JPWO2002079274A1 - Method for producing fluoropolymer and derivative thereof, and use of derivative of fluoropolymer - Google Patents

Method for producing fluoropolymer and derivative thereof, and use of derivative of fluoropolymer Download PDF

Info

Publication number
JPWO2002079274A1
JPWO2002079274A1 JP2002577897A JP2002577897A JPWO2002079274A1 JP WO2002079274 A1 JPWO2002079274 A1 JP WO2002079274A1 JP 2002577897 A JP2002577897 A JP 2002577897A JP 2002577897 A JP2002577897 A JP 2002577897A JP WO2002079274 A1 JPWO2002079274 A1 JP WO2002079274A1
Authority
JP
Japan
Prior art keywords
polymer
fluorine
monomer
group
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002577897A
Other languages
Japanese (ja)
Other versions
JP4214378B2 (en
Inventor
白川 大祐
大祐 白川
岡添 隆
隆 岡添
隆茂 前川
隆茂 前川
大春 一也
一也 大春
鵜木 正夫
正夫 鵜木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2002079274A1 publication Critical patent/JPWO2002079274A1/en
Application granted granted Critical
Publication of JP4214378B2 publication Critical patent/JP4214378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/24Haloalkylation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明は、フッ素含有量が所望に調整された、種々の構造の含フッ素重合体および該重合体の誘導体を、工業的に有利な方法で、低製造コスで製造できる方法の提供を目的とする。さらに本発明は、含フッ素重合体の誘導体の有用な用途を提供する。すなわち、本発明は、下記重合工程、および、該重合工程のあとで行われる下記フッ素化工程を含む含フッ素重合体の製造方法である。重合工程:炭素原子に結合したフッ素原子と炭素原子に結合した水素原子とを有するモノマー(β)を重合させる工程、または、前記モノマー(β)と該モノマー(β)と共重合可能なコモノマー(j)とを共重合させる工程。フッ素化工程:炭素原子に結合したフッ素原子と炭素原子に結合した水素原子とを有する部分フッ素化重合体を,フッ素化反応の溶媒に溶解させた後に液相フッ素化することによって、該部分フッ素化重合体中の炭素原子に結合した水素原子の1つ以上をフッ素原子に置換する工程。An object of the present invention is to provide a method capable of producing a fluorine-containing polymer having various structures and a fluorine-containing polymer having various structures and a derivative of the polymer in an industrially advantageous manner with low production cost. I do. Further, the present invention provides a useful use of the derivative of the fluoropolymer. That is, the present invention is a method for producing a fluorinated polymer including the following polymerization step and the following fluorination step performed after the polymerization step. Polymerization step: a step of polymerizing a monomer (β) having a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom, or a comonomer copolymerizable with the monomer (β) and the monomer (β) ( j). Fluorination step: dissolving a partially fluorinated polymer having a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom in a solvent for a fluorination reaction and then subjecting the partially fluorinated polymer to liquid phase fluorination to obtain the partial fluorine. Substituting one or more hydrogen atoms bonded to carbon atoms in a polymerized polymer with fluorine atoms.

Description

<技術分野>
本発明は、工業的に有用な含フッ素重合体およびその誘導体の製造方法、および、これを用いて製造された含フッ素重合体の誘導体の用途に関する。
<背景技術>
従来より、水素原子が炭素原子に結合した化学構造(C−H)を含有する化合物中のC−H部分の全てをC−Fにフッ素化する方法として、フッ素ガスを用いてフッ素化する方法が知られている。
C−Hを含有する高分子化合物をフッ素化する方法としては、このような高分子化合物が、通常、室温では固体または液体であり、気相反応を行うことは困難であることから、(1)そのままフッ素ガスと接触させてフッ素化する方法(La Mar法)、および(2)C−Hを含有する高分子化合物を溶媒中に入れて、溶媒中にフッ素ガスを導入して液相でフッ素化する方法、が知られている。
しかし、上記(1)の方法で実施する場合には、高分子化合物の固体表面だけがフッ素化されやすいので、所望の構造を有するフッ素化物を得にくい、または、フッ素化の程度を調節しにくい問題があった。
また、上記(2)の方法では、通常は溶媒としてペルフルオロ化された有機溶媒が用いられているが、ペルフルオロ化された有機溶媒に対する高分子化合物の溶解性は低く、多くの場合、高分子化合物は、この有機溶媒に不溶である。したがって、C−H含有高分子化合物を溶解させるための補助溶剤として、C−H含有高分子化合物を溶解でき、かつ、ペルフルオロ化された溶媒に可溶な補助溶媒(たとえば、クロロホルム等)を、ペルフルオロ化された溶媒に添加する試みがなされていた。しかし、補助溶媒自身もフッ素ガスを消費してフッ素化されるため、フッ素化された高分子化合物の製造効率は不充分であり、経済的ではない問題があった。また、補助溶剤の沸点が低い場合は、気相において補助溶剤のフッ素化反応がおこり、反応の制御が困難になる問題があった。
また補助溶媒を使用しても、実際には、ペルフルオロ化された有機溶媒に対する高分子化合物の溶解性を向上させることは困難であった。したがって、(2)の方法では、懸濁系での不均一な反応になりやすく、フッ素化が確実になされた高分子化合物を得にくい問題があった。また、非常に低い原料濃度で反応を行うために、容積効率が低く、製造コストが高い問題もあった。
一方、C−Fを有する高分子化合物を得る方法としては、全てのC−H部分が予めフッ素化されたフッ素系モノマーを重合する方法も考えられるが、一般に入手できるフッ素系モノマーは、その合成が困難であるために構造が限定される問題があった。またフッ素系モノマーによっては、重合しうる化合物の組み合わせに制限があるために、合成できる重合体の構造が限定される問題があった。
以上のような観点から、フッ素系モノマーであるテトラフルオロエチレンと非フッ素系モノマーであるプロピレンとを共重合させた後に、液相でフッ素化して含フッ素重合体を得る方法が報告されている(特表平4−500520号)。しかし、このようなフッ素系モノマーと非フッ素系モノマーとの共重合反応は、それらの組み合わせが制限されるために、任意の構造の共重合体が製造できない問題があった。またテトラフルオロエチレンとプロピレンとの共重合体をフッ素化して得た含フッ素重合体には反応性部位が存在しないため、さらなる化学変換ができない問題もあった。
また、本出願人は、重合反応可能なフッ素系モノマーを安価かつ効率的に製造できる方法として、液相フッ素化反応を含む一連のプロセスを先に提供している(WO00/56694参照)。しかし、該プロセスによって得られたモノマーから重合体を製造するためには、さらなる重合工程を必要とし、重合体を得るまでの工程数が多くなるので、より低製造コストで含フッ素重合体を製造する方法が求められている。
本発明は、種々の構造を有する含フッ素重合体を、工業的実施に有利な方法で、経済的に有利に製造する方法を提供する。また本発明は、容易にフッ素含有量を調節できる含フッ素重合体の製造方法を提供する。さらに、本発明により製造される含フッ素重合体から得られる有用な誘導体を提供する。
<発明の開示>
本発明者らは、部分フッ素化されたモノマーに対する重合工程と、重合工程のあとに行われるフッ素化工程を含む製造方法によって、上記課題が解決されることを見出し、本発明に至った。すなわち、本発明は以下の方法を提供する。
1.下記重合工程、および、該重合工程のあとで行われる下記フッ素化工程を含む含フッ素重合体の製造方法。
重合工程:炭素原子に結合したフッ素原子と炭素原子に結合した水素原子とを有するモノマー(β)を重合させる工程、または、前記モノマー(β)と該モノマー(β)と共重合可能なコモノマー(j)とを共重合させる工程。
フッ素化工程:炭素原子に結合したフッ素原子と炭素原子に結合した水素原子とを有する部分フッ素化重合体を、フッ素化反応の溶媒に溶解させた後に液相フッ素化することによって、該部分フッ素化重合体中の炭素原子に結合した水素原子の1つ以上をフッ素原子に置換する工程。
2.部分フッ素化重合体が、重合工程の生成物である請求項1に記載の製造方法。
3.重合工程の重合反応が、付加重合反応である請求項1または2の製造方法。
4.モノマー(β)が、下記モノマー合成を経由して生成したモノマーである請求項1、2、または3に記載の製造方法。
モノマー合成工程:炭素原子に結合した水素原子と反応性基(Y)とを有するモノマー(α)に、該反応性基(Y)と反応して連結結合または連結基を形成可能な反応性基(Y)と、炭素原子に結合したフッ素原子とを併有する含フッ素化合物を反応させる工程。
5.部分フッ素化重合体の平均分子量が1000以上である請求項1〜4のいずれかに記載の製造方法。
6.部分フッ素化重合体のフッ素含有量が30〜70質量%であり、含フッ素重合体のフッ素含有量が35質量%以上であり、かつ、部分フッ素化重合体のフッ素含有量よりも多い量である請求項1〜5のいずれかに記載の製造方法。
7.部分フッ素化重合体のフッ素原子の全てを水素原子に置換した重合体が、フッ素化反応の溶媒に溶解しない重合体である請求項1〜6のいずれかに記載の製造方法。
8.部分フッ素化重合体の炭素原子に結合した全水素原子の40モル%以上がフッ素原子に置換されるまでフッ素化工程を行う請求項1〜7のいずれかに記載の製造方法。
9.部分フッ素化重合体が、重合体側鎖にエステル結合で連結した1価含フッ素有機基を必須とする重合体であり、含フッ素重合体が部分フッ素化重合体の炭素原子に結合した水素原子の1つ以上がフッ素原子に置換され、かつ、重合体側鎖にエステル結合を必須とする含フッ素重合体である、請求項1〜8のいずれかに記載の製造方法。
10.モノマー(β)が(メタ)アクリロイルオキシ基と1価含フッ素有機基とを有するモノマーであり、部分フッ素化重合体が該モノマーの繰返し単位を必須とする重合体であり、含フッ素重合体が重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖にエステル結合で連結した1価含フッ素有機基を有する重合体である請求項9に記載の製造方法。
11.請求項10の製造方法で得た含フッ素重合体において、重合体側鎖のエステル結合を分解させて−COF基に変換することを特徴とする、重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖に−COF基を有する重合体の製造方法。
12.請求項11の方法で得た重合体において、重合体側鎖の−COF基に、フッ素を含まない1価有機基と水酸基とを有するヒドロキシ化合物をエステル結合させることを特徴とする、重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖にエステル結合で結合したフッ素を含まない1価有機基を有する重合体の製造方法。
13.一般式−[CX1020−C(R10)COOR]−で表される繰返し単位(ただし、X10およびX20はそれぞれ独立に水素原子またはフッ素原子を示し、R10は水素原子、フッ素原子、またはフッ素化されたメチル基を示し、かつ、X10、X20およびR10から選ばれる1つ以上はフッ素原子を必須とする基である。Rはフッ素を含まない1価有機基を示す。)を含み、フッ素原子の割合が35質量%〜86質量%である重合体と、該重合体を溶解させうる有機溶媒を含む組成物。
14.組成物がコーティング剤である請求項13に記載の組成物。
<発明を実施するための最良の形態>
本明細書におけるモノマーとは、重合しうる基を有する化合物(重合性単量体)をいう。モノマー中の重合しうる基の数は1個以上であり、1個であるのが好ましい。モノマーとしては、「(1)不飽和結合の開鎖により重合するモノマー(いわゆる付加重合性モノマー)」、「(2)結合の再配列で重合するモノマー(いわゆる開環重合により重合する環化モノマー)」、または「(3)原子または原子団の脱離または移動により重合するモノマー」等が挙げられる。
(1)不飽和結合の開鎖により重合するモノマーとしては、重合しうる基(付加重合性の不飽和基ともいう。)として、CH=CR−、CH=CC1−(ただし、Rは水素原子またはメチル基を示す。)や、これらの基中の水素原子の1個以上がフッ素原子に置換された基を有するモノマーが挙げられる。ここで、CH=CR−は、アクリロイル基またはメタクリロイル基等の一部であってもよい。
(2)結合の再配列で重合するモノマーとしては、環状エーテル、環状酸無水物、ラクタム、ラクトン、シクロパラフィン等が挙げられる。
(3)原子または原子団の脱離または移動により重合するモノマーとしては、重縮合反応、重付加反応、酸化重合、移動重合、または脱離重合等により重合する化合物が挙げられ、ジアミン、ジカルボン酸、ジイソシアネート、フェノール類、ジアゾメタン類等が例示される。
本明細書における重合体とは、重合反応によって形成された構成単位(繰返し単位ともいう。)を2単位以上含む化合物をいい、重合反応で合成される化合物をいう。重合体としては、重合反応により直接得られる化合物であっても、重合反応後に重合反応により形成された構造以外の部分に化学変換を行った化合物であってもよい。また重合体中の繰返し単位の種類は1種であっても2種以上であってもよい。
本明細書における有機基とは、炭素原子を必須とする基をいい、飽和の基であっても、不飽和の基であってもよい。ハロゲン原子としては、フッ素原子、または、塩素原子が好ましい。1価有機基としては、アルキル基、エーテル性酸素原子含有アルキル基、シクロアルキル基、エーテル性酸素原子含有シクロアルキル基またはこれらの基中に存在する水素原子の1個以上がハロゲン原子に置換された基が好ましい。2価有機基としては、アルキレン基、エーテル性酸素原子含有アルキレン基(たとえば、オキシアルキレン基、ポリオキシアルキレン基、アルキレンオキシアルキレン基等)、またはこれらの基中に存在する水素原子の1個以上がハロゲン原子に置換された基が好ましい。有機基の炭素数は1〜20が好ましく、特に1〜10が好ましい。
本明細書においては、アクリロイル基とメタクリロイル基とを総称して(メタ)アクリロイル基、アクリル酸とメタクリル酸とを総称して(メタ)アクリル酸と記す。他の化合物においても同様に記す。
本発明における、モノマー合成工程、重合工程、フッ素化工程を順に説明する。
[モノマー合成工程]
モノマー合成工程は、モノマー(α)に、特定の含フッ素化合物を反応させる工程である。特定の含フッ素化合物とは、反応性基(Y)と反応して連結結合または連結基を形成可能な反応性基(Y)と、炭素原子に結合したフッ素原子とを併有する化合物である。反応性基(Y)と、モノマー(α)中の反応性基(Y)は、それぞれ相互に反応して連結結合または連結基を形成する。
反応性基(Y)と反応性基(Y)とから形成される連結結合としては、単結合、二重結合、三重結合が挙げられ、連結基としては有機連結基、−O−、−S−等が挙げられる。有機連結基の価数は特に限定されず、2価以上の有機基が挙げられる。有機連結基としては、YおよびYの一方が−COX(Xはハロゲン原子または水酸基であり、ハロゲン原子が好ましく、特に塩素原子またはフッ素原子が好ましく、とりわけフッ素原子が好ましい。)であり、他方が−OHである場合に形成する−COO−、YおよびYの一方が−SO(ただし、Xは前記と同じ意味を示す。)であり、他方が−OHである場合に形成する−SOO−等が挙げられる。また、YおよびYの一方が−C=Oであり、他方がHOC−である場合に形成する下記連結基(ただし、CとCにおける1と2は、炭素原子を特定する数字を示す。)が挙げられる。

Figure 2002079274
モノマー(α)としては、前記(1)または前記(2)に分類されるモノマーが好ましく、特に前記(1)に分類される付加重合性モノマーが好ましい。特にモノマー(α)は構造中にフッ素原子を含まない非フッ素系モノマーであるのが好ましい。
前記(1)に分類されるモノマー(α)としては、付加重合性の基を1個と、反応性基(Y)を1個と、炭素原子に結合した水素原子を1個以上有する化合物が好ましい。モノマー(α)の具体例としては、つぎの化合物が挙げられる。ただし、下式中のRは水素原子またはメチル基を示し、Xは前記と同じ意味を示し、Q、Qはそれぞれ独立に単結合または2価連結基(2価連結基としては、アルキレン基が好ましい。)を示し、mは2〜5の整数を示し、pは2〜5の整数を示し、rは1〜4の整数を示す。
CH=C(R)−Q−COX;式(α11
(たとえば、CH=C(R)−COOH、CH=C(R)−COCl、CH=C(R)−(CH−COOH、CH=C(R)−(CH−COCl等。)
CH=C(R)−Q−OH;式(α12
(たとえば、CH=C(R)−(CHOH、CH=C(R)−(CHCH(CH))OH、CH=C(R)COOCHCH(OH)CHCl等。)
モノマー(α)がCH=C(R)一部分を有するモノマーである場合には、Rが水素原子であるモノマーを用いるのが、フッ素化工程の収率が高くなるため好ましい。
前記(2)に分類されるモノマー(α)としては、開環重合性のモノマーを挙げることができ、その具体例としては、グリシジル基を有するモノマーが好ましく、その例としてはYが−OHである場合のG−(CHOH等(ただし、Gはグリシジル基を示し、kは0〜5の整数を示す。)が挙げられる。
モノマー(α)に反応させる含フッ素化合物としては、炭素原子に結合したフッ素原子を必須とする1価有機基(R)とYを併有する化合物が好ましく、特にR−Yで表される化合物が好ましい。含フッ素化合物がR基を有する場合は、後のフッ素化工程において、該R基が部分フッ素化重合体のフッ素化反応の溶媒への溶解性を高める重要な基になりうる。Rは、炭素原子に結合したフッ素原子を1以上有する1価有機基であり、特に末端がペルフルオロ化された1価有機基(R1F)を有する基であるのが好ましい。R1Fは、ペルフルオロアルキル基、ペルフルオロ(エーテル性酸素原子含有アルキル)基であるのが好ましい。
1Fの具体例としては、下記の例が挙げられる。なお、以下の具体例中には、それぞれの構造異性の基に相当する基も含まれる。
−{ただし、F(CF−、(CFCFCF−、(CFC−、またはCFCFCF(CF)−等。}、C11−{ただし、F(CF−、(CFCF(CF−、(CFCCF−、またはF(CFCF(CF)−等。}、C13−{ただし、F(CFC(CF−等。}、C17−、C1021−、C1225−、C1429−、C1633−、C1837−、C2041−、(CFCF(CF−(sは3以上の整数)、CFCFCFOCF(CF)−、CFCFCFOCF(CF)CFOCF(CF)−。また、R1F以外のRの例としては、HC2t−(tは1以上の整数)が挙げられる。
は、Yとの組み合わせにより適宜変更される。
たとえば、モノマー(α)のYが−COX(Xは前記と同じ意味を示す)である場合(前記式(α11)で表わされるモノマーを使用する場合等。)には、含フッ素化合物のYは−OHであるのが好ましい。該含フッ素化合物としては、R1F(CHOHまたはR1FCOF(R1Fは、前記と同じ意味を示す。nは1〜5の整数を示し、2〜5の整数が好ましく、2または3が特に好ましい。)で表される化合物が好ましい。
たとえば、モノマー(α)のYが−OHである場合(前記式(α12)で表わされるモノマーを使用する場合等。)には、含フッ素化合物のYは−COX(Xは前記と同じ意味を示す)であるのが好ましい。
が−OH、−COXである含フッ素化合物の具体的としては、下記化合物が挙げられる。ただし、nは上記と同じ意味を示す。
1FCOF(たとえば、CFCFCOF、CFCFCFOCF(CF)COF、CFCFCFOCF(CF)CFOCF(CF)COF等)、
1FCOOH(たとえば、CFCFCOOH、CFCFCFOCF(CF)COOH、CFCFCFOCF(CF)CFOCF(CF)COOH等)、
1F(CHOH(たとえば、CFCFCHOH、F(CFCHCHOH、F(CFCHCHOH、F(CFCHCHOH等)。
含フッ素化合物は、公知の化合物、または、公知の化合物から容易に合成できる化合物である。たとえば、Yが−COFである含フッ素化合物は、市販品を利用する、本出願人によるWO00/56694に記載の方法により製造する、または後述するエステル結合の分解反応で生成する化合物を回収する、等の方法で入手できる。
モノマー(α)と含フッ素化合物との反応の方法は、YとYの組み合わせに応じて適宜変更されうる。たとえば、(メタ)アクリル酸とR1F(CHOHとの反応は、公知のエステル化反応であり、公知の方法にしたがって収率よく実施できる。
モノマー合成工程の反応で生成したモノマー(以下、モノマー(β’)と記す。)としては、下記化合物が挙げられる。ただし、下式中のR、R1F、G、nおよびkは上記と同じ意味を示す。
CH=C(R)COO(CH1F
CH=C(R)OCOR1F
CH=C(R)COO(CHOCO(CH1F
G−(CHOCOR1F
モノマー(β’)は、モノマー合成工程の反応生成物から、通常の精製処理を行うことにより得られる。後の重合工程で用いるモノマー(β)の入手方法は限定されないが、モノマー合成工程で生成するモノマー(β’)は、炭素原子に結合したフッ素原子と、炭素原子に結合した水素原子とを有するモノマーであり、後の重合工程のモノマー(β)として使用できる。またモノマー合成工程で製造したモノマー(β’)に対して化学変換を行ったものをモノマー(β)として用いてもよい。
本発明における重合工程のモノマー(β)は、モノマー合成工程を経由して製造されたモノマーであるのが好ましい。なぜなら、モノマー(α)も含フッ素化合物も、多様な構造の化合物が安価にかつ容易に入手できる。そしてこれらの化合物を用いてモノマー合成工程を行うことによってモノマー(β’)を得て、また必要に応じて、モノマー(β’)に対して化学変換を行うことによって、種々の構造のモノマー(β)を合成できるからである。
モノマー(β’)に化学変換を行う場合には、重合性を示す構造以外の部分において化学変換を行うのが好ましい。モノマー(β’)のYとYとから形成される連結基または連結結合は、化学変換によって変化してもよい。またモノマー(β’)中の炭素原子に結合したフッ素原子は、化学変換前後で保持されるのが好ましい。モノマー(β’)における化学変換の例としては、窒素原子に結合した水素原子のアルキル化、残余の水酸基を保護する、等の例が挙げられる。
[重合工程]
重合工程は、モノマー(β)を重合させる工程、または、モノマー(β)と共重合可能なコモノマー(j)とを共重合させる工程である。
モノマー(β)は、付加重合性モノマーが好ましく、1価含フッ素有機基(R)を有する付加重合性モノマーが特に好ましい。さらに、モノマー(β)は、R付加重合性の不飽和基とが、エステル結合を必須とする2価基で連結されたモノマー(β)であるのが好ましい。エステル結合を必須とするモノマー(β)としては、下式(β−1)で表されるモノマーまたは下式(β−2)で表されるモノマーが好ましい。式(β−1)で表されるモノマーとしては、(メタ)アクリロイルオキシ基と1価含フッ素有機基とを有するモノマーであるのが好ましく、下式(β−10)で表されるモノマーが特に好ましく、特に下式(β−11)で表されるモノマーがとりわけ好ましい。下式(β−2)で表されるモノマーとしては、下式(β−20)で表されるモノマーが好ましく、特に下式(β−21)で表されるモノマーが好ましい。ただし、Uは付加重合性の不飽和基を示し、QおよびQは、それぞれ同一であっても異なっていてもよく単結合または2価連結基を示し、Rは水素原子またはメチル基を示し、RおよびR1Fは上記と同じ意味を示し、pは1〜5の整数を示し、2〜5の整数が好ましく、2または3が特に好ましい。kは0以上の整数を示し、1〜5の整数が好ましい。
U−Q−COO−Q−R・・・(β−1)
U−Q−OCO−Q−R・・・(β−2)
CH=CR−COO−Q−R・・・(β−10)
CH=CR−Q−OCO−Q−R・・・(β−20)
CH=CRCOO−(CH1F・・・・(β−11)
CH=CROCO−(CH1F・・・・(β−21)
エステル結合を有する、モノマー(β)は、多種のコモノマー(j)と共重合しうるモノマーである。また、モノマー(β)は、公知の重合法によって、確実かつ容易に重合できるので、種々の構造を有する重合体を製造できるモノマーである。また、モノマー(β)を重合させた重合体はエステル結合を側鎖に有する重合体であることから、該エステル結合を化学変換して誘導化できる利点もある。特に式(β−1)で表されるモノマーと式(β−2)で表されるモノマーとでは、式(β−1)で表されるモノマーが、誘導体化により多様な化合物に導きやすい点で好ましい。
特に、式(β−11)で表されるモノマーはCH=C(R)COXで表わされる化合物(ただし、R、Xは前記と同じ意味を示す。)と、R1F−(CHOHで表される化合物(ただし、R1Fおよびnは、前記と同じ意味を示す。)とを反応させて得るのが好ましい。
モノマー(β)の具体例としては、下記化合物が挙げられる。ただし、下式中のmは1〜12の整数を示し、R、p、およびkは上記と同じ意味を示す。
CH=C(R)COO(CH(CFF、
CH=C(R)COO(CHOCO(CH(CFF、
CH=C(R)OCO(CH(CFF。
また、モノマー(β)が上記以外のモノマーである場合の具体例としては、CF=CHCF、CFCFCFCFCH=CH、CFCFCFCFCF=CH等が挙げられる。
重合工程は、モノマー(β)を重合させる工程、または、該モノマー(β)とコモノマー(j)とを共重合させる工程である。モノマー(β)のみを重合させる場合、モノマー(β)は1種のみを用いても、2種以上を用いてもよい。モノマー(β)と、コモノマー(j)とを共重合させる場合、モノマー(β)は1種のみを用いても、2種以上を用いてもよく、コモノマー(j)は1種のみを用いても、2種以上を用いてもよい。
本発明におけるコモノマー(j)には、C−H部分が存在していても存在していなくてもよく、存在しているのが好ましく、フッ素原子は存在しないのが好ましい。
コモノマー(j)としては、エチレン、塩化ビニリデン、塩化ビニル、スチレン、ジメチルスチレン、p−メチルスチレン、ブタジエン、イソプレン、クロロプレン等のオレフィン類;グリシジル(メタ)アクリレート、(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、メチロール化ジアセトン(メタ)アクリルアミド、N−メチロール(メタ)アクリルアミド、アジリジニルエチル(メタ)アクリレート、ベンジル(メタ)アクリレート、アジリジニル(メタ)アクリレート、ポリオキシエチレンモノ(メタ)アクリレート、メチルポリオキシアルキレン(メタ)アクリレート、2−エチルヘキシルポリオキシアルキレン(メタ)アクリレート、ポリオキシアルキレンジ(メタ)アクリレート、ポリシロキサンを有する(メタ)アクリレート、2−ジメチルアミノエチル(メタ)アクリレート、炭素数8〜20のアルキル基を有するアルキル(メタ)アクリレート、シクロアルキル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート等の(メタ)アクリレート類;フッ素原子以外のハロゲン原子を有する(ハロゲン化アルキル)ビニルエーテル類;ノルボルニレンなどの環状オレフィン類;ビニルアルキルケトン、トリアリルシアヌレート、アリルグリシジルエーテル、酢酸ビニル、酢酸アリル、N−ビニルカルバゾール、マレイミド、N−メチルマレイミド等が挙げられる。
これらのうち、コモノマー(j)としては、塩化ビニル、炭素数8〜20のアルキル基を有するアルキル(メタ)アクリレートが好ましく、特に塩化ビニル、ステアリル(メタ)アクリレート、ジオクチルマレエート、または2−エチルヘキシル(メタ)アクリレートが好ましい。さらに、モノマー(β)が(メタ)アクリレート類である場合のモノマー(j)は、(メタ)アクリレート類または塩化ビニルから選択するのが、収率の点で好ましく、特にアクリレート類から選択するのが好ましい。
重合工程における重合反応は、モノマー(β)をモノマー全量に対して50〜100モル%用いて重合反応を実施するのが好ましい。ここでは、モノマー(β)の重合方法としては、公知の重合反応の手法がそのまま適用できる。たとえば、(メタ)アクリロイルオキシ基を有するモノマー(β−10)は、公知の乳化重合の条件および手法により、容易に重合させうる。
重合工程における重合反応では、用いたモノマーに対応する重合体が得られる。重合体中の繰返し単位が2種以上である場合の該繰り返し単位の連なり方は特に限定されず、たとえば、ブロック状、ランダム状、またはグラフト状の連なり方が挙げられる。また、重合工程で製造される重合体の分子量は1000以上であるのが好ましく、特に1000〜10万であるのが好ましい。
重合工程の反応粗生成物中に含まれる重合体は、目的に応じて精製を行っても、そのまま、つぎの反応等に用いてもよいが、次のフッ素化工程におけるフッ素化反応を安定に行う観点から、精製するのが好ましい。精製方法としては、生成物中の重合体と重合用溶媒を、減圧乾燥等の方法で分離するのが望ましい。さらに、粗生成物の全てを溶媒に溶解させた後に、重合工程で用いたモノマーと該溶媒とを溶解でき、かつ、重合工程で得た重合体を析出しうる溶媒に、粗生成物の溶液を滴下して重合体を再沈殿させた後、沈殿物をろ過し、洗浄し、さらに減圧乾燥によって沈殿物から該溶媒を除去することにより、重合体を精製するのが好ましい。
重合工程で生成する重合体には、モノマー(β)の繰返し単位が含まれる。また、重合工程においてコモノマー(j)を共重合させた場合には、該重合体中には、コモノマー(j)の重合した単位が含まれる。
重合工程で得た重合体は、そのままフッ素化工程における部分フッ素化重合体として用いてもよく、また、化学変換を行った後にフッ素化工程における部分フッ素化重合体として用いてもよい。たとえば、重合工程で得た重合体が、官能基を有するコモノマー(j)の繰返し単位を含む場合には、重合工程で得た重合体中のコモノマー(j)由来の官能基を保護基で保護したものを、フッ素化工程における部分フッ素化重合体として用いてもよい。該保護基は必要に応じて後述するフッ素化工程の後に脱保護できる。ただし、化学変換をする場合においても、部分フッ素化重合体は、炭素原子に結合した水素原子と、炭素原子に結合したフッ素原子とを有する必要があり、また、該化学変換は重合反応により形成された結合を変化させない変換である。
部分フッ素化重合体としては、前記モノマー(β)の繰り返し単位を有する重合体が好ましく、特に(メタ)アクリロイルオキシ基を有するモノマー(β−10)の繰り返し単位を有する重合体が特に好ましい。
[フッ素化工程]
フッ素化工程は、重合工程を経由して生成させた部分フッ素化重合体をフッ素化用溶媒に溶解させた後に液相フッ素化することによって、部分フッ素化重合体中の炭素原子に結合した水素原子の1つ以上をフッ素原子に置換する工程である。
部分フッ素化重合体は、炭素原子に結合したフッ素原子と、炭素原子に結合した水素原子とを有する重合体であり、前述したように、重合工程で生成した重合体であっても、該生成した重合体を化学変換したものであってもよい。
このような部分フッ素化重合体は、フッ素原子を有するためにフッ素化反応の溶媒に溶解するので、フッ素ガスを消費する補助溶媒を使用する必要がないだけでなく、均一状態でのフッ素化反応を実現できる。すなわち、本発明における部分フッ素化重合体は、フッ素含有量が所望に調整され、含フッ素重合体を製造しやすく、低製造コストで含フッ素重合体に変換されうる部分フッ素化重合体である。
フッ素化工程においては、フッ素化反応時に液相を形成するフッ素化反応の溶媒に部分フッ素化重合体を溶解させ、液相フッ素化反応を行う。ここでフッ素化反応の溶媒に溶解させるとは、フッ素化反応の条件において部分フッ素化重合体をフッ素化反応の溶媒に対して0.1質量%以上溶解させることをいい、特には0.5質量%以上溶解させるのが好ましい。さらに部分フッ素化重合体の該溶媒に対する溶解性の上限は、溶媒に対して50質量%であるのが好ましい。フッ素化反応の溶媒としては後述する。
さらに、部分フッ素化重合体のフッ素含有量は35質量%以上であるのが好ましく、50質量%以上であるのが好ましい。フッ素含有量は65質量%以下であるのが好ましい。フッ素含有量が少なすぎるとフッ素化反応の溶媒への溶解性が極端に低くなり、フッ素化反応の反応系が不均一になる問題がある。また、フッ素含有量の上限は限定されないが、あまりに高すぎるものは、経済的ではない問題がある。
さらに、部分フッ素化重合体の分子量は1000以上であるのが好ましく、1000〜50万であるのが特に好ましく、とりわけ1000〜10万であるのが好ましい。部分フッ素化重合体は、気相に同伴されることがない程度に大きな分子量を有することから、フッ素化反応を容易に実施できる利点がある。しかし、分子量が大きすぎると、フッ素化反応の溶媒への溶解性が低下する傾向や、使用できるフッ素化反応の溶媒の種類が少なくなるため好ましくない。一方、分子量が小さすぎると、得られる含フッ素重合体のガラス転移温度(T)が低下する傾向などがあり、重合体として要求される物性が得られにくい。
本発明においては、フッ素化反応の溶媒を必須とする液相中で部分フッ素化重合体の液相フッ素化反応を行う。含フッ素重合体のフッ素化反応の手法としては、コバルトフッ素化やECF法が知られているが、本発明は、含フッ素重合体の製造コストを低減できる液相フッ素化法によるフッ素化を行う。液相フッ素化法によれば、前述のように、均一状態でのフッ素化を実現できるので、所望の含フッ素重合体を確実に、かつ高収率で得ることができる。
液相フッ素化反応は、フッ素化反応の溶媒が形成する液相中に部分フッ素化重合体を存在させ、ここにフッ素ガスを導入することにより行われる反応である。液相フッ素化反応により、部分フッ素化重合体中の炭素原子に結合した水素原子の1つ以上がフッ素原子に置換されて、含フッ素重合体が生成する。また、部分フッ素化重合体中に炭素−炭素不飽和結合が存在する場合には、該結合にフッ素原子が付加する反応も起こりうる。
本発明におけるフッ素化反応は、部分フッ素化重合体中の炭素原子に結合した水素原子の全てをフッ素化(すなわち完全フッ素化)してもよいが、通常の場合には、完全フッ素化するのは困難である。フッ素化反応は、フッ素化率(フッ素化率とは、部分フッ素化重合体中の水素原子の数に対するフッ素化反応で導入されたフッ素原子の数)を40モル%以上にするのが好ましい。フッ素化率の上限は100%である。フッ素化率は40〜95モル%が特に好ましい。含フッ素重合体のフッ素含有量は、部分フッ素化重合体のフッ素含有量よりも多い量であって、35質量%以上であるのが好ましく、70質量%以上であるのが特に好ましく、86質量%以下であるのがとりわけ好ましい。
本発明のフッ素化反応においては、重合体の主鎖を形成する炭素原子−炭素原子間の切断反応をできるだけ少なくするためには、低温でフッ素化反応を行うのが好ましく、特に−50℃〜0℃で反応を行うのが好ましい。
また、本発明のフッ素化反応において、フッ素化率をより高くするためには、フッ素化反応を低温で行った後に加温するのが好ましく、特に−50℃〜0℃でフッ素化反応を行った後に、+10〜+50℃でさらにフッ素化反応を行うのが好ましい。さらに該加温した際に反応系をより加圧にするのが好ましく、反応系を+0.1〜+0.3MPa加圧にするのが好ましい。
フッ素化反応の溶媒としては、部分フッ素化重合体を溶解しうる溶媒のうち、フッ素ガスを溶解しうる溶媒であって、C−H結合を含まない溶媒が好ましく、さらに、ペルフルオロアルカン類、ペルフルオロエーテル類、ペルフルオロポリエーテル類(商品名:クライトックス、フォンブリン、ガルデン、デムナム等。)、クロロフルオロカーボン類(商品名:フロンルーブ)、クロロフルオロポリエーテル類、ペルフルオロアルキルアミン(たとえば、ペルフルオロトリアルキルアミン等)、不活性流体(商品名:フロリナート)等が挙げられる。
また、液相フッ素化反応によって生成する含フッ素重合体自身が液相フッ素化反応の条件で液相を形成しうる化合物である場合には、該含フッ素重合体をフッ素化反応の溶媒として用いてもよい。
フッ素化反応の溶媒は、部分フッ素化重合体に対して、5倍質量以上を用いるのが好ましく、特に10〜100倍質量を用いるのが好ましい。また、部分フッ素化重合体をフッ素化反応の溶媒に溶解させた溶液の粘度は5×10−4〜0.1Pa・sとするのが、液相フッ素化反応を円滑に実施できる理由から好ましく、特に5×10−4〜5×10−3Pa・sとするのが特に望ましい。
液相フッ素化反応におけるフッ素ガスは、そのままを用いても、不活性ガスで希釈されたフッ素ガスを用いてもよい。不活性ガスとしては、窒素ガス、ヘリウムガスが好ましく、経済的な理由から窒素ガスが特に好ましい。窒素ガス中のフッ素ガス量は特に限定されず、10%以上とするのが効率の点で好ましく、20%以上とするのが特に好ましい。
フッ素化反応に用いるフッ素量は、部分フッ素化重合体中の水素原子に対して、フッ素の量が常に過剰当量となるようにするのが好ましく、特に1.5倍当量以上(すなわち、1.5倍モル以上)となるようにするのが選択率の点から好ましい。また、フッ素ガスは過剰量が保たれるように反応系中に導入しつづけるのが好ましい。
フッ素化反応の反応温度は、通常は−60℃以上かつフッ素化反応の溶媒の沸点以下が好ましく、反応収率、選択率、および工業的実施のしやすさの点から−50℃〜+200℃が特に好ましく、−20℃〜+100℃がとりわけ好ましい。また、フッ素化反応の反応圧力は常圧または加圧条件にするのが好ましく、0.01〜5MPa(ゲージ圧。特に記載しない場合はゲージ圧であることを示す。)にするのが好ましい。また、基質がエーテル性の酸素原子を含む場合等のHFを除去するのが好ましい場合には、フッ素化反応の初期は圧力を大気圧付近にして、HFを速やかに除去するのが好ましい。
フッ素化反応の反応形式は、バッチ方式または連続方式が好ましい。反応形式は、反応収率と選択率の点から、以下に説明する方式2が好ましい。またフッ素ガスは、バッチ方式においても、連続方式においても、窒素ガス等の不活性ガスで希釈したフッ素ガスを使用してもよい。
[方式1]反応器に、部分フッ素化重合体とフッ素化反応の溶媒とを仕込み、撹拌を開始する。つぎに、所定の反応温度と反応圧力下で、フッ素ガスを反応器中の液相に連続的に供給しながら反応させる方法。
[方式2]反応器にフッ素化反応の溶媒を仕込み、撹拌を開始する。つぎに所定の反応温度と反応圧力で、フッ素ガスと、フッ素化反応の溶媒に溶解させた部分フッ素化重合体とを反応器中の液相に所定のモル比で連続的かつ同時に供給する方法。この方法において、部分フッ素化重合体を溶解させるフッ素化反応の溶媒の量は、部分フッ素化重合体に対して5倍質量以上とするのが好ましく、特に10倍質量以上とするのが好ましい。また、反応の開始時点においてもフッ素が過剰量となるように、フッ素化反応の溶媒にはあらかじめ充分量のフッ素を溶解させておくのが好ましい。
フッ素化反応では、水素原子がフッ素原子に置換して、HFが副生する。副生したHFを除去するには、反応系中にHFの捕捉剤を共存させる、または反応器ガス出口でHF捕捉剤と出口ガスを接触させるのが好ましい。該HF捕捉剤としては、NaFが好ましい。反応系中にHF捕捉剤を共存させる場合の量は、部分フッ素化重合体中に存在する全水素原子量に対して1〜20倍モルが好ましく、1〜5倍モルが好ましい。反応器ガス出口にHF捕捉剤をおく場合には、(h)冷却器(10℃〜室温に保持するのが好ましく、特には約20℃に保持するのが好ましい。)(i)NaFペレット充填層、および(j)冷却器(−78℃〜+10℃に保持するのが好ましく、−30℃〜0℃に保持するのが好ましい)を(h)−(i)−(j)の順に直列に設置するのが好ましい。なお、(j)の冷却器からは凝集したフッ素化反応の溶媒等を反応器に戻すための液体返送ラインを設置してもよい。液体返送ラインを設置することは、フッ素化反応の溶媒の飛散による反応液の粘度の上昇を抑制できる点で特に好ましく、特にフッ素化反応の溶媒の飛散が著しい場合は反応器内部にフッ素化反応の溶媒を継続的に供給して、反応系の粘度の上昇を防止するのが望ましい。
さらに、液相フッ素化反応におけるフッ素化率を効率的に上げようとする場合には、反応系中にC−H結合含有化合物を添加する、または、紫外線照射を行う、のが好ましい。これにより、反応系中に存在する部分フッ素化重合体を効率的にフッ素化できる。紫外線照射時間は、0.1〜3時間であるのが好ましい。
C−H結合含有化合物としては、部分フッ素化重合体以外の有機化合物から選択され、特に芳香族炭化水素が好ましく、とりわけベンゼン、トルエン等が好ましい。該C−H結合含有化合物の添加量は、部分フッ素化重合体中の水素原子の総数に対して0.1〜10モル%であるのが好ましく、特に0.1〜5モル%であるのが好ましい。
C−H結合含有化合物は、反応系中にフッ素ガスが存在する状態で添加するのが好ましい。さらに、C−H結合含有化合物を加えた場合には、反応系を加圧するのが好ましい。加圧時の圧力としては、0.01〜5MPaが好ましく、これにより、フッ素化率を上げることができる。
フッ素化反応では、部分フッ素化重合体中の炭素原子に結合した水素原子の1つ以上がフッ素原子に置換されて、含フッ素重合体が生成する。
たとえば、部分フッ素化重合体が、モノマー(β−11)の繰返し単位である−(CH−C(R)(COO(CH1F))−(ただし、R、p、およびR1Fは前記と同じ意味を示す。)で表される繰返し単位を含む重合体である場合には、該繰返し単位中の炭素原子に結合した水素原子の1つ以上がフッ素原子に置換された重合体が生成する。また、部分フッ素化重合体がコモノマー(j)の繰返し単位を含む重合体であって、該コモノマーの繰返し単位中に炭素原子に結合した水素原子が存在する場合やフッ素化されうる原子団が存在する場合には、該水素原子や該原子団の一部または全部がフッ素化される。
フッ素化工程で生成する含フッ素重合体としては、部分フッ素化重合体が、重合体側鎖にエステル結合で連結した1価含フッ素有機基を必須とする重合体である場合において、含フッ素重合体が部分フッ素化重合体の炭素原子に結合した水素原子の1つ以上がフッ素原子に置換され、かつ、重合体側鎖にエステル結合を必須とする含フッ素重合体であるのが好ましい。さらに含フッ素重合体としては、部分フッ素化重合体が(メタ)アクリロイルオキシ基と1価含フッ素有機基とを有するモノマーの繰り返し単位を必須とする重合体である場合において、含フッ素重合体が重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖にエステル結合で連結した1価含フッ素有機基を有する重合体であるのが特に好ましい。
フッ素化工程により生成した粗生成物からは、通常の場合には、フッ素化反応の溶媒を除去して重合体を得るのが好ましい。該重合体は、そのまま、または他の化合物に誘導体化することにより、構造中に反応性部位を持つ有用な重合体に誘導できる。
たとえば、エステル結合を側鎖に有する含フッ素重合体においては、このエステル結合の反応性を利用して種々の重合体に誘導できる。たとえば、エステル結合の分解反応を行うことにより、−COF基を重合体側鎖に有する重合体に誘導できる。該重合体側鎖に−COF基を有する重合体は、重合体主鎖に炭素原子に結合したフッ素原子を有する重合体であるのが好ましい。
エステル結合の分解反応は公知の反応条件を採用できる。エステル結合の分解反応において、含フッ素重合体が反応条件において液状である場合には、NaF、CsF、KF等の存在下において、無溶媒で加熱することにより、エステル結合の分解反応を行うのが好ましい。含フッ素重合体が反応条件において固体である場合には、該重合体を溶解しうる溶媒に溶解させた後に、NaF、CsF、KF等の存在下に溶媒の存在下で加熱することにより、エステル結合の分解反応を行うのが好ましい。該溶媒としては、含フッ素重合体を溶解させ、かつ、沸点が反応温度よりも高い溶媒から選択するのが好ましい。
さらに、−COF基を側鎖に有する重合体は、該−COF基のエステル化反応を行うことにより、種々のエステル化された基を有する含フッ素重合体を得ることができる。該ヒドロキシ化合物としては、フッ素を含まない1価有機基と水酸基とを有するヒドロキシ化合物が好ましく、いわゆるアルコール類等の例が挙げられる。
エステル化反応の条件は、公知の反応条件が適用でき、種々のヒドロキシ化合物を−COF基に反応させる例が挙げられる。たとえば、−COF基を側鎖に有する重合体およびヒドロキシ化合物がエステル化反応の条件において液体である場合には、無溶媒でエステル化反応を行うのが好ましい。この場合には、ヒドロキシ化合物が溶媒としても作用する。−COF基を側鎖に有する重合体および/またはアルコール類がエステル化反応の条件において固体である場合には、溶媒(たとえば、ジクロロペンタフルオロプロパン(R−225))等の存在下に反応を行うのが好ましい。該溶媒としては、含フッ素重合体およびアルコール類を溶解させ、かつ、エステル化反応の反応温度よりも沸点が高い溶媒から選択するのが好ましい。
本発明の方法で製造される含フッ素重合体、または、含フッ素重合体から誘導体化される重合体は、界面活性剤、表面改質剤、撥水撥油剤、コーティング剤、潤滑剤、および接着剤等として有用な重合体である。
特に、重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖にフッ素を含まない1価有機基(R)がエステル結合で結合した重合体においては、該重合体と溶媒とを含む組成物をコーティング剤として用いることができる。該コーティング剤を基板表面に塗布した後に乾燥させることによって、優れた撥水撥油性能を発揮し、かつ、高い硬度を有する被膜を表面に有する基板を得ることができる。
該重合体としては、モノマー(β)がCH=C(R)COO(CH1Fである場合に本発明の方法により製造される重合体であるのが好ましく、一般式−[CX1020−C(R10)COOR]−で表される繰返し単位(ただし、X10およびX20はそれぞれ独立に水素原子またはフッ素原子を示し、R10は水素原子、フッ素原子、またはフッ素化されたメチル基を示し、かつ、X10、X20およびR10から選ばれる1つ以上の基はフッ素原子を必須とする基である。Rは前記と同じ意味を示す。)を必須とする重合体であるのが好ましい。また重合体中の該繰返し単位の割合は20〜100モル%であるのが好ましい。さらに、該フッ素原子の割合が15〜86質量%であるのが好ましく、特に35質量%〜86質量%であるのが好ましい。また重合体の分子量は500〜10万であるのが好ましく、特に1000〜5万であるのが好ましい。
本発明に係る含フッ素重合体の製造方法によれば、種々の構造および種々のフッ素含量を有する含フッ素重合体が容易に製造できる。本発明の方法は、低い製造コストで、目的とする含フッ素重合体ができる有利な方法である。
実施例
以下に、本発明を実施例を挙げて具体的に説明するが、これらによって本発明は限定されない。なお、テトラメチルシランをTMS、ジクロロペンタフルオロプロパンをR−225と記し、旭硝子社製商品名AK−225を用いた。CClFCClFはR−113と記す。また、NMRスペクトルデータは、みかけの化学シフト範囲として示し、積分値は比率で表記した。実施例の圧力は絶対圧で記す。13C−NMRにおける基準物質CDClの基準値は、76.9ppmとした。19F−NMRによるフッ素量の定量ではヘキサフルオロベンゼン(C)を内部標準に用いた。
また、平均分子量は数平均分子量(M)であり、ゲルパーミエーションクロマトグラフィ(以下、GPCと記す。)によって測定し、ポリメチルメタクリレート標準試料から換算した。GPCの測定においてはR−225に1vol%のヘキサフルオロイソプロピルアルコールを溶解した液を溶離液とした。またGPCのカラムにはPL gel 5μMixed−Cを用いた。
[例1]
(例1−1)F(CFCHCHOCOCH=CHの合成例
上部に滴下漏斗を有し、あらかじめ内部を窒素置換した100mLフラスコを準備した。該フラスコ中にF(CFCHCHOH(26.4g)、ヒドロキノン(0.1g)、およびp−トルエンスルホン酸(1.72g)を投入し、系内を減圧(20kPa(絶対圧))に保ちながら70℃まで昇温した。続いて内圧および温度を保ちながら激しく撹拌し、上部の滴下漏斗よりアクリル酸(12.9g)を滴下した。滴下終了後、2時間保持し、反応によって生じる水を上部に設置した留出器より留去した。その後、圧力を常圧にして、室温まで冷却して粗液を回収した。回収後、粗液を蒸留水(60g)で洗浄し、二層分離して有機相を回収した。洗浄操作を4回繰り返した後、硫酸マグネシウムで乾燥後、ろ過した。ろ液を減圧蒸留して、55℃/0.6kPa(絶対圧)の留分(34.1g)を得た。GC純度は99%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):2.52(2H),4.47(2H),5.8(1H),6.1(1H),6.4(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−81.1(3F),−113.6(2F),−124.2(2F),−125.8(2F)。
(例1−2)F(CFCHCHOCOCH=CHの重合例
充分に窒素置換した50mLの丸底フラスコを準備した。ここに、例1−1で得たF(CFCHCHOCOCH=CH(25.0g)および重合開始剤としての2,2’−アゾビスイソブチロニトリル(0.5g)をR−225(53.7g)に溶解させた溶液を投入した。激しく撹拌しながら60℃まで昇温し重合反応を開始した。反応開始後、15時間保持した後、室温まで冷却して粗液を回収した。回収した粗液をメタノール(300g)に滴下して固形分を回収した。さらに、回収した固形分をアセトン(100g)に溶解してヘキサン(500g)に滴下することによる洗浄操作を2回行った。その後、減圧乾燥(100℃、24時間)して、室温で固体の生成物(17.5g)を得た。
H−NMR、19F−NMRの結果、得られた固体は、繰返し単位[−CH−CH(COOCHCH(CFF)−]からなる重合体であることを確認した。該重合体の平均分子量をGPCで測定した結果、43000であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.3〜2.1,2.2〜2.6,4.2〜4.5。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−80.9(3F),−113.2(2F),−123.8(2F),−125.9(2F)。
(例1−3)例1−2で得た重合体のフッ素化例
500mLのハステロイ製オートクレーブに、R−113(312g)を加えて撹拌し、25℃に保った。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−20℃に保持した冷却器を直列に設置した。なお、−20℃に保持した冷却器からは、凝集した液をオートクレーブに戻すための液体返送ラインを設置した。オートクレーブに窒素ガスを1.0時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガス(以下、希釈フッ素ガスという。)を、流速5.27L/hで1時間吹き込んだ。
つぎに、オートクレーブに希釈フッ素ガスを同じ流速で吹き込みながら、例1−2で得た重合体(2.3g)をR−113(114g)に溶解した溶液を3.33時間かけて注入した。さらに希釈フッ素ガスを同じ流速で吹き込みながら、R−113溶液を6mL注入した。さらに、窒素ガスを1.0時間吹き込んだ。反応終了後、粗液を回収し、減圧乾燥(60℃、6.0時間)よってR−113を留去し、室温で粘調な液体の生成物(2.7g)を得た。
該生成物を分析した結果、例1−2で得た重合体中の水素原子の66モル%がフッ素原子に置換された重合体の生成が確認された。また、GPCで測定した平均分子量は3500であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):2.8〜3.7、3.8〜5.0、5.1〜6.3、6.6〜7.1。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:C)δ(ppm):−57.5〜−59.0、−76.0〜−87.5、−89.0〜−105.0、−113.5〜−114.0、−120.0〜−131.0、−141.0〜−150.0、−165.0〜−180.0、−205.0〜−215.0。
[例2]
(例2−1)F(CFCHCHOCOC(CH)=CHの合成例
例1−1で用いたアクリル酸をメタクリル酸(15.4g)に変えた以外は、例1−1と同様に反応、洗浄およびろ過を行った。ろ液を減圧蒸留して、60℃/0.6kPa(絶対圧)の留分(35.6g)を得た。該留分のGC純度は、99%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):1.98(3H),2.45(2H),4.45(2H),5.6(1H),6.1(m,1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−81.0(3F),−113.7(2F),−124.3(2F),−125.8(2F)。
(例2−2)F(CFCHCHOCOC(CH)=CHの重合例
例1−2におけるF(CFCHCHOCOCH=CHを例2−1で得たF(CFCHCHOCOC(CH)=CH(25.9g)に変えること以外は例1−2と同様に重合反応および後処理を行い、室温で固体の生成物(18g)を得た。
H−NMR、19F−NMR分析の結果、得られた固体は繰返し単位[−CH−C(CH)(COOCHCH(CFF)−]からなる重合体であることを確認した。また、GPCで測定した平均分子量は26000であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.0〜1.6,1.9〜2.4,2.5〜2.8,4.2〜4.6。19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−80.9(3F),−114.0(2F),−123.8(2F),−126.5(2F)。
(例2−3)例2−2で得た重合体のフッ素化例
例1−3において、例1−2で得た重合体を例2−2で得た重合体(1.8g)に変えること以外は例1−3同様にフッ素化反応および後処理を行って、室温で粘調な液体の生成物(2.4g)を得た。
生成物を分析した結果、例2−2で得た重合体中の水素原子の69モル%がフッ素原子に置換された重合体の生成を確認した。また、GPCで測定した平均分子量は900であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):2.6〜3.8,5.0〜5.6,5.7〜6.8。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:C)δ(ppm):−80〜−82,−85〜−87,−110〜−126,−145.0〜−150.0,−205.0〜−215.0。
[例3]
(例3−1)F(CFCHCHOCOCH=CHの合成例
例1−1で用いたF(CFCHCHOHをF(CFCHCHOH(46.4g)に変えること以外は例1−1と同様に反応およびろ過を行った。ろ液を減圧蒸留して、90〜95℃/0.6kPa(絶対圧)の留分(54g)を得た。GC純度は、99%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):2.52(2H),4.47(2H),5.8(1H),6.1(1H),6.4(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−81.1(3F),−113.6(2F),−121.5(6F),−122.5(2F),−123.3(2F),−125.8(2F)。
(例3−2)F(CFCHCHOCOCH=CHの重合例
例1−2におけるF(CFCHCHOCOCH=CHを例3−1で得たF(CFCHCHOCOCH=CH(40.0g)に変えること以外は例1−2と同様に重合反応および後処理を行い、室温で固体の生成物(32.1g)を得た。
H−NMR、19F−NMR分析の結果、得られた固体は繰返し単位[−CH−CH(COOCHCH(CFF)−]からなる重合体であることを確認した。また、GPCで測定した平均分子量は8200であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.0〜2.2(2H),2.3〜2.8(3H),4.4〜4.6(2H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−80.3(3F),−112.7(2F),−120.8(6F),−121.7(2F),−122.4(2F),−125.2(2F)。
(例3−3)例3−2で得た重合体のフッ素化例
例1−3において例1−2で得た重合体を例3−2で得た重合体(3.6g)に変えること以外は例1−3と同様にフッ素化反応および後処理を行って、室温で固体の生成物(3.27g)を得た。
生成物を分析した結果、例3−2で得た重合体中の水素原子の19.4モル%がフッ素原子に置換された重合体の生成を確認した。また、GPCで測定した平均分子量は2100であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):2.6〜3.5,4.0〜6.0,6.5〜7.0。
19F−NMR(282.7MHz、溶媒:R−113、基準:CFCl、内部標準:C)δ(ppm):−73.0〜−87.0,−105.0〜−136.0,−210.0〜−215.0。
[例4]
(例4−1)F(CFCHCHOCOC(CH)=CHの合成例
例1−1で用いたアクリル酸をメタクリル酸(15.4g)に変え、かつ、F(CFCHCHOHをF(CFCHCHOH(46.8g)に変えること以外は例1−1と同様に反応およびろ過を行った。ろ液を減圧蒸留して、60〜70℃/16kPa(絶対圧)の留分(55g)を得た。GC純度は、93.4%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):1.98(3H),2.45(2H),4.45(2H),5.6(1H),6.1(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−81.0(3F),−113.4(2F),−121.5(6F),−122.6(2F),−123.3(2F),−125.8(2F)。
(例4−2)F(CFCHCHOCOC(CH)=CHの重合例
例1−2におけるF(CFCHCHOCOCH=CHを例4−1で得たF(CFCHCHOCOC(CH)=CH(40.5g)に変えること以外は例1−2と同様に重合反応および後処理を行い、室温で固体の生成物(31.2g)を得た。
H−NMR、19F−NMR分析の結果、得られた固体は繰返し単位[−CH−C(CH)(COOCHCH(CFF)−]を有する重合体であることを確認した。また、GPCで測定した平均分子量は15000であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.0〜1.8(3H),1.9〜2.4(2H),2.5〜2.8(2H),4.2〜4.6(2H)。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−81.3(3F),−113.6(2F),−121.7(6F),−122.5(2F),−123.4(2F),−126.1(2F)。
(例4−3)例4−2で得た重合体のフッ素化例
例1−3において、例1−2で得た重合体を例4−2で得た重合体(3.0g)に変えること以外は例1−3と同様にフッ素化反応および後処理を行って、室温で固体の生成物(3.32g)を得た。
生成物を分析した結果、例4−2で得た重合体中の水素原子の70.0モル%がフッ素原子に置換された重合体の生成を確認した。また、GPCで測定した平均分子量は1200であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):1.4,2.6〜3.6,5.0〜5.8,5.8〜7.0。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:C)δ(ppm):−58.0〜−85.0,−112〜−128.0,−147.0〜−149.0,−209.5〜−211.0。
[例5]
(例5−1)F(CF10CHCHOCOCH=CHの合成例
例1−1で用いたF(CFCHCHOHをF(CF10CHCHOH(54.6g)に変えること以外は例1−1と同様に反応およびろ過を行った。ろ液を減圧蒸留して、95〜105℃/14kPa(絶対圧)の留分(52g)を得た。GC純度は、99モル%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):2.52(2H),4.47(2H),5.8(1H),6.1(1H),6.4(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−81.1(3F),−113.6(2F),−121.5(10F),−122.5(2F),−123.3(2F),−125.8(2F)。
(例5−2)F(CF10CHCHOCOCH=CHとノルボルネンとの共重合例
充分に窒素置換された30mLのサンプル瓶を準備した。ここに、ノルボルネン(3.0g)、例5−1で得たF(CF10CHCHOCOCH=CH(19.6g)および、重合開始剤としてのパーブチルピバレート(0.2g)を、R−113(22.5g)に溶解させた溶液を投入した。激しく撹拌しながら55℃まで昇温し、重合反応を開始した。反応開始後、18時間保持した後、室温まで冷却して粗液を回収した。回収した粗液をAK−225(50g)を加えて溶解させ、つぎにヘキサン(200g)に滴下して固形分を回収した。さらに、回収した固形分をアセトン(50g)に溶解してヘキサン(200g)に滴下することによる洗浄操作を2回行った。その後、減圧乾燥(70℃、19時間)して、室温で固体の生成物(10g)を得た。
H−NMR、19F−NMR分析の結果、得られた固体は、2−(ペルフルオロ(n−デシル))エチルアクリレートに由来する繰返し単位とノルボルネンに由来する繰返し単位を、0.34:1のモル比で含む重合体であることを確認した。また、GPCで測定した平均分子量は16000であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.0〜2.4,2.4〜3.0,4.2〜4.7。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−81.8(3F),−113.8(2F),−121.8(10F),−122.5(2F),−123.5(2F),−126.4(2F)。
(例5−3)例5−2で得た共重合体のフッ素化例
例1−3において、例1−2で得た重合体を例5−2で得た重合体(2.9g)に変えること以外は例1−3と同様にフッ素化反応および後処理を行って、室温で固体の生成物(3.0g)を得た。
生成物を分析した結果、例5−2で得た共重合体中の水素原子の27モル%がフッ素原子に置換された重合体の生成を確認した。また、GPCで測定した平均分子量は4000であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):2.6〜4.4,5.0〜6.0,6.5〜7.0。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:C)δ(ppm):−81〜−83,−85〜−87,−120〜−127,−209〜−212。
[例6]
(例6−1)CH=CHCOO(CH(CFFの製造例(その2)
撹拌機、温度計、蒸留塔を備えた2000mlの4口フラスコを準備した。ここにF(CFCHCHOH(1492g、純度95.0%、2.7モル)、パラトルエンスルホン酸(68.4g)、アクリル酸(330g)、ヒドロキノン(2.64g)を入れた。充分に撹拌しながら反応器内温を90℃とし、ゆっくり減圧(26.6kPa(絶対圧))した。
反応開始1時間後より、反応で生成した水を蒸留塔トップより10ml/時間の速度で留出させた。反応開始10時間後、反応転化率が99%となったところで反応を終了させた。反応器に水(700ml)を加え、50℃とし、過剰のアクリル酸とパラトルエンスルホン酸を除去した。蒸留によりCH=CHCOOCHCH(CFF(1100g、bp.87℃/1.6×133.322Pa(絶対圧))を得た。
(例6−2)CH=CHCOO(CH(CFFの重合例(その2)
例6−1で得たF(CFCHCHCHOCOCH=CH(18g)、R−225(42g)、および2,2’−アゾビスイソブチロニトリル(0.18g)を100mlのガラス製アンプルに入れた。液体窒素で凍結することによる脱気操作を3回繰り返した後、60℃で15時間重合した。反応終了後の反応粗液のGCからは未反応の重合性モノマーは実質的に検出されず、全てのモノマーが反応したところで繰返し単位[−CH−CH(COO(CH(CFF)−]からなる重合体の生成を確認した。得られた重合体の重量平均分子量は4.8万であった。
(例6−3)例6−2で得た重合体のフッ素化例
例1−3において希釈フッ素ガスの流速5.27L/hを5.16L/hに変え、例1−2で得た重合体溶液を、例6−2で得た重合体(3.58g)をR−113(179g)に溶解した溶液に変えて3.25時間かけて注入すること以外は、例1−3と同様に反応を行い、生成物3.27gを得た。
生成物を分析した結果、例6−1で得た重合体中の水素原子の19.4モル%がフッ素原子に置換された重合体の生成を確認した。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):2.6〜3.5,4.0〜6.0,6.5〜7.0。
19F−NMR(282.7MHz、溶媒:R−113、基準:CFCl、内部標準:C)δ(ppm):−73.0〜−87.0,−105.0〜−136.0,−210.0〜−215.0。
[例7]
(例7−1)CFCFCHOCOC(CH)=CHの合成例
例1−1におけるF(CFCHOHをCFCFCHOH(15.0g)に変え、アクリル酸をメタクリル酸に変えること以外は同様に反応、洗浄、およびろ過を行った。ろ液を減圧蒸留して、55℃/12kPa(絶対圧)の留分(23.5g)を得た。該留分のGC純度は99%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):1.97(3H),4.60(2H),5.7(1H),6.21(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−81.8(3F),−123.17(2F)。
(例7−2)CFCFCHOCOC(CH)=CHの重合例
例1−2におけるF(CF)CHCHOCOCH=CHを例7−1で得たCFCFCHOCOC(CH)=CH(12.9g)に変え、2,2’−アゾビスイソブチロニトリルの量を0.25gに変え、R−225の量を28.6gに変えること以外は、例1−2と同様に反応、洗浄、および乾燥を行い、室温で固体のポリマー(10.8g)を得た。H−NMR、19F−NMRの結果、該ポリマーは繰返し単位[−CH−C(CH)(COOCHCFCF)−]からなる重合体であることを確認した。また、GPCで測定した平均分子量は19800であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):0.8〜1.5,1.8〜2.4,4.2〜4.6。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−83.9(3F),−125.5(2F)。
(例7−3)例7−2で得た重合体のフッ素化例
例1−3と同様の反応装置を準備し、オートクレーブに窒素ガスを1.0時間吹き込んだ後、希釈フッ素ガスを、流速10.4L/hで1時間吹き込んだ。
つぎに、20%希釈フッ素ガスを同じ流速で吹き込みながら、例7−2で得た重合体(7.9g)をR−113(161.4g)に溶解した溶液を7.5時間かけて注入した。その後、20%希釈フッ素ガスを同じ流速で吹き込みながら、R−113溶液を6mL注入した。さらに、20%希釈フッ素ガスを0.5時間吹き込んだ後、窒素ガスを1.0時間吹き込んだ。
反応終了後、粗液を回収し、溶媒を減圧乾燥(60℃、6.0時間)して留去して室温で粘調な液体状の生成物(10.3g)を得た。H−NMR、19F−NMRの結果、生成物は例7−2で得た重合体中の水素原子の78モル%(平均値)がフッ素原子に置換された構造を有するフッ素化重合体であることが確認された。また、GPCで測定した平均分子量は1400であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):3.0〜4.0、4.0〜5.0、5.3〜6.7、6.7〜7.3。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:ヘキサフルオロベンゼン)δ(ppm):−56.5〜−59.0、−81.0〜−82.0、−82.0〜−82.5、−86.0〜−87.5、−106.0〜−115.0、−127.0〜−130.5、−147.5.0〜−148.5、−170.0〜−185.0。
(例7−4)例7−3で得たフッ素化ポリマーのエステル結合分解例
例7−3で得たフッ素化重合体(8.3g)を充分に乾燥してKF粉末(0.4g)と共にフラスコに仕込み、激しく撹拌しながら120℃まで加熱し、4時間加熱した。冷却後、フラスコより回収したサンプルを濾過し、液状の生成物(5.6g)を回収した。生成物は、エステル結合が熱分解した化合物を主生成物とする2種以上の化合物の混合物であることをNMRにより確認した。また、例7−3で得たフッ素化重合体中に存在するエステル結合の69.7%が分解されて−COF基に変換されていることをNMRにより確認した。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):3.0〜4.0、4.0〜5.0、5.3〜6.7、6.7〜7.3。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:ヘキサフルオロベンゼン)δ(ppm):48.5〜23.0、−56.5〜−59.0、−62.0〜−74.0、−81.0〜−82.0、−82.0〜−82.5、−86.0〜−87.5、−106.0〜−115.0、−127.0〜−130.5、−147.0〜−148.5、−170.0〜−185.0。
(例7−5)例7−4で得た生成物のエステル化例
メタノール(5.8g)をフラスコに入れ、室温で激しく撹拌しながら、例7−4で得た生成物(5.1g)を0.5時間かけて滴下した。その後、60℃まで加熱し、4時間保持した。続いて、蒸留によってメタノールを留去してさらに減圧乾燥(100℃、24時間)して、液状の生成物(4.9g)を回収した。H−NMR、19F−NMRの結果、例7−4で得た生成物中の−COF基の全てがエステル化されて、−COOCH基に変換された化合物が生成していることを確認した。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):3.0〜3.5,3.5〜4.0、4.0〜5.0、5.3〜6.7、6.7〜7.3。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:ヘキサフルオロベンゼン)δ(ppm):−58.5〜−68.0、−70.0〜−80.0、−81.0〜−82.0、−82.0〜−82.5、−86.0〜−87.5、−106.0〜−115.0、−127.0〜−130.5、−147.0〜−148.5、−170.0〜−185.0。
[例8]
(例8−1)F(CFOCF(CF)CFOCF(CF)CHOHの合成例
上部に滴下漏斗を有し、あらかじめ内部を窒素置換した100mLのフラスコを準備した。該フラスコ中にNaBH(19.9g)、ジオキサン(250.1g)を投入し、系内を室温に保ちながら1時間激しく撹拌した。撹拌を継続しながら、上部の滴下漏斗よりF(CFOCF(CF)CFOCF(CF)COF(172g)を内温が60℃を超えないように注意しながらゆっくり滴下した。滴下終了後、1時間撹拌し、室温まで冷却して粗液を回収した。回収した粗液を、蒸留水(300g)にゆっくりと滴下し、二層分離して有機相を回収した。回収した有機相を5質量%のメタノール水溶液(300g)で洗浄し、二層分離した後、有機相を回収する操作を5回繰り返した。さらに有機相を、硫酸マグネシウムで乾燥後、ろ過した。ろ液を減圧蒸留して、88.5℃/9.3kPa(絶対圧)の留分(141.8g)を得た。GC純度は95.9%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):4.13(1H),4.18(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−78.0(1F),−79.9(3F),−81.2(3F),−81.4(2F),−81.9(1F),−82.2(3F),−129.1(2F),−135.4(1F),−144.5(1F)。
(例8−2)F(CFOCF(CF)CFOCF(CF)CHOCOCH=CHの合成例
上部に滴下漏斗を有し、あらかじめ内部を充分に窒素置換した1Lのフラスコを準備した。該フラスコ中に、例8−1で得たF(CFOCF(CF)CFOCF(CF)CHOH(88.3g)、塩化メチレン(340.8g)、ピリジン(13.7g)、およびヒドロキノン(0.12g)を投入し、激しく撹拌しながら水で冷やした。続いて撹拌を継続しながら、上部の滴下漏斗よりアクリル酸クロリド(19.1g)をゆっくり滴下した。滴下終了後、内温を40℃まで昇温し、3時間撹拌した。つぎに、蒸留水(150g)を滴下し、二層分離して有機相を回収した。回収した有機相を10質量%の重曹水(200g)で洗浄し、二層分離した後、有機相を回収した。さらに有機相を、硫酸マグネシウムで乾燥後、ろ過した。ろ液を減圧蒸留して、45.5℃/0.3kPa(絶対圧)の留分(51.5g)を得た。GC純度は99%であった。留分のNMRスペクトルを測定し、主成分が標記化合物であることを確認した。
H−NMR(300.40MHz、溶媒CDCl、基準:TMS)δ(ppm):4.13(1H),4.18(1H),6.08(1H),6.18(1H),6.52(1H)。
19F−NMR(282.65MHz、溶媒CDCl、基準:CFCl)δ(ppm):−78.0(1F),−79.9(3F),−81.2(3F),−81.4(2F),−81.9(1F),−82.2(3F),−129.1(2F),−135.4(1F),−144.5(1F)。
(例8−3)F(CFOCF(CF)CFOCF(CF)CHOCOCH=CHの重合例
あらかじめ内部を窒素置換した50mLの丸底フラスコを準備した。ここに例8−2で得たF(CFOCF(CF)CFOCF(CF)CHOCOCH=CH(36.0g)および重合開始剤としての2,2’−アゾビスイソブチロニトリル(0.11g)をR−225(25.3g)に溶解させた溶液を投入した。液化窒素を用いて溶液を凍結させ、真空ポンプで脱気した後に溶解させる操作を3回行った。つぎに溶液を激しく撹拌しながらオイルバスを用いて60℃まで昇温し、重合反応を開始した。反応開始後、15時間保持した後、室温まで冷却して粗液を回収した。回収した粗液をメタノール(300g)に滴下して固形分を回収した。さらに、回収した固形分をR−225(100g)に溶解してヘキサン(500g)に滴下することによる洗浄操作を2回行った。その後、減圧乾燥(100℃、24時間)して、室温でエラストマー状の生成物(20.8g)を得た。
H−NMR、19F−NMRの結果、得られた固体は、繰返し単位[−CH−CH(COOCHCF(CF)OCFCF(CF)O(CFF)−]からなる重合体であることを確認した。該重合体の平均分子量をGPCで測定した結果、21000であった。
H−NMR(300.4MHz、溶媒:CDCl、基準:TMS)δ(ppm):1.3〜2.1,2.2〜2.6,4.4〜4.9。
19F−NMR(282.7MHz、溶媒:CDCl、基準:CFCl)δ(ppm):−78.0(1F),−79.9(3F),−81.2(3F),−81.4(2F),−81.9(1F),−82.2(3F),−129.1(2F),−135.4(1F),−144.5(1F)。
(例8−4)例8−3で得た重合体のフッ素化例
例1−3における例1−2で得た重合体(2.3g)をR−113(114g)に溶解した溶液を、例8−3で得た重合体(5.16g)をR−113(260g)に溶解した溶液に変更して、これを3.12時間かけて注入して同様にフッ素化反応を行った。
反応終了後、粗液を回収し、減圧乾燥(80℃、10.0時間)によってR−113を留去し、室温で粘調な液体の生成物(5.3g)を得た。
該生成物を分析した結果、例8−3で得た重合体中の水素原子の33モル%がフッ素原子に置換された重合体の生成が確認された。また、GPCで測定した平均分子量は8500であった。
H−NMR(300.4MHz、溶媒:R−113、基準:TMS、内部標準:ニトロベンゼン)δ(ppm):2.8〜3.7、3.8〜5.0、5.1〜6.6。
19F−NMR(282.7MHz、溶媒:R−113、基準:CDCl、内部標準:C)δ(ppm):−78.0〜−85.5、−95.0〜−109.0、−129.0〜−131.0、−134.0〜−136.0、−144.0〜−150.0、−165.0〜−205.0。
[例9]ガラス基板表面被膜の評価
(例9−1)例6−3で得た重合体をR−225に5質量%溶解させた溶液を調整した。該溶液中にガラス基板(1.5cm×7cm)を浸漬することにより、ガラス表面に溶液を均一に付着させた。さらにガラス基板を、90℃で1.5時間熱処理して、ガラス表面に被膜を形成させた。得られたガラス表面の接触角(単位:度)を、水およびヘキサデカンにおいて測定した(使用機器:協和界面化学SA−20型接触角計)。
その結果、水における接触角は114.2度、ヘキサデカンにおける接触角は78.5度であった。また、同装置を使用して、ヘキサデカン(10μL)の転落角を測定したところ、7.3度であった。
さらに、ガラス表面をスパチュラを用いて強く削ったが、表面の変化は認められず、摩擦耐久性に優れた被膜が形成されていることを確認した。
(例9−2)例7−5で得た生成物を用いて例9−1と同様にガラス表面に被膜を形成させた。ガラス表面の臨界表面張力をジスマンプロットにより算出したところ、19mN/mであった。この値は、ポリテトラフルオロエチレンの臨界表面張力(18mN/m)と比べて同等以上であった。
<産業上の利用可能性>
本発明の製造方法によれば、種々の構造が容易に入手できる部分フッ素化重合体を用いて、多種類の構造の含フッ素重合体を得ることができる。本発明の製造方法は、補助溶媒等を使用することなく、経済的に有利な方法かつ工業的実施が可能な手法で、フッ素含有量が調節された含フッ素重合体を製造できる。
また、本発明により製造された種々の構造を有する含フッ素重合体およびこれを誘導化した重合体はコーティング剤等の機能性材料として有用である。コーティング剤として使用した場合には、基材の表面に撥水撥油性能に優れた硬い被膜を形成しうる。<Technical field>
The present invention relates to a method for producing an industrially useful fluoropolymer and a derivative thereof, and uses of the fluoropolymer derivative produced by using the method.
<Background technology>
2. Description of the Related Art Conventionally, as a method of fluorinating all C—H portions in a compound containing a chemical structure (C—H) in which a hydrogen atom is bonded to a carbon atom to C—F, a method of fluorination using a fluorine gas It has been known.
As a method for fluorinating a polymer compound containing CH, such a polymer compound is usually a solid or a liquid at room temperature, and it is difficult to perform a gas phase reaction. ) A method of fluorination by directly contacting with a fluorine gas (La Mar method), and (2) a polymer compound containing CH is put in a solvent, and fluorine gas is introduced into the solvent to form a liquid phase. A method of fluorination is known.
However, when the method is carried out by the method (1), only the solid surface of the polymer compound is easily fluorinated, so that it is difficult to obtain a fluorinated product having a desired structure or to control the degree of fluorination. There was a problem.
In the above method (2), a perfluorinated organic solvent is usually used as a solvent. However, the solubility of the polymer compound in the perfluorinated organic solvent is low, and in many cases, the polymer compound is used. Is insoluble in this organic solvent. Therefore, as an auxiliary solvent for dissolving the CH-containing polymer compound, an auxiliary solvent (eg, chloroform or the like) that can dissolve the CH-containing polymer compound and is soluble in the perfluorinated solvent is used. Attempts have been made to add to perfluorinated solvents. However, since the auxiliary solvent itself is also fluorinated by consuming fluorine gas, the production efficiency of the fluorinated polymer compound is insufficient and there is a problem that it is not economical. When the boiling point of the co-solvent is low, a fluorination reaction of the co-solvent occurs in the gas phase, which makes it difficult to control the reaction.
In addition, even with the use of an auxiliary solvent, it has actually been difficult to improve the solubility of the polymer compound in a perfluorinated organic solvent. Therefore, the method (2) has a problem that a heterogeneous reaction in a suspension system is liable to occur, and it is difficult to obtain a fluorinated polymer compound. Further, since the reaction is carried out at a very low raw material concentration, there are also problems that the volume efficiency is low and the production cost is high.
On the other hand, as a method for obtaining a polymer having C—F, a method of polymerizing a fluorine-based monomer in which all C—H moieties are fluorinated in advance may be considered. However, there is a problem that the structure is limited due to the difficulty of the above. In addition, there is a problem that the structure of a polymer that can be synthesized is limited because the combination of compounds that can be polymerized is limited depending on the fluorine-based monomer.
From the above viewpoints, there has been reported a method of obtaining a fluorine-containing polymer by copolymerizing tetrafluoroethylene as a fluorine-based monomer and propylene as a non-fluorine-based monomer and then fluorinating in a liquid phase ( JP-T4-500520). However, such a copolymerization reaction between a fluorine-based monomer and a non-fluorine-based monomer has a problem that a copolymer having an arbitrary structure cannot be produced because the combination thereof is limited. Further, the fluoropolymer obtained by fluorinating a copolymer of tetrafluoroethylene and propylene has no reactive site, and thus has a problem that further chemical conversion cannot be performed.
In addition, the present applicant has previously provided a series of processes including a liquid phase fluorination reaction as a method for inexpensively and efficiently producing a fluorine-containing monomer capable of undergoing a polymerization reaction (see WO 00/56694). However, in order to produce a polymer from the monomer obtained by the process, a further polymerization step is required, and the number of steps required to obtain the polymer increases, so that a fluoropolymer is produced at a lower production cost. There is a need for a way to do that.
The present invention provides a method for economically and advantageously producing fluoropolymers having various structures in a manner advantageous for industrial practice. The present invention also provides a method for producing a fluoropolymer in which the fluorine content can be easily adjusted. Further, the present invention provides a useful derivative obtained from the fluoropolymer produced according to the present invention.
<Disclosure of the Invention>
The present inventors have found that the above problems can be solved by a production method including a polymerization step for a partially fluorinated monomer and a fluorination step performed after the polymerization step, and have accomplished the present invention. That is, the present invention provides the following method.
1. A method for producing a fluoropolymer, comprising the following polymerization step and the following fluorination step performed after the polymerization step.
Polymerization step: a step of polymerizing a monomer (β) having a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom, or a comonomer copolymerizable with the monomer (β) and the monomer (β) ( j).
Fluorination step: dissolving a partially fluorinated polymer having a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom in a solvent for a fluorination reaction, followed by liquid-phase fluorination, whereby the partial fluorination is carried out. Substituting at least one hydrogen atom bonded to a carbon atom in a polymerized polymer with a fluorine atom.
2. The production method according to claim 1, wherein the partially fluorinated polymer is a product of a polymerization step.
3. 3. The method according to claim 1, wherein the polymerization reaction in the polymerization step is an addition polymerization reaction.
4. 4. The production method according to claim 1, wherein the monomer (β) is a monomer produced through the following monomer synthesis.
Monomer synthesis step: a hydrogen atom bonded to a carbon atom and a reactive group (Y2) And the reactive group (Y2) To form a linking group or group.1) And a fluorine-containing compound having both a fluorine atom bonded to a carbon atom.
5. The method according to any one of claims 1 to 4, wherein the partially fluorinated polymer has an average molecular weight of 1,000 or more.
6. The fluorine content of the partially fluorinated polymer is 30 to 70% by mass, the fluorine content of the fluorinated polymer is 35% by mass or more, and an amount larger than the fluorine content of the partially fluorinated polymer. The method according to claim 1.
7. The method according to any one of claims 1 to 6, wherein the partially fluorinated polymer in which all of the fluorine atoms are replaced by hydrogen atoms is a polymer that does not dissolve in the solvent for the fluorination reaction.
8. The production method according to any one of claims 1 to 7, wherein the fluorination step is performed until 40 mol% or more of all hydrogen atoms bonded to carbon atoms of the partially fluorinated polymer are substituted with fluorine atoms.
9. The partially fluorinated polymer is a polymer having a monovalent fluorinated organic group connected to the side chain of the polymer through an ester bond, and the fluorinated polymer has a hydrogen atom bonded to a carbon atom of the partially fluorinated polymer. The production method according to any one of claims 1 to 8, wherein at least one of the fluorinated polymers is substituted with a fluorine atom, and the fluorinated polymer requires an ester bond in a polymer side chain.
10. The monomer (β) is a monomer having a (meth) acryloyloxy group and a monovalent fluorinated organic group, the partially fluorinated polymer is a polymer having a repeating unit of the monomer as an essential component, and the fluorinated polymer is The production method according to claim 9, wherein the polymer has a fluorine atom bonded to a carbon atom in the polymer main chain and a monovalent fluorine-containing organic group linked to the polymer side chain by an ester bond.
11. The fluorine-containing polymer obtained by the production method according to claim 10, wherein a fluorine atom bonded to a carbon atom in the polymer main chain, wherein an ester bond in the polymer side chain is decomposed to be converted into a -COF group. A method for producing a polymer having a —COF group in a polymer side chain.
12. A polymer obtained by the method of claim 11, wherein a hydroxy compound having a monovalent organic group containing no fluorine and a hydroxyl group is ester-bonded to a -COF group of the polymer side chain. For producing a polymer having a fluorine atom bonded to a carbon atom and a fluorine-free monovalent organic group bonded to the side chain of the polymer by an ester bond.
13. General formula-[CX10X20-C (R10) COORH]-A repeating unit (however, X10And X20Each independently represents a hydrogen atom or a fluorine atom;10Represents a hydrogen atom, a fluorine atom, or a fluorinated methyl group, and X10, X20And R10At least one group selected from is a group in which a fluorine atom is essential. RHRepresents a monovalent organic group containing no fluorine. A composition comprising: a polymer having a fluorine atom ratio of 35% by mass to 86% by mass; and an organic solvent capable of dissolving the polymer.
14. 14. The composition according to claim 13, wherein the composition is a coating.
<Best mode for carrying out the invention>
The monomer in the present specification refers to a compound having a polymerizable group (polymerizable monomer). The number of polymerizable groups in the monomer is one or more, and preferably one. Examples of the monomer include “(1) a monomer polymerized by opening an unsaturated bond (a so-called addition polymerizable monomer)” and “(2) a monomer polymerized by a rearrangement of a bond (a cyclized monomer polymerized by a so-called ring-opening polymerization). Or "(3) monomers polymerized by elimination or migration of atoms or atomic groups".
(1) As a monomer that is polymerized by opening of an unsaturated bond, a polymerizable group (also referred to as an addition-polymerizable unsaturated group) is CH.2= CR1-, CH2= CC1- (where R1Represents a hydrogen atom or a methyl group. ) And monomers having a group in which one or more of the hydrogen atoms in these groups have been replaced by fluorine atoms. Where CH2= CR1-May be a part of an acryloyl group or a methacryloyl group.
(2) Examples of monomers polymerized by the rearrangement of bonds include cyclic ethers, cyclic acid anhydrides, lactams, lactones, and cycloparaffins.
(3) Examples of the monomer polymerized by elimination or transfer of an atom or an atomic group include compounds polymerized by a polycondensation reaction, a polyaddition reaction, oxidative polymerization, transfer polymerization, or elimination polymerization. , Diisocyanates, phenols, diazomethanes and the like.
The polymer in the present specification refers to a compound containing two or more structural units (also referred to as repeating units) formed by a polymerization reaction, and refers to a compound synthesized by the polymerization reaction. The polymer may be a compound directly obtained by a polymerization reaction or a compound obtained by chemically converting a portion other than the structure formed by the polymerization reaction after the polymerization reaction. The type of the repeating unit in the polymer may be one or two or more.
The organic group in the present specification refers to a group essentially including a carbon atom, and may be a saturated group or an unsaturated group. As the halogen atom, a fluorine atom or a chlorine atom is preferable. As the monovalent organic group, an alkyl group, an etheric oxygen atom-containing alkyl group, a cycloalkyl group, an etheric oxygen atom-containing cycloalkyl group, or one or more hydrogen atoms present in these groups are substituted with a halogen atom. Groups are preferred. Examples of the divalent organic group include an alkylene group, an etheric oxygen atom-containing alkylene group (for example, an oxyalkylene group, a polyoxyalkylene group, an alkyleneoxyalkylene group, and the like), or one or more hydrogen atoms present in these groups. Is preferably a group in which is substituted by a halogen atom. The carbon number of the organic group is preferably from 1 to 20, particularly preferably from 1 to 10.
In this specification, an acryloyl group and a methacryloyl group are collectively referred to as a (meth) acryloyl group, and acrylic acid and methacrylic acid are collectively referred to as (meth) acrylic acid. The same applies to other compounds.
The monomer synthesis step, polymerization step, and fluorination step in the present invention will be described in order.
[Monomer synthesis step]
The monomer synthesis step is a step of reacting the monomer (α) with a specific fluorine-containing compound. The specific fluorine-containing compound refers to a reactive group (Y2) To form a linking group or group.1) And a fluorine atom bonded to a carbon atom. Reactive groups (Y1) And a reactive group (Y2) React with each other to form a linking group or linking group.
Reactive groups (Y1) And a reactive group (Y2)) Include a single bond, a double bond, and a triple bond. Examples of the connecting group include an organic connecting group, —O—, and —S—. The valence of the organic linking group is not particularly limited, and examples thereof include a divalent or higher valent organic group. As the organic linking group, Y1And Y2Is -COX1(X1Is a halogen atom or a hydroxyl group, preferably a halogen atom, particularly preferably a chlorine atom or a fluorine atom, particularly preferably a fluorine atom. ) And -COO-, Y formed when the other is -OH1And Y2Is -SO3X1(However, X1Has the same meaning as described above. ) And -SO formed when the other is -OH2O- and the like. Also, Y1And Y2Is -C1= O and the other is HOC2-The following linking group (provided that C is1And C21 and 2 in the above represent numbers specifying carbon atoms. ).
Figure 2002079274
As the monomer (α), a monomer classified into (1) or (2) above is preferable, and an addition-polymerizable monomer classified into (1) above is particularly preferable. In particular, the monomer (α) is preferably a non-fluorine-based monomer having no fluorine atom in the structure.
As the monomer (α) classified into the above (1), one addition polymerizable group and a reactive group (Y2Is preferred and a compound having one or more hydrogen atoms bonded to carbon atoms. Specific examples of the monomer (α) include the following compounds. Where R in the following formula1Represents a hydrogen atom or a methyl group;1Has the same meaning as above, and Q1, Q2Each independently represents a single bond or a divalent linking group (preferably an alkylene group as the divalent linking group), m represents an integer of 2 to 5, p represents an integer of 2 to 5, and r represents Shows an integer of 1 to 4.
CH2= C (R1) -Q1-COX1The formula (α11)
(For example, CH2= C (R1) -COOH, CH2= C (R1) -COCl, CH2= C (R1)-(CH2)m-COOH, CH2= C (R1)-(CH2)m-COCl and the like. )
CH2= C (R1) -Q2-OH; the formula (α12)
(For example, CH2= C (R1)-(CH2)rOH, CH2= C (R1)-(CH2CH (CH3))pOH, CH2= C (R1) COOCH2CH (OH) CH2Cl and the like. )
Monomer (α) is CH2= C (R1) When it is a monomer having a part,1Is preferably a hydrogen atom because the yield of the fluorination step is increased.
As the monomer (α) classified into the above (2), a ring-opening polymerizable monomer can be exemplified, and specific examples thereof include a monomer having a glycidyl group.2G- (CH) when is -OH2)kOH and the like (provided that G represents a glycidyl group and k represents an integer of 0 to 5).
The fluorine-containing compound to be reacted with the monomer (α) includes a monovalent organic group (R) having a fluorine atom bonded to a carbon atom as an essential component.F) And Y1Are preferred, and especially RF-Y1The compound represented by is preferred. When the fluorine-containing compound is RFWhen it has a group, in the subsequent fluorination step, the RFThe group can be an important group that enhances the solubility of the partially fluorinated polymer in the solvent in the fluorination reaction. RFIs a monovalent organic group having at least one fluorine atom bonded to a carbon atom, and in particular, a monovalent organic group whose terminal is perfluorinated (R1FIs preferred. R1FIs preferably a perfluoroalkyl group or a perfluoro (etheric oxygen atom-containing alkyl) group.
R1FSpecific examples of the following include the following examples. In addition, in the following specific examples, groups corresponding to respective structurally isomer groups are also included.
C4F9− {However, F (CF2)4−, (CF3)2CFCF2−, (CF3)3C- or CF3CF2CF (CF3)-Etc. }, C5F11− {However, F (CF2)5−, (CF3)2CF (CF2)2−, (CF3)3CCF2− Or F (CF2)3CF (CF3)-Etc. }, C6FThirteen− {However, F (CF2)3C (CF3)2-Etc. }, C8F17-, C10F21-, C12F25-, C14F29-, C16F33-, C18F37-, C20F41−, (CF3)2CF (CF2)s-(S is an integer of 3 or more), CF3CF2CF2OCF (CF3)-, CF3CF2CF2OCF (CF3) CF2OCF (CF3)-. Also, R1FR other thanFExamples of HCtF2t-(T is an integer of 1 or more).
Y1Is Y2It is appropriately changed depending on the combination with.
For example, the monomer (α) Y2Is -COX1(X1Represents the same meaning as described above) (the above formula (α11And the like when a monomer represented by ()) is used. ) Includes Y of the fluorine-containing compound1Is preferably -OH. As the fluorine-containing compound, R1F(CH2)nOH or R1FCOF (R1FHas the same meaning as described above. n represents an integer of 1 to 5, preferably an integer of 2 to 5, and particularly preferably 2 or 3. ) Is preferred.
For example, the monomer (α) Y2Is -OH (the above formula (α12And the like when a monomer represented by ()) is used. ) Includes Y of the fluorine-containing compound1Is -COX1(X1Has the same meaning as described above).
Y1Is -OH, -COX1Specific examples of the fluorine-containing compound are the following compounds. Here, n has the same meaning as described above.
R1FCOF (for example, CF3CF2COF, CF3CF2CF2OCF (CF3) COF, CF3CF2CF2OCF (CF3) CF2OCF (CF3) COF etc.),
R1FCOOH (for example, CF3CF2COOH, CF3CF2CF2OCF (CF3) COOH, CF3CF2CF2OCF (CF3) CF2OCF (CF3) COOH etc.),
R1F(CH2)nOH (for example, CF3CF2CH2OH, F (CF2)4CH2CH2OH, F (CF2)6CH2CH2OH, F (CF2)8CH2CH2OH, etc.).
The fluorine-containing compound is a known compound or a compound that can be easily synthesized from a known compound. For example, Y1The fluorine-containing compound represented by —COF is a commercially available product, produced by the method described in WO 00/56694 by the present applicant, or a compound produced by a decomposition reaction of an ester bond described later is recovered. Available at
The method of reacting the monomer (α) with the fluorine-containing compound is represented by Y1And Y2Can be changed as appropriate according to the combination of. For example, (meth) acrylic acid and R1F(CH2)nThe reaction with OH is a known esterification reaction, and can be carried out in good yield according to a known method.
Examples of the monomer (hereinafter, referred to as monomer (β ′)) generated by the reaction in the monomer synthesis step include the following compounds. Where R in the following formula1, R1F, G, n and k have the same meaning as described above.
CH2= C (R1) COO (CH2)nR1F
CH2= C (R1) OCOR1F
CH2= C (R1) COO (CH2)kOCO (CH2)nR1F,
G- (CH2)mOCOR1F
The monomer (β ′) can be obtained from the reaction product of the monomer synthesis step by performing a usual purification treatment. The method of obtaining the monomer (β) used in the subsequent polymerization step is not limited, but the monomer (β ′) generated in the monomer synthesis step has a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom. It is a monomer and can be used as a monomer (β) in a subsequent polymerization step. Further, the monomer (β ′) produced in the monomer synthesis step may be subjected to chemical conversion to be used as the monomer (β).
The monomer (β) in the polymerization step in the present invention is preferably a monomer produced via a monomer synthesis step. This is because, as the monomer (α) and the fluorine-containing compound, compounds having various structures can be easily obtained at low cost. Then, a monomer (β ′) is obtained by performing a monomer synthesis step using these compounds, and if necessary, a chemical conversion is performed on the monomer (β ′) to obtain a monomer having various structures ( β) can be synthesized.
When a chemical conversion is performed on the monomer (β ′), it is preferable to perform the chemical conversion on a portion other than the structure showing polymerizability. Y of monomer (β ′)1And Y2The linking group or link formed from and may be altered by chemical transformation. The fluorine atom bonded to the carbon atom in the monomer (β ′) is preferably retained before and after the chemical conversion. Examples of chemical conversion in the monomer (β ′) include alkylation of a hydrogen atom bonded to a nitrogen atom, protection of a residual hydroxyl group, and the like.
[Polymerization step]
The polymerization step is a step of polymerizing the monomer (β) or a step of copolymerizing the monomer (β) with a copolymerizable comonomer (j).
The monomer (β) is preferably an addition-polymerizable monomer, and is preferably a monovalent fluorinated organic group (RFIs particularly preferred. Further, the monomer (β)FA monomer (β) in which an addition-polymerizable unsaturated group is linked with a divalent group having an essential ester bond.1) Is preferred. Monomer (β1) Is given by the following equation (β1-1) or a monomer represented by the following formula (β1The monomer represented by -2) is preferable. The formula (β1The monomer represented by -1) is preferably a monomer having a (meth) acryloyloxy group and a monovalent fluorinated organic group.1Particularly preferred is a monomer represented by the following formula (β):1The monomer represented by -11) is particularly preferred. The following equation (β1The monomer represented by the following formula (β)1-20) is preferable, and particularly, a monomer represented by the following formula (β1-21) is preferred. Wherein U represents an addition-polymerizable unsaturated group;1And Q2Represents a single bond or a divalent linking group which may be the same or different,1Represents a hydrogen atom or a methyl group;FAnd R1FHas the same meaning as described above, and p represents an integer of 1 to 5, preferably an integer of 2 to 5, and particularly preferably 2 or 3. k represents an integer of 0 or more, and preferably an integer of 1 to 5.
U-Q1-COO-Q2-RF... (β1-1)
U-Q1-OCO-Q2-RF... (β1-2)
CH2= CR1-COO-Q2-RF... (β1-10)
CH2= CR1−Q1-OCO-Q2-RF... (β1-20)
CH2= CR1COO- (CH2)pR1F・ ・ ・ ・ (Β1-11)
CH2= CR1OCO- (CH2)kR1F・ ・ ・ ・ (Β1-21)
A monomer (β1) Are monomers copolymerizable with various comonomers (j). The monomer (β1) Are monomers that can be polymerized reliably and easily by a known polymerization method, so that polymers having various structures can be produced. The monomer (β1Is a polymer having an ester bond in the side chain, and thus has the advantage that the ester bond can be chemically converted to be derivatized. In particular, the expression (β1-1) and the formula (β1-2) with the monomer represented by the formula (β1The monomer represented by -1) is preferable because it can be easily led to various compounds by derivatization.
In particular, the expression (β1The monomer represented by -11) is CH2= C (R1) COX1(Where R is1, X1Has the same meaning as described above. ) And R1F− (CH2)nA compound represented by OH (provided that R1FAnd n have the same meaning as described above. ) Is preferably obtained by reacting
Monomer (β1The following compounds are mentioned as specific examples of ()). Here, m in the following formula represents an integer of 1 to 12, and R1, P, and k have the same meaning as described above.
CH2= C (R1) COO (CH2)p(CF2)mF,
CH2= C (R1) COO (CH2)mOCO (CH2)k(CF2)mF,
CH2= C (R1) OCO (CH2)k(CF2)mF.
Further, as a specific example when the monomer (β) is a monomer other than the above, CF2= CHCF3, CF3CF2CF2CF2CH = CH2, CF3CF2CF2CF2CF = CH2And the like.
The polymerization step is a step of polymerizing the monomer (β) or a step of copolymerizing the monomer (β) with the comonomer (j). When polymerizing only the monomer (β), only one type of the monomer (β) may be used, or two or more types may be used. When the monomer (β) and the comonomer (j) are copolymerized, only one type of the monomer (β) may be used, or two or more types of the monomer (β) may be used, and only one type of the comonomer (j) may be used. Also, two or more kinds may be used.
The comonomer (j) in the present invention may or may not have a CH moiety, and preferably has a CH moiety, and preferably has no fluorine atom.
Examples of the comonomer (j) include olefins such as ethylene, vinylidene chloride, vinyl chloride, styrene, dimethylstyrene, p-methylstyrene, butadiene, isoprene, and chloroprene; glycidyl (meth) acrylate, (meth) acrylamide, N, N- Dimethyl (meth) acrylamide, diacetone (meth) acrylamide, methylolated diacetone (meth) acrylamide, N-methylol (meth) acrylamide, aziridinylethyl (meth) acrylate, benzyl (meth) acrylate, aziridinyl (meth) acrylate, poly Oxyethylene mono (meth) acrylate, methyl polyoxyalkylene (meth) acrylate, 2-ethylhexyl polyoxyalkylene (meth) acrylate, polyoxyalkylene di (meth) (Meth) acrylate having acrylate, polysiloxane, 2-dimethylaminoethyl (meth) acrylate, alkyl (meth) acrylate having an alkyl group having 8 to 20 carbon atoms, cycloalkyl (meth) acrylate, hydroxyethyl (meth) acrylate (Meth) acrylates; (halogenated alkyl) vinyl ethers having a halogen atom other than a fluorine atom; cyclic olefins such as norbornylene; vinyl alkyl ketone, triallyl cyanurate, allyl glycidyl ether, vinyl acetate, allyl acetate; N-vinylcarbazole, maleimide, N-methylmaleimide and the like can be mentioned.
Among them, as the comonomer (j), vinyl chloride and an alkyl (meth) acrylate having an alkyl group having 8 to 20 carbon atoms are preferable, and in particular, vinyl chloride, stearyl (meth) acrylate, dioctyl maleate, or 2-ethylhexyl (Meth) acrylates are preferred. Further, when the monomer (β) is a (meth) acrylate, the monomer (j) is preferably selected from (meth) acrylates or vinyl chloride in terms of yield, and particularly preferably selected from acrylates. Is preferred.
The polymerization reaction in the polymerization step is preferably carried out using the monomer (β) in an amount of 50 to 100 mol% based on the total amount of the monomers. Here, as a polymerization method of the monomer (β), a known polymerization reaction method can be applied as it is. For example, a monomer having a (meth) acryloyloxy group (β1-10) can be easily polymerized by known emulsion polymerization conditions and techniques.
In the polymerization reaction in the polymerization step, a polymer corresponding to the used monomer is obtained. When there are two or more types of repeating units in the polymer, the way of connecting the repeating units is not particularly limited, and examples thereof include block-like, random-like, and graft-like connecting methods. Further, the molecular weight of the polymer produced in the polymerization step is preferably at least 1,000, particularly preferably from 1,000 to 100,000.
The polymer contained in the reaction crude product of the polymerization step may be purified according to the purpose, or may be used for the next reaction or the like, but the fluorination reaction in the next fluorination step is stably performed. From the viewpoint of performing, it is preferable to purify. As a purification method, it is desirable to separate the polymer and the polymerization solvent in the product by a method such as drying under reduced pressure. Furthermore, after dissolving all of the crude product in a solvent, the solution of the crude product is dissolved in a solvent that can dissolve the monomer used in the polymerization step and the solvent, and can precipitate the polymer obtained in the polymerization step. , And the polymer is preferably purified by filtering the precipitate, washing the precipitate, and removing the solvent from the precipitate by drying under reduced pressure.
The polymer formed in the polymerization step contains a repeating unit of the monomer (β). In the case where the comonomer (j) is copolymerized in the polymerization step, the polymer contains a unit obtained by polymerizing the comonomer (j).
The polymer obtained in the polymerization step may be used as it is as a partially fluorinated polymer in the fluorination step, or may be used as a partially fluorinated polymer in the fluorination step after chemical conversion. For example, when the polymer obtained in the polymerization step is a comonomer having a functional group (j2)), The comonomer (j) in the polymer obtained in the polymerization step2) May be used as the partially fluorinated polymer in the fluorination step. The protecting group can be removed, if necessary, after the fluorination step described below. However, even when performing chemical conversion, the partially fluorinated polymer must have a hydrogen atom bonded to a carbon atom and a fluorine atom bonded to a carbon atom, and the chemical conversion is formed by a polymerization reaction. This is a transformation that does not change the combination performed.
As the partially fluorinated polymer, the monomer (β1) Are preferred, and especially a monomer having a (meth) acryloyloxy group (β1A polymer having the repeating unit of -10) is particularly preferred.
[Fluorination step]
The fluorination step comprises dissolving the partially fluorinated polymer produced via the polymerization step in a solvent for fluorination and then subjecting the partially fluorinated liquid to liquid phase fluorination, whereby hydrogen bonded to carbon atoms in the partially fluorinated polymer is obtained. In this step, one or more atoms are replaced with fluorine atoms.
A partially fluorinated polymer is a polymer having a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom. As described above, even if the polymer is formed in the polymerization step, It may be one obtained by chemically converting the polymer obtained.
Since such a partially fluorinated polymer is dissolved in the solvent for the fluorination reaction because it has a fluorine atom, it is not necessary to use an auxiliary solvent that consumes fluorine gas, and the fluorination reaction in a uniform state is not required. Can be realized. That is, the partially fluorinated polymer in the present invention is a partially fluorinated polymer whose fluorine content is desirably adjusted, the fluoropolymer can be easily produced, and the fluoropolymer can be converted to the fluoropolymer at low production cost.
In the fluorination step, the partially fluorinated polymer is dissolved in a fluorination reaction solvent that forms a liquid phase during the fluorination reaction, and the liquid phase fluorination reaction is performed. Here, dissolving in the solvent for the fluorination reaction means dissolving the partially fluorinated polymer in a solvent for the fluorination reaction in an amount of 0.1% by mass or more under the conditions of the fluorination reaction, and particularly 0.5% It is preferable to dissolve it by mass% or more. Further, the upper limit of the solubility of the partially fluorinated polymer in the solvent is preferably 50% by mass based on the solvent. The solvent for the fluorination reaction will be described later.
Further, the fluorine content of the partially fluorinated polymer is preferably 35% by mass or more, more preferably 50% by mass or more. The fluorine content is preferably at most 65% by mass. If the fluorine content is too low, the solubility of the fluorination reaction in the solvent becomes extremely low, and the reaction system of the fluorination reaction becomes non-uniform. The upper limit of the fluorine content is not limited, but too high a fluorine content is not economical.
Further, the molecular weight of the partially fluorinated polymer is preferably 1,000 or more, particularly preferably 1,000 to 500,000, and particularly preferably 1,000 to 100,000. The partially fluorinated polymer has such a large molecular weight that it is not entrained in the gas phase, and thus has the advantage that the fluorination reaction can be easily carried out. However, if the molecular weight is too large, the solubility of the fluorination reaction in the solvent tends to decrease, and the types of fluorination reaction solvents that can be used are undesirably reduced. On the other hand, if the molecular weight is too small, the glass transition temperature (Tg) Tends to decrease, and it is difficult to obtain physical properties required as a polymer.
In the present invention, a liquid phase fluorination reaction of a partially fluorinated polymer is performed in a liquid phase in which a solvent for the fluorination reaction is essential. As a method of the fluorination reaction of the fluorinated polymer, cobalt fluorination or the ECF method is known, but the present invention performs fluorination by a liquid phase fluorination method that can reduce the production cost of the fluorinated polymer. . According to the liquid phase fluorination method, as described above, fluorination in a uniform state can be realized, so that a desired fluorinated polymer can be obtained reliably and in high yield.
The liquid phase fluorination reaction is a reaction performed by causing a partially fluorinated polymer to exist in a liquid phase formed by a solvent for the fluorination reaction, and introducing a fluorine gas therein. By the liquid phase fluorination reaction, one or more of the hydrogen atoms bonded to the carbon atoms in the partially fluorinated polymer are replaced with fluorine atoms, and a fluorinated polymer is produced. When a carbon-carbon unsaturated bond is present in the partially fluorinated polymer, a reaction in which a fluorine atom is added to the bond may occur.
In the fluorination reaction in the present invention, all of the hydrogen atoms bonded to the carbon atoms in the partially fluorinated polymer may be fluorinated (that is, completely fluorinated). It is difficult. In the fluorination reaction, the fluorination rate (the fluorination rate is preferably the number of fluorine atoms introduced in the fluorination reaction with respect to the number of hydrogen atoms in the partially fluorinated polymer) is 40 mol% or more. The upper limit of the fluorination rate is 100%. The fluorination rate is particularly preferably from 40 to 95 mol%. The fluorine content of the fluorinated polymer is larger than the fluorine content of the partially fluorinated polymer, and is preferably 35% by mass or more, particularly preferably 70% by mass or more, and 86% by mass. % Is particularly preferred.
In the fluorination reaction of the present invention, it is preferable to carry out the fluorination reaction at a low temperature in order to minimize the cleavage reaction between carbon atoms forming the main chain of the polymer, and particularly at -50 ° C. It is preferred to carry out the reaction at 0 ° C.
In the fluorination reaction of the present invention, in order to further increase the fluorination rate, it is preferable to heat the fluorination reaction after performing the fluorination reaction at a low temperature, and particularly to perform the fluorination reaction at −50 ° C. to 0 ° C. After that, it is preferable to further perform a fluorination reaction at +10 to + 50 ° C. Further, it is preferable that the reaction system is further pressurized when heated, and it is preferable that the reaction system be pressurized at +0.1 to +0.3 MPa.
As the solvent for the fluorination reaction, among the solvents that can dissolve the partially fluorinated polymer, solvents that can dissolve the fluorine gas and that do not contain a C—H bond are preferable. Further, perfluoroalkanes and perfluoroalkanes Ethers, perfluoropolyethers (trade names: Krytox, Fomblin, Galden, Demnum, etc.), chlorofluorocarbons (trade name: CFC), chlorofluoropolyethers, perfluoroalkylamines (eg, perfluorotrialkylamine) Etc.), inert fluids (trade name: Florinert) and the like.
When the fluorinated polymer itself produced by the liquid phase fluorination reaction is a compound capable of forming a liquid phase under the conditions of the liquid phase fluorination reaction, the fluorinated polymer is used as a solvent for the fluorination reaction. You may.
The solvent for the fluorination reaction is preferably used in an amount of at least 5 times the mass of the partially fluorinated polymer, particularly preferably from 10 to 100 times the mass. Further, the viscosity of a solution obtained by dissolving the partially fluorinated polymer in the solvent for the fluorination reaction is 5 × 10-40.10.1 Pa · s is preferable because the liquid phase fluorination reaction can be carried out smoothly, and in particular, 5 × 10-4~ 5 × 10-3It is particularly desirable to set Pa · s.
The fluorine gas in the liquid phase fluorination reaction may be used as it is, or may be a fluorine gas diluted with an inert gas. As the inert gas, nitrogen gas and helium gas are preferable, and nitrogen gas is particularly preferable for economic reasons. The amount of fluorine gas in the nitrogen gas is not particularly limited, and is preferably 10% or more in terms of efficiency, and particularly preferably 20% or more.
The amount of fluorine used in the fluorination reaction is preferably such that the amount of fluorine is always an excess equivalent relative to the hydrogen atoms in the partially fluorinated polymer, particularly 1.5 times equivalent or more (that is, 1. (5 times or more) is preferable from the viewpoint of selectivity. Further, it is preferable that fluorine gas is continuously introduced into the reaction system so that an excess amount is maintained.
The reaction temperature of the fluorination reaction is usually preferably −60 ° C. or higher and the boiling point of the solvent of the fluorination reaction or lower, and from −50 ° C. to + 200 ° C. from the viewpoints of reaction yield, selectivity, and ease of industrial implementation. Is particularly preferred, and -20 ° C to + 100 ° C is particularly preferred. Further, the reaction pressure of the fluorination reaction is preferably set to normal pressure or pressurized condition, and is preferably set to 0.01 to 5 MPa (gauge pressure; the gauge pressure is indicated unless otherwise specified). When it is preferable to remove HF, for example, when the substrate contains an etheric oxygen atom, it is preferred that the HF be removed promptly at a pressure near atmospheric pressure at the beginning of the fluorination reaction.
The reaction system of the fluorination reaction is preferably a batch system or a continuous system. The reaction system is preferably the system 2 described below from the viewpoint of the reaction yield and the selectivity. As the fluorine gas, either in a batch system or a continuous system, a fluorine gas diluted with an inert gas such as nitrogen gas may be used.
[Method 1] A partially fluorinated polymer and a solvent for a fluorination reaction are charged into a reactor, and stirring is started. Next, a method in which fluorine gas is continuously supplied to a liquid phase in a reactor at a predetermined reaction temperature and reaction pressure while reacting.
[Method 2] A solvent for a fluorination reaction is charged into a reactor, and stirring is started. Next, a method of continuously and simultaneously supplying a fluorine gas and a partially fluorinated polymer dissolved in a solvent for the fluorination reaction at a predetermined reaction temperature and a predetermined pressure to a liquid phase in a reactor at a predetermined molar ratio. . In this method, the amount of the solvent for the fluorination reaction for dissolving the partially fluorinated polymer is preferably at least 5 times, more preferably at least 10 times the mass of the partially fluorinated polymer. Further, it is preferable that a sufficient amount of fluorine is previously dissolved in the solvent for the fluorination reaction so that the amount of fluorine becomes excessive even at the start of the reaction.
In the fluorination reaction, a hydrogen atom is replaced by a fluorine atom, and HF is by-produced. In order to remove by-produced HF, it is preferable to allow a HF scavenger to coexist in the reaction system or to contact the HF scavenger with the outlet gas at the reactor gas outlet. As the HF scavenger, NaF is preferable. When the HF scavenger is present in the reaction system, the amount thereof is preferably 1 to 20 times, and more preferably 1 to 5 times the molar amount of the total hydrogen atoms present in the partially fluorinated polymer. When an HF scavenger is placed at the reactor gas outlet, (h) a cooler (preferably maintained at 10 ° C. to room temperature, particularly preferably maintained at about 20 ° C.) (i) NaF pellet filling And (j) a cooler (preferably maintained at -78 ° C to + 10 ° C, preferably -30 ° C to 0 ° C) in series in the order of (h)-(i)-(j) It is preferable to set it in. A liquid return line for returning the aggregated fluorination solvent and the like to the reactor from the cooler (j) may be provided. The installation of a liquid return line is particularly preferable in that the increase in the viscosity of the reaction solution due to the scattering of the solvent for the fluorination reaction is particularly preferable. Is desirably supplied continuously to prevent an increase in the viscosity of the reaction system.
In order to efficiently increase the fluorination rate in the liquid-phase fluorination reaction, it is preferable to add a C—H bond-containing compound to the reaction system or to perform ultraviolet irradiation. Thereby, the partially fluorinated polymer present in the reaction system can be efficiently fluorinated. The ultraviolet irradiation time is preferably 0.1 to 3 hours.
The C—H bond-containing compound is selected from organic compounds other than the partially fluorinated polymer, and is preferably an aromatic hydrocarbon, particularly preferably benzene or toluene. The amount of the C—H bond-containing compound to be added is preferably 0.1 to 10 mol%, particularly 0.1 to 5 mol%, based on the total number of hydrogen atoms in the partially fluorinated polymer. Is preferred.
The C—H bond-containing compound is preferably added in a state where fluorine gas is present in the reaction system. Further, when a CH bond-containing compound is added, it is preferable to pressurize the reaction system. The pressure at the time of pressurization is preferably 0.01 to 5 MPa, whereby the fluorination rate can be increased.
In the fluorination reaction, one or more of the hydrogen atoms bonded to the carbon atoms in the partially fluorinated polymer are replaced with fluorine atoms, thereby producing a fluorinated polymer.
For example, a partially fluorinated polymer is a monomer (β1− (CH) which is a repeating unit of -11)2-C (R1) (COO (CH2)pR1F))-(Where R1, P, and R1FHas the same meaning as described above. In the case of a polymer containing a repeating unit represented by the formula (1), a polymer is produced in which one or more of the hydrogen atoms bonded to carbon atoms in the repeating unit have been substituted with fluorine atoms. Further, the partially fluorinated polymer is a polymer containing a repeating unit of a comonomer (j), wherein a hydrogen atom bonded to a carbon atom is present in the repeating unit of the comonomer or an atom group that can be fluorinated is present. In this case, part or all of the hydrogen atoms and the atomic groups are fluorinated.
As the fluorinated polymer produced in the fluorination step, when the partially fluorinated polymer is a polymer having an essential monovalent fluorinated organic group linked to the polymer side chain by an ester bond, the fluorinated polymer Is preferably a fluorine-containing polymer in which at least one hydrogen atom bonded to a carbon atom of the partially fluorinated polymer is substituted with a fluorine atom, and an ester bond is essential in the polymer side chain. Further, as the fluorinated polymer, when the partially fluorinated polymer is a polymer essentially including a repeating unit of a monomer having a (meth) acryloyloxy group and a monovalent fluorinated organic group, the fluorinated polymer is preferably Particularly preferred is a polymer having a fluorine atom bonded to a carbon atom in the polymer main chain and a monovalent fluorine-containing organic group linked to the polymer side chain by an ester bond.
From the crude product produced in the fluorination step, it is usually preferable to remove the solvent for the fluorination reaction to obtain a polymer. The polymer can be derived into a useful polymer having a reactive site in the structure as it is or by derivatization with another compound.
For example, in a fluorine-containing polymer having an ester bond in a side chain, various polymers can be derived by utilizing the reactivity of the ester bond. For example, a polymer having a -COF group in a polymer side chain can be derived by performing a decomposition reaction of an ester bond. The polymer having a -COF group in the polymer side chain is preferably a polymer having a fluorine atom bonded to a carbon atom in the polymer main chain.
Known reaction conditions can be adopted for the decomposition reaction of the ester bond. In the decomposition reaction of the ester bond, when the fluoropolymer is liquid under the reaction conditions, the decomposition reaction of the ester bond is preferably performed by heating without a solvent in the presence of NaF, CsF, KF, or the like. preferable. When the fluorinated polymer is a solid under the reaction conditions, the polymer is dissolved in a solvent capable of dissolving the polymer, and then heated in the presence of a solvent in the presence of NaF, CsF, KF, or the like to form an ester. It is preferred to carry out a bond breaking reaction. As the solvent, it is preferable to select a solvent that dissolves the fluoropolymer and has a boiling point higher than the reaction temperature.
Further, a polymer having a —COF group in the side chain can be subjected to an esterification reaction of the —COF group to obtain a fluorine-containing polymer having various esterified groups. As the hydroxy compound, a hydroxy compound having a monovalent organic group containing no fluorine and a hydroxyl group is preferable, and examples thereof include so-called alcohols.
As the conditions for the esterification reaction, known reaction conditions can be applied, and examples include the reaction of various hydroxy compounds with a -COF group. For example, when the polymer having a -COF group in the side chain and the hydroxy compound are liquid under the conditions of the esterification reaction, the esterification reaction is preferably performed without a solvent. In this case, the hydroxy compound also acts as a solvent. When the polymer having a -COF group in the side chain and / or the alcohol is solid under the conditions of the esterification reaction, the reaction is carried out in the presence of a solvent (for example, dichloropentafluoropropane (R-225)). It is preferred to do so. As the solvent, it is preferable to select a solvent which dissolves the fluoropolymer and alcohols and has a boiling point higher than the reaction temperature of the esterification reaction.
The fluoropolymer produced by the method of the present invention, or a polymer derivatized from the fluoropolymer, comprises a surfactant, a surface modifier, a water / oil repellent, a coating agent, a lubricant, and an adhesive. It is a polymer useful as an agent.
In particular, a monovalent organic group having a fluorine atom bonded to a carbon atom in the polymer main chain and containing no fluorine in the polymer side chain (RHIn the case of the polymer in which () is bonded by an ester bond, a composition containing the polymer and a solvent can be used as a coating agent. By applying the coating agent to the surface of the substrate and then drying it, a substrate having excellent water / oil repellency and a coating having high hardness on the surface can be obtained.
As the polymer, the monomer (β) is CH 22= C (R1) COO (CH2)nR1FIn the case where is a polymer produced by the method of the present invention, the compound represented by the general formula-[CX10X20-C (R10) COORH]-A repeating unit (however, X10And X20Each independently represents a hydrogen atom or a fluorine atom;10Represents a hydrogen atom, a fluorine atom, or a fluorinated methyl group, and X10, X20And R10At least one group selected from is a group in which a fluorine atom is essential. RHHas the same meaning as described above. ) Is preferred. The proportion of the repeating unit in the polymer is preferably from 20 to 100 mol%. Further, the proportion of the fluorine atoms is preferably from 15 to 86% by mass, particularly preferably from 35 to 86% by mass. The molecular weight of the polymer is preferably from 500 to 100,000, particularly preferably from 1,000 to 50,000.
According to the method for producing a fluoropolymer according to the present invention, fluoropolymers having various structures and various fluorine contents can be easily produced. The method of the present invention is an advantageous method capable of producing a desired fluoropolymer at a low production cost.
Example
Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. In addition, tetramethylsilane was described as TMS and dichloropentafluoropropane was described as R-225, and AK-225 manufactured by Asahi Glass Co., Ltd. was used. CCl2FCClF2Is represented by R-113. The NMR spectrum data is shown as an apparent chemical shift range, and the integral value is represented by a ratio. The pressure in the examples is described in absolute pressure.ThirteenReference substance CDCl in C-NMR3Was set to 76.9 ppm.19In the determination of the amount of fluorine by F-NMR, hexafluorobenzene (C6F6) Was used as an internal standard.
The average molecular weight is the number average molecular weight (Mn), Which was measured by gel permeation chromatography (hereinafter, referred to as GPC) and converted from a polymethyl methacrylate standard sample. In the GPC measurement, a solution in which 1 vol% of hexafluoroisopropyl alcohol was dissolved in R-225 was used as an eluent. In addition, PL gel 5 μMixed-C was used for the GPC column.
[Example 1]
(Example 1-1) F (CF2)4CH2CH2OCOCH = CH2Synthesis example
A 100 mL flask having a dropping funnel at the top and having the inside replaced with nitrogen in advance was prepared. F (CF2)4CH2CH2OH (26.4 g), hydroquinone (0.1 g), and p-toluenesulfonic acid (1.72 g) were charged, and the temperature was raised to 70 ° C. while maintaining the inside of the system under reduced pressure (20 kPa (absolute pressure)). Subsequently, the mixture was vigorously stirred while maintaining the internal pressure and temperature, and acrylic acid (12.9 g) was added dropwise from the upper dropping funnel. After the completion of the dropwise addition, the mixture was kept for 2 hours, and water generated by the reaction was distilled off from a distiller provided at the upper part. Thereafter, the pressure was reduced to normal pressure, and the mixture was cooled to room temperature to collect a crude liquid. After recovery, the crude liquid was washed with distilled water (60 g), separated into two layers, and the organic phase was recovered. After repeating the washing operation four times, the mixture was dried over magnesium sulfate and filtered. The filtrate was distilled under reduced pressure to obtain a fraction (34.1 g) of 55 ° C./0.6 kPa (absolute pressure). GC purity was 99%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Criterion: TMS) δ (ppm): 2.52 (2H), 4.47 (2H), 5.8 (1H), 6.1 (1H), 6.4 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) Δ (ppm): -81.1 (3F), -113.6 (2F), -124.2 (2F), -125.8 (2F).
(Example 1-2) F (CF2)4CH2CH2OCOCH = CH2Example of polymerization
A 50 mL round-bottomed flask sufficiently purged with nitrogen was prepared. Here, F (CF) obtained in Example 1-1 was used.2)4CH2CH2OCOCH = CH2(25.0 g) and a solution of 2,2'-azobisisobutyronitrile (0.5 g) as a polymerization initiator dissolved in R-225 (53.7 g) were charged. The temperature was raised to 60 ° C. with vigorous stirring to start the polymerization reaction. After the start of the reaction, the mixture was kept for 15 hours and then cooled to room temperature to recover a crude liquid. The collected crude liquid was dropped into methanol (300 g) to collect a solid content. Further, a washing operation was performed twice by dissolving the collected solid content in acetone (100 g) and dropping it in hexane (500 g). Thereafter, the product was dried under reduced pressure (100 ° C., 24 hours) to obtain a solid product (17.5 g) at room temperature.
1H-NMR,19As a result of F-NMR, the obtained solid was composed of a repeating unit [—CH2-CH (COOCH2CH2(CF2)4F)-]. The average molecular weight of the polymer measured by GPC was 43,000.
1H-NMR (300.4 MHz, solvent: CDCl3(Standard: TMS) δ (ppm): 1.3 to 2.1, 2.2 to 2.6, 4.2 to 4.5.
19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) Δ (ppm): -80.9 (3F), -113.2 (2F), -123.8 (2F), -125.9 (2F).
(Example 1-3) Example of fluorination of the polymer obtained in Example 1-2
R-113 (312 g) was added to a 500 mL Hastelloy autoclave, and the mixture was stirred and kept at 25 ° C. At the autoclave gas outlet, a cooler maintained at 20C, a packed bed of NaF pellets, and a cooler maintained at -20C were installed in series. In addition, from the cooler kept at −20 ° C., a liquid return line for returning the aggregated liquid to the autoclave was provided. After blowing nitrogen gas into the autoclave for 1.0 hour, fluorine gas diluted to 20% with nitrogen gas (hereinafter referred to as diluted fluorine gas) was blown at a flow rate of 5.27 L / h for 1 hour.
Next, a solution in which the polymer obtained in Example 1-2 (2.3 g) was dissolved in R-113 (114 g) was injected over 3.33 hours while blowing the diluted fluorine gas into the autoclave at the same flow rate. Further, while blowing the diluted fluorine gas at the same flow rate, 6 mL of the R-113 solution was injected. Further, nitrogen gas was blown for 1.0 hour. After the completion of the reaction, the crude liquid was recovered, and R-113 was distilled off under reduced pressure (60 ° C., 6.0 hours) to obtain a viscous liquid product (2.7 g) at room temperature.
As a result of analyzing the product, it was confirmed that a polymer in which 66 mol% of hydrogen atoms in the polymer obtained in Example 1-2 were substituted with fluorine atoms was formed. The average molecular weight measured by GPC was 3,500.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 2.8 to 3.7, 3.8 to 5.0, 5.1 to 6. 3, 6.6-7.1.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: C6F6) Δ (ppm): -57.5 to -59.0, -76.0 to -87.5, -89.0 to -105.0, -113.5 to -114.0, -120.0 -131.0, -141.0 to -150.0, -165.0 to -180.0, -205.0 to -215.0.
[Example 2]
(Example 2-1) F (CF2)4CH2CH2OCOC (CH3) = CH2Synthesis example
The reaction, washing and filtration were carried out in the same manner as in Example 1-1, except that the acrylic acid used in Example 1-1 was changed to methacrylic acid (15.4 g). The filtrate was distilled under reduced pressure to obtain a fraction (35.6 g) of 60 ° C./0.6 kPa (absolute pressure). The GC purity of the fraction was 99%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Standard: TMS) δ (ppm): 1.98 (3H), 2.45 (2H), 4.45 (2H), 5.6 (1H), 6.1 (m, 1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) Δ (ppm): -81.0 (3F), -113.7 (2F), -124.3 (2F), -125.8 (2F).
(Example 2-2) F (CF2)4CH2CH2OCOC (CH3) = CH2Example of polymerization
F (CF in Example 1-22)4CH2CH2OCOCH = CH2Was obtained in Example 2-1 by F (CF2)4CH2CH2OCOC (CH3) = CH2(25.9 g), except that the polymerization reaction and post-treatment were carried out in the same manner as in Example 1-2 to obtain a solid product (18 g) at room temperature.
1H-NMR,19As a result of F-NMR analysis, the obtained solid was composed of a repeating unit [—CH2-C (CH3) (COOCH2CH2(CF2)4F)-]. The average molecular weight measured by GPC was 26,000.
1H-NMR (300.4 MHz, solvent: CDCl3(Reference: TMS) δ (ppm): 1.0 to 1.6, 1.9 to 2.4, 2.5 to 2.8, 4.2 to 4.6.19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) Δ (ppm): -80.9 (3F), -114.0 (2F), -123.8 (2F), -126.5 (2F).
(Example 2-3) Example of fluorination of the polymer obtained in Example 2-2
In Example 1-3, the fluorination reaction and post-treatment were carried out in the same manner as in Example 1-3 except that the polymer obtained in Example 1-2 was changed to the polymer obtained in Example 2-2 (1.8 g). To give a viscous liquid product (2.4 g) at room temperature.
As a result of analyzing the product, it was confirmed that a polymer in which 69 mol% of hydrogen atoms in the polymer obtained in Example 2-2 were substituted with fluorine atoms was formed. The average molecular weight measured by GPC was 900.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 2.6-3.8, 5.0-5.6, 5.7-6. 8.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: C6F6) (Ppm): -80 to -82, -85 to -87, -110 to -126, -145.0 to -150.0, -205.0 to -215.0.
[Example 3]
(Example 3-1) F (CF2)8CH2CH2OCOCH = CH2Synthesis example
F (CF used in Example 1-12)4CH2CH2OH to F (CF2)8CH2CH2The reaction and filtration were carried out in the same manner as in Example 1-1, except that OH (46.4 g) was used. The filtrate was distilled under reduced pressure to obtain a fraction (54 g) of 90 to 95 ° C./0.6 kPa (absolute pressure). GC purity was 99%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Criterion: TMS) δ (ppm): 2.52 (2H), 4.47 (2H), 5.8 (1H), 6.1 (1H), 6.4 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) (Ppm): -81.1 (3F), -113.6 (2F), -121.5 (6F), -122.5 (2F), -123.3 (2F), -125.8. (2F).
(Example 3-2) F (CF2)8CH2CH2OCOCH = CH2Example of polymerization
F (CF in Example 1-22)4CH2CH2OCOCH = CH2Was obtained in Example 3-1 by F (CF2)8CH2CH2OCOCH = CH2(40.0 g), except that the polymerization reaction and post-treatment were carried out in the same manner as in Example 1-2 to obtain a solid product (32.1 g) at room temperature.
1H-NMR,19As a result of F-NMR analysis, the obtained solid was composed of a repeating unit [—CH2-CH (COOCH2CH2(CF2)8F)-]. The average molecular weight measured by GPC was 8,200.
1H-NMR (300.4 MHz, solvent: CDCl3(Standard: TMS) δ (ppm): 1.0 to 2.2 (2H), 2.3 to 2.8 (3H), 4.4 to 4.6 (2H).
19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) (Ppm): -80.3 (3F), -112.7 (2F), -120.8 (6F), -121.7 (2F), -122.4 (2F), -125.2. (2F).
(Example 3-3) Example of fluorination of the polymer obtained in Example 3-2
A fluorination reaction and a post-treatment were carried out in the same manner as in Example 1-3 except that the polymer obtained in Example 1-2 in Example 1-3 was changed to the polymer obtained in Example 3-2 (3.6 g). To give a solid product (3.27 g) at room temperature.
As a result of analyzing the product, it was confirmed that a polymer in which 19.4 mol% of hydrogen atoms in the polymer obtained in Example 3-2 were substituted with fluorine atoms was formed. The average molecular weight measured by GPC was 2,100.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 2.6 to 3.5, 4.0 to 6.0, 6.5 to 7.5. 0.
19F-NMR (282.7 MHz, solvent: R-113, standard: CFCl3, Internal standard: C6F6) (Ppm): -73.0 to -87.0, -105.0 to -136.0, -210.0 to -215.0.
[Example 4]
(Example 4-1) F (CF2)8CH2CH2OCOC (CH3) = CH2Synthesis example
The acrylic acid used in Example 1-1 was changed to methacrylic acid (15.4 g), and F (CF2)4CH2CH2OH to F (CF2)8CH2CH2The reaction and filtration were carried out in the same manner as in Example 1-1 except that OH (46.8 g) was used. The filtrate was distilled under reduced pressure to obtain a fraction (55 g) of 60 to 70 ° C./16 kPa (absolute pressure). GC purity was 93.4%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Standard: TMS) δ (ppm): 1.98 (3H), 2.45 (2H), 4.45 (2H), 5.6 (1H), 6.1 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) (Ppm): -81.0 (3F), -113.4 (2F), -121.5 (6F), -122.6 (2F), -123.3 (2F), -125.8. (2F).
(Example 4-2) F (CF2)8CH2CH2OCOC (CH3) = CH2Example of polymerization
F (CF in Example 1-22)4CH2CH2OCOCH = CH2Was obtained in Example 4-1 by using F (CF2)8CH2CH2OCOC (CH3) = CH2(40.5 g), except that the polymerization reaction and post-treatment were carried out in the same manner as in Example 1-2 to obtain a solid product (31.2 g) at room temperature.
1H-NMR,19As a result of F-NMR analysis, the obtained solid was composed of a repeating unit [—CH2-C (CH3) (COOCH2CH2(CF2)8F)-]. The average molecular weight measured by GPC was 15,000.
1H-NMR (300.4 MHz, solvent: CDCl3, Standard: TMS) δ (ppm): 1.0 to 1.8 (3H), 1.9 to 2.4 (2H), 2.5 to 2.8 (2H), 4.2 to 4.6. (2H).
19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) Δ (ppm): -81.3 (3F), -113.6 (2F), -121.7 (6F), -122.5 (2F), -123.4 (2F), -126.1. (2F).
(Example 4-3) Example of fluorination of the polymer obtained in Example 4-2
In Example 1-3, the fluorination reaction and post-treatment were carried out in the same manner as in Example 1-3 except that the polymer obtained in Example 1-2 was changed to the polymer obtained in Example 4-2 (3.0 g). The product was obtained at room temperature as a solid (3.32 g).
As a result of analyzing the product, it was confirmed that 70.0 mol% of hydrogen atoms in the polymer obtained in Example 4-2 were replaced with fluorine atoms. The average molecular weight measured by GPC was 1200.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 1.4, 2.6 to 3.6, 5.0 to 5.8, 5. 8-7.0.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: C6F6) Δ (ppm): −58.0 to −85.0, −112 to −128.0, −147.0 to −149.0, −209.5 to −211.0.
[Example 5]
(Example 5-1) F (CF2)10CH2CH2OCOCH = CH2Synthesis example
F (CF used in Example 1-12)4CH2CH2OH to F (CF2)10CH2CH2The reaction and filtration were carried out in the same manner as in Example 1-1, except that OH (54.6 g) was used. The filtrate was distilled under reduced pressure to obtain a fraction (52 g) of 95 to 105 ° C./14 kPa (absolute pressure). GC purity was 99 mol%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Criterion: TMS) δ (ppm): 2.52 (2H), 4.47 (2H), 5.8 (1H), 6.1 (1H), 6.4 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) (Ppm): -81.1 (3F), -113.6 (2F), -121.5 (10F), -122.5 (2F), -123.3 (2F), -125.8. (2F).
(Example 5-2) F (CF2)10CH2CH2OCOCH = CH2Of copolymerization of benzene and norbornene
A 30 mL sample bottle sufficiently purged with nitrogen was prepared. Here, norbornene (3.0 g), F (CF obtained in Example 5-1)2)10CH2CH2OCOCH = CH2(19.6 g) and a solution of perbutyl pivalate (0.2 g) as a polymerization initiator dissolved in R-113 (22.5 g) were charged. The temperature was raised to 55 ° C. with vigorous stirring to start the polymerization reaction. After the start of the reaction, the mixture was kept for 18 hours and then cooled to room temperature to recover a crude liquid. The recovered crude liquid was dissolved by adding AK-225 (50 g), and then dropped into hexane (200 g) to recover a solid content. Further, a washing operation was performed twice by dissolving the collected solid content in acetone (50 g) and dropping it in hexane (200 g). Thereafter, the product was dried under reduced pressure (70 ° C., 19 hours) to obtain a solid product (10 g) at room temperature.
1As a result of 1 H-NMR and 19 F-NMR analyses, the obtained solid was composed of a repeating unit derived from 2- (perfluoro (n-decyl)) ethyl acrylate and a repeating unit derived from norbornene in a molar ratio of 0.34: 1. It was confirmed that the polymer was contained in the same ratio. The average molecular weight measured by GPC was 16,000.
1H-NMR (300.4 MHz, solvent: CDCl3(Standard: TMS) δ (ppm): 1.0 to 2.4, 2.4 to 3.0, 4.2 to 4.7.
19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) Δ (ppm): -81.8 (3F), -113.8 (2F), -121.8 (10F), -122.5 (2F), -123.5 (2F), -126.4. (2F).
(Example 5-3) Example of fluorination of the copolymer obtained in Example 5-2
In Example 1-3, a fluorination reaction and post-treatment were carried out in the same manner as in Example 1-3, except that the polymer obtained in Example 1-2 was changed to the polymer obtained in Example 5-2 (2.9 g). This gave a product (3.0 g) solid at room temperature.
As a result of analyzing the product, it was confirmed that a polymer in which 27 mol% of hydrogen atoms in the copolymer obtained in Example 5-2 were substituted with fluorine atoms was formed. The average molecular weight measured by GPC was 4,000.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 2.6 to 4.4, 5.0 to 6.0, 6.5 to 7.5. 0.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: C6F6) Δ (ppm): -81 to -83, -85 to -87, -120 to -127, -209 to -212.
[Example 6]
(Example 6-1) CH2= CHCOO (CH2)2(CF2)8Production example of F (part 2)
A 2000 ml four-necked flask equipped with a stirrer, a thermometer, and a distillation column was prepared. Where F (CF2)8CH2CH2OH (1492 g, purity 95.0%, 2.7 mol), paratoluenesulfonic acid (68.4 g), acrylic acid (330 g), and hydroquinone (2.64 g) were added. The temperature inside the reactor was adjusted to 90 ° C. while sufficiently stirring, and the pressure was slowly reduced (26.6 kPa (absolute pressure)).
One hour after the start of the reaction, water generated by the reaction was distilled off from the top of the distillation column at a rate of 10 ml / hour. Ten hours after the start of the reaction, the reaction was terminated when the reaction conversion reached 99%. Water (700 ml) was added to the reactor, the temperature was raised to 50 ° C., and excess acrylic acid and paratoluenesulfonic acid were removed. CH by distillation2= CHCOOCH2CH2(CF2)8F (1100 g, bp. 87 ° C./1.6×133.322 Pa (absolute pressure)) was obtained.
(Example 6-2) CH2= CHCOO (CH2)2(CF2)8Example of polymerization of F (part 2)
F (CF obtained in Example 6-12)8CH2CH2CH2OCOCH = CH2(18 g), R-225 (42 g), and 2,2'-azobisisobutyronitrile (0.18 g) were placed in a 100 ml glass ampoule. After repeating the degassing operation by freezing with liquid nitrogen three times, polymerization was carried out at 60 ° C. for 15 hours. The unreacted polymerizable monomer was not substantially detected from the GC of the reaction crude liquid after the completion of the reaction, and the repeating unit [-CH2-CH (COO (CH2)2(CF2)8F)-] was confirmed. The weight average molecular weight of the obtained polymer was 48,000.
(Example 6-3) Example of fluorination of polymer obtained in Example 6-2
In Example 1-3, the flow rate of the diluted fluorine gas, 5.27 L / h, was changed to 5.16 L / h, and the polymer solution obtained in Example 1-2 was replaced with the polymer (3.58 g) obtained in Example 6-2. Was converted to a solution of R-113 (179 g) and injected over 3.25 hours to carry out the reaction in the same manner as in Example 1-3 to obtain 3.27 g of a product.
As a result of analyzing the product, it was confirmed that a polymer in which 19.4 mol% of hydrogen atoms in the polymer obtained in Example 6-1 were substituted with fluorine atoms was obtained.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 2.6 to 3.5, 4.0 to 6.0, 6.5 to 7.5. 0.
19F-NMR (282.7 MHz, solvent: R-113, standard: CFCl3, Internal standard: C6F6) (Ppm): -73.0 to -87.0, -105.0 to -136.0, -210.0 to -215.0.
[Example 7]
(Example 7-1) CF3CF2CH2OCOC (CH3) = CH2Synthesis example
F (CF in Example 1-12)4CH2OH to CF3CF2CH2The reaction, washing, and filtration were performed in the same manner except that OH (15.0 g) was used, and acrylic acid was changed to methacrylic acid. The filtrate was distilled under reduced pressure to obtain a fraction (23.5 g) at 55 ° C./12 kPa (absolute pressure). The GC purity of the fraction was 99%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Standard: TMS) δ (ppm): 1.97 (3H), 4.60 (2H), 5.7 (1H), 6.21 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) Δ (ppm): -81.8 (3F), -123.17 (2F).
(Example 7-2) CF3CF2CH2OCOC (CH3) = CH2Example of polymerization
F (CF in Example 1-22) CH2CH2OCOCH3= CH2From the CF obtained in Example 7-13CF2CH2OCOC (CH3) = CH2(12.9 g), the amount of 2,2′-azobisisobutyronitrile was changed to 0.25 g, and the amount of R-225 was changed to 28.6 g. The reaction, washing, and drying were performed to obtain a polymer (10.8 g) solid at room temperature.1H-NMR,19As a result of F-NMR, the polymer was found to have a repeating unit [—CH2-C (CH3) (COOCH2CF2CF3)-]. The average molecular weight measured by GPC was 19,800.
1H-NMR (300.4 MHz, solvent: CDCl3(Standard: TMS) δ (ppm): 0.8 to 1.5, 1.8 to 2.4, 4.2 to 4.6.
19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) Δ (ppm): -83.9 (3F), -125.5 (2F).
(Example 7-3) Example of fluorination of the polymer obtained in Example 7-2
The same reactor as in Example 1-3 was prepared, and nitrogen gas was blown into the autoclave for 1.0 hour, and then diluted fluorine gas was blown at a flow rate of 10.4 L / h for 1 hour.
Next, a solution obtained by dissolving the polymer (7.9 g) obtained in Example 7-2 in R-113 (161.4 g) was injected over 7.5 hours while blowing a 20% diluted fluorine gas at the same flow rate. did. Thereafter, while blowing 20% diluted fluorine gas at the same flow rate, 6 mL of the R-113 solution was injected. Further, after blowing a 20% diluted fluorine gas for 0.5 hour, a nitrogen gas was blown for 1.0 hour.
After completion of the reaction, the crude liquid was recovered, and the solvent was dried under reduced pressure (60 ° C., 6.0 hours) and distilled off to obtain a viscous liquid product (10.3 g) at room temperature.1H-NMR,19As a result of F-NMR, it was confirmed that the product was a fluorinated polymer having a structure in which 78 mol% (average value) of hydrogen atoms in the polymer obtained in Example 7-2 was substituted with fluorine atoms. Was. The average molecular weight measured by GPC was 1,400.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 3.0 to 4.0, 4.0 to 5.0, 5.3 to 6. 7, 6.7-7.3.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: hexafluorobenzene) δ (ppm): -56.5 to -59.0, -81.0 to -82.0, -82.0 to -82.5, -86.0 to -87 0.5, -106.0 to -115.0, -127.0 to -130.5, -147.0 to -148.5, -170.0 to -185.0.
(Example 7-4) Example of ester bond decomposition of the fluorinated polymer obtained in Example 7-3
The fluorinated polymer (8.3 g) obtained in Example 7-3 was sufficiently dried, charged into a flask together with KF powder (0.4 g), heated to 120 ° C. with vigorous stirring, and heated for 4 hours. After cooling, the sample collected from the flask was filtered to recover a liquid product (5.6 g). It was confirmed by NMR that the product was a mixture of two or more compounds whose main product was a compound in which an ester bond was thermally decomposed. Further, it was confirmed by NMR that 69.7% of the ester bonds present in the fluorinated polymer obtained in Example 7-3 were decomposed and converted into -COF groups.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 3.0 to 4.0, 4.0 to 5.0, 5.3 to 6. 7, 6.7-7.3.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: hexafluorobenzene) δ (ppm): 48.5 to 23.0, -56.5 to -59.0, -62.0 to -74.0, -81.0 to -82.0 , -82.0 to -82.5, -86.0 to -87.5, -106.0 to -115.0, -127.0 to -130.5, -147.0 to -148.5. -170.0 to -185.0.
(Example 7-5) Example of esterification of the product obtained in Example 7-4
Methanol (5.8 g) was placed in a flask, and the product obtained in Example 7-4 (5.1 g) was added dropwise over 0.5 hours while stirring vigorously at room temperature. Then, it heated to 60 degreeC and hold | maintained for 4 hours. Subsequently, methanol was distilled off by distillation and further dried under reduced pressure (100 ° C., 24 hours) to recover a liquid product (4.9 g).1H-NMR,19As a result of F-NMR, all of the -COF groups in the product obtained in Example 7-4 were esterified to form -COOCH3It was confirmed that a compound converted to a group was formed.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 3.0 to 3.5, 3.5 to 4.0, 4.0 to 5.0. 0, 5.3-6.7, 6.7-7.3.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: hexafluorobenzene) δ (ppm): -58.5 to -68.0, -70.0 to -80.0, -81.0 to -82.0, -82.0 to -82 0.5, -86.0 to -87.5, -106.0 to -115.0, -127.0 to -130.5, -147.0 to -148.5, -170.0 to -185 0.0.
[Example 8]
(Example 8-1) F (CF2)3OCF (CF3) CF2OCF (CF3) CH2OH synthesis example
A 100 mL flask having a dropping funnel at the top and having the inside replaced with nitrogen in advance was prepared. NaBH in the flask4(19.9 g) and dioxane (250.1 g) were added, and the mixture was vigorously stirred for 1 hour while keeping the system at room temperature. While continuing stirring, F (CF2)3OCF (CF3) CF2OCF (CF3) COF (172 g) was slowly added dropwise while taking care that the internal temperature did not exceed 60 ° C. After completion of the dropwise addition, the mixture was stirred for 1 hour, cooled to room temperature, and a crude liquid was recovered. The recovered crude liquid was slowly dropped into distilled water (300 g), separated into two layers, and the organic phase was recovered. The collected organic phase was washed with a 5% by mass aqueous methanol solution (300 g), separated into two layers, and the operation of collecting the organic phase was repeated five times. The organic phase was dried over magnesium sulfate and then filtered. The filtrate was distilled under reduced pressure to obtain a fraction (141.8 g) of 88.5 ° C./9.3 kPa (absolute pressure). GC purity was 95.9%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3(Standard: TMS) δ (ppm): 4.13 (1H), 4.18 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) Δ (ppm): -78.0 (1F), -79.9 (3F), -81.2 (3F), -81.4 (2F), -81.9 (1F), -82.2. (3F), -129.1 (2F), -135.4 (1F), -144.5 (1F).
(Example 8-2) F (CF2)3OCF (CF3) CF2OCF (CF3) CH2OCOCH = CH2Synthesis example
A 1 L flask having a dropping funnel at the top and having the inside sufficiently purged with nitrogen in advance was prepared. In the flask, the F (CF2)3OCF (CF3) CF2OCF (CF3) CH2OH (88.3 g), methylene chloride (340.8 g), pyridine (13.7 g), and hydroquinone (0.12 g) were added, and the mixture was cooled with water with vigorous stirring. Subsequently, while stirring was continued, acrylic acid chloride (19.1 g) was slowly dropped from the upper dropping funnel. After completion of the dropwise addition, the internal temperature was raised to 40 ° C., and the mixture was stirred for 3 hours. Next, distilled water (150 g) was added dropwise, and the mixture was separated into two layers to collect an organic phase. The collected organic phase was washed with a 10% by mass aqueous sodium bicarbonate solution (200 g), separated into two layers, and then the organic phase was recovered. The organic phase was dried over magnesium sulfate and then filtered. The filtrate was distilled under reduced pressure to obtain a fraction (51.5 g) of 45.5 ° C./0.3 kPa (absolute pressure). GC purity was 99%. The NMR spectrum of the fraction was measured, and it was confirmed that the main component was the title compound.
1H-NMR (300.40 MHz, solvent CDCl3, Standard: TMS) δ (ppm): 4.13 (1H), 4.18 (1H), 6.08 (1H), 6.18 (1H), 6.52 (1H).
19F-NMR (282.65 MHz, solvent CDCl3, Standard: CFCl3) Δ (ppm): -78.0 (1F), -79.9 (3F), -81.2 (3F), -81.4 (2F), -81.9 (1F), -82.2. (3F), -129.1 (2F), -135.4 (1F), -144.5 (1F).
(Example 8-3) F (CF2)3OCF (CF3) CF2OCF (CF3) CH2OCOCH = CH2Example of polymerization
A 50 mL round-bottom flask whose inside was replaced with nitrogen in advance was prepared. Here, F (CF2)3OCF (CF3) CF2OCF (CF3) CH2OCOCH = CH2(36.0 g) and a solution of 2,2'-azobisisobutyronitrile (0.11 g) as a polymerization initiator dissolved in R-225 (25.3 g) were charged. The operation of freezing the solution using liquefied nitrogen, degassing with a vacuum pump and then melting was performed three times. Next, the solution was heated to 60 ° C. using an oil bath while vigorously stirring the solution to initiate a polymerization reaction. After the start of the reaction, the mixture was kept for 15 hours and then cooled to room temperature to recover a crude liquid. The collected crude liquid was dropped into methanol (300 g) to collect a solid content. Further, a washing operation was performed twice by dissolving the collected solid content in R-225 (100 g) and dropping it into hexane (500 g). Thereafter, the product was dried under reduced pressure (100 ° C., 24 hours) to obtain an elastomeric product (20.8 g) at room temperature.
1H-NMR,19As a result of F-NMR, the obtained solid was composed of a repeating unit [—CH2-CH (COOCH2CF (CF3) OCF2CF (CF3) O (CF2)3F)-]. The average molecular weight of the polymer measured by GPC was 21,000.
1H-NMR (300.4 MHz, solvent: CDCl3(Standard: TMS) δ (ppm): 1.3 to 2.1, 2.2 to 2.6, 4.4 to 4.9.
19F-NMR (282.7 MHz, solvent: CDCl3, Standard: CFCl3) Δ (ppm): -78.0 (1F), -79.9 (3F), -81.2 (3F), -81.4 (2F), -81.9 (1F), -82.2. (3F), -129.1 (2F), -135.4 (1F), -144.5 (1F).
(Example 8-4) Example of fluorination of the polymer obtained in Example 8-3
A solution obtained by dissolving the polymer (2.3 g) obtained in Example 1-2 in Example 1-3 in R-113 (114 g) was converted into a solution obtained by dissolving the polymer (5.16 g) obtained in Example 8-3 in R-113. (260 g), and the solution was injected over 3.12 hours to carry out a fluorination reaction in the same manner.
After completion of the reaction, the crude liquid was recovered, and R-113 was distilled off by drying under reduced pressure (80 ° C, 10.0 hours) to obtain a viscous liquid product (5.3 g) at room temperature.
As a result of analyzing the product, it was confirmed that a polymer in which 33 mol% of hydrogen atoms in the polymer obtained in Example 8-3 were substituted with fluorine atoms was formed. The average molecular weight measured by GPC was 8,500.
1H-NMR (300.4 MHz, solvent: R-113, standard: TMS, internal standard: nitrobenzene) δ (ppm): 2.8 to 3.7, 3.8 to 5.0, 5.1 to 6. 6.
19F-NMR (282.7 MHz, solvent: R-113, standard: CDCl3, Internal standard: C6F6) (Ppm): -78.0 to -85.5, -95.0 to -109.0, -129.0 to -131.0, -134.0 to -136.0, -144.0. -150.0, -165.0--205.0.
[Example 9] Evaluation of glass substrate surface coating
(Example 9-1) A solution in which the polymer obtained in Example 6-3 was dissolved in R-225 at 5% by mass was prepared. By dipping a glass substrate (1.5 cm × 7 cm) into the solution, the solution was uniformly attached to the glass surface. Further, the glass substrate was heat-treated at 90 ° C. for 1.5 hours to form a coating on the glass surface. The contact angle (unit: degree) of the obtained glass surface was measured in water and hexadecane (device used: Kyowa Interface Chemistry SA-20 contact angle meter).
As a result, the contact angle in water was 114.2 degrees, and the contact angle in hexadecane was 78.5 degrees. Further, the fall angle of hexadecane (10 μL) was measured using the same apparatus, and it was 7.3 degrees.
Furthermore, although the glass surface was sharply shaved using a spatula, no change in the surface was observed, and it was confirmed that a film having excellent friction durability was formed.
(Example 9-2) Using the product obtained in Example 7-5, a film was formed on the glass surface in the same manner as in Example 9-1. When the critical surface tension of the glass surface was calculated by the Zisman plot, it was 19 mN / m. This value was equal to or greater than the critical surface tension of polytetrafluoroethylene (18 mN / m).
<Industrial applicability>
According to the production method of the present invention, fluoropolymers having various types of structures can be obtained by using partially fluorinated polymers whose various structures are easily available. ADVANTAGE OF THE INVENTION The manufacturing method of this invention can manufacture the fluorine-containing polymer whose fluorine content was adjusted by the economically advantageous method and the technique which can be industrially implemented, without using an auxiliary solvent.
Further, the fluoropolymers having various structures produced by the present invention and polymers derived from the same are useful as functional materials such as coating agents. When used as a coating agent, a hard film having excellent water and oil repellency can be formed on the surface of the substrate.

Claims (14)

下記重合工程、および、該重合工程のあとで行われる下記フッ素化工程を含む含フッ素重合体の製造方法。
重合工程:フッ素原子と炭素原子に結合した水素原子とを有するモノマー(β)を重合させる工程、または、前記モノマー(β)と該モノマー(β)と共重合可能なコモノマー(j)とを共重合させる工程。
フッ素化工程:炭素原子に結合したフッ素原子と炭素原子に結合した水素原子とを有する部分フッ素化重合体を、フッ素化反応の溶媒に溶解させた後に液相フッ素化することによって、該部分フッ素化重合体中の炭素原子に結合した水素原子の1つ以上をフッ素原子に置換する工程。
A method for producing a fluoropolymer, comprising the following polymerization step and the following fluorination step performed after the polymerization step.
Polymerization step: a step of polymerizing a monomer (β) having a fluorine atom and a hydrogen atom bonded to a carbon atom, or a step of copolymerizing the monomer (β) with a comonomer (j) copolymerizable with the monomer (β). The step of polymerizing.
Fluorination step: dissolving a partially fluorinated polymer having a fluorine atom bonded to a carbon atom and a hydrogen atom bonded to a carbon atom in a solvent for a fluorination reaction, followed by liquid-phase fluorination, whereby the partial fluorination is carried out. Substituting at least one hydrogen atom bonded to a carbon atom in a polymerized polymer with a fluorine atom.
部分フッ素化重合体が、重合工程の生成物である請求項1に記載の製造方法。The production method according to claim 1, wherein the partially fluorinated polymer is a product of a polymerization step. 重合工程の重合反応が、付加重合反応である請求項1または2の製造方法。3. The method according to claim 1, wherein the polymerization reaction in the polymerization step is an addition polymerization reaction. モノマー(β)が、下記モノマー合成を経由して生成したモノマーである請求項1、2、または3に記載の製造方法。
モノマー合成工程:炭素原子に結合した水素原子と反応性基(Y)とを有するモノマー(α)に、該反応性基(Y)と反応して連結結合または連結基を形成可能な反応性基(Y)と、炭素原子に結合したフッ素原子とを併有する含フッ素化合物を反応させる工程。
4. The production method according to claim 1, wherein the monomer (β) is a monomer produced through the following monomer synthesis.
Monomer synthesis step: a reaction capable of forming a linked bond or a linking group by reacting a monomer (α) having a hydrogen atom bonded to a carbon atom and a reactive group (Y 2 ) with the reactive group (Y 2 ) A step of reacting a fluorinated compound having both an ionic group (Y 1 ) and a fluorine atom bonded to a carbon atom.
部分フッ素化重合体の平均分子量が1000以上である請求項1〜4のいずれかに記載の製造方法。The method according to any one of claims 1 to 4, wherein the partially fluorinated polymer has an average molecular weight of 1,000 or more. 部分フッ素化重合体のフッ素含有量が30〜70質量%であり、含フッ素重合体のフッ素含有量が35質量%以上であり、かつ、部分フッ素化重合体のフッ素含有量よりも多い量である請求項1〜5のいずれかに記載の製造方法。The fluorine content of the partially fluorinated polymer is 30 to 70% by mass, the fluorine content of the fluorinated polymer is 35% by mass or more, and an amount larger than the fluorine content of the partially fluorinated polymer. The method according to claim 1. 部分フッ素化重合体のフッ素原子の全てを水素原子に置換した重合体が、フッ素化反応の溶媒に溶解しない重合体である請求項1〜6のいずれかに記載の製造方法。The method according to any one of claims 1 to 6, wherein the partially fluorinated polymer in which all of the fluorine atoms are replaced by hydrogen atoms is a polymer that does not dissolve in the solvent for the fluorination reaction. 部分フッ素化重合体の炭素原子に結合した全水素原子の40モル%以上がフッ素原子に置換されるまでフッ素化工程を行う請求項1〜7のいずれかに記載の製造方法。The production method according to any one of claims 1 to 7, wherein the fluorination step is performed until 40 mol% or more of all hydrogen atoms bonded to carbon atoms of the partially fluorinated polymer are substituted with fluorine atoms. 部分フッ素化重合体が、重合体側鎖にエステル結合で連結した1価含フッ素有機基を必須とする重合体であり、含フッ素重合体が部分フッ素化重合体の炭素原子に結合した水素原子の1つ以上がフッ素原子に置換され、かつ、重合体側鎖にエステル結合を必須とする含フッ素重合体である、請求項1〜8のいずれかに記載の製造方法。The partially fluorinated polymer is a polymer having a monovalent fluorinated organic group connected to the side chain of the polymer through an ester bond, and the fluorinated polymer has a hydrogen atom bonded to a carbon atom of the partially fluorinated polymer. The production method according to any one of claims 1 to 8, wherein at least one of the fluorinated polymers is substituted with a fluorine atom, and the fluorinated polymer requires an ester bond in a polymer side chain. モノマー(β)が(メタ)アクリロイルオキシ基と1価含フッ素有機基とを有するモノマーであり、部分フッ素化重合体が該モノマーの繰返し単位を必須とする重合体であり、含フッ素重合体が重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖にエステル結合で連結した1価含フッ素有機基を有する重合体である請求項9に記載の製造方法。The monomer (β) is a monomer having a (meth) acryloyloxy group and a monovalent fluorinated organic group, the partially fluorinated polymer is a polymer having a repeating unit of the monomer as an essential component, and the fluorinated polymer is The production method according to claim 9, wherein the polymer has a fluorine atom bonded to a carbon atom in the polymer main chain and a monovalent fluorine-containing organic group linked to the polymer side chain by an ester bond. 請求項10の製造方法で得た含フッ素重合体において、重合体側鎖のエステル結合を分解させて−COF基に変換することを特徴とする、重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖に−COF基を有する重合体の製造方法。The fluorine-containing polymer obtained by the production method according to claim 10, wherein a fluorine atom bonded to a carbon atom in the polymer main chain, wherein an ester bond in the polymer side chain is decomposed to be converted into a -COF group. A method for producing a polymer having a —COF group in a polymer side chain. 請求項11の方法で得た重合体において、重合体側鎖の−COF基に、フッ素を含まない1価有機基と水酸基とを有するヒドロキシ化合物をエステル結合させることを特徴とする、重合体主鎖に炭素原子に結合したフッ素原子を有し、かつ、重合体側鎖にエステル結合で結合したフッ素を含まない1価有機基を有する重合体の製造方法。A polymer obtained by the method of claim 11, wherein a hydroxy compound having a monovalent organic group containing no fluorine and a hydroxyl group is ester-bonded to a -COF group of the polymer side chain. For producing a polymer having a fluorine atom bonded to a carbon atom and a fluorine-free monovalent organic group bonded to the side chain of the polymer by an ester bond. 一般式−[CX1020−C(R10)COOR]−で表される繰返し単位(ただし、X10およびX20はそれぞれ独立に水素原子またはフッ素原子を示し、R10は水素原子、フッ素原子、またはフッ素化されたメチル基を示し、かつ、X10、X20およびR10から選ばれる1つ以上はフッ素原子を必須とする基である。Rはフッ素を含まない1価有機基を示す。)を含み、フッ素原子の割合が35質量%〜86質量%である重合体と、該重合体を溶解させうる有機溶媒を含む組成物。Formula - [CX 10 X 20 -C ( R 10) COOR H] - repeat units (where represented by, X 10 and X 20 each independently represents a hydrogen atom or a fluorine atom, R 10 is a hydrogen atom, A fluorine atom or a fluorinated methyl group, and at least one selected from X 10 , X 20 and R 10 is a group having a fluorine atom as an essential component, and R H is a monovalent organic compound containing no fluorine. A polymer having a fluorine atom ratio of 35% by mass to 86% by mass, and an organic solvent capable of dissolving the polymer. 組成物がコーティング剤である請求項13に記載の組成物。14. The composition according to claim 13, wherein the composition is a coating.
JP2002577897A 2001-03-30 2002-03-29 Method for producing fluoropolymer and derivative thereof Expired - Fee Related JP4214378B2 (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP2001101138 2001-03-30
JP2001101137 2001-03-30
JP2001101138 2001-03-30
JP2001101137 2001-03-30
JP2001198582 2001-06-29
JP2001198582 2001-06-29
JP2001202346 2001-07-03
JP2001202346 2001-07-03
PCT/JP2002/003213 WO2002079274A1 (en) 2001-03-30 2002-03-29 Process for producing fluoropolymer and derivative thereof, and use of fluoropolymer derivative

Publications (2)

Publication Number Publication Date
JPWO2002079274A1 true JPWO2002079274A1 (en) 2004-07-22
JP4214378B2 JP4214378B2 (en) 2009-01-28

Family

ID=27482167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002577897A Expired - Fee Related JP4214378B2 (en) 2001-03-30 2002-03-29 Method for producing fluoropolymer and derivative thereof

Country Status (2)

Country Link
JP (1) JP4214378B2 (en)
WO (1) WO2002079274A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133306A (en) * 2005-03-10 2008-06-12 Asahi Glass Co Ltd New polymer having fluorospiroketal structure
US9650639B2 (en) 2008-05-19 2017-05-16 Advaxis, Inc. Dual delivery system for heterologous antigens
US9458255B2 (en) 2009-03-31 2016-10-04 Daikin Industries, Ltd. Method for producing stabilized fluoropolymer
US10016617B2 (en) 2009-11-11 2018-07-10 The Trustees Of The University Of Pennsylvania Combination immuno therapy and radiotherapy for the treatment of Her-2-positive cancers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4948844A (en) * 1988-04-16 1990-08-14 Tokuyama Soda Kabushiki Kaisha Process for preparation of perfluorinated copolymer
JP3053996B2 (en) * 1992-09-02 2000-06-19 株式会社トクヤマ Method for producing fluorine-containing copolymer
ATE367371T1 (en) * 1999-03-23 2007-08-15 Asahi Glass Co Ltd METHOD FOR PRODUCING FLUORINE COMPOUNDS USING LIQUID PHASE FLUORATION

Also Published As

Publication number Publication date
WO2002079274A1 (en) 2002-10-10
JP4214378B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
KR100323579B1 (en) Novel process for producing perfluorodioxol and homopolymers and copolymers obtained therefrom
US4982009A (en) Hydroxy containing fluorovinyl compounds and polymers thereof
ITMI20000902A1 (en) FLUOROVINYLETERS AND POLYMERS THAT CAN BE OBTAINED.
EP0513142B1 (en) Hydroxy containing fluorovinyl compounds and polymers thereof
US20050182217A1 (en) Fluorinated diene compound and fluoropolymer, and methods for their production
KR20160048083A (en) Method for producing fluorinated compound
EP0590031B1 (en) Perfluoro cyclic polyethers useful as lubricants and heat transfer fluids
JP5774470B2 (en) Polymerization of hexafluoropropylene oxide
JP2006241302A (en) New perfluoro(2-vinyl-1,3-dioxolane) structure-having compound and fluorine-containing polymer
JP4214378B2 (en) Method for producing fluoropolymer and derivative thereof
ITMI981792A1 (en) HYDRO-FLUOROALKYLVINYLETERS AND PROCEDURE FOR THEIR OBTAINING
JP4961656B2 (en) Process for producing perfluoroacyl fluorides
WO2005037818A1 (en) Novel fluorine-containing dioxolane compound and novel fluorine-containing polymer
JP2003012588A (en) Fluorine-containing compound, method for producing the same, fluorine-containing polymer and water-repelling oil-repelling agent composition
WO2005095471A1 (en) Novel fluorine-containing polymer and method for producing same
JPWO2002088218A1 (en) Method for producing fluorinated polyoxyalkylene compound
JP4081905B2 (en) Method for producing fluorine-containing diene compound
JP2002332309A (en) Process for producing fluorine-containing polymer
JP4453300B2 (en) 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer
EP2039672B1 (en) Fluorine-containing compound having highly fluorinated norbornane structure, fluorine-containing polymer, and their production methods
US5093446A (en) Hydroxy containing fluorovinyl compounds and polymers thereof
JPH06248014A (en) Production of fluorinated polymer
US5196494A (en) Hydroxy containing fluorovinyl compounds and polymers thereof
JP2024074701A (en) Method for producing fluorine-containing aldehyde compound
JP2005225816A (en) Production method for fluorine-containing allyl ether

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060425

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081008

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees