。この場合でも、素線間では直接接触しているが平行配置であり、接触面積が大きく取れて面圧が小さいこと、及び素線径が小さいので、ロープの屈曲による素線間の滑りも微小であることから、長寿命を確保できる。
図4は被覆構造体12、或いは13の別な実施例である。同一記号は同じ部品を表示している。比較的大きなロープ強度を必要とする場合、素線の径が小さい為に、多くの素線本数を必要とする場合がある。この実施例では、そのような場合の構造体の構成を示しており、構成を(1+6+12+18)として(3層捲き)、37本の素線を撚り合わせた場合を示している。素線本数が多くなると、図3に示すように各素線を同じピッチで撚り合わせることが困難になる。
この図では各層の素線の撚りピッチを少しづつずらして、断面形状が容易に円形を維持できるようにした場合を示している。図3で示す例では各素線は平行で素線の交差角は零であるが、この実施例の場合、各層で撚りピッチをわずかづつずらしているので、交差角を零にできない。しかし、その場合でも各層の撚りピッチの差が小さいので、素線の交差角は小さく、構造体内の素線間の接触長さを長くでき素線の耐摩耗性を向上させることが可能である。
更に多くの素線本数を必要とする場合でも、同様にして構造体を構成すれば、断面形状をほぼ円形に維持しながら構成でき、且つ耐摩耗性が向上する。この製作性が良いことは出来上がったロープのコストを抑制する効果がある。
図5は更に多くの素線を撚り合わせる必要がある場合の被覆構造体30の実施例を示すものである。前述の構造体22(図3)と同じように、素線31を複数本撚り合せた中央構造体35を中心に、その周囲に同様な構造の周囲構造体34を7本配置して撚り合せて全体構造体32を構成し、この全体構造体32の外周に被覆33を施して被覆構造体30を構成する。即ち図3に示した構造体22を7本撚り合せて全体構造体32を構成し、その外側に被覆を施した構造である。実施例では、図3に示した構造体22を7本撚り合せた場合を示しているが、この構造に限定したものではない。
この構造は隣接する周囲の構造体34と中央の構造体35間で素線が直接接触するので、前述の構造(図3、図4)に比較し素線の耐摩耗性と言う点では劣るが、柔軟で、高強度のロープの要求には適している構造である。また、周囲構造体34間での素線の直接接触にしても、中央構造体35の中心からの距離が短いので、素線間の相対滑り距離が短く、摩耗も小さくてすむ。従って、この構造は、ロープ中心からの距離の短い芯の構造体12に適用すると良い。
図6及び図10は図3の構造体22に被覆した被覆構造体20を7本撚り合せたものを示す。即ち、単体被覆構造体41を撚り合せて構造体42を構成し、この構造体42の外側に被覆43を施して全体被覆構造体40としたものである。こうすることにより、隣接する単体被覆構造体41間での素線接触がなくなり、素線の耐摩耗性は格段に向上する。反面被覆構造体41の被覆断面積分、ロープ断面積に対する強度部材の占める比率が低下し、単位断面積当りの強度は低下する。このため、被覆厚さは素線間の面圧及び相対滑りを緩和する最低限の厚みとし、極力薄くする。この構造は、被覆ロープの強度、寸法、寿命の兼ね合いから選択する。
図7及び図11はロープ構造の他の実施例を示す。基本的には図2の実施例と同じであるが、芯の被覆構造体12の周囲に、8本の被覆構造体13を配置して撚り合せ、その外側に被覆11を施した構造である。芯及び周囲の被覆構造体12、13は図2の被覆構造体と同様である。
図8は更に他の実施例を示すもので、単体被覆構造体51を撚り合わせて構成した構造体52に被覆53を施して全体被覆構造体50としてロープとしたものである。この構造のロープは、前述のロープに比べて設計上の制約がゆるくなり、設計自由度が拡大する。すなわち、前述のロープでは、ロープの断面積に占める強度部材の断面積、すなわち素線の断面積の総和の比率を高めるためには、芯になる単体被覆構造体とその外周に配置する単体被覆構造体の直径の大きさには、制約がある。それに対し、この実施例の場合には、ほぼ同じ径の単体被覆構造体を使用することができ、素線の径、単体被覆構造体の径、被覆ロープの径の間での設計上の自由度が高くなると同時に製造上も容易になる。
図12は更に他の実施例を示す。基本的には図7の実施例と同じであるが、芯の被覆構造体12を芯鋼24の周囲に素線21を撚り合わせて構成したものである。これにより、素線数を極端に多くすることなく、所望の大きな直径を有する被覆構造体を実現することが出来る。
ロープとしたときの縦剛性を確保するために、素線を撚り合せて構造体を製作する工程、被覆構造体を撚り合せてロープを製作する工程では、夫々素線や被覆構造体に適切な張力を作用させながら撚り合せる。これにより素線か或いは被覆構造体間に無駄な空間がなくなり、製品であるロープに張力が作用しても、ロープの伸びを小さくできる。
素線を撚り合せて構成する構造体に被覆を成形する場合、素線と被覆材である有機材料とは接着効果がほとんどない。そこで、素線と被覆との間の接合力を確保するために、構造体を洗浄し、洗浄用の溶剤を乾燥させた後に接着剤を塗布、その上に被覆材である有機材料を構造体を引き出しながら被覆(内層被覆)を押し出し成形する。このようにして製作した被覆構造体を張力を掛けながら撚り合せてロープとし、その外側にさらに有機材料による被覆(外層被覆)を成形する。このとき被覆構造体を撚り合せて製作したロープを事前に一定温度まで加熱しておくことによって、外層被覆を成形する時、内層被覆材と外層被覆材とが融着し、両者が一体化する。これにより、シーブからの駆動力を受けた時、その力は外層被覆→内層被覆→構造体(強度部材)と伝達され、内層被覆と外層被覆との間で、或いは内層被覆と構造体の間で滑ることはなく力が伝達され、乗りかごを駆動できる。
構造体に被覆する場合接着のほかに、素線に表面処理をしておき、その外側を覆う被覆材の成分と素線の表面にある成分との間で化学反応を生じさせて、素線と被覆材とを化学的に結合する方法もある。この場合は一般に接着による方法よりも強固に両者を接着できる。
内層被覆の目的は隣接する構造体の素線が互いに接触しないようにすることであり、ロープ断面積に占める強度部材の断面積を大きくして小径・高強度ロープとするためには、その目的を達成できる範囲で極力薄くしたほうが良い。そのためには0.2〜0.5mmの範囲が良い。外層被覆の目的はシーブからの動力をロープの強度部材に伝達し、且つ長期に渡るシーブとの接触によっても摩耗が小さいことであり、その厚さは摩耗に耐えるだけの厚さが必要である。そのためにはロープの使われる種々の条件を加味して、0.5〜1.0mmの範囲が良い。
上記本発明の実施形態になるロープでは、細径の金属製素線を使用しているので、剛性が高く経年劣化がないのは勿論、柔軟性に優れており、小径シーブに巻きかけて使用する場合にも強度部材に無理な力が働かない。また金属製素線を撚り合せた構造体に被覆を施した被覆構造体を撚り合わせてロープにしているので、構造体間で素線が直接接触、滑ることがないので、耐摩耗性に優れ長寿命を実現できる。
更にこの被覆構造体を撚り合せたロープに被覆を施してロープとしているので、シーブとの摩擦係数を適切にできると共に内層被覆の摩耗ひいては素線の摩耗を防止できる。構造体に施す被覆とロープに施す被覆を別にし、2層被覆構造にしているので、各々の被覆に必要な機能を実現できるようにその材料を最適化でき、設計自由度の向上と共に製造上の容易さを実現できる。
更に、素線と内層被覆とを接着しているので、ロープの繰り返し屈曲に対しても素線と内層被覆間の滑りがなく内層被覆の摩耗を防止でき、ロープの長寿命化を実現できる。
また、本発明になるロープは小径シーブでの使用でも、シーブとの間の摩擦係数を適正化でき、且つ長寿命を実現できるので、駆動装置及びそれに付随した要素機器、例えばプーリを小型化できる。これにより省スペースで且つロープ交換周期の長いエレベータを実現できる。この結果エレベータの初期コストと共に保守コストの削減が可能になる。
産業上の利用可能性
本発明によれば、金属製素線を撚り合わせ構成したため、剛性が高く、経年変化の少ないロープとすることができるばかりか、これを被覆材で被覆するようにしたため、素線が直接接触、滑ることのない耐摩耗性に優れた長寿命のロープを提供できる。
【図面の簡単な説明】
図1は、本発明になるロープを適用したエレベータの一実施例を示す全体構成図である。図2は本発明の一実施形態になるロープを示す断面図である。図3は図2のロープを構成する被覆構造体の一実施形態を示す断面図である。図4は図2のロープを構成する被覆構造体の他の実施形態を示す断面図である。図5は図2のロープを構成する被覆構造体の更に他の実施形態を示す断面図である。図6は図2のロープを構成する被覆構造体の更に他の実施形態を示す断面図である。図7は本発明の他の実施形態にロープの断面図である。図8は本発明の更に他の実施形態になるロープの断面図である。図9は図2に示すロープの詳細断面図である。図10は図6に示すロープの詳細断面図である。図11は図7に示すロープの詳細断面図である。図12は本発明の更に他の実施形態になるロープの断面図である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rope used for an elevator or a cargo handling machine.
In an elevator, a car and a counterweight are connected by a rope, and the rope is driven by a frictional force generated between a rope wound around a sheave of a hoist and a drive sheave. In the case of an elevator, a winding type or a cargo handling machine is driven by winding a rope hanging a load around the winding drum.
The rope used in this type of conventional machine is composed of a fiber rope impregnated with lubricating oil at the center and a steel wire twisted around the core. Structure. When this rope is used by being wound around a small-diameter sheave or pulley, the life of the rope is extremely shortened due to fatigue and wear of the wire due to bending. Further, since the coefficient of friction between the sheave and the sheave is small, it becomes difficult to secure the driving frictional force as the sheave becomes smaller in diameter.
For this reason, the diameter of the sheave driven by friction is at least 40 times the diameter of the rope. That is, since the sheave diameter is large, the driving torque is large, and accordingly, the size of the driving device is also large. Up to now, elevators and the like have been designed on the assumption that this torque is necessary. However, as the demand for space saving increases, the demand for downsizing element devices has increased.
On the other hand, a new rope that reduces the sheave diameter when using a rope has been proposed. For example, in JP-A-07-267534, an organic fiber is used as a strength member, and since the organic fiber has a length of about 10 μm, even if the radius of curvature of the rope is reduced, fatigue of the strength member does not occur and a long life is obtained. It can be maintained.
Further, Japanese Patent Application Laid-Open No. 3-82883 proposes a rope in which a lubricating protective layer is provided on a wire that has been brought close to each other, the wire is further twisted, and the outside is further covered.
DISCLOSURE OF THE INVENTION In the above-mentioned proposal, since the strength member has a smaller longitudinal elastic modulus than the conventional wire rope material, the longitudinal rigidity of the rope is reduced. For this reason, when the rope length is increased, fluffy vibration of the car is likely to occur. Further, it is an organic material, has low heat resistance, and is liable to deteriorate over time. In addition, when winding is repeated around a small-diameter sheave, wear occurs between the strands, and the life is shortened due to fatigue due to repeated stress. Furthermore, the friction coefficient between the sheave and the sheave is so small that slippage occurs and a large driving force cannot be transmitted. And so on.
The present invention overcomes these disadvantages and provides a rope that is flexible, has a suitable coefficient of friction, and has a long service life.
The rope according to the present invention is configured such that a first coated structure obtained by coating a first structure formed by twisting metal strands with a coating material is used as a core, and a metal strand is twisted around the core. A plurality of second covering structures obtained by covering the second structure with the covering material are arranged and twisted, and further, the plurality of second covering structures disposed around the first covering structure around the first covering structure are arranged. A third covering material that covers the periphery of the covering structure of (1) is arranged, and the second covering material and the third covering material are joined.
Here, the term “joining” is understood to include bonding by an adhesive, fusion of two substances by heating, and bonding by chemical treatment.
As described above, since the structure or the first and second structures are formed by twisting metal strands, not only can the rigidity be high and the rope can be made less aging, but this can be coated with a covering material. Since the wire is covered, it is possible to provide a long-life rope excellent in abrasion resistance without the element wire coming into direct contact and slipping.
BEST MODE FOR CARRYING OUT THE INVENTION FIG. 1 is an overall configuration diagram showing an embodiment of an elevator to which a rope according to the present invention is applied.
In FIG. 1, pulleys 5a and 5b for receiving a rope 10 are provided below a passenger car or luggage car 1, and a counterweight 2 which is suspended when the car 1 is loaded with approximately 1/2 of the rated load. A pulley 5e for receiving the rope 10 is provided on the upper part of.
Pulleys 5c and 5d for receiving the rope 10 are provided at the top of the hoistway 7, and a driving device 3 having a sheave 3a is provided at the bottom. The rope 10 according to the present invention is wound around a sheave 3a of the driving device 3 from a rope receiver 6a provided at the top of the hoistway, through pulleys 5a and 5b under the car, and a pulley 5c at the top. Further, it passes through the top pulley 5d and the counterweight pulley 5e, and ends at the top rope receiver 6b.
Since the rope 10 according to the present invention is flexible and has a large friction coefficient between the sheath and the sheave 3a, a long life and reliable driving force transmission is possible even with a small sheave diameter. For example, the sheave diameter can be reduced to 1/3 to 1/2 of the conventional one. This means that the driving torque required for the driving device is also reduced to 1/3 to 1/2, so that the driving device can be significantly reduced in size. In addition, since the pulleys at the bottom of the car, at the top of the counterweight and at the top of the hoistway also have small diameters, the overhead (the distance from the top floor to the hoistway ceiling) and the pit depth (from the lowest floor to the hoistway pit) Distance) can be shortened.
2 and 9 are views showing the cross-sectional structure of the rope according to the present invention. Reference numeral 12 denotes a first covering structure disposed at the center of the rope 10, and 13 denotes a plurality of second covering structures disposed around the first covering structure 12, and the plurality of first and second covering structures. The structures 12 and 13 are twisted, and a coating 11 (outer layer coating) is applied to the outside of the twisted structure. The covering structures 12 and 13 have a diameter of 1/100 to 1/15 of the rope diameter before covering, use a high-strength steel strand, and cover the aggregate of the small-diameter strands ( (Inner layer coating) to form a coated structure. The use of small diameter wires allows the rope to be flexible and easy to wind around small sheaves and pulleys.
The coating materials (inner layers) of the coating structures 12 and 13 are made of an organic material having adhesiveness to the element wire and having a moderate elasticity (thermoplastic), and the coating material (outer layer) of the coating rope is a coefficient of friction with the sheave. Is a suitable and wear-resistant (thermoplastic) organic material.
Since the plurality of second covering structures 13 are twisted around the first covering structure 12 at the center of the rope 10, when the covering rope 10 is repeatedly bent, there is a gap between the respective covering structures 12, 13. Since the radii of curvature are different little by little, mutual slippage occurs.
In addition, when tension is applied to the coated rope, the coating structure is twisted so that a pressing force is applied between the coated structures, and furthermore, the rope is wound around the sheave or the pulley, so that the rope is wound in the radial direction of the rope. The pressing force acts. Thus, under actual use conditions, surface pressure acts on each other between the covering structures of the rope, and mutual sliding occurs.
For this reason, when the covering structures 12 and 13 do not have a covering, the wires are in direct contact with each other and slip, resulting in wire abrasion. The life of the rope is remarkably shortened because the diameter of the wire is reduced to realize the flexibility of the rope. The covering of the covering structures 12 and 13 prevents direct contact of the wires between the structures. In other words, since the covering material enters between the strands of the structure and the strands of the adjacent structure, there is no direct contact between these strands, and the strand wear can be suppressed. However, surface pressure and relative slip occur between the coatings of the adjacent structures, and the elasticity of the coating material reduces the surface pressure and relative slip, thereby greatly improving wear resistance.
The coating on the structure has an effect of reducing the surface pressure and the relative slip acting between the strands of the adjacent structure. To increase this effect, it is desired to increase the coating thickness. On the other hand, if the coating thickness is unnecessarily large, the area ratio of the strength member to the cross-sectional area of the structure decreases. This means that the ratio of the strength member to the cross-sectional area of the rope formed by twisting this structure is small, and a rope having a wide cross-sectional area is provided at the same strength. For this reason, the coating thickness is made as thin as possible as the minimum thickness necessary for relaxing the inter-wire surface pressure and relative slip. Incidentally, 0.2 to 0.5 mm is appropriate.
In the second covering structure 13 arranged around the first covering structure 12, a gap δ is provided between adjacent structures, and the covering material is formed between the covering structures when forming the outer layer covering. The structure is easy to penetrate easily. Accordingly, the outer layer coating 11 has an increased contact area with the first coating structure 12 as well as the area of contact with the second coating structure 13, thereby improving the adhesion or fusion strength between the inner layer coating and the outer layer coating. I do.
The outer layer coating transmits a driving force by a frictional force with the sheave. This means that the coating material is forced to wear, and the coating material used for the outer layer is given an appropriate hardness and thickness in order to improve the wear resistance.
FIG. 3 is a diagram showing a specific structure of the covering structure 12 or 13. A covering structure 20 in which a plurality of strands 21 are twisted to form a structure 22 and a covering 23 is provided on the outside thereof. Here, the diameter of the strand 21 is as described above. It is 1/15 to 1/100 of the rope diameter before coating the outer layer. In the case of this embodiment, the structure of the structure is (1 + 6 + 12) (two-layer winding), and 19 wires are arranged in parallel. By adopting such a structure, the contact between the strands becomes a line contact, and the contact pressure between the strands is less than the point contact against the longitudinal load and the radial load acting on the rope. Is done. Since the diameter of the wire constituting the structure 22 is small, the relative sliding distance between the wires in the structure due to the bending of the rope is reduced. This makes it possible to reduce the product (generally referred to as PV value) of the surface pressure and the slip distance that determines the amount of wire abrasion, thereby suppressing wire abrasion. In addition, since the strand diameter is small, fatigue of the strand due to bending of the rope can be reduced.
When applying the coating 23 to the structure 22 in which the wires 21 are twisted, the structure 22 is washed with a cleaning agent, and a method of forming the coating material 23 after applying the adhesive, or performing an appropriate surface treatment on the wires, The coating is molded to chemically bond the wire surface and the coating. For example, there is a method in which the wire is brass-plated, a coating material containing sulfur is formed on the structure 22, and the plating component on the wire surface and the coating material component are chemically bonded by vulcanization.
The wires located on the outer layer of the structure 22 are adhered to the covering and are restrained, but the wires located inside are not restrained from moving. This means that the resistance is small even when bent to a small radius of curvature, and a flexible rope can be realized. Even in this case, the wires are in direct contact with each other but are arranged in parallel.The contact area is large, the surface pressure is small, and the wire diameter is small. Therefore, a long life can be ensured.
FIG. 4 shows another embodiment of the covering structure 12 or 13. The same symbols indicate the same parts. When a relatively large rope strength is required, a large number of strands may be required because the diameter of the strand is small. This embodiment shows the configuration of the structure in such a case, where the configuration is (1 + 6 + 12 + 18) (three-layer winding) and 37 strands are twisted. As the number of strands increases, it becomes difficult to twist the strands at the same pitch as shown in FIG.
This figure shows a case in which the twist pitch of the strands of each layer is shifted little by little so that the cross section can easily maintain a circular shape. In the example shown in FIG. 3, the strands are parallel and the intersection angle of the strands is zero. In this embodiment, however, the twist angle is slightly shifted in each layer, so that the intersection angle cannot be zero. However, even in that case, since the difference in the twist pitch of each layer is small, the intersection angle of the wires is small, and the contact length between the wires in the structure can be lengthened, and the wear resistance of the wires can be improved. .
Even when a larger number of strands is required, if the structure is similarly configured, the structure can be maintained while maintaining a substantially circular cross-sectional shape, and the wear resistance is improved. This good manufacturability has the effect of reducing the cost of the finished rope.
FIG. 5 shows an embodiment of the covering structure 30 when it is necessary to twist more strands. Similar to the above-described structure 22 (FIG. 3), a center structure 35 in which a plurality of strands 31 are twisted is centered, and seven surrounding structures 34 having the same structure are arranged around the center structure 35 and twisted. Thus, a coating 33 is applied to the outer periphery of the entire structure 32 to form a coating structure 30. That is, the structure 22 shown in FIG. 3 is twisted together to form an entire structure 32, and the outside is covered. In the embodiment, a case is shown in which seven structures 22 shown in FIG. 3 are twisted, but the present invention is not limited to this structure.
In this structure, since the wires are in direct contact between the adjacent surrounding structure 34 and the central structure 35, the abrasion resistance of the wires is inferior to the above-described structure (FIGS. 3 and 4). However, it is a structure suitable for the demand of a flexible and high-strength rope. Further, even when the wires are in direct contact between the surrounding structures 34, the distance from the center of the central structure 35 is short, so that the relative sliding distance between the wires is short and the wear is small. Therefore, this structure is preferably applied to the core structure 12 having a short distance from the center of the rope.
FIGS. 6 and 10 show a structure in which seven covering structures 20 covering the structure 22 in FIG. 3 are twisted. That is, the single covering structure 41 is twisted to form a structure 42, and a covering 43 is applied to the outside of the structure 42 to form an entire covering structure 40. By doing so, there is no wire contact between the adjacent single coated structures 41, and the wear resistance of the wire is significantly improved. On the other hand, the ratio of the strength member to the cross-sectional area of the covering structure 41 and the rope cross-sectional area decreases, and the strength per unit cross-sectional area decreases. For this reason, the coating thickness is set to the minimum thickness for relaxing the surface pressure and the relative slip between the strands, and is made as thin as possible. This structure is selected based on the strength, size and life of the coated rope.
7 and 11 show another embodiment of the rope structure. This is basically the same as the embodiment of FIG. 2, except that eight covering structures 13 are arranged around the core covering structure 12 and twisted, and the covering 11 is applied to the outside. . The core and surrounding coating structures 12, 13 are similar to the coating structure of FIG.
FIG. 8 shows still another embodiment, in which a covering 53 is applied to a structure 52 constituted by twisting a single covering structure 51 to form a rope as the whole covering structure 50. In the rope having this structure, design restrictions are relaxed as compared with the above-described rope, and the degree of freedom in design is increased. That is, in the above-mentioned rope, in order to increase the ratio of the cross-sectional area of the strength member to the cross-sectional area of the rope, that is, the ratio of the total of the cross-sectional areas of the strands, a single coated structure serving as a core and a single coated structure disposed on the outer periphery thereof There are restrictions on the size of the diameter of the structure. On the other hand, in the case of this embodiment, a single coated structure having almost the same diameter can be used, and the design freedom between the diameter of the strand, the diameter of the single coated structure, and the diameter of the coated rope can be improved. At the same time, manufacturing becomes easier.
FIG. 12 shows still another embodiment. 7 is basically the same as the embodiment of FIG. 7, except that a core covering structure 12 is formed by twisting a strand 21 around a core steel 24. This makes it possible to realize a covering structure having a desired large diameter without extremely increasing the number of strands.
In order to secure the longitudinal rigidity when making a rope, in the process of manufacturing the structure by twisting the strands and the process of twisting the covering structure, Twist while applying tension. As a result, there is no useless space between the wires or the covering structure, and even when tension is applied to the rope as a product, the elongation of the rope can be reduced.
When a coating is formed on a structure formed by twisting strands, the strands and the organic material as the covering material have little adhesion effect. Therefore, in order to secure the bonding force between the wires and the coating, the structure is washed, a cleaning solvent is dried, an adhesive is applied, and an organic material as a coating material is applied on the structure. While pulling out, the coating (inner layer coating) is extruded and formed. The coated structure manufactured in this manner is twisted while applying tension to form a rope, and a coating of an organic material (outer coating) is formed on the outside of the rope. At this time, by heating the rope manufactured by twisting the covering structure to a certain temperature in advance, when forming the outer layer coating, the inner layer coating material and the outer layer coating material are fused and the two are integrated. . By this, when receiving the driving force from the sheave, the force is transmitted from the outer layer coating to the inner layer coating to the structure (strength member), and between the inner layer coating and the outer layer coating or between the inner layer coating and the structure. The power is transmitted without slipping, and the car can be driven.
When coating on a structure In addition to bonding, surface treatment is applied to the wire, and a chemical reaction occurs between the components of the covering material that covers the outside and the components on the surface of the wire, There is also a method of chemically bonding the coating material with the coating material. In this case, the two can be bonded more firmly than the bonding method.
The purpose of the inner layer coating is to prevent the wires of adjacent structures from coming into contact with each other. It is better to make it as thin as possible within the range that can achieve. For that purpose, the range of 0.2 to 0.5 mm is good. The purpose of the outer layer coating is to transmit the power from the sheave to the strength member of the rope and to reduce the abrasion due to long-term contact with the sheave, and the thickness must be large enough to withstand the abrasion. . For that purpose, the range of 0.5 to 1.0 mm is preferable in consideration of various conditions in which the rope is used.
In the rope according to the embodiment of the present invention, a thin metal wire is used. Therefore, the rope has high rigidity and does not deteriorate over time. In this case, no excessive force acts on the strength member. In addition, the structure is made by twisting metal wires and the coated structure is twisted to form a rope, so the wires do not directly contact or slip between structures, providing excellent wear resistance. Long life can be achieved.
Further, since the coated structure is coated on the twisted rope to form a rope, the coefficient of friction with the sheave can be made appropriate, and the abrasion of the inner layer coating and further the abrasion of the strand can be prevented. Since the coating applied to the structure and the coating applied to the rope are separated and a two-layer coating structure is used, the materials can be optimized to realize the functions required for each coating, and the design flexibility is improved and the manufacturing is improved. Can be realized.
Further, since the wire and the inner layer coating are adhered to each other, there is no slippage between the wire and the inner layer coating even when the rope is repeatedly bent, so that abrasion of the inner layer coating can be prevented and the life of the rope can be extended.
In addition, the rope according to the present invention can optimize the coefficient of friction with the sheave even when used in a small-diameter sheave, and can achieve a long life, so that the drive device and the associated component devices, such as the pulley, can be miniaturized. . This makes it possible to realize an elevator that is space-saving and has a long rope replacement cycle. As a result, it is possible to reduce the maintenance cost as well as the initial cost of the elevator.
INDUSTRIAL APPLICABILITY According to the present invention, since the metal wires are twisted, not only can the rigidity be high and the secular rope can be reduced, but also this can be covered with the covering material. It is possible to provide a long-life rope having excellent abrasion resistance without the wires coming into direct contact and slipping.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram showing an embodiment of an elevator to which a rope according to the present invention is applied. FIG. 2 is a sectional view showing a rope according to an embodiment of the present invention. FIG. 3 is a cross-sectional view showing one embodiment of the covering structure constituting the rope of FIG. FIG. 4 is a sectional view showing another embodiment of the covering structure constituting the rope of FIG. FIG. 5 is a sectional view showing still another embodiment of the covering structure constituting the rope of FIG. FIG. 6 is a sectional view showing still another embodiment of the covering structure constituting the rope of FIG. FIG. 7 is a sectional view of a rope according to another embodiment of the present invention. FIG. 8 is a sectional view of a rope according to still another embodiment of the present invention. FIG. 9 is a detailed sectional view of the rope shown in FIG. FIG. 10 is a detailed sectional view of the rope shown in FIG. FIG. 11 is a detailed sectional view of the rope shown in FIG. FIG. 12 is a sectional view of a rope according to still another embodiment of the present invention.

Claims (10)

金属製素線を撚り合せて構成した第一の構造体を第一の被覆材により被覆した第一の被覆構造体と、金属製素線を撚り合せて構成した第二の構造体を第二の被覆材により被覆した第二の被覆構造体と、該第一の被覆構造体を中心としてその周囲に配置された複数の前記第二の被覆構造体の周囲を被覆する第三の被覆材から成り、前記第二の被覆材と前記第三の被覆材が接合するように構成したことを特徴とするロープ。A first coated structure in which a first structure formed by twisting metal wires is covered with a first coating material, and a second structure formed by twisting metal wires in a second structure A second covering structure covered by the covering material, and a third covering material covering the periphery of the plurality of second covering structures disposed around the first covering structure. A rope characterized in that the second covering material and the third covering material are joined to each other. 前記第一、第二の構造体は素線を撚り合わせたストランド構造或いは素線を撚り合わせて構成するストランドを複数本撚り合わせたシェンケル構造であることを特徴とする請求項1記載のロープ。The rope according to claim 1, wherein the first and second structures have a strand structure in which strands are twisted or a Schenkel structure in which a plurality of strands formed by twisting strands are twisted. 前記第一及び第二の被覆材の材質を、弾性を有する有機材料としたことを特徴とする請求項1記載のロープ。The rope according to claim 1, wherein the material of the first and second covering members is an organic material having elasticity. 前記第二の被覆材は、第二の構造体との接合を可能にする材料からなる内層被覆材で構成し、前記第三の被覆材はシーブとの摩擦係数を適性にする材料からなる外層被覆で構成したことを特徴とする請求項1記載のロープ。The second coating material is constituted by an inner layer coating material made of a material capable of bonding with the second structure, and the third coating material is formed by an outer layer made of a material having an appropriate friction coefficient with a sheave. The rope according to claim 1, wherein the rope is formed of a coating. 前記第一第二の構造体の被覆材の厚さを、0.2〜0.5mmとしたことを特徴とする請求項1記載のロープ。The rope according to claim 1, wherein the thickness of the covering material of the first and second structures is 0.2 to 0.5 mm. 前記第二の被覆材と前記第三の被覆材の接合は融着、接着剤または化学的結合により接合することを特徴とする前記請求項1記載のロープ。The rope according to claim 1, wherein the joining of the second covering material and the third covering material is performed by fusion, adhesive, or chemical bonding. 前記第二の被覆材と前記第二の構造体を形成する金属製素線が接合するように構成したことを特徴とする前記請求項1記載のロープ。The rope according to claim 1, wherein the second covering material and the metal strand forming the second structure are joined to each other. 前記第二の被覆材と前記第二の構造体を形成する金属製素線の接合は接着剤または化学的結合による接合するように構成したことを特徴とする前記新たな請求項7記載のロープ。The rope according to claim 7, wherein the second covering material and the metal wire forming the second structure are joined by an adhesive or a chemical bond. . 金属製素線を撚り合せて構成した第一の構造体を第一の被覆材により被覆した第一の被覆構造体と、金属製素線を撚り合せて構成した第二の構造体を第二の被覆材により被覆した第二の被覆構造体と、該第一の被覆構造体を中心としてその周囲に配置された複数の前記第二の被覆構造体の周囲を被覆する第三の被覆材から成り、前記第二の被覆材と前記第二の構造材を形成する金属製素線が接合するように構成したことを特徴とするロープ。A first coated structure in which a first structure formed by twisting metal wires is covered with a first coating material, and a second structure formed by twisting metal wires in a second structure A second covering structure covered by the covering material, and a third covering material covering the periphery of the plurality of second covering structures disposed around the first covering structure. A rope, wherein the second covering member and the metal strand forming the second structural member are joined to each other. 前記第二の被覆材と前記第二の構造体を形成する金属製素線の接合は接着剤または化学的結合による接合するように構成したことを特徴とする前記新たな請求項9記載のロープ。10. The rope according to claim 9, wherein the joining of the second covering material and the metal wires forming the second structure is performed by an adhesive or a chemical bond. .
JP2003528893A 2001-09-12 2002-07-26 Elevator rope Expired - Lifetime JP4096879B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001276719 2001-09-12
JP2001276719 2001-09-12
PCT/JP2002/007653 WO2003025278A1 (en) 2001-09-12 2002-07-26 Rope

Publications (2)

Publication Number Publication Date
JPWO2003025278A1 true JPWO2003025278A1 (en) 2004-12-24
JP4096879B2 JP4096879B2 (en) 2008-06-04

Family

ID=19101378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003528893A Expired - Lifetime JP4096879B2 (en) 2001-09-12 2002-07-26 Elevator rope

Country Status (5)

Country Link
EP (1) EP1426482B8 (en)
JP (1) JP4096879B2 (en)
KR (1) KR100611272B1 (en)
CN (1) CN100393937C (en)
WO (1) WO2003025278A1 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI119236B (en) 2002-06-07 2008-09-15 Kone Corp Equipped with covered carry lines
EP1820765A4 (en) * 2004-12-08 2011-12-28 Mitsubishi Electric Corp Rope for elevator and elevator
WO2006075384A1 (en) 2005-01-14 2006-07-20 Mitsubishi Denki Kabushiki Kaisha Rope for elevator and method for producing the same
KR100830777B1 (en) * 2006-08-16 2008-05-20 미쓰비시덴키 가부시키가이샤 Rope for elevat0r and elevator
KR100837466B1 (en) * 2006-09-06 2008-06-12 미쓰비시덴키 가부시키가이샤 Rope for elevator and method for producing the same
EP2149535B1 (en) * 2007-05-29 2018-03-21 Mitsubishi Electric Corporation Method of connecting elevator ropes
ES2537343T3 (en) * 2008-12-16 2015-06-05 Nv Bekaert Sa A cord that has an improved adhesion promoter coating
JP5295386B2 (en) 2009-12-02 2013-09-18 三菱電機株式会社 Elevator rope and elevator equipment
JP5060567B2 (en) * 2010-01-22 2012-10-31 株式会社日立製作所 Elevator rope winding method and member
BR112013023749A2 (en) * 2011-04-14 2016-12-13 Otis Elevator Co rope or belt, and rope used on a sheathed rope or belt to suspend and / or drive an elevator car, and method of forming a rope or belt
US20150017436A1 (en) * 2012-01-12 2015-01-15 Otis Elevator Company Protective coating for cords
JP6077941B2 (en) * 2013-06-07 2017-02-08 株式会社日立製作所 Elevator wire rope
US10399265B2 (en) 2013-09-26 2019-09-03 Mitsubishi Electric Corporation Method of manufacturing escalator handrail
US11814788B2 (en) * 2019-04-08 2023-11-14 Otis Elevator Company Elevator load bearing member having a fabric structure
DE102019217625A1 (en) * 2019-11-15 2021-05-20 Contitech Antriebssysteme Gmbh Elevator belt with cords made of coated strands
KR20210121339A (en) 2020-03-26 2021-10-08 동양제강 주식회사 Rope Protector With Braided Structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4823754U (en) * 1971-08-03 1973-03-19
WO1979000182A1 (en) * 1977-10-05 1979-04-19 Cable Belt Ltd Improvements in and relating to ropes
US4197695A (en) * 1977-11-08 1980-04-15 Bethlehem Steel Corporation Method of making sealed wire rope
JPS5571890A (en) * 1978-11-21 1980-05-30 Tokyo Rope Mfg Co Production of corrosion resistant wire rope
GB2126613B (en) * 1982-09-01 1986-10-29 Cable Belt Ltd Cables
JPS5976986A (en) * 1982-10-23 1984-05-02 日「鉄」ロ−プ工業株式会社 Core rope of wire rope
JP3724322B2 (en) * 2000-03-15 2005-12-07 株式会社日立製作所 Wire rope and elevator using it

Also Published As

Publication number Publication date
KR100611272B1 (en) 2006-08-10
EP1426482B1 (en) 2016-07-06
EP1426482A4 (en) 2007-02-14
KR20040025933A (en) 2004-03-26
WO2003025278A1 (en) 2003-03-27
CN100393937C (en) 2008-06-11
CN1537189A (en) 2004-10-13
EP1426482A1 (en) 2004-06-09
EP1426482B8 (en) 2016-09-07
JP4096879B2 (en) 2008-06-04

Similar Documents

Publication Publication Date Title
JP4495816B2 (en) Synthetic fiber rope with sheath
CN104555658B (en) Rope for a hoisting device and elevator
US7036298B2 (en) Rope for elevator and method for manufacturing the rope
JP4327959B2 (en) Synthetic fiber rope
TWI420009B (en) Synthetic fibre cable and producing method thereof, lift installation with such a synthetic fibre cable, and synthetic fiber cable for supporting and drive means for the lift
JP4096879B2 (en) Elevator rope
JP4391640B2 (en) More synthetic fiber rope
JP4108607B2 (en) Elevator rope and elevator equipment
JP4832714B2 (en) Synthetic fiber rope for power transmission with reinforcing elements and frictionally engaged, and synthetic fiber rope for power transmission with reinforcing elements and positively engaged
JP2000212884A (en) Coating for rope and its forming
JP2011046462A (en) Elevator device and wire rope for elevator
JP4064668B2 (en) Composite wire rope
JP3910377B2 (en) Wire rope
EP2634130A1 (en) Rope for elevator
JPWO2006061888A1 (en) Elevator rope and elevator equipment
EP2655234B1 (en) Elevator system
JP4879391B2 (en) Rope turning system and appropriate synthetic fiber rope and rope drive system
JP3827610B2 (en) Multilayer twisted wire rope
TW201111265A (en) Traction member for a counterweightless elevator
JP5463931B2 (en) Hoisting rope for elevator
CN108861955A (en) The drawing belt and its belt wheel of elevator device and the elevator for using the drawing belt and belt wheel
EP1329413A1 (en) Hoisting rope
KR100830777B1 (en) Rope for elevat0r and elevator
WO2011070648A1 (en) Rope for elevator
JP2015037990A (en) Elevator device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent or registration of utility model

Ref document number: 4096879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120321

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5

EXPY Cancellation because of completion of term