JP4453300B2 - 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer - Google Patents

2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer Download PDF

Info

Publication number
JP4453300B2
JP4453300B2 JP2003296231A JP2003296231A JP4453300B2 JP 4453300 B2 JP4453300 B2 JP 4453300B2 JP 2003296231 A JP2003296231 A JP 2003296231A JP 2003296231 A JP2003296231 A JP 2003296231A JP 4453300 B2 JP4453300 B2 JP 4453300B2
Authority
JP
Japan
Prior art keywords
polymer
fluorine
hexafluoro
dihydrofuran
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003296231A
Other languages
Japanese (ja)
Other versions
JP2004099607A (en
Inventor
郁生 松倉
秀一 岡本
一也 大春
英介 室谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003296231A priority Critical patent/JP4453300B2/en
Publication of JP2004099607A publication Critical patent/JP2004099607A/en
Application granted granted Critical
Publication of JP4453300B2 publication Critical patent/JP4453300B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

本発明は、新規な含フッ素モノマーおよび該含フッ素モノマーから得られる新規な含フッ素重合体に関する。   The present invention relates to a novel fluorine-containing monomer and a novel fluorine-containing polymer obtained from the fluorine-containing monomer.

ポリテトラフルオロエチレン(PTFE)等のフッ素樹脂は、化学的安定性、熱的安定性、電気特性および耐薬品性を有することから、電子部品の材料や保護材として用いられている。しかし、PTFE等の汎用フッ素樹脂は、ポリマー主鎖の結晶性が高いために、透明性が低い欠点があった。   A fluororesin such as polytetrafluoroethylene (PTFE) has been used as a material and a protective material for electronic parts because it has chemical stability, thermal stability, electrical characteristics, and chemical resistance. However, general-purpose fluororesins such as PTFE have a drawback of low transparency due to high crystallinity of the polymer main chain.

一方、主鎖に飽和環構造を有するフッ素樹脂は、非晶質性を示し透明なフッ素樹脂となりうることが知られている。該透明なフッ素樹脂は、透明性のコーティング材料、光学材料等として用いられている。   On the other hand, it is known that a fluororesin having a saturated ring structure in the main chain is amorphous and can be a transparent fluororesin. The transparent fluororesin is used as a transparent coating material, optical material or the like.

環構造を有するフッ素樹脂を製造するためのモノマーとしては、パーフルオロ(3−ブテニルビニルエーテル)やパーフルオロ(2,2−ジメチル−1,3−ジオキソール)等の特殊なモノマーが知られている(特許文献1参照。)。   Special monomers such as perfluoro (3-butenyl vinyl ether) and perfluoro (2,2-dimethyl-1,3-dioxole) are known as monomers for producing a fluororesin having a ring structure. (See Patent Document 1).

米国特許第3865845号明細書(第3頁)U.S. Pat. No. 3,865,845 (page 3)

これらのモノマーの製造工程は長く、収率も極めて低い問題があり、種々の飽和環構造を有し、その環構造の一部に重合性二重結合を有するモノマーの開発が望まれていたが、該モノマーとして提案されるものは、パーフルオロ(2,2−ジメチル−1,3−ジオキソール)類や、パーフルオロ(1,4−ジオキセン)類程度であり、より多くのモノマーの開発が望まれていた。   Although the production process of these monomers is long and the yield is extremely low, development of monomers having various saturated ring structures and a polymerizable double bond in a part of the ring structure has been desired. The monomers proposed are perfluoro (2,2-dimethyl-1,3-dioxole) and perfluoro (1,4-dioxene), and it is hoped that more monomers can be developed. It was rare.

本発明者らは、種々のコモノマーと共重合可能であり、パーフルオロ化され、かつ、環構造を有する重合性モノマーを得る目的で種々検討を行った。その結果、フラン環骨格を有するパーフルオロのモノマーが、該目的を達成し、かつ、該モノマーの重合単位(本発明における「重合単位」とは、重合性モノマーを重合させたときに形成されうる、該重合性モノマーに由来する繰返し単位をいう。)を含む重合体が、有効な物性を有することを見いだした。また、該モノマーの重合単位は高い割合で重合体中に導入でき、得られた重合体は、主鎖に高い割合で飽和環構造が導入できることを見いだした。   The present inventors have made various studies for the purpose of obtaining a polymerizable monomer that can be copolymerized with various comonomers, is perfluorinated, and has a ring structure. As a result, a perfluoro monomer having a furan ring skeleton achieves the object, and a polymerized unit of the monomer (the “polymerized unit” in the present invention can be formed when a polymerizable monomer is polymerized. The polymer containing a repeating unit derived from the polymerizable monomer) has been found to have effective physical properties. Further, it has been found that the polymerized units of the monomer can be introduced into the polymer at a high rate, and the obtained polymer can introduce a saturated ring structure into the main chain at a high rate.

すなわち、本発明は以下の発明を提供する。
(1)2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフラン。
(2)2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランからなる重合性モノマー。
(3)2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランを単独重合する、または2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランと他の重合可能なモノマーの1種以上とを共重合させることを特徴とする、下式(2)で表される重合単位を必須とする含フッ素重合体の製造方法。
That is, the present invention provides the following inventions.
(1) 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran.
(2) A polymerizable monomer comprising 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran.
(3) homopolymerizing 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran, or 2,2,3,3,4,5-hexafluoro-2,3-dihydro A method for producing a fluorine-containing polymer essentially comprising a polymer unit represented by the following formula (2), wherein furan is copolymerized with at least one other polymerizable monomer.

(4)下式(2)で表される重合単位からなり分子量が500〜1000000である含フッ素重合体、または、式(2)で表される重合単位と他の重合可能なモノマーの重合単位の1種以上からなり分子量が500〜1000000である含フッ素重合体であり、他の重合可能なモノマーの重合単位を含む場合には該含フッ素重合体中の該式(2)で表される重合単位の割合が0.01質量%以上であり100質量%未満であることを特徴とする含フッ素重合体。   (4) A fluorinated polymer comprising polymerized units represented by the following formula (2) and having a molecular weight of 500 to 1,000,000, or a polymerized unit of a polymerized unit represented by formula (2) and another polymerizable monomer A fluorine-containing polymer having a molecular weight of 500 to 1,000,000 and having a polymerized unit of another polymerizable monomer, it is represented by the formula (2) in the fluorine-containing polymer. A fluorine-containing polymer, wherein the proportion of polymerized units is 0.01% by mass or more and less than 100% by mass.

Figure 0004453300
Figure 0004453300

本発明により提供される2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランは新規な化合物であり、含フッ素モノマーとして有用な化合物である。また該含フッ素モノマーを重合させた重合体においては、該モノマーに由来する重合単位の割合を任意に変更できる。また該フッ素モノマーからは透明性に優れた低屈折率のフッ素樹脂が提供されうる。また、本発明の含フッ素モノマーを重合させた重合体は、フッ素系溶剤に可溶であるため、低反射加工材料、耐薬品性のコーティング材料、撥水撥油材料、光ファイバーのコアおよびクラッド材料、光導波路材料、電子部品材料、フィルム材料等への適用がより容易になりうる。さらに、本発明の含フッ素モノマーを他の重合性モノマー(特にフッ素原子を含有する他のモノマー。)を重合させる際の第二成分として用いて共重合させることによって、重合体の物性を改良できる。   2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran provided by the present invention is a novel compound and a useful compound as a fluorine-containing monomer. Moreover, in the polymer which polymerized this fluorine-containing monomer, the ratio of the polymerization unit derived from this monomer can be changed arbitrarily. Further, the fluoromonomer can provide a low refractive index fluororesin excellent in transparency. In addition, since the polymer obtained by polymerizing the fluorine-containing monomer of the present invention is soluble in a fluorine-based solvent, a low reflection processing material, a chemical-resistant coating material, a water- and oil-repellent material, an optical fiber core and a cladding material Application to optical waveguide materials, electronic component materials, film materials, etc. can be made easier. Furthermore, the physical properties of the polymer can be improved by copolymerizing the fluorine-containing monomer of the present invention by using it as a second component in the polymerization of other polymerizable monomers (especially other monomers containing fluorine atoms). .

本発明の2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランとは、下式(1)で表される化合物である。   The 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran of the present invention is a compound represented by the following formula (1).

Figure 0004453300
Figure 0004453300

式(1)で表される2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランは、工業的に安価に入手可能なテトラヒドロフルフリルアルコールを原料として、本出願人による方法(WO00/56694号、WO02/4397号等参照)にしたがって合成できる。   2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran represented by the formula (1) is obtained by using tetrahydrofurfuryl alcohol, which is industrially available at a low cost, as a raw material. (See WO00 / 56694, WO02 / 4397, etc.).

すなわち、テトラヒドロフルフリルアルコールに、含フッ素基と−COX(Xはフッ素原子または塩素原子を示す。)基を有する化合物を反応させて、部分フッ素化エステルを形成させ、該部分フッ素化エステル中のC−H構造を、液相フッ素化等のフッ素化反応によりフッ素化してC−Fに置換し、つぎに、該エステルを熱分解する、または該エステルのエステル結合を分解した後に熱分解する、ことにより製造できる。該製造方法の典型的な例は、以下の一般式で示すことができる。ただし、式中のXは、前記と同様にフッ素原子または塩素原子を示し、Qはn価含フッ素有機基を示し、Qはパーフルオロ化されたn価有機基を示し、nはQまたはQに結合した基の数を意味しており1以上の整数である。 That is, tetrahydrofurfuryl alcohol is reacted with a fluorine-containing group and a compound having a —COX (X represents a fluorine atom or a chlorine atom) group to form a partially fluorinated ester, and in the partially fluorinated ester, The C—H structure is fluorinated by fluorination reaction such as liquid phase fluorination and substituted with C—F, and then the ester is thermally decomposed, or the ester bond of the ester is decomposed and then thermally decomposed. Can be manufactured. A typical example of the production method can be represented by the following general formula. However, X in the formula represents a fluorine atom or a chlorine atom as described above, Q represents an n-valent fluorinated organic group, Q f represents a perfluorinated n-valent organic group, and n represents Q or It means the number of groups bonded to Q f and is an integer of 1 or more.

Figure 0004453300
Figure 0004453300

すなわち、化合物(A−1)と2−テトラヒドロフルフリルアルコールを反応させて化合物(A−2)を得て、該化合物(A−2)をパーフルオロ化して化合物(A−3)を得て、つぎに該化合物(A−3)を熱分解して式(1)で表される化合物を得る、または、該化合物(A−3)のエステル結合を分解して化合物(A−4)を得た後に、該化合物(A−4)を熱分解して式(1)で表される化合物を得る、方法が例示できる。上記反応の各反応ステップの条件や、反応時の操作方法等は、WO00/56694号やWO02/4397号等に記載される条件や方法にしたがって実施できる。なお、QはQと同一の基であることが好ましく、Xはフッ素原子であることが好ましく、nは1〜4の整数であることが好ましい。 That is, a compound (A-1) and 2-tetrahydrofurfuryl alcohol are reacted to obtain a compound (A-2), and the compound (A-2) is perfluorinated to obtain a compound (A-3). Next, the compound (A-3) is thermally decomposed to obtain the compound represented by the formula (1), or the ester bond of the compound (A-3) is decomposed to obtain the compound (A-4). Examples thereof include a method of obtaining the compound represented by the formula (1) by thermally decomposing the compound (A-4) after it is obtained. The conditions of each reaction step of the above reaction and the operation method during the reaction can be carried out according to the conditions and methods described in WO00 / 56694, WO02 / 4397 and the like. Incidentally, Q is preferably the same group as Q f, X is preferably a fluorine atom, n represents is preferably an integer of 1 to 4.

また本発明は、2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランを単独重合する、または2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランと他の重合可能なモノマーの1種以上とを共重合させる含フッ素重合体の製造方法、および該製造方法によって製造されうる含フッ素共重合体を提供する。本発明の含フッ素重合体の分子量は500〜1000000が好ましく、500〜200000が特に好ましく、500〜100000がとりわけ好ましく、500〜10000がさらに好ましい。   In addition, the present invention homopolymerizes 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran, or 2,2,3,3,4,5-hexafluoro-2,3. -Provided is a method for producing a fluorine-containing polymer in which dihydrofuran and one or more other polymerizable monomers are copolymerized, and a fluorine-containing copolymer that can be produced by the production method. The molecular weight of the fluoropolymer of the present invention is preferably from 500 to 1,000,000, particularly preferably from 500 to 200,000, particularly preferably from 500 to 100,000, and further preferably from 500 to 10,000.

本発明の含フッ素共重合体は、主鎖に飽和環構造を有する重合体であり、透明なフッ素樹脂になりうる重合体である。2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランの重合単位を必須とする本発明の含フッ素共重合体は、公知のパーフルオロ(3−ブテニルビニルエーテル)(以下、BVEとも記載する。)を環化重合させた重合体と共通の飽和環構造を主鎖に有する重合体である。BVEを単独環化重合させた重合体の構造と、2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランとテトラフルオロエチレンが完全交互共重合した重合体の構造とを比較すると、両者は、末端基の構造等において区別されうる重合体である。また、BVEの共重合体においては、共重合体中の環構造の割合を変化させることは非常に困難であり、ある程度以上の環構造を有する共重合体を得ることはできないのに対して、本発明の2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランを用いた重合反応によれば、該環構造の割合を任意に選択でき、かつ、後述する他の重合可能なモノマーの種類および共重合割合もまた任意に変更できる。   The fluorine-containing copolymer of the present invention is a polymer having a saturated ring structure in the main chain and can be a transparent fluororesin. The fluorine-containing copolymer of the present invention having a polymerization unit of 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran as essential is a known perfluoro (3-butenyl vinyl ether) ( Hereinafter, it is also referred to as BVE.) And a polymer having a saturated ring structure in the main chain in common with the polymer obtained by cyclopolymerization. The structure of a polymer obtained by homocyclopolymerization of BVE and the structure of a polymer obtained by completely alternating copolymerization of 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and tetrafluoroethylene Are both polymers that can be distinguished in terms of the structure of the end groups. Further, in the BVE copolymer, it is very difficult to change the proportion of the ring structure in the copolymer, and a copolymer having a ring structure of a certain degree or more cannot be obtained. According to the polymerization reaction using 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran of the present invention, the ratio of the ring structure can be arbitrarily selected, The kind of the polymerizable monomer and the copolymerization ratio can also be arbitrarily changed.

他の重合可能なモノマーとしては、含フッ素のモノマーだけではなく、非フッ素系のモノマーも例示でき、ラジカル重合性を有する種々のモノマーが採用できる。たとえば、含フッ素モノマー、炭化水素系モノマー、その他のモノマーが挙げられ、エチレン、プロピレン等のオレフィン類;テトラフルオロエチレン、フッ化ビニリデン等のフルオロオレフィン類;パーフルオロ(アルキルビニルエーテル)等の含フッ素ビニルエーテル類;CF=CFO(CFCOOCH、CF=CFOCFCF(CF)OCFCFSOF等の反応性基を含有する含フッ素ビニルエーテル類;BVE、パーフルオロ(アリルビニルエーテル)等の環化重合しうる含フッ素モノマー;パーフルオロ(2,2−ジメチル−1,3−ジオキソール)等の含フッ素飽和環構造を有するモノマー等が挙げられ、オレフィン類、フルオロオレフィン類、環化重合しうる含フッ素モノマーが好ましい。 Examples of other polymerizable monomers include not only fluorine-containing monomers but also non-fluorinated monomers, and various monomers having radical polymerizability can be employed. Examples include fluorine-containing monomers, hydrocarbon monomers, and other monomers; olefins such as ethylene and propylene; fluoroolefins such as tetrafluoroethylene and vinylidene fluoride; fluorine-containing vinyl ethers such as perfluoro (alkyl vinyl ether) s; CF 2 = CFO (CF 2 ) 3 COOCH 3, CF 2 = CFOCF 2 CF (CF 3) fluorine-containing vinyl ethers containing OCF 2 CF 2 SO 2 F reactive group such as; BVE, perfluoro (allyl Fluorinated monomers capable of cyclopolymerization such as vinyl ether); monomers having a fluorinated saturated ring structure such as perfluoro (2,2-dimethyl-1,3-dioxole), and the like, and olefins, fluoroolefins, Fluorine-containing monomers capable of cyclopolymerization are preferred .

また、反応性基を含有する含フッ素ビニルエーテル類を共重合させた場合の本発明の含フッ素共重合体においては、該反応性基を他の基に誘導体化してもよい。また、本発明の含フッ素共重合体を、反応性基と反応しうる他の化合物(例えば架橋剤等。)と併用してもよい。   Further, in the fluorine-containing copolymer of the present invention in the case where fluorine-containing vinyl ethers containing a reactive group are copolymerized, the reactive group may be derivatized with another group. Moreover, you may use together the fluorine-containing copolymer of this invention with the other compound (for example, crosslinking agent etc.) which can react with a reactive group.

他の重合可能なモノマーは、1種であっても2種以上であってもよい。該他の重合可能なモノマーを第二成分モノマーとして共重合させることによって、優れた特性を持つフッ素樹脂を提供できる。特に本発明の含フッ素共重合体が、2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランとテトラフルロオエチレンとの共重合体である場合においては、テトラフルオロエチレンの共重合割合を変化させることによって、任意のガラス転移温度(T)を有する共重合体を製造しうる。たとえば、テトラフルロオエチレンの割合を少なくすることによって、高Tの共重合体を製造しうる。 The other polymerizable monomer may be one type or two or more types. By copolymerizing the other polymerizable monomer as the second component monomer, a fluororesin having excellent characteristics can be provided. In particular, when the fluorine-containing copolymer of the present invention is a copolymer of 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and tetrafluoroethylene, tetrafluoro By changing the copolymerization ratio of ethylene, a copolymer having an arbitrary glass transition temperature (T g ) can be produced. For example, by reducing the proportion of tetrafurfuryl Roo ethylene, it can produce a copolymer of high T g.

本発明の含フッ素重合体が、2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランと他の重合可能なモノマーの1種以上との共重合体である場合、2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランの重合単位(以下、重合単位Aとも記す。)の割合は、全重合単位に対して0.01質量%以上であり100質量%未満であるのが好ましい。また、共重合体中の各重合単位の並び方は、ブロック状、ランダム状、またはグラフト状であるのが好ましく、特にランダム状であるのが好ましい。   When the fluoropolymer of the present invention is a copolymer of 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and one or more other polymerizable monomers, The proportion of 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran polymerized units (hereinafter also referred to as polymerized units A) is 0.01% by mass or more based on the total polymerized units. And less than 100% by weight. The arrangement of the polymer units in the copolymer is preferably block, random, or graft, and particularly preferably random.

本発明の含フッ素重合体が共重合体であって、重合単位Aの割合が0.01〜1.0モル%程度と少ない場合の共重合体は、その他の重合可能なモノマーのみを重合させた重合体と比較して、物性の顕著な改善効果が期待できる。たとえば、テトラフルオロエチレンとの共重合体とする場合には、ポリテトラフルオロエチレン(PTFE)と比較して、溶融成形性が顕著に改良されうる。   In the case where the fluoropolymer of the present invention is a copolymer and the ratio of the polymerization unit A is as small as about 0.01 to 1.0 mol%, the copolymer is obtained by polymerizing only other polymerizable monomers. Compared with a polymer, a remarkable improvement effect of physical properties can be expected. For example, when a copolymer with tetrafluoroethylene is used, the melt moldability can be remarkably improved as compared with polytetrafluoroethylene (PTFE).

一方、重合単位Aの割合が30〜100質量%程度と多い場合の重合体は、重合体が透明になる傾向、高T化の傾向、および、溶剤への溶解度が高まる傾向が認められる。これは、本発明の含フッ素重合体が、主鎖に飽和環構造を高い割合で含むと、主鎖の結晶性がくずれ、アモルファスな特性を持つことによって、透明性と溶剤への良好な溶解性を達成できるものと考えられる。また、BVE等と共重合をさせた共重合体においては、高T化が達成できると考えられる。 On the other hand, the polymer in the case the proportion of the polymerized units A frequently as about 30 to 100% by mass, tends to polymer becomes transparent, trend of high T g of, and, is observed a tendency that solubility in solvent is enhanced. This is because, when the fluoropolymer of the present invention contains a saturated ring structure in a high proportion in the main chain, the crystallinity of the main chain is broken, and it has amorphous characteristics, so that transparency and good dissolution in a solvent are achieved. It is thought that it can achieve sex. In the copolymer obtained by the BVE such copolymerizable believed high T g can be attained.

本発明の含フッ素重合体の製造方法は、特に限定されず、ラジカル重合反応により製造されるのが好ましい。ラジカル重合反応は、ラジカル重合開始剤の作用のもとに実施するのが好ましく、該ラジカル重合開始剤としては、一般的なラジカル重合用の重合開始剤を用いることができ、アゾ化合物、有機パーオキシド、無機パーオキシド等が好適な例として挙げられる。   The manufacturing method of the fluoropolymer of this invention is not specifically limited, It is preferable to manufacture by radical polymerization reaction. The radical polymerization reaction is preferably carried out under the action of a radical polymerization initiator. As the radical polymerization initiator, a general polymerization initiator for radical polymerization can be used, and an azo compound, an organic peroxide can be used. Inorganic peroxides are preferred examples.

該ラジカル重合開始剤の具体例としては、2,2’−アゾビス(2−アミノプロパン)二塩酸塩、4,4’−アゾビス(4−シアノペンタン酸)、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル)、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)等のアゾ化合物;メチルエチルケトンパーオキシド、ベンゾイルパーオキシド、((CHCHOCOO)、パーフルオロベンゾイルパーオキシド、パーフルオロブチリルパーオキシド、パーフルオロノナノイルパーオキシド、C(CF−O−O−C(CF等の有機パーオキシド;K、(NH等の無機パーオキシド、が挙げられる。 Specific examples of the radical polymerization initiator include 2,2′-azobis (2-aminopropane) dihydrochloride, 4,4′-azobis (4-cyanopentanoic acid), 2,2′-azobis (4- Azo compounds such as methoxy-2,4-dimethylvaleronitrile), 1,1′-azobis (1-cyclohexanecarbonitrile); methyl ethyl ketone peroxide, benzoyl peroxide, ((CH 3 ) 2 CHOCOO) 2 , perfluorobenzoyl Peroxide, perfluorobutyryl peroxide, perfluorononanoyl peroxide, organic peroxide such as C (CF 3 ) 3 —O—C (CF 3 ) 3 ; K 2 S 2 O 8 , (NH 4 ) 2 And inorganic peroxides such as S 2 O 8 .

重合の方法としては、モノマーをそのまま重合させるバルク重合、モノマーを溶解する溶媒中で行う溶液重合、水性媒体中で適当な有機溶剤の存在下または非存在下に行う懸濁重合、水性媒体中で乳化剤の存在下に行う乳化重合等が例示できる。   Polymerization methods include bulk polymerization in which monomers are polymerized as they are, solution polymerization in a solvent in which the monomers are dissolved, suspension polymerization in the presence or absence of a suitable organic solvent in an aqueous medium, and in an aqueous medium. Examples thereof include emulsion polymerization carried out in the presence of an emulsifier.

重合に用いうる溶媒としては、水;アセトン等のケトン類;酢酸エチル等のエステル類;テトラヒドロフラン等のエーテル類;ベンゼンやトルエン等の芳香族炭化水素類;トリクロロトリフルオロエタン、ジクロロペンタフルオロプロパン、パーフルオロ含塩素アルカン[F(CFClCFCl、ここでnは1〜7の整数。]等のクロロフルオロ炭化水素類;パーフルオロベンゼン、パーフルオロ(2−ブチルテトラヒドロフラン)、パーフルオロトリアルキルアミン[N(C2n+1、ここでnは2〜4の整数。]、パーフルオロアルカン[C2n+2、ここでnは6〜8の整数。]等のフッ素系溶媒;ノナフルオロブチルメチルエーテル、1,1,1,2,2,3,4,5,5,5−デカフルオロペンタン、トリデカフルオロヘキサン等の水素化フッ素化炭素水素類や水素化フッ素化エーテル類;等の溶媒が挙げられる。重合時に溶媒を用いる場合には、溶媒は1種であっても2種類以上であってもよい。 Solvents that can be used for polymerization include water; ketones such as acetone; esters such as ethyl acetate; ethers such as tetrahydrofuran; aromatic hydrocarbons such as benzene and toluene; trichlorotrifluoroethane, dichloropentafluoropropane, Perfluorochlorinated alkane [F (CFClCF 2 ) n Cl, where n is an integer of 1-7. Chlorofluorohydrocarbons such as]; perfluorobenzene, perfluoro (2-butyl tetrahydrofuran), perfluoro trialkyl amines [N (C n F 2n + 1) 3, where n is an integer of 2 to 4. ], Perfluoroalkane [C n F 2n + 2, wherein n is 6-8 integer. ] Fluorinated solvents such as nonafluorobutyl methyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoropentane, tridecafluorohexane, etc. And solvents such as hydrogenated fluorinated ethers. When using a solvent at the time of superposition | polymerization, the solvent may be 1 type or may be 2 or more types.

重合時の反応条件も(温度、圧力等)も特に限定されない。反応条件は、重合に用いるモノマーの沸点、加熱源、重合熱の除去方法等を考慮して適宜変更しうる。通常の場合、重合温度は0℃〜200℃が好ましく、10〜150℃が特に好ましく、30〜120℃がとりわけ好ましく、30〜100℃がさらに好ましい。また重合圧力は減圧下でも加圧下でもよく、通常は、常圧〜2MPa(ゲージ圧)が好ましく、常圧〜1MPa(ゲージ圧)が特に好ましく、常圧〜0.5MPaがとりわけ好ましい。   There are no particular limitations on the reaction conditions (temperature, pressure, etc.) during the polymerization. The reaction conditions can be appropriately changed in consideration of the boiling point of the monomer used for the polymerization, the heating source, the method for removing the polymerization heat, and the like. In the usual case, the polymerization temperature is preferably from 0C to 200C, particularly preferably from 10C to 150C, particularly preferably from 30C to 120C, and further preferably from 30C to 100C. The polymerization pressure may be reduced or increased. Usually, normal pressure to 2 MPa (gauge pressure) is preferable, normal pressure to 1 MPa (gauge pressure) is particularly preferable, and normal pressure to 0.5 MPa is particularly preferable.

本発明により提供される含フッ素重合体は、環化重合により得られた重合体と比較した場合に、高い溶媒溶解性を示しうる。該溶媒としては、含フッ素重合体の構造や、分子量等により適宜変更されるが、含フッ素有機溶媒が好ましく、特に、ヘキサフルオロベンゼン、パーフルオロ(2−ブチルテトラヒドロフラン)、パーフルオロトリブチルアミン、パーフルオロデカリン、パーフルオロ(メチルデカリン)、パーフルオロシクロヘキサン、パーフルオロヘキサン、パーフルオロオクタン等のパーフルオロ炭化水素類、およびC13H、C17等のペルフルオロ炭化水素類、1,3−トリフルオロメチルベンゼン等のフルオロ芳香族類等が好ましい。 The fluorine-containing polymer provided by the present invention can exhibit high solvent solubility when compared with a polymer obtained by cyclopolymerization. The solvent is appropriately changed depending on the structure and molecular weight of the fluorine-containing polymer, but a fluorine-containing organic solvent is preferable, and in particular, hexafluorobenzene, perfluoro (2-butyltetrahydrofuran), perfluorotributylamine, Perfluorohydrocarbons such as fluorodecalin, perfluoro (methyldecalin), perfluorocyclohexane, perfluorohexane, perfluorooctane, and perfluorohydrocarbons such as C 6 F 13 H and C 8 F 17 C 2 H 5 , Fluoroaromatics such as 1,3-trifluoromethylbenzene are preferred.

以下、実施例によって本発明を具体的に説明するが、本発明はこれらに限定されない。なお、Mは重量平均分子量、Mは数平均分子量を示す。また、実施例においてゲルパーミエーションクロマトグラフ法をGPC法と記す。GPC法の測定手法は、特開2000−74892に記載する方法に従った。具体的には、移動相としてCFClCFCFHClと(CFCHOHとの混合液(体積比99:1)を移動相として用い、ポリマーラボラトリーズ社製のPLgel 5μm MIXED−C(内径7.5mm、長さ30cm)を2本直列に連結して分析カラムとした。分子量測定用標準試料として、分子量分布(M/M)が1.17未満である分子量が1000〜2000000のポリメチルメタクリレート10種(ポリマーラボラトリーズ社製)を用いて検量線を作成した。移動相流速を1.0ml/min、カラム温度を37℃、検出器として、蒸発光散乱検出器を用い、ポリメチルメタクリレート換算分子量として分子量を求めた。 EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to these. In addition, Mw shows a weight average molecular weight and Mn shows a number average molecular weight. In the examples, the gel permeation chromatographic method is referred to as GPC method. The measurement method of the GPC method was according to the method described in JP-A-2000-74892. Specifically, a mixed solution of CF 2 ClCF 2 CFHCl and (CF 3 ) 2 CHOH (volume ratio 99: 1) was used as a mobile phase as a mobile phase, and PLgel 5 μm MIXED-C (inner diameter 7) manufactured by Polymer Laboratories. 0.5 mm, 30 cm in length) were connected in series to form an analytical column. As a standard sample for molecular weight measurement, a calibration curve was prepared using 10 kinds of polymethyl methacrylate (manufactured by Polymer Laboratories) having a molecular weight distribution (M w / M n ) of less than 1.17 and a molecular weight of 1,000 to 2,000,000. The mobile phase flow rate was 1.0 ml / min, the column temperature was 37 ° C., the detector was an evaporative light scattering detector, and the molecular weight was determined as the polymethylmethacrylate equivalent molecular weight.

[実施例1]
(例1−1)エステル化反応
[Example 1]
(Example 1-1) Esterification reaction

Figure 0004453300
Figure 0004453300

2−テトラヒドロフルフリルアルコール(20g)と(CHCHN(21.8g)をフラスコに入れ、氷浴下に撹拌した。フラスコの内温を10℃以下に保ちながら、FCOCF(CF)OCFCFCF(71.5g)を1時間かけて滴下した。滴下終了後、さらに25℃で2時間撹拌した。つぎに、フラスコの内温を15℃以下に保ちながら、水(50mL)を加えて、2層に分離した反応液を得た。 2-Tetrahydrofurfuryl alcohol (20 g) and (CH 3 CH 2 ) 3 N (21.8 g) were placed in a flask and stirred in an ice bath. FCOCF (CF 3 ) OCF 2 CF 2 CF 3 (71.5 g) was added dropwise over 1 hour while maintaining the internal temperature of the flask at 10 ° C. or lower. After completion of dropping, the mixture was further stirred at 25 ° C. for 2 hours. Next, water (50 mL) was added while maintaining the internal temperature of the flask at 15 ° C. or lower to obtain a reaction solution separated into two layers.

該反応液を分液し、下層を水(50mL)で2回洗浄し、硫酸マグネシウムで乾燥した後、ろ過し、粗液を得た。減圧蒸留で目的のエステル化合物(66.3g)を88〜89℃/2.7kPa(絶対圧)の留分として得た。GC純度は98%であった。NMR分析により化合物(A−20)の生成を確認した。   The reaction solution was separated, and the lower layer was washed twice with water (50 mL), dried over magnesium sulfate, and then filtered to obtain a crude liquid. The target ester compound (66.3 g) was obtained by distillation under reduced pressure as a fraction of 88 to 89 ° C./2.7 kPa (absolute pressure). The GC purity was 98%. The formation of compound (A-20) was confirmed by NMR analysis.

1H−NMR(300.4MHz,CDCl,TMS)δ(ppm):1.60〜1.73(m,1H),1.86〜2.10(m,3H),3.76〜3.91(m,2H),4.14〜4.22(m,1H),4.28〜4.47(m,2H)。
19F−NMR(282.7MHz,CDCl,CFCl)δ(ppm):−79.9(1F),−81.3(3F),−82.1(3F),−86.4(1F),−129.5(2F),−131.5(1F)。
1 H-NMR (300.4 MHz, CDCl 3 , TMS) δ (ppm): 1.60 to 1.73 (m, 1H), 1.86 to 2.10 (m, 3H), 3.76 to 3 .91 (m, 2H), 4.14 to 4.22 (m, 1H), 4.28 to 4.47 (m, 2H).
19 F-NMR (282.7 MHz, CDCl 3 , CFCl 3 ) δ (ppm): −79.9 (1F), −81.3 (3F), −82.1 (3F), −86.4 (1F) ), -129.5 (2F), -131.5 (1F).

(例1−2)フッ素化反応   (Example 1-2) Fluorination reaction

Figure 0004453300
Figure 0004453300

500mLのニッケル製オートクレーブに、1,1,2−トリクロロ−1,2,2−トリフルオロエタン(以下、R−113と略記する。)(313g)を加えて撹拌し、25℃に保った。オートクレーブガス出口には、20℃に保持した冷却器、NaFペレット充填層、および−10℃に保持した冷却器を直列に設置した。なお、−10℃に保持した冷却器からは凝集した液をオートクレーブに戻すための液体返送ラインを設置した。窒素ガスを1.0時間吹き込んだ後、窒素ガスで20%に希釈したフッ素ガスを、流速8.08L/hで1時間吹き込んだ。つぎに、フッ素ガスを同じ流速で吹き込みながら、エステル化で得た化合物(A−20)(5.01g)をR−113(100g)に溶解した溶液を4.7時間かけて注入した。   1,1,2-Trichloro-1,2,2-trifluoroethane (hereinafter abbreviated as R-113) (313 g) was added to a 500 mL nickel autoclave, and the mixture was stirred and kept at 25 ° C. At the autoclave gas outlet, a cooler maintained at 20 ° C., a packed bed of NaF pellets, and a cooler maintained at −10 ° C. were installed in series. In addition, the liquid return line for returning the condensed liquid to the autoclave was installed from the cooler kept at -10 ° C. After blowing nitrogen gas for 1.0 hour, fluorine gas diluted to 20% with nitrogen gas was blown for 1 hour at a flow rate of 8.08 L / h. Next, while blowing fluorine gas at the same flow rate, a solution obtained by dissolving the compound (A-20) (5.01 g) obtained by esterification in R-113 (100 g) was injected over 4.7 hours.

さらに、フッ素ガスを同じ流速で吹き込みながら、ベンゼン濃度が0.01g/mLのR−113溶液を25℃から40℃にまで昇温しながら9mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになってから、オートクレーブのフッ素ガス入り口バルブを閉めて、0.4時間撹拌を続けた。つぎに圧力を常圧にし、反応器内温度を40℃に保ちながら、上記のベンゼン溶液を6mL注入し、オートクレーブのベンゼン注入口を閉め、さらにオートクレーブの出口バルブを閉め、圧力が0.20MPaになってから、オートクレーブのフッ素ガス入り口バルブを閉めて、0.4時間撹拌を続けた。さらに、同様の操作を3回くり返した。ベンゼンの注入総量は0.33g、R−113の注入総量は33mLであった。さらに、窒素ガスを1.0時間吹き込んだ。目的物を19F−NMRで定量した結果、化合物(A−30)の生成が確認され、その収率は64%であった。 Furthermore, while blowing fluorine gas at the same flow rate, 9 mL of R-113 solution having a benzene concentration of 0.01 g / mL was injected while raising the temperature from 25 ° C. to 40 ° C., and the benzene inlet of the autoclave was closed, and further the autoclave After the outlet valve was closed and the pressure reached 0.20 MPa, the fluorine gas inlet valve of the autoclave was closed, and stirring was continued for 0.4 hours. Next, while maintaining the pressure in the reactor at 40 ° C., 6 mL of the above benzene solution was injected, the benzene inlet of the autoclave was closed, the outlet valve of the autoclave was closed, and the pressure was adjusted to 0.20 MPa. Then, the fluorine gas inlet valve of the autoclave was closed and stirring was continued for 0.4 hours. Further, the same operation was repeated three times. The total amount of benzene injected was 0.33 g, and the total amount of R-113 injected was 33 mL. Further, nitrogen gas was blown for 1.0 hour. As a result of quantifying the target product by 19 F-NMR, it was confirmed that Compound (A-30) was produced, and the yield was 64%.

19F−NMR(376.0MHz、CDCl、CFCl)δ(ppm):−80.3(1F),−81.9(3F),−82.1(3F),−83.5〜−84.8(2F),−85.5〜−88.0(3F),−126.5(1F),−127.4(1F),−128.1(1F),−130.2(2F),−130.4(1F),−132.2(1F),−135.8(1F)。 19 F-NMR (376.0 MHz, CDCl 3 , CFCl 3 ) δ (ppm): −80.3 (1F), −81.9 (3F), −82.1 (3F), −83.5 to − 84.8 (2F), -85.5 to -88.0 (3F), -126.5 (1F), -127.4 (1F), -128.1 (1F), -130.2 (2F) ), -130.4 (1F), -132.2 (1F), -135.8 (1F).

(例1−3)パーフルオロエステル熱分解反応   (Example 1-3) Thermal decomposition reaction of perfluoroester

Figure 0004453300
Figure 0004453300

フッ素化で得た化合物(A−30)(2.1g)をNaF粉末(0.02g)と共にフラスコに仕込み、激しく撹拌を行いながら140℃のオイルバス中で10時間加熱した。フラスコ上部には−10℃に温度調節した還流器を設置した。冷却後、液状サンプル(2.0g)を回収し、これを精密蒸留して化合物(A−40)(0.8g)を回収した。化合物(A−40)の構造は19F−NMRにより確認した。 Compound (A-30) (2.1 g) obtained by fluorination was charged into a flask together with NaF powder (0.02 g), and heated in an oil bath at 140 ° C. for 10 hours with vigorous stirring. A reflux condenser whose temperature was adjusted to −10 ° C. was installed at the top of the flask. After cooling, a liquid sample (2.0 g) was recovered, and this was precision distilled to recover compound (A-40) (0.8 g). The structure of the compound (A-40) was confirmed by 19 F-NMR.

19F−NMR(376.0MHz、CDCl、CFCl)δ(ppm):26.6〜26.3(1F),−82.6〜−83.9(2F),−117.9〜−118.3(1F),−125.7〜−127.0(2F),−128.9〜−129.9(1F),−134.4〜−135.3(1F)。 19 F-NMR (376.0 MHz, CDCl 3 , CFCl 3 ) δ (ppm): 26.6 to 26.3 (1F), −82.6 to −83.9 (2F), −117.9 to − 118.3 (1F), -125.7 to -127.0 (2F), -128.9 to -129.9 (1F), -134.4 to -135.3 (1F).

(例1−4)2,3,4,4,5,5−ヘキサフルオロ−2,3−ジヒドロフラン合成反応   (Example 1-4) 2,3,4,4,5,5-hexafluoro-2,3-dihydrofuran synthesis reaction

Figure 0004453300
Figure 0004453300

内径5.2cmの管状反応管中にソーダガラスビーズ(800ml、商標:岳南#150)を充填し、390℃に加熱した。反応器下部より窒素ガスを2.7mol/hの流量で流すことにより、流動床状態とし、化合物(A−40)を91g/h(0.37mol/h)で窒素ガスに同伴させて流すことにより反応を行った。反応器出口からの反応粗ガスをドライアイス冷却トラップと、その後に接続した液体窒素冷却トラップに反応粗ガスを回収した。原料662g(2.7mol)を反応した後に窒素ガスのみ1時間供給し反応器中に残存する反応成分ガスをすべて捕集した。窒素ガストラップは反応終了後ドライアイス冷却温度まで徐々に昇温し、この温度で気化する成分をすべてパージした後に捕集ガスとして回収した。ドライアイス冷却トラップと液体窒素冷却トラップに回収された粗生成物を合わせて450gの粗液が回収できた。この回収液をGCにて分析を行った結果、原料が10モル%、化合物(1)が70%、下式で示される化合物(1)の異性体が10%含まれていた。   A tubular reaction tube having an inner diameter of 5.2 cm was filled with soda glass beads (800 ml, trademark: Gakunan # 150) and heated to 390 ° C. By flowing nitrogen gas from the lower part of the reactor at a flow rate of 2.7 mol / h, a fluidized bed state is obtained, and the compound (A-40) is flowed with nitrogen gas at 91 g / h (0.37 mol / h). The reaction was carried out. The reaction crude gas from the reactor outlet was recovered in a dry ice cooling trap and a liquid nitrogen cooling trap connected thereafter. After reacting 662 g (2.7 mol) of the raw material, only nitrogen gas was supplied for 1 hour to collect all the reaction component gases remaining in the reactor. The nitrogen gas trap was gradually heated to the dry ice cooling temperature after completion of the reaction, and all components that vaporized at this temperature were purged and then recovered as a collected gas. The crude product recovered in the dry ice cooling trap and the liquid nitrogen cooling trap was combined to recover 450 g of crude liquid. As a result of analyzing the recovered liquid by GC, the raw material contained 10 mol%, the compound (1) contained 70%, and the compound (1) isomer represented by the following formula contained 10%.

Figure 0004453300
Figure 0004453300

回収した粗液を加圧下(0.5MPa)に蒸留精製して、化合物(1)を単離して19F−NMR、GC−Massスペクトル(EI検出)解析により下記構造であることを確認した。 The recovered crude liquid was purified by distillation under pressure (0.5 MPa), compound (1) was isolated and confirmed to have the following structure by 19 F-NMR and GC-Mass spectrum (EI detection) analysis.

Figure 0004453300
Figure 0004453300

19F−NMR(282.7MHz,CDCl,CFCl)δppm:(−92.60ppm,bs,2F、Fa)、(−113.95ppm,dd,2F,Jb−c=11Hz,Jb−d=11Hz、Fb)、(−202.03ppm,dt,1F,Jc−d=20Hz,Jc−b=11Hz、Fc)、(−107.90ppm,dt,1F,Jd−c=20Hz,Jd−b=11Hz、Fd)。 19 F-NMR (282.7 MHz, CDCl 3 , CFCl 3 ) δ ppm: (−92.60 ppm, bs, 2F, Fa), (−113.95 ppm, dd, 2F, Jb−c = 11 Hz, Jb−d = 11 Hz, Fb), (−202.03 ppm, dt, 1F, Jc−d = 20 Hz, Jc−b = 11 Hz, Fc), (−107.90 ppm, dt, 1F, Jd−c = 20 Hz, Jd−b = 11 Hz, Fd).

Mass(EI法)m/z:178(M),159,131,128,112,109,100,93,81,69,62,50,47(calculated Exact mass of CO:177.99)。 Mass (EI method) m / z: 178 (M + ), 159, 131, 128, 112, 109, 100, 93, 81, 69, 62, 50, 47 (calculated Exact mass of C 4 F 6 O: 177 .99).

[実施例2]
BVE(15g)、イオン交換水(150g)および重合開始剤(((CHCHOCOO)、90mg)を、内容積200mLの耐圧ガラス製オートクレーブに入れた。系内の窒素置換を3回行った後に、化合物(1)(15g)を導入し、窒素で0.4MPaまで加圧し、40℃で22時間、懸濁重合を行った。その結果、重合体A(16g)を得た。重合体の固有粘度[η]は、パーフルオロ(2−ブチルテトラヒドロフラン)中、30℃で0.40であった。重合体Aのガラス転移点(T)は128℃であり、室温ではタフで透明なガラス状の重合体であった。また10%熱分解温度は460℃であり、屈折率は1.33であった。重合体Aの19F−NMRスペクトルにおいては、不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、またフラン環構造が保持されていることを確認した。
[Example 2]
BVE (15 g), ion-exchanged water (150 g) and a polymerization initiator (((CH 3 ) 2 CHOCOO) 2 , 90 mg) were placed in a pressure-resistant glass autoclave having an internal volume of 200 mL. After performing nitrogen substitution in the system three times, the compound (1) (15 g) was introduced, pressurized to 0.4 MPa with nitrogen, and suspension polymerization was performed at 40 ° C. for 22 hours. As a result, a polymer A (16 g) was obtained. The intrinsic viscosity [η] of the polymer was 0.40 at 30 ° C. in perfluoro (2-butyltetrahydrofuran). The glass transition point (T g ) of the polymer A was 128 ° C., and it was a tough and transparent glassy polymer at room temperature. The 10% thermal decomposition temperature was 460 ° C. and the refractive index was 1.33. In the 19 F-NMR spectrum of the polymer A, it was confirmed that the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond disappeared completely and the furan ring structure was retained.

[実施例3]
パーフルオロ(2−ブチルテトラヒドロフラン)(20g)および重合開始剤としてC(CF−O−O−C(CF(40mg)を内容積100mLのステンレス製オートクレーブに入れ、系内を窒素ガスにて置換した。その後、オートクレーブをドライアイス・エタノール浴で−78℃に冷却し、例1−4で得た化合物(1)(12.0g)を仕込んだ。その後系内を窒素ガスにて0.5MPaまで加圧し、100℃で36時間重合を行った。その結果、ポリマー(以下、重合体Bという)(0.6g)を得た。重合体Bの19F−NMRを測定した結果、不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、またフラン環構造が保持されていることを確認した。
[Example 3]
Perfluoro (2-butyltetrahydrofuran) (20 g) and C (CF 3 ) 3 —O—O—C (CF 3 ) 3 (40 mg) as a polymerization initiator were placed in a stainless steel autoclave having an internal volume of 100 mL. Replacement with nitrogen gas was performed. Thereafter, the autoclave was cooled to −78 ° C. in a dry ice / ethanol bath, and the compound (1) (12.0 g) obtained in Example 1-4 was charged. Thereafter, the inside of the system was pressurized to 0.5 MPa with nitrogen gas and polymerized at 100 ° C. for 36 hours. As a result, a polymer (hereinafter referred to as polymer B) (0.6 g) was obtained. As a result of measuring 19 F-NMR of the polymer B, it was confirmed that the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond had disappeared completely and that the furan ring structure was retained.

重合体BのMは、GPC法より1350であった。重合体Bは、室温ではタフで透明なガラス状の重合体であった。また、示査走査熱量分析法(DSC法)でTを測定した結果、70℃であった。 The Mw of the polymer B was 1350 by the GPC method. Polymer B was a tough and transparent glassy polymer at room temperature. As a result of measuring a T g in differential scanning calorimetry (DSC method) was 70 ° C..

[実施例4]
パーフルオロ(2−ブチルテトラヒドロフラン)(20g)および重合開始剤として(((CHCHOCOO)、15.4mg)を内容積100mLのステンレス製オートクレーブに入れ、系内を窒素ガスで置換した。その後、オートクレーブをドライアイス・エタノール浴で−78℃に冷却し、例1−4で得た化合物(1)(5.0g)およびフッ化ビニリデン(0.54g)を仕込んだ。その後、系内を窒素ガスにて0.2MPaまで加圧し、40℃で24時間、さらに50℃で20時間重合を行った。その結果、ポリマー(以下、重合体Cという)(2.5g)を得た。重合体Cの19F−NMRを測定した結果、重合体C中の全重合体単位に対する化合物(1)の重合単位の割合は46モル%であり、フッ化ビニリデンの重合単位の割合は54モル%であった。また、重合体Cの19F−NMRスペクトルにおいては、不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、またフラン環構造が保持されていることを確認した。
[Example 4]
Perfluoro (2-butyltetrahydrofuran) (20 g) and a polymerization initiator (((CH 3 ) 2 CHOCOO) 2 , 15.4 mg) were placed in a stainless steel autoclave with an internal volume of 100 mL, and the system was replaced with nitrogen gas. . Thereafter, the autoclave was cooled to −78 ° C. in a dry ice / ethanol bath, and the compound (1) (5.0 g) and vinylidene fluoride (0.54 g) obtained in Example 1-4 were charged. Thereafter, the inside of the system was pressurized to 0.2 MPa with nitrogen gas, and polymerization was performed at 40 ° C. for 24 hours and further at 50 ° C. for 20 hours. As a result, a polymer (hereinafter referred to as polymer C) (2.5 g) was obtained. As a result of measuring 19 F-NMR of the polymer C, the ratio of the polymer unit of the compound (1) to the total polymer unit in the polymer C is 46 mol%, and the ratio of the polymer unit of vinylidene fluoride is 54 mol. %Met. Further, in the 19 F-NMR spectrum of the polymer C, it was confirmed that the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond had completely disappeared and the furan ring structure was retained. .

重合体CのMは、GPC法より75000であった。また、重合体Cは、室温ではタフで透明なガラス状の重合体であった。窒素中での熱重量分析による測定からこの重合体の10%重量減少温度は、443℃であった。また、DSC法で測定したTは80℃であった。 The Mw of the polymer C was 75000 from the GPC method. Further, the polymer C was a tough and transparent glassy polymer at room temperature. The 10% weight loss temperature of this polymer was 443 ° C. as measured by thermogravimetric analysis in nitrogen. Further, T g measured by DSC method was 80 ° C..

[実施例5]
パーフルオロ(2−ブチルテトラヒドロフラン)(5g)およびCF2=CHCF(CF)CF2OCF=CF2(以下、5Mモノマーと略記する。)(8.7g)、重合開始剤としてC(CF−O−O−C(CF(60mg)をオートクレーブ(ステンレス製、内容積100mL)に入れ、系内を窒素ガスにて置換して、その後、オートクレーブをドライアイス・エタノール浴で−78℃に冷却した。例1−4で得た化合物(1)(6.5g)をオートクレーブに仕込んだ。その後、系内を窒素ガスにて0.2MPaまで加圧し、95℃で20時間、さらに100℃で48時間重合を行った。その結果、ポリマー(以下、重合体Dという)(6.3g)を得た。重合体Dの19F−NMRを測定した結果、重合体D中の全重合体単位に対する化合物(1)の重合単位の割合は25モル%であり、5Mモノマーの重合単位の割合は75モル%であった。また、重合体Dの19F−NMRスペクトルにおいては、不飽和結合を構成する炭素原子に結合するフッ素原子のピークは完全に消失しており、またフラン環構造が保持されていることを確認した。
[Example 5]
Perfluoro (2-butyltetrahydrofuran) (5 g) and CF 2 ═CHCF (CF 3 ) CF 2 OCF═CF 2 (hereinafter abbreviated as 5M monomer) (8.7 g), C (CF 3 as a polymerization initiator) ) 3 -O—O—C (CF 3 ) 3 (60 mg) was placed in an autoclave (stainless steel, internal volume 100 mL), the system was replaced with nitrogen gas, and then the autoclave was placed in a dry ice / ethanol bath. Cooled to -78 ° C. The compound (1) (6.5 g) obtained in Example 1-4 was charged into an autoclave. Thereafter, the inside of the system was pressurized to 0.2 MPa with nitrogen gas, and polymerization was carried out at 95 ° C. for 20 hours and further at 100 ° C. for 48 hours. As a result, a polymer (hereinafter referred to as polymer D) (6.3 g) was obtained. As a result of measuring 19 F-NMR of the polymer D, the ratio of the polymer unit of the compound (1) to the total polymer unit in the polymer D is 25 mol%, and the ratio of the polymer unit of the 5M monomer is 75 mol%. Met. Further, in the 19 F-NMR spectrum of the polymer D, it was confirmed that the peak of the fluorine atom bonded to the carbon atom constituting the unsaturated bond had disappeared completely and that the furan ring structure was retained. .

重合体DのMは、GPC法より22000であった。また、重合体Dは、室温ではタフで透明なガラス状の重合体であった。また、DSC法で測定した結果、Tは90℃であった。 The Mw of the polymer D was 22000 from the GPC method. The polymer D was a tough and transparent glassy polymer at room temperature. As a result of measurement by the DSC method, T g was 90 ° C..

本発明の含フッ素重合体は、溶融成形することによって、チューブや電線被覆材料等として利用できる。また、本発明の含フッ素重合体は、低反射加工材料、耐薬品性のコーティング材料、撥水撥油材料、光ファイバーのコアおよびクラッド材料、光導波路材料、電子部品用材料、フィルム材料等として利用できる。   The fluoropolymer of the present invention can be used as a tube, a wire coating material, or the like by melt molding. Further, the fluoropolymer of the present invention is used as a low reflection processing material, a chemical resistant coating material, a water and oil repellent material, an optical fiber core and cladding material, an optical waveguide material, an electronic component material, a film material, etc. it can.

また、本発明の含フッ素重合体は低誘電率になりうるため、半導体素子の保護膜として利用できる。さらに、該含フッ素重合体は吸水率が低くなりうるため、半導体素子を水分から遮断しうる。すなわち、本発明の含フッ素重合体は層間絶縁膜(たとえば、半導体素子用、液晶表示体用、多層配線板用等)、バッファーコート膜、パッシベーション膜、α線遮蔽膜、素子封止材、各種半導体用接着材(たとえば、LOC用、ダイボンド用等)、高密度実装基板用層間絶縁膜、高周波素子(たとえば、RF回路素子、GaAs素子、InP素子等)防湿膜、保護膜として利用できる。   Further, since the fluoropolymer of the present invention can have a low dielectric constant, it can be used as a protective film for semiconductor elements. Further, since the water-absorbing rate of the fluoropolymer can be lowered, the semiconductor element can be shielded from moisture. That is, the fluorine-containing polymer of the present invention is an interlayer insulating film (for example, for semiconductor elements, liquid crystal displays, multilayer wiring boards, etc.), buffer coat film, passivation film, α-ray shielding film, element sealing material, It can be used as an adhesive for semiconductors (for example, for LOC, die bonding, etc.), an interlayer insulating film for high-density mounting substrates, high-frequency elements (for example, RF circuit elements, GaAs elements, InP elements, etc.), moisture-proof films, and protective films.

さらに、本発明の含フッ素重合体は単独でフィルムとして、またはポリイミドなどの樹脂と積層したフィルムとして使用できる。該フィルムは回路基板用フィルム、フィルムコンデンサ用として利用できる。
Furthermore, the fluoropolymer of the present invention can be used alone as a film or as a film laminated with a resin such as polyimide. The film can be used as a circuit board film or a film capacitor.

Claims (4)

2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフラン。   2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran. 2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランからなる重合性モノマー。   A polymerizable monomer comprising 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran. 2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランを単独重合する、または2,2,3,3,4,5−ヘキサフルオロ−2,3−ジヒドロフランと他の重合可能なモノマーの1種以上とを共重合させることを特徴とする、下式(2)で表される重合単位を必須とする含フッ素重合体の製造方法。
Figure 0004453300
2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran is homopolymerized, or 2,2,3,3,4,5-hexafluoro-2,3-dihydrofuran and others A method for producing a fluorine-containing polymer essentially comprising a polymer unit represented by the following formula (2), wherein at least one of the polymerizable monomers is copolymerized.
Figure 0004453300
下式(2)で表される重合単位からなり分子量が500〜1000000である含フッ素重合体、または、式(2)で表される重合単位と他の重合可能なモノマーの重合単位の1種以上からなり分子量が500〜1000000である含フッ素重合体であり、他の重合可能なモノマーの重合単位を含む場合には該含フッ素重合体中の該式(2)で表される重合単位の割合が0.01質量%以上であり100質量%未満であることを特徴とする含フッ素重合体。
Figure 0004453300
A fluorine-containing polymer consisting of polymerized units represented by the following formula (2) and having a molecular weight of 500 to 1,000,000, or one of polymerized units represented by formula (2) and other polymerizable monomers It is a fluorine-containing polymer having a molecular weight of 500 to 1,000,000 as described above, and when it contains polymerized units of other polymerizable monomers, the polymer unit represented by the formula (2) in the fluorine-containing polymer A fluorine-containing polymer, wherein the ratio is 0.01% by mass or more and less than 100% by mass.
Figure 0004453300
JP2003296231A 2002-08-21 2003-08-20 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer Expired - Fee Related JP4453300B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003296231A JP4453300B2 (en) 2002-08-21 2003-08-20 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002240759 2002-08-21
JP2003296231A JP4453300B2 (en) 2002-08-21 2003-08-20 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer

Publications (2)

Publication Number Publication Date
JP2004099607A JP2004099607A (en) 2004-04-02
JP4453300B2 true JP4453300B2 (en) 2010-04-21

Family

ID=32301101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003296231A Expired - Fee Related JP4453300B2 (en) 2002-08-21 2003-08-20 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer

Country Status (1)

Country Link
JP (1) JP4453300B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006134982A1 (en) 2005-06-14 2006-12-21 Denki Kagaku Kogyo Kabushiki Kaisha Resin composition and sheet containing phosphor, and light emitting element using such composition and sheet
JP5020480B2 (en) * 2005-06-14 2012-09-05 電気化学工業株式会社 Phosphor composition and use thereof
JP4818821B2 (en) * 2006-06-09 2011-11-16 日東電工株式会社 Porous filter for ink tank of direct liquid writing instrument and direct liquid writing instrument

Also Published As

Publication number Publication date
JP2004099607A (en) 2004-04-02

Similar Documents

Publication Publication Date Title
RU2139866C1 (en) Perfluorodioxols, method of preparing thereof (variants), perfluorodioxole homopolymers and copolymers, thermally processible tetrafluoroethylene copolymers
RU2269506C2 (en) Fluorovinyl ethers and polymers prepared therefrom
JPH03184971A (en) 4, 5-dichloro-2, 2, 4, 5-tetrafluoro-1, 3- dioxolane and its preparation
US20060194936A1 (en) Novel fluorinated compound and fluoropolymer
JP4453300B2 (en) 2,2,3,3,4,5-Hexafluoro-2,3-dihydrofuran and polymer containing the monomer
EP1440961B1 (en) Fluorine-containing diene compounds, fluoropolymers and processes for production of both
JP7040533B2 (en) Fluorine-containing diene compounds, fluorine-containing polymers and methods for producing them
EP1548014B1 (en) Ultraviolet-permeable fluoropolymers and pellicles made by using the same
JP4968263B2 (en) Fluorine-containing compound and fluorine-containing polymer
JP4774815B2 (en) Fluorine-containing norbornenyl ester compound and polymer thereof
EP1674461B1 (en) Fluorine-containing dioxolane compounds and fluorine-containing polymers
TWI359825B (en)
JP4741508B2 (en) Fluorinated polymer, optical member, electrical member and coating material
JPWO2005095471A1 (en) NOVEL FLUORINE-CONTAINING POLYMER AND METHOD FOR PRODUCING THE SAME
JPWO2004088422A1 (en) Fluorine-containing compound and fluorine-containing polymer
WO2020262548A1 (en) Polymer, composition, liquid composition, swollen body, laminated body, and optical member
JP2006233140A (en) Method for producing purified fluorine-containing polymer, pellicle and exposure processing method
JPWO2008007594A1 (en) Fluorinated compound having highly fluorinated norbornane structure, fluorinated polymer, and production method
JPWO2002079274A1 (en) Method for producing fluoropolymer and derivative thereof, and use of derivative of fluoropolymer
JP5405515B2 (en) Method for producing fluorinated compound and fluorinated polymer
WO2005121118A1 (en) Compound having perfluoro(4-methylene-1,3-dioxolane) structure and novel polymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100112

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140212

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees