JPWO2002051262A1 - Manufacturing method of food containing water and oil - Google Patents

Manufacturing method of food containing water and oil Download PDF

Info

Publication number
JPWO2002051262A1
JPWO2002051262A1 JP2002552418A JP2002552418A JPWO2002051262A1 JP WO2002051262 A1 JPWO2002051262 A1 JP WO2002051262A1 JP 2002552418 A JP2002552418 A JP 2002552418A JP 2002552418 A JP2002552418 A JP 2002552418A JP WO2002051262 A1 JPWO2002051262 A1 JP WO2002051262A1
Authority
JP
Japan
Prior art keywords
oil
water
food
okara
absorbed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002552418A
Other languages
Japanese (ja)
Other versions
JP4269681B2 (en
Inventor
稲葉 美穂子
江崎 光雄
山口 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Publication of JPWO2002051262A1 publication Critical patent/JPWO2002051262A1/en
Application granted granted Critical
Publication of JP4269681B2 publication Critical patent/JP4269681B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/30Cocoa products, e.g. chocolate; Substitutes therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0053Compositions other than spreads
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • A23D7/005Edible oil or fat compositions containing an aqueous phase, e.g. margarines characterised by ingredients other than fatty acid triglycerides
    • A23D7/0056Spread compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • A23D9/007Other edible oils or fats, e.g. shortenings, cooking oils characterised by ingredients other than fatty acid triglycerides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L13/00Meat products; Meat meal; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L17/00Food-from-the-sea products; Fish products; Fish meal; Fish-egg substitutes; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L27/00Spices; Flavouring agents or condiments; Artificial sweetening agents; Table salts; Dietetic salt substitutes; Preparation or treatment thereof
    • A23L27/60Salad dressings; Mayonnaise; Ketchup
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/36Freezing; Subsequent thawing; Cooling
    • A23L3/365Thawing subsequent to freezing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Zoology (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Edible Oils And Fats (AREA)

Abstract

油脂及び水を含有する食品の油と水が加熱や冷凍後の解凍によっても分離しにくく、乳化剤や安定剤の使用を効果的に減じることを目的として、粒子径を10〜200ミクロンまで微細化した湿潤おからに油脂を吸収させることにより、加熱や冷凍後の解凍によっても水と油が分離しにくいマヨネーズ状食品、マーガリン様食品、液状マーガリン様食品、スプレッド、ホイップクリーム、クリームチーズ様食品、含水チョコレート、ガナッシュ、香辛料ペースト、大豆餡、冷菓、スープ、畜肉製品、水産練製品等の水及び油脂含有食品を得ることが出来た。The oil and water of foods containing oils and fats are difficult to separate even by thawing after heating or freezing, and the particle size is reduced to 10 to 200 microns for the purpose of effectively reducing the use of emulsifiers and stabilizers. By absorbing fats and oils from wet okara, mayonnaise-like food, margarine-like food, liquid margarine-like food, spread, whipped cream, cream cheese-like food, in which water and oil are difficult to separate even by thawing after heating or freezing, Water and oil / fat-containing foods such as hydrated chocolate, ganache, spice paste, soybean bean jam, frozen dessert, soup, animal meat products, and fishery products were obtained.

Description

技術分野
本発明は、油脂及び水を含有する食品の製造方法に関する。
背景技術
マヨネーズ、マーガリン、フィリング等の油脂及び水を含有する食品はパン、洋和菓子、惣菜等幅広い食品に用いられるが、従来乳化剤を多く使用することにより粘度が上昇し作業がしにくくなったり、電子レンジやオーブンで加熱した後に油、水が分離したり、形が変化したり、凍結、解凍後に油、水が分離する等の問題があった。また乳化剤や澱粉や天然多糖類等の安定剤の使用により風味を悪くする傾向にある。
一方、優れた収着性のおからを得ることについて特公昭48−2334号公報に記載があるが、得られるおからの水吸収能はおから乾燥重量当たり精々14重量倍程度のものであり、ザラつきも目立った。
発明の開示
本発明は上記の課題を解決するもので、油脂及び水を含有する食品の油と水が分離しにくく、乳化剤や安定剤の使用を効果的に減じることを目的とする。
発明を実施するための最良の形態
本発明者らは、これらの問題を解決することを目的として鋭意検討した結果、おからの粒子を10〜200ミクロンまで微細化し、湿潤状態でおからを用いることにより前記課題を解決できる知見を得て本発明を完成するに至った。
すなわち本発明は、粒子径が10〜200ミクロンの湿潤おから(水分55〜95重量%)に、油脂を吸収させることを特徴とする水及び油脂含有食品の製造法である。湿潤おからの粒子径は20〜50ミクロンが好ましい。この湿潤おからの吸水能はおからの乾燥重量当たり15〜40重量倍である。この湿潤おからの吸油能はおからの乾燥重量当たり8〜20重量倍である。湿潤おから及び油脂に更に水を吸収させることができる。食品がマヨネーズ状食品である場合、湿潤おからに水、油及び酸を吸収させ、加熱雰囲気下で涅和し水中油型乳化することができる。食品が、マーガリン様食品である場合、湿潤おからに固体油脂を食品中70〜90重量%用いて加熱雰囲気下で涅和して油中水型乳化し、その後急冷することができる。食品が、液状マーガリン様食品である場合、湿潤おからに液体油を食品中20〜60重量%、及び水を用い加熱雰囲気下で涅和して油中水型乳化させ、冷却涅和することができる。食品が、スプレッドである場合、湿潤おからに固体油脂を食品中20〜60重量%、及び水を吸収させ、加熱雰囲気下で涅和することができる。食品がホイップクリームである場合、湿潤おからに固体油脂を食品中20〜50重量%、及び水を吸収させ、重合リン酸塩を添加し、加熱雰囲気下で涅和し、均質化して水中油型乳化たし後冷却することができる。食品がクリームチーズ様食品である場合、湿潤おからに固体油脂を食品中5〜40重量%、及び水を吸収させ、重合リン酸塩を添加し、チーズフレーバー或いはチーズを混合し、加熱雰囲気下で涅和し急冷することができる。食品が含水チョコレートである場合、湿潤おからに固体油脂を食品中10〜40重量%を吸収させ、カカオマス及び砂糖を加えて加熱雰囲気下で涅和し、ロール掛けし、コンチングし脱泡することができる。食品がガナッシュである場合、湿潤おからに固体油脂並びに牛乳もしくは生クリームを吸収させ、カカオマス、砂糖を加えて加熱雰囲気下で涅和し急冷することができる。食品が、香辛料ペーストである場合、湿潤おからに醸造酢及び液体油を吸収させ、香辛料を添加し、低温雰囲気下で涅和することができる。食品が、大豆餡である場合、湿潤おからに液体油を吸収させ砂糖を食品中20〜70重量%混合して加熱雰囲気下で涅和することができる。食品が冷菓である場合、湿潤おからに固体油脂及び水を吸収させ、砂糖を添加涅和し、均質化の後冷凍、フリージングすることができる。食品がスープである場合、湿潤おからに油脂及び水を吸収させ、スープ具材を添加し、加熱雰囲気下で涅和することができる。食品が畜肉製品である場合、湿潤おからに油脂を吸収させ、肉原料と涅和し、成型後加熱することができる。食品が水産練製品である場合、湿潤おからに油脂及び水を吸収させ、すり身と涅和し、成型後加熱することができる。
以下、本発明を詳細に説明する。
本発明に用いる湿潤おからは粒子径が10〜200ミクロンメーター(以下、単に「ミクロン」と略す。)、好ましくは粒子径が20〜50ミクロンであり、この範囲において水、油吸収能が高いため、冷凍耐性及び加熱耐性に優れ、適当である。粒子径が10ミクロン未満であるか、あるいは200ミクロンを超えると水及び油脂の吸収能が低下する。なお、本明細書に記載したおからの粒子径は、200ミクロン以下についてコールターカウンターで測定し、また200ミクロンを超えたところでは篩分けによって測定した平均粒子径である。
本発明のおからは湿潤状態で用いることが必要である。湿潤おからの水分は通常55〜95重量%(以下、単に「%」と略す。)が適当である。好ましくは60〜95%、より好ましくは65〜90%、更に好ましくは70〜90%が良い。おからが使用前に乾燥されて上記範囲未満に水分が少なくなると、油脂及び水を保持する性能が不充分で、甚だしくはおから自体がパサパサした食感となる。ただし、水分が多すぎる状態で用いると、油脂等の吸収能が充分でない。
また、この湿潤おからの油分は原料により異なり、脱脂大豆から得られたおからは油分が少ないが、丸大豆から得られたおからは通常1〜4%の油分を含む。油分は吸水能や吸油能には大きな影響はないものの、風味の点から丸大豆から得られた湿潤おからが好ましい。
本発明に用いるおからの水の吸収能(吸水能)は、湿潤状態で用いること、及び特定粒子径であることにより、おから乾燥重量当たり15〜40重量倍(以下、単に「倍」と略す。)であることができ、18〜40倍でもあることができる。おからの吸水能の測定は、湿潤おからに対して水を加えケンウッドミキサー(回転数60rpmで1分間)で攪拌し、25℃で24時間放置してなお保持する水の量を以て、おから乾燥重量当たりに換算した吸水能とした。
又、本発明の湿潤おからの吸油能は、8〜20倍と、従来のおからの吸油能の7倍以下に比べて高いものである。おからの吸油能の測定は、湿潤おからに対して大豆白絞油を加えケンウッドミキサー(回転数60rpmで1分間)で攪拌し、60℃で24時間放置してなお保持する油脂の量を以て、おから乾燥重量当たりに換算した吸油能とした。
湿潤おからの製造例を以下記載する。
湿潤おからの製造法としては、豆腐や豆乳の製造時に排出されるおからや、大豆蛋白製造時に得られる脱脂おからを原料として利用できる。例えば豆乳製造時に得られるおからを磨砕等により微細化して遠心分離して得ることができる。
また例えば脱皮、脱胚軸大豆に水を加えたものを回転刃形剪断力により裁断(例えば、コミットロール等により)して微細スラリーを得たのち、必要により高圧ホモゲナイザーを用いて適当な圧力で均質化し、平均粒子径50ミクロン以下の微細大豆スラリーを得ることができる。これを遠心分離や濾過により豆乳を除去し、湿潤微細おからを得ることができる。なお、微細大豆スラリーを得るためにはその他の手段も利用できる。例えばコロイドミル、ジェットミル等の微粉砕機で処理して適当な粒子径にすることもできる。
このように微粉砕化された湿潤おからは、表面積が大きくなることにより吸水能、引いては吸油能が向上する。またおからは熱変性を受けない範囲で前記湿潤水分の範囲内に調整しても良い。例えば水分を減じるために圧力をかけて水分を押し出す方法や、気流乾燥機、回転乾燥機、スプレードライヤー、凍結乾燥機、及びマイクロ波減圧乾燥機等で乾燥させる方法を用いることができる。
本発明の水及び油脂含有食品は、湿潤おからに原料である油脂又は油脂及び水を吸収させることにより、油脂を用いた各種の乳化食品又はその類似品であることができる。例えば油脂のみを吸収させる食品としてはマーガリン様食品、含水チョコレート、大豆餡等が挙げられ、油脂及び水を吸収させる食品としてはマヨネーズ状食品(ドレッシングを含む)、液状マーガリン様食品、スプレッド、ホイップクリーム、クリームチーズ様食品、香辛料ペースト、冷菓、スープ、畜肉製品、水産練製品等が挙げられ、また油脂を含むエマルジョンを吸収させた食品としてはガナッシュ等を挙げることができる。おからに油脂又は水を吸収させる場合、順番はいずれでも構わなく、吸収時に混練させても構わない。
また、油脂及び水が湿潤おからに吸収されて乳化状態になるが、油中水型乳化状態となるのはマーガリン様食品、液状マーガリン様食品及びスプレッドであり、そのほかは大部分が水中油型乳化状態である。
以下、油脂及び水を含有する食品の代表的製造法の例示をする。
<マヨネーズ状食品の製造例>
本発明のマヨネーズ状食品は、湿潤おからに水、油脂及び酸を吸収させ、加熱雰囲気下で涅和し、水中油型乳化して得ることができる。以下原料割合の比率を述べる。
このマヨネーズ状食品の製造方法において、食品中本湿潤おからを15〜70%、好ましくは30〜60%使用するのが良い。本湿潤おからが15%未満では油と水が分離する。また70%を超えると食感がざらつきマヨネーズ状食品の感じが低下する。
ここに用いる油脂としては、常温(25℃)で液体の菜種や大豆、コーン等の白絞油などの液体油が適当である。この油脂を食品中4〜60%、好ましくは10〜40%吸収させる。油脂が4%未満ではマヨネーズ状食品の表面がざらついて照りが無くなり、油脂が60%を超えると油っぽくなり、油と水が分離した状態となる。
酸としては、醸造酢、リンゴ酸、クエン酸等の食用有機酸を用いることができ、例えば酸度4%米醸造酢を標準にすると食品中5〜20%、好ましくは10〜15%を加えるのが良いが、5%未満では酸味を感じにくくなり、20%を超えると、酸味が強すぎてマヨネーズ状食品として酸っぱい味となる。
次に水を食品中10〜30%、好ましくは15〜20%吸収させる。水が10%未満では原料を涅和しにくくなり、作業性が悪くなる。30%を超えると油と水が分離したものとなる。これらを加熱雰囲気下で涅和することにより水中油型乳化して作るが、油脂、水のどちらを先に吸収させても同じ半固形状のマヨネーズ状食品ができる。
これらのマヨネーズ状食品は水中油型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的保形性に優れ、市販品のドレッシングやマヨネーズに比べて、冷凍して解凍したときに油と水が分離したり、形がくずれたりすることが大幅に改善されている。電子レンジやオーブンで加熱した後も同様である。
<マーガリン様食品の製造例>
マーガリン様食品の製造例としては、湿潤おからに固体油脂を食品中70〜90%用いて加熱雰囲気下で涅和して油中水型乳化し、その後急冷して得ることができる。
マーガリン様食品の製造方法において、本湿潤おからを食品中5〜30%、好ましくは12〜20%使用するのが良い。5%未満では油脂吸収力が弱く、安定したマーガリン様食品ができない。また30%を超えると、食感がザラつきマーガリン様食品の感じが低下する。
これに菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油等の固体油脂1種又は2種以上を食品中70〜90%、好ましくは75〜84%を吸収させるのが良い。70%未満ではマーガリン規格から外れスプレッド状となり、90%を超えると油脂が多く乳化安定性のあるマーガリン様食品ができない。
湿潤おからの水分にもよるが、必要に応じて、更に食品中に水を0〜10%、好ましくは0〜7%を吸収させることができる。10%を超えるとマーガリン規格から外れる。
これらをアジホモミキサー又はホモミキサーで加熱雰囲気下で涅和することにより油中水型乳化し、コンビネーター、コンプレクター、ボテーター等で急冷下で涅和することができる。
加熱雰囲気下で涅和する際の温度は通常のマーガリンの製造条件と同じ条件とすることができ、通常60〜80℃とすることができる。固体油脂を溶解し殺菌するためである。
急冷した後の温度は常温(25℃)以下で、水が凍らない温度(0℃)以上である。
このようにして得られたマーガリン様食品は市販の油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、油と水の分離がなくパン等の塗りやすさ(延展性)が優れている。また冷凍して解凍したときに油と水が分離したり、形がくずれたりすることが大幅に改善されている。電子レンジやオーブンで加熱した後も同様である。
<液状マーガリン様食品の製造例)>
マーガリン様食品の製造法については前述したが、マーガリン様食品の製造方法において、液体油を用い、その量もマーガリン様食品より少ない液状マーガリン様食品は、以下のようにして得ることができる。すなわち、湿潤おからに液体油を食品中20〜60%、及び水を用い加熱雰囲気下で涅和して油中水型乳化し冷却涅和することができる。
液状マーガリン様食品の製造方法において、本湿潤おからを食品中20〜70%、好ましくは35〜60%を使用するのが良い。本湿潤おからが20%未満では、油と水が安定したものができず、70%を超えると液状マーガリン様食品はできにくくなる。
これに大豆油、コーン油、菜種油、パーム油、魚油等の1種又は2種以上からなる油脂(液体油)を食品中20〜60%、好ましくは30〜45%を吸収及び乳化させる。20%未満では、乳化状態の液状マーガリン様食品はできにくく、60%を超えると、安定した液状マーガリン様食品を作れない。
その後、加熱雰囲気下で油中水型乳化させ、更に水を液状マーガリン様食品中5〜30%、好ましくは10〜25%加水し吸収させて、アジホモミキサー又はホモミキサーで加熱雰囲気下で涅和して冷却して作る。5%未満ではおからが油脂を吸収した状態のままで乳化状態にはならず、30%を超えると、水中油型エマルジョンに転相してしまう。
市販で売られている液状マーガリンは、通常は油中水型乳化力の強いポリグリセリン縮合リシノレン酸エステルを使用しなければ作れないが、風味が極めて悪く食するに値するものではない。一方、本液状マーガリン様食品は風味も良好であり、電子レンジやオーブンで加熱した後に油と水が分離したり、形がくずれたりすることがない。
<スプレッドの製造例>
スプレッドは、マーガリン様食品より油分が少なく、液状マーガリン様食品が液体油を用いるのに比べ固体油脂を用いるものである。スプレッドの製造例は、湿潤おからに固体油脂を食品中20〜60%、及び水を吸収させ、加熱雰囲気下で涅和して得ることができる。
本湿潤おからは食品中20〜70%、好ましくは30〜60%使用するのが良い。湿潤おからが20%未満では、油脂吸収性、乳化安定性のあるスプレッドはできない。また70%を超えるとマーガリンとなってしまう。
これに菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油等の固体油脂1種又は2種以上を食品中20〜60%、好ましくは35〜45%吸収させる。
次に水を食品中3〜40%、好ましくは7〜27%吸収させる。水が3%未満ではおからが油脂を吸収した状態であり、乳化状にはならない。40%を超えると粘度が低くありクリーム状となる。これらをアジホモミキサー又はホモミキサーで加熱雰囲気下で涅和して作る。油、水のどちらを先に吸収させてもスプレッドができるが、先に水を吸収させ、その後油脂を吸収させた方が安定して作りやすい。
加熱雰囲気下で涅和する態様はマーガリン様食品と同様である。
これらのスプレッドは水中油型エマルジョンを利用したものと比べ、乳化剤を使用していないにもかかわらず、経時的保形性に優れている。また市販品のスプレッドに見られるように、冷凍して解凍したときに油と水が分離したり、形がくずれたりすることがない。電子レンジやオーブンで加熱した後も同様であり加熱耐性に優れている。
<ホイップクリームの製造例>
ホイップクリームの製造例は、湿潤おからに固体油脂を食品中20〜50%、及び水を吸収させ、重合リン酸塩を添加し、加熱雰囲気下で涅和し、均質化して水中油型乳化した後冷却して得ることができる。
本湿潤おからは食品中10〜55%、好ましくは20〜40%を使用するのが適当である。本湿潤おからが10%未満では、水吸収力しにくく乳化しにくくなる。55%を超えると粘度が急激に上がりホイップクリームができない。
これに菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油等の固体油脂1種又は2種以上を食品中20〜50%、好ましくは27〜35%加えおからに吸収させる。20%未満では、固形状のホイップされたクリームはできにくく、50%を超えると粘度の急激な上昇でホイップクリームはできない。
これに水を食品中20〜65%、好ましくは27〜50%吸収させ、さらにトリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、第2リン酸ナトリウム、リン酸アンモニウム等の重合リン酸塩を食品中0.01%〜0.5%、好ましくは0.07%〜0.2%添加し、アジホモミキサー又はホモミキサーで加熱雰囲気下で涅和することにより乳化させ、製造することができる。
水が20%未満では、乳化状態のクリームはできず、65%を超えると、固形状のホイップされたクリームはできにくい。また重合リン酸塩が0.01%未満ではホイップクリームがボテて硬くなり、0.5%を超えると塩味が強くなる。油、水のどちらを先に吸収させても同じホイップクリームができる。
このホイップクリームは、乳化剤を使用していないにもかかわらず、高いオーバーラン(空気含有)が得られ、常温や冷蔵下に放置しても水と油の分離や、液状に戻る現象(自己乳化)が見られない。またこのホイップクリームをスポンジにナッペして、冷凍後、解凍しても、ひび割れ、変色は見られない。
<クリームチーズ様食品の製造例>
クリームチーズ様食品は本発明の湿潤おからに固体油脂を食品中5〜40%、及び水を吸収させ、重合リン酸塩を添加し、チーズフレーバー或いはチーズを混合し、加熱雰囲気下で涅和し急冷して得ることができる。前記ホイップクリームとの違いは、チーズを含むことと、油脂を算入した固形分の割合がホイップクリームより高く(固形分がクリームでは油脂を入れて50%程度であるのに対し、チーズは固形分が60%程度であり、蛋白質含量はチーズの方が多い)、クリームと異なりホイップを行わない。以下、原料割合について述べる。
クリームチーズ様食品の製造方法において、本湿潤おからを食品中5〜50%、好ましくは20〜35%を使用するのが良い。本湿潤おからが5%未満では、水吸収しにくくなり乳化しにくくなる。50%を超えると食したときザラつく傾向にある。
これにナチュラルチーズを食品中5〜50%、好ましくは20〜35%加える。5%未満ではチーズ風味が薄くなり、50%を超えると、粘度が急激に上がり殺菌機にかかりにくくなる。
更に菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油等の固体油脂1種又は2種以上を食品中5〜40%、好ましくは15〜30%加える。5%未満では、適度な流動性が出にくくなり、40%を超えると粘度が急激に上昇して殺菌機にかからなくなる。
これに水を食品中10〜50%、好ましくは17〜35%吸収させ、更にトリポリリン酸ナトリウム、ヘキサメタリン酸ナトリウム、第2リン酸ナトリウム、リン酸アンモニウム等の重合リン酸塩を食品中0.01〜0.5%、好ましくは0.03〜0.25%添加して乳化させ、アジホモミキサー又はホモミキサーで加熱雰囲気下で涅和して作る。水が10%未満では油っぽい風味となり、50%を超えると粘度の低い、食感のザラついたものができる。また重合リン酸塩が0.01%未満ではホイップクリームがボテて硬くなり、0.5%を超えると塩味が強くなる。
これらのクリームチーズ様食品は、乳化剤を使用していないにもかかわらず、ホイップしても高いオーバーラン(空気含有)を有し、粘りのある風味のまろやかなクリームチーズ様食品である。これを室温や冷蔵下に放置しても、水と油が分離することはない。またこのクリームチーズ様食品を凍結後、解凍しても水と油が分離することはない。更にオーブンや電子レンジで加熱後も同様に水と油の分離は見られない。
<含水チョコレートの製造例>
含水チョコレートは本発明の湿潤おからに固体油脂を食品中10〜40%を吸収させ、カカオマス及び砂糖を加えて加熱雰囲気下で涅和し、ロール掛けし、コンチングし脱泡して得ることができる。以下、原料割合について述べる。
含水チョコレートの製造方法において、本湿潤おからを食品中5〜60%、好ましくは20〜40%を使用することが適当である。おからが5%未満では、含水チョコレートはできない。また60%を超えると水分量が増えボテボテ状のチョコレートができる。
更に菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、コーン硬化油、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油、カカオバター等の固体油脂の1種又は2種以上を食品中10〜40%、好ましくは17〜25%吸収させる。10%未満ではチョコレートの艶が出にくくなる。また40%を超えると油っぽい風味のチョコレートとなる。
更に砂糖を食品中20〜50%、好ましくは27〜35%、及びカカオマスを食品中5〜40%、好ましくは15〜23%を加え、加熱雰囲気下で涅和し、ロール掛けし、コンチングし脱法することにより含水チョコレートを製造する。砂糖が20%未満では甘味が薄くなり、50%を超えると逆に甘味が強くなりすぎる。またカカオマスが5%未満ではチョコレート風味が薄くなり、40%を超えると硬くなる。ロール掛け、コンチング、脱泡などの手段としては、チョコレート製造に一般に使用されている手段を利用できる。
これらの含水チョコレートは乳化剤を使用していないにもかかわらず、風味が極めて良く、経時的保形性に優れ、冷凍後解凍しても水と油が分離することはなく、電子レンジやオーブンで加熱した後も同様に油、水の分離が見られたり、形が崩れたりすることはない。またチョコレート溶解して吸収させたものは、水分が多いにもかかわらず、チョコレートに水が入ったときよく起きるボテ状の組織になることはない。
<ガナッシュの製造例>
ガナッシュは本発明の湿潤おからに固体油脂並びに牛乳若しくは生クリームを吸収させ、カカオマス、砂糖を加えて加熱雰囲気下で涅和し、急冷して得ることができる。以下、原料割合について述べる。
ガナッシュの製造方法において、本湿潤おからを食品中5〜60%、好ましくは15〜28%を使用するのが良い。本湿潤おから5%未満では硬いチョコレート状となり、60%を超えると水分量が増えボテボテ状のチョコレート状となる。
更にカカオマスを食品中10〜40%、好ましくは20〜30%加える。10%未満ではチョコレートの味が薄くなり、40%を超えると、粘度が上がり硬くなる。
更に牛乳又は生クリームを食品中10〜40%、好ましくは17〜23%加えるが、10%未満では風味上乳味が出にくく、40%を超えるとチョコレートの味が出にくくなる。なお牛乳の代わりに豆乳を使用し、豆乳ガナッシュを製造することも可能である。
次に砂糖を食品中10〜40%、好ましくは17〜23%加える。砂糖が10%未満では甘味が薄く、40%を超えると甘味が強くなりすぎる。
更に菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、コーン硬化油、カカオバター、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油等の固体油脂1種又は2種以上を食品中3〜30%、好ましくは10〜18%吸収させる。油脂が3%未満ではチョコレートの艶がなくなり、30%を超えると油っぽい風味となる。
これらをアジホモミキサー又はホモミキサーで加熱雰囲気下で涅和した後、オンレーター等の急速冷凍装置にて急冷固化し、ガナッシュを製造する。
これらのガナッシュは乳化剤を使用していないにもかかわらず、風味が極めて良く、経時的保形性に優れ、冷凍後解凍しても水と油が分離することはなく、電子レンジやオーブンで加熱した後も同様に油、水の分離が見られたり、形が崩れたりすることがなく、チョコレート風味の強い良好なものである。
以上のようにして得られるガナッシュとチョコレートの違いは、ガナッシュが水中油型乳化系であるのに比べ、チョコレートは油中水型乳化系であることである。また、液状マーガリン様食品との違いは、油脂の種類が、マーガリン様食品はガナッシュのようなカカオマスを用いないことと、水分が多く乳化が弱いことである。
<香辛料ペーストの製造例>
ペースト状の香辛料ペーストは本発明の湿潤おからに醸造酢及び液体油を吸収させ、香辛料を添加し、低温雰囲気下で涅和して得ることができる。以下、原料割合について述べる。
ペースト状香辛料の製造方法において、本湿潤おからを食品中40〜75%、好ましくは50〜65%を使用するのが良い。本湿潤おからが40%未満では低粘度となり基材としての役割をせず、75%を超えると香辛料の風味が薄くなる傾向にある。
これに液体油を食品中3〜10%、好ましくは6〜8%を吸収させる。液体油が3%未満では香辛料ペーストに艶がなくなり、10%を超えると油っぽい風味となる。
また酸度4%の米醸造酢等の醸造酢を食品中3〜15%、好ましくは7〜12%を吸収させる。醸造酢が3%未満ではpHが中性域にあり、日持ちが短くなり、15%を超えると、酸っぱすぎて食べられない。
これにワサビ、カラシ、生姜、梅干、にんにく等の1種又は2種以上の香辛料を食品中5〜40%、好ましくは20〜33%を低温(25℃以下)、好ましくは5〜25℃で且つ衛生的雰囲気下で涅和する。香辛料が5%未満では香辛料ペーストの風味が薄くなり、40%を超えると逆に強くなりすぎる。
これらの香辛料ペーストは風味が極めて良く、経時的に保形性や色調が変化したりすることがなく、伸展性にも優れる。冷凍後解凍しても水と油が分離することはなく、電子レンジやオーブンで加熱した後も同様に水と油の分離が見られず、形が崩れたりすることはない。
液状マーガリン様食品とは、本香辛料ペーストは油の量が極めて少なく、香辛料を主成分とすることである。
<大豆餡の製造例>
大豆餡の製造方法は、湿潤おからに液体油を吸収させ砂糖を食品中20〜70%混合して加熱雰囲気下で涅和して製造することができる。以下原料の割合について述べる。
この餡は油入り大豆餡であり、その製造方法は、本湿潤おからを食品中20〜60%、好ましくは40〜55%使用するのが良い。20%未満では餡状にならずクリーム状となり、60%を超えると食感がざらついたものとなる。
これに菜種白絞油や大豆白絞油、コーン白絞油等の液体油を食品中3〜10%、好ましくは6〜8.5%吸収させる。液体油が3%未満では餡がくすんだ色となり照りがなくなり、10%を超えると逆に油が表面に浮きでて食したとき油っぽくなる。
更に、砂糖を食品中20〜70%、好ましくは30〜60%加えるが、砂糖が20%未満では餡の甘味が薄くなり、70%を超えるとシロップ状の食品となり餡ではなくなる。
これに必須ではないが水を0〜10%、好ましくは0〜8%を溶かすが、水が10%を超えるとシロップ状の液体となる。これら水を吸収させ、アジホモミキサー又はホモミキサー等で加熱雰囲気下で涅和して作る。
この大豆餡は風味が極めて良く、経時的保形性に優れ、市販品に見られる電子レンジやオーブンで加熱した後に油、水の分離が見られたり、形がくずれたりすることはない。また凍結後に解凍しても水と油が分離することはない。
液状マーガリン様食品とは、大豆餡のほうが水分が多く、砂糖が必須である点で異なる。マヨネーズ様食品とは、大豆餡が砂糖を必須としpHが異なる点で異なる。
<冷菓の製造例>
冷菓は本発明の湿潤おからに固体油脂及び水を吸収させ、砂糖を添加涅和し、均質化の後冷凍、フリージングして得ることができる。以下、原料割合について述べる。
冷菓の製造方法は本湿潤おからを食品中2〜50%、好ましくは7〜30%使用するのが良い。本湿潤おからが2%未満では乳化性、安定性が悪くなりフリージングした時の冷菓の保形性がなくなり、50%を越えると大豆由来の風味が増え他素材の風味を阻害し、口溶けが悪くなり重い食感となる。
これに菜種硬化油、大豆硬化油、パーム硬化油、パーム核硬化油、綿実硬化油、ヤシ油、ヤシ硬化油、カポック油、乳脂肪、魚油硬化油等の固体油脂1種又は2種以上を食品中2〜30%、好ましくは5〜15%加えおからに吸収させる。2%未満だとコク味が少なくなる。30%を越えると食した時に油っぽくなる。
これに水を食品中5〜80%、好ましく30〜60%吸収させる。水が5%未満では重たい食感となってしまい、80%を越えると口当たりが冷たくシャリシャリとした食感になる。
さらに冷菓中砂糖を食品中10〜40%、好ましくは18〜25%を用いることができる。10%未満であると甘味が不足し、40%を超えると甘味が強くなりすぎる。本発明には砂糖の一部又は全部を代替して果糖、ブドウ糖、乳糖など公知の糖類を用いることができる。もちろんシロップや糖アルコール等も用いることができる。
冷菓の製造工程は公知の手段を利用することができる。例えば涅和する温度は通常60〜70℃で行うことができる。
捏和の態様としてはホモゲナイザー等の均質化手段を用いて150kg/cm(通常100〜600kg/cm)程度の圧力で2回以上処理することが好ましい。本発明の湿潤おからの粒子をなめらかにする効果があるためである。
フリージングの温度は冷菓が凍結するに十分な氷点以下であればよい。
この冷菓は、乳化剤を使用していないにもかかわらず、経時的保形性に優れ、風味や食感も良い。
<スープの製造例>
このスープは湿潤おからに油脂及び水を吸収させ、スープ具材を添加し、加熱雰囲気下で涅和して得ることができる。以下、原料割合について述べる。
湿潤おからを食品中3〜50%、好ましくは10〜30%用いることができる。おからが3%未満であると水っぽい風味となり、50%を超えると粘度が高くなり飲みづらくなる。
次に油脂を食品中5〜30%、好ましくは12〜22%用いることができる。油脂は液体でも固体でも良く、スープ製造工程で溶解していれば良い。例えば菜種油、大豆油、パーム油、パーム核油、コーン油、綿実油、椰子油、乳脂肪等を加えおからに吸収させる。油脂が多すぎると食した時に油っぽくなる。
次に、水を食品中15〜65%、好ましくは25〜55%用いることができる。
さらに、スープ具材を食品中3〜20%、好ましくは6〜12%用いることができる。スープ具材としては、例えばコーンや豆類等の野菜やこれらを裏ごししたもの、ポタージュ、クリームなどを利用することができる。又、コンソメ、ブイヨン、バター等のスープストックなどを併用することができる。
このスープは、乳化剤を一切使用していないにもかかわらず、レトルト殺菌後や凍結解凍後、レンジ加熱後において油と水が分離したりすることが大幅に改善される。
<畜肉製品の製造例>
畜肉製品は、湿潤おからに油脂を吸収させ、肉原料と涅和し、成型後加熱して得ることができる。以下、原料割合について述べる。
本湿潤おからを食品中3〜30%、好ましくは10〜20%使用するのが良い。本湿潤おからが3%未満だと油と水が分離し歩留や食感向上の効果がなくなり、30%を越えると生地が柔らかくなり保形性がなくなり、ねたついた食感となる。
これに菜種油、大豆油、パーム油、パーム核油、コーン油、綿実油、椰子油、乳脂肪等の1種又は2種以上の油脂を食品中5〜25%、好ましくは12〜18%加え、おからに吸収させる。5%未満だとパサパサした食感となり、25%を越えると油浮きが生じ、食した時に油っぽくなる。油脂は液体でも固体でもよいが液体油の方が作業性が良いため好ましい。
次に、肉原料を食品中25〜60%、好ましくは35〜50%用いることができる。畜肉原料としては牛、豚、鶏などの食用肉、これらをミンチ状にしたものなど等を利用できる。
水は必ずしも必要ではないが、0〜12%、好ましくは3〜7%用いることができる。12%を超えると生地が柔かくなる。またピックル液として大豆蛋白と上記油脂をエマルジョンとして用いることもできる。畜肉製品としてはハンバーグ、ミートボール、つくね、ハム、ソーセージ等を例示できる。
この畜肉製品は、乳化剤を一切使用していないにもかかわらず、歩留も高く食感もソフトでジューシーとなる。また、レトルト殺菌後や凍結解凍後、レンジ加熱後において硬くなったりドリップが発生したりすることが大幅に改善される。
<水産練製品の製造例>
水産練製品は本発明の湿潤おからに油脂及び水を吸収させ、すり身と涅和し、成型後加熱して得ることができる。以下、原料割合について述べる。
本湿潤おからを食品中3〜30%、好ましくは7〜20%使用するのが良い。本湿潤おからが3%未満だと油と水が分離し歩留や食感向上の効果がなくなり、30%を越えると生地が柔らかくなり保形性がなくなり、ねたついた食感となる。
次に、菜種油、大豆油、パーム油、パーム核油、コーン油、綿実油、椰子油、乳脂肪等の1種又は2種以上の油脂を食品中2〜15%、好ましくは3.5〜8%加えおからに吸収させる。2%未満だとパサパサした食感となり、15%を越えると油浮きが生じ、食した時に油っぽくなる。通常、使用する油脂としては液体油が好ましい。
次に、水を食品中3〜30%、好ましくは10〜20%吸収させる。水が3%未満だと硬い食感となり、30%を越えると生地が柔らかくなり保形性がなくなり水っぽい状態となる。
さらに、すり身を食品中25〜65%、好ましくは40〜55%用いることができる。すり身としては、タラ類(スケソウタラ、南ダラ、マダラ等)、鯛類(真鯛、れんこ鯛、金目鯛等)、イワシ、サンマ、アジ、サバ、カレイ、イトヨリ、メルルーサ、ホキ、グチ、エソ等の一般に用いられる魚種を使用できる。
水産練製品としては、蒲鉾、竹輪、はんぺん、さつま揚げ等を例示できる。
この水産練製品は、乳化剤を一切使用していないにもかかわらず、歩留も高く食感もソフトでジューシーとなる。また、レトルト殺菌後や凍結解凍後、レンジ加熱後において硬くなったりドリップが発生したりすることが大幅に改善される。
実 施 例
以下、製造例1〜6、実施例1〜45、比較例1〜4により本発明の実施態様を説明する。
製造例1〜6において、各種おからの製造例について示した。
製造例1(湿潤微細おから)
脱皮、脱胚軸した大豆に5倍量の水を加えたものを回転刃形剪断力により裁断したコミットロール(アーシェル株式会社製)を用いて平均粒子径45ミクロンの微細大豆スラリーを得たのち、高圧ホモゲナイザー(APV株式会社製)を用いて200kg/cmの圧力で2回均質化し、平均粒子径25ミクロンの微細大豆スラリーを得た。これを遠心分離機により豆乳を除去し、湿潤微細おからを得た。得られた湿潤微細おからは、水分86%で平均粒子径が25ミクロンであった。このおからの吸水能はおから乾燥固形分の34倍、吸油能は13倍であった。
製造例2(一般的な豆腐おから)
伝統的に丸大豆から豆腐を製造する市販豆腐の製造工程で得られるおからは、製造例1のようにコミットロールや高圧ホモゲナイザーで微細化せずに、石臼で得られるおからであるが、このおからは水分81%で平均粒子径が1,000ミクロンであった。本おからの吸水能はおから乾燥固形分の8倍、吸油能は4倍であった。
製造例3(半乾燥超微細おから)
製造例1と同様にして得たおからの平均粒子径を7ミクロンにするためには、湿潤状態では不可能なため、気流乾燥機で水分45%とし、カウンタージェットミル(ホソカワミクロン株式会社製)で音速でノズルより噴射して互いに衝突させ、微細おからを得た。このおからは水分45%で平均粒子径が7ミクロンであった。本おからの吸水能はおから乾燥固形分の7倍、吸油能は3倍であった。
製造例4(気流乾燥おから)
製造例1で得られた微細おからを、ミクロンドライヤー(ホソカワミクロン株式会社製)で180℃の熱風気流下においてピンミルで微粉砕しながら乾燥した。得られた微細おからは、水分3%、平均粒子径が150ミクロンであった。このおからの吸水能はおから乾燥固形分の12倍、吸油能は7倍であった。
製造例5(凍結乾燥おから)
製造例1で得られた微細おから2kgを、−40℃まで急速凍結して、凍結乾燥機(日空工業株式会社製)で棚温度50℃、真空度−40mmHgにて3日間かけて凍結乾燥した。得られた微細おからは、水分3%で平均粒子径が100ミクロンであった。このおからの吸水能はおから乾燥固形分の14倍、吸油能は4倍であった。
製造例6(湿潤おから)
製造例1と同様に製造する際に、高圧ホモゲナイザーを用いて200kg/cmの圧力で1回均質化したおからを気流乾燥した。得られたおからは、水分70%で平均粒子径が150ミクロンであった。このおからの吸水能はおから乾燥固形分の25倍、吸油能は10倍であった。
なお、これらのおからの吸水能の測定は、湿潤おからに対して水を加えケンウッドミキサー(回転数60rpmで1分間)で攪拌し、25℃で24時間放置してなお保持する水の量を以て、おから乾燥重量当たりに換算した吸水能とした。
なお、これらのおからの吸油能の測定は、湿潤おからに対して油脂を加えケンウッドミキサー(回転数60rpmで1分間)で攪拌し、60℃で24時間放置してなお保持する油脂の量を以て、おから乾燥重量当たりに換算した吸油能とした。
実施例1(湿潤微細おからを用いたマヨネーズ状食品)
製造例1と同様にして得られたおから50%に菜種白絞油20%と、米醸造酢13%(酸度4%)、水17%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサー(特殊機化株式会社製)にて65℃で5分間涅和し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分21%と極めて低油分にもかかわらず粘度は60,000cp以上を保っていた。また本マヨネーズ状食品中のおからの固形分含量は乾燥固形分当たり7.0%であった。
このマヨネーズ状食品を食したがザラつきは全く感じなかった。このマヨネーズ状食品を−28℃の冷凍庫に24時間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離しておらず、形も元の状態を保っていた。また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、油と水は全く分離しておらず、形も元の状態を保っていた。
本マヨネーズ状食品を食パン生地に50g挟んで180℃のオーブンで15分間焼成したが、油と水は全く分離していなかった。
実施例2(湿潤微細おからを用いたマヨネーズ状食品)
製造例1と同様にして得られたおから65%に菜種白絞油5%と、米醸造酢7%(酸度4%)、水23%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサー(特殊機化株式会社製)にて65℃で5分間涅和し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分6.8%と極めて低油分にもかかわらず粘度は60,000cp以上を保っていた。また本マヨネーズ状食品中のおからの固形分含量は乾燥固形分当たり9.1%であった。本マヨネーズ状食品を食したがザラつきは全く感じなかった。本マヨネーズ状食品を−28℃の冷凍庫に24時間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離しておらず、形も元の状態を保っていた。
また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、油と水は分離しておらず、形も元の状態を保っていた。
本マヨネーズ状食品を食パン生地に50g挟んで180℃のオーブンで15分間焼成したが、油と水は全く分離していなかった。
実施例3(湿潤微細おからを用いたマヨネーズ状食品)
製造例1と同様にして得られたおから20%に菜種白絞油50%と、米醸造酢17%(酸度4%)、水13%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサー(特殊機化株式会社製)にて65℃で5分間涅和し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分6.8%と極めて低油分にもかかわらず粘度は60,000cp以上を保っていた。また本マヨネーズ状食品中のおからの固形分含量は乾燥固形分当たり2.8%であった。
本マヨネーズ状食品を食したがザラつきは全く感じなかった。
本マヨネーズ状食品を−28℃の冷凍庫に24時間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離しておらず、形も元の状態を保っていた。
また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、油と水は全く分離しておらず、形も元の状態を保っていた。
本マヨネーズ状食品を食パン生地に50g挟んで180℃のオーブンで15分間焼成したが、油と水は全く分離していなかった。
実施例4(湿潤おからを用いたマヨネーズ状食品)
製造例6と同様にして得られたおからに水を加えて固形分14%としたもの50%に、菜種白絞油20%と、米醸造酢13%(酸度4%)、水17%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサーにて65℃で5分間涅和し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分31%と極めて低油分にもかかわらず粘度は100,000cp以上を保っていた。
また本マヨネーズ状食品中のおからの固形分含量は乾燥固形分当たり7.0%であった。
本マヨネーズ状食品を食したが僅かにザラつきを感じるものの良好な口当たりであった。
本マヨネーズ状食品を−28℃の冷凍庫に24時間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離しておらず、形も元の状態を保っていた。
また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、油と水は全く分離しておらず、形も元の状態を保っていた。
本マヨネーズ状食品を食パン生地に50g挟んで180℃のオーブンで15分間焼成したが、油と水は全く分離していなかった。
比較例1(一般的な豆腐おからを用いたマヨネーズ状食品)
製造例2で得られたおからに水を加えて固形分14%で平均粒子径を1,000ミクロンとしたおから50%に菜種白絞油20%と、米醸造酢13%(酸度4%)、水17%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサーにて65℃で5分間涅和(8,000rpm)し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分21%と極めて低油分にもかかわらず、粘度は3,000cp以下であり、低粘度のマヨネーズ状食品となった。また本マヨネーズ状食品中のおからの固形分は乾燥固形分当たり7.0%であった。
本マヨネーズ状食品を食したがザラつきが多く、食しがたいものであった。
本マヨネーズ状食品を−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水が分離しており、また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、同様に油と水が分離していた。
比較例2(半乾燥超微細おからを用いたマヨネーズ状食品)
製造例3で得られた微細おからに水を加えて固形分14%で平均粒子径を7ミクロンとしたおから50%に、菜種白絞油20%と、米醸造酢13%(酸度4%)、水17%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサーにて65℃で5分間涅和(8,000rpm)し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分21%と極めて低油分にもかかわらず、粘度は3,000cp以下であり、低粘度のマヨネーズ状食品となった。また本マヨネーズ状食品中のおからの固形分は乾燥固形分当たり9.8%であった。本マヨネーズ状食品を食したが、ザラつきはないものの吸水能が低いため水っぽい風味であった。
本マヨネーズ状食品を−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水が分離しており、また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、同様に油と水が分離していた。
比較例3(気流乾燥おからを用いたマヨネーズ状食品)
製造例4と同様にして得られたおからに水を加えて固形分14%としたおから50%に菜種白絞油20%と、米醸造酢13%(酸度4%)、水17%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサーにて65℃で5分間涅和したが、粘度が800cpと小さく流動性があり、そのまま5分程放置したが、水と油の分離がみられたため、マヨネーズ状食品にはならなかった。
比較例4(凍結乾燥おからを用いたマヨネーズ状食品)
製造例5と同様にして得られたおからに水を加えて固形分14%で平均粒子径を100ミクロンとしたおから50%に、菜種白絞油20%と、米醸造酢13%(酸度4%)、水17%、粉カラシ0.8%、食塩、フレーバー各々0.1%を添加して調製した水部を各々別にアジホモミキサーにて65℃で5分間涅和(8,000rpm)し、小袋に充填したのち5℃の冷蔵庫で17時間冷却してマヨネーズ状食品(半固形状ドレッシング)を製造した。
本マヨネーズ状食品は油分21%と極めて低油分であり、粘度は50,000cp以上を保っていた。
また本マヨネーズ状食品中のおからの固形分は乾燥固形分当たり7.0%であった。
本マヨネーズ状食品を食したがザラつきがやや残っており、−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水の分離が見られ、元の状態を保っていなかった。また本マヨネーズ状食品100gを500W出力の電子レンジで1分間加熱したが、同様に油と水の分離が見られた。
実施例5(マーガリン様食品1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから15%に魚硬化油35%、パーム硬化油50%を加え、ホモミキサーで 65℃で10分間乳化し(10,000rpm)、コンビネーター(シュレーダー株式会社製)にて5℃まで急冷してマーガリン様食品を得た。
本マーガリン様食品中のおからの固形分は乾燥固形分当たり2.1%であった。本マーガリン様食品は油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、油と水の分離がなくパン等の塗りやすさ(延展性)が優れていた。
本マーガリン様食品を−28℃の冷凍庫に3日間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水の分離は見られず保形性も良かった。また本マーガリン様食品100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本マーガリン様食品を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。本マーガリン様食品を食してもザラつきが見られず、風味も優れていた。
実施例6(マーガリン様食品2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから10%に魚硬化油40%、パーム硬化油42%を加え、水を8%加えてホモミキサーで65℃で10分間乳化し(10,000rpm)、コンビネーター(シュレーダー株式会社製)にて5℃まで急冷してマーガリン様食品を得た。
本マーガリン様食品中のおからの固形分は乾燥固形分当たり1.4%であった。本マーガリン様食品は油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、油と水の分離がなくパン等の塗りやすさ(延展性)が優れていた。本マーガリン様食品を−28℃の冷凍庫に3日間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水の分離は見られず保形性も良かった。また本マーガリン様食品100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。
また本マーガリン様食品を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。本マーガリン様食品を食してもザラつきが見られず、風味も優れていた。
実施例7(マーガリン様食品3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから23%に魚硬化油40%、パーム硬化油32%を加え、水を5%加えてホモミキサーで65℃で10分間乳化し(10,000rpm)、コンビネーター(シュレーダー株式会社製)にて5℃まで急冷してマーガリン様食品を得た。
本マーガリン様食品中のおからの固形分は乾燥固形分当たり3.2%であった。本マーガリン様食品は油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、油と水の分離がなくパン等の塗りやすさ(延展性)が優れていた。本マーガリン様食品を−28℃の冷凍庫に3日間入れて凍結させた後、20℃の雰囲気下で解凍したが、油と水の分離は見られず保形性も良かった。また本マーガリン様食品100gを500W出力の電子レジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。
また、本マーガリン様食品を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。本マーガリン様食品を食してもザラつきが見られず、風味も優れていた。
実施例8(液状マーガリン様食品1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから40%に菜種白絞油40%、水20%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却して液状のマーガリン様食品を調製した。本液状マーガリン様食品中のおからの固形分は乾燥固形分当たり5.6%であった。本液状マーガリン様食品は油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本液状マーガリン様食品100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本液状マーガリン様食品を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、一般に使用される乳化剤であるポリグリセリン縮合リシノレン酸エステルを使用したものに比べ、苦みや乳化剤臭が全く感じられない風味であった。
実施例9(液状マーガリン様食品2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから30%に菜種白絞油50%、水20%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却して液状のマーガリン様食品を調製した。本液状マーガリン様食品中のおからの固形分は乾燥固形分当たり4.2%であった。本液状マーガリン様食品は油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本液状マーガリン様食品100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本液状マーガリン様食品を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、一般に使用される乳化剤であるポリグリセリン縮合リシノレン酸エステルを使用したものに比べ、苦みや乳化剤臭が全く感じられない風味であった。
実施例10(液状マーガリン様食品3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから68%に菜種白絞油25%、水7%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却して液状のマーガリン様食品を調製した。本液状マーガリン様食品中のおからの固形分は乾燥固形分当たり9.5%であった。本液状マーガリン様食品は油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本液状マーガリン様食品100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本液状マーガリン様食品を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、一般に使用される乳化剤であるポリグリセリン縮合リシノレン酸エステルを使用したものに比べ、苦みや乳化剤臭が全く感じられない風味であった。
実施例11(スプレッド1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから40%に菜種硬化油50%、水10%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却してスプレッドを調製した。本スプレッド中のおからの固形分は乾燥固形分当たり5.6%であった。本スプレッドは油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本スプレッド100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本スプレッドを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、ザラつきが全く感じられず、風味が優れていた。
実施例12(スプレッド2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから25%に菜種硬化油50%、水25%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却してスプレッドを調製した。本スプレッド中のおからの固形分は乾燥固形分当たり3.5%であった。本スプレッドは油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本スプレッド100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本スプレッドを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、ザラつきが全く感じられず、風味が優れていた。
実施例13(スプレッド3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから35%に菜種硬化油40%、水25%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却してスプレッドを調製した。本スプレッド中のおからの固形分は乾燥固形分当たり4.9%であった。本スプレッドは油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本スプレッド100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本スプレッドを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、ザラつきが全く感じられず、風味が優れていた。
実施例14(スプレッド4)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから65%に菜種硬化油30%、水5%を吸収させた後ホモミキサーで10,000rpmで65℃で15分間加熱攪拌して、5℃まで冷却してスプレッドを調製した。本スプレッド中のおからの固形分は乾燥固形分当たり9.1%であった。本スプレッドは油中水型エマルジョンを利用したものと比べ、乳化剤を一切使用していないにもかかわらず、経時的に変化することがなく、本スプレッド100gを500W出力の電子レンジで1分間加熱したが、油と水の分離は全く見られず、保形成も良かった。また本スプレッドを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。これを食したが、ザラつきが全く感じられず、風味が優れていた。
実施例15(ホイップクリーム1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから30%に菜種硬化油(融点30℃)40%で調製した油脂部と、フレーバーで調整した水30%を添加して調製した水部を各々吸収させ、更にヘキサメタリン酸ナトリウム0.05%を添加し、アジホモミキサーにて65℃で5分間涅和し、ホモゲナイザーで70kg/cmの圧力で均質化後、素早く氷水にて5℃以下まで冷却してホイップクリームを製造した。本ホイップクリームの粘度は300cpであり、オーバーランが90%であり、軽い食感を有したホイップクリームが得られた。
本ホイップクリーム中のおからの固形分は乾燥固形分当たり4.2%であった。
本ホイップクリームを15℃の室温において24時間放置したが、離水もなく、保形性も優れており、食感及び風味も極めて良いものであった。また本ホイップクリームを5℃の冷蔵庫に24時間放置したが、液状に戻る自己乳化現象は見られなかった。更に本ホイップクリームをデコレーションケーキにナッペし−28℃の冷凍庫に1週間凍結させた後、20℃の雰囲気下で解凍したが、ケーキ表面のホイップクリームのひび割れもなく、油と水も全く分離しておらず形も元の状態を保っていた。
実施例16(ホイップクリーム2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから15%に菜種硬化油(融点30℃)30%で調製した油脂部と、フレーバーで調整した水55%を添加して調製した水部を各々吸収させ、更にヘキサメタリン酸ナトリウム0.1%を添加し、アジホモミキサーにて65℃で5分間涅和し、ホモゲナイザーで70kg/cmの圧力で均質化後、素早く氷水にて5℃以下まで冷却してホイップクリームを製造した。
本ホイップクリームの粘度は300cpであり、オーバーランが90%であり、軽い食感を有したホイップクリームが得られた。本ホイップクリーム中のおからの固形分は乾燥固形分当たり2.1%であった。
本ホイップクリームを15℃の室温において24時間放置したが、離水もなく、保形性も優れており、食感及び風味も極めて良いものであった。また本ホイップクリームを5℃の冷蔵庫に24時間放置したが、液状に戻る自己乳化現象は見られなかった。更に本ホイップクリームをデコレーションケーキにナッペし−28℃の冷凍庫に1週間凍結させた後、20℃の雰囲気下で解凍したが、ケーキ表面のホイップクリームのひび割れもなく、油と水も全く分離しておらず形も元の状態を保っていた。
実施例17(ホイップクリーム3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから50%に菜種硬化油(融点30℃)25%で調製した油脂部と、フレーバーで調整した水25%を添加して調製した水部を各々吸収させ、更にヘキサメタリン酸ナトリウム0.3%を添加し、アジホモミキサーにて65℃で5分間涅和し、ホモゲナイザーで70kg/cmの圧力で均質化後、素早く氷水にて5℃以下まで冷却してホイップクリームを製造した。
本ホイップクリームの粘度は300cpであり、オーバーランが90%であり、軽い食感を有したホイップクリームが得られた。本ホイップクリーム中のおからの固形分は乾燥固形分当たり7.0%であった。
本ホイップクリームを15℃の室温において24時間放置したが、離水もなく、保形性も優れており、食感及び風味も極めて良いものであった。また本ホイップクリームを5℃の冷蔵庫に24時間放置したが、液状に戻る自己乳化現象は見られなかった。更に本ホイップクリームをデコレーションケーキにナッペし−28℃の冷凍庫に1週間凍結させた後、20℃の雰囲気下で解凍したが、ケーキ表面のホイップクリームのひび割れもなく、油と水も全く分離しておらず形も元の状態を保っていた。
実施例18(クリームチーズ様食品1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから30%にナチュラルチーズ30%、菜種硬化油(融点30℃)20%で調製した油脂部と、フレーバーで調整した水20%を添加して調製した水部を各々吸収させ、更にヘキサメタリン酸ナトリウム0.05%を添加し、アジホモミキサーにて65℃で5分間涅和し、ホモゲナイザーで50kg/cmの圧力でで均質化後、素早く氷水にて5℃以下まで冷却してクリームチーズ様食品を製造した。
本クリームチーズ様食品の粘度は1,000cpであり、ホイップするとオーバーランが70%で軽い食感を有し、ザラつきもなく風味も良かった。本クリームチーズ様食品中のおからの固形分は乾燥固形分当たり4.2%であった。
本クリームチーズ様食品を35℃で24時間放置したが、水と油の分離は見られなかった。同様に本クリームチーズ様食品を5℃の冷蔵下に24時間放置したが、水と油の分離は見られなかった。更に本クリームチーズ様食品を−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で20時間かけて解凍したが、油と水が全く分離しておらず形も元の状態を保っていた。
またホイップして180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本クリームチーズ様食品100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。また食してもザラつきがみられず風味の劣化も見られなかった。
実施例19(クリームチーズ様食品2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから10%にナチュラルチーズ40%、菜種硬化油(融点30℃)35%で調製した油脂部と、フレーバーで調整した水15%を添加して調製した水部を各々吸収させ、更にヘキサメタリン酸ナトリウム0.02%を添加し、アジホモミキサーにて65℃で5分間涅和し、ホモゲナイザーで50kg/cmの圧力でで均質化後、素早く氷水にて5℃以下まで冷却してクリームチーズ様食品を製造した。本クリームチーズ様食品の粘度は1,000cpであり、ホイップするとオーバーランが70%で軽い食感を有し、ザラつきもなく風味も良かった。本クリームチーズ様食品中のおからの固形分は乾燥固形分当たり1.4%であった。
本クリームチーズ様食品を35℃で24時間放置したが、水と油の分離は見られなかった。同様に本クリームチーズ様食品を5℃の冷蔵下に24時間放置したが、水と油の分離は見られなかった。更に本クリームチーズ様食品を−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で20時間かけて解凍したが、油と水が全く分離しておらず形も元の状態を保っていた。またホイップして180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本クリームチーズ様食品100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。また食してもザラつきがみられず風味の劣化も見られなかった。
実施例20(クリームチーズ様食品3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから40%にナチュラルチーズ10%、菜種硬化油(融点30℃)10%で調製した油脂部と、フレーバーで調整した水40%を添加して調製した水部を各々吸収させ、更にヘキサメタリン酸ナトリウム0.3%を添加し、アジホモミキサーにて65℃で5分間涅和し、ホモゲナイザーで50kg/cmの圧力でで均質化後、素早く氷水にて5℃以下まで冷却してクリームチーズ様食品を製造した。
本クリームチーズ様食品の粘度は1,000cpであり、ホイップするとオーバーランが70%で軽い食感を有し、ザラつきもなく風味も良かった。本クリームチーズ様食品中のおからの固形分は乾燥固形分当たり5.6%であった。
本クリームチーズ様食品を35℃で24時間放置したが、水と油の分離は見られなかった。
同様に本クリームチーズ様食品を5℃の冷蔵下に24時間放置したが、水と油の分離は見られなかった。更に本クリームチーズ様食品を−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で20時間かけて解凍したが、油と水が全く分離しておらず形も元の状態を保っていた。またホイップして180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本クリームチーズ様食品100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。また食してもザラつきがみられず風味の劣化も見られなかった。
実施例21(含水チョコレート1)
製造例6と同様にして得られた固形分30%、平均粒子径150ミクロンのおから30%に砂糖30%とカカオマス25%、パーム分別硬化油15%を加え、横型ニーダーにて65℃で10分間加熱涅和し、ロール掛けし、脱泡タンクに送った後、型取りしてクーリングトンネルで20℃以下まで冷却し含水チョコレートを調製した。本含水チョコレート中のおからの固形分は乾燥固形分当たり4.2%であった。
本含水チョコレートを−28℃の冷凍庫に3日間入れ凍結させて25℃の雰囲気下で解凍したが、水と油は分離していなかった。また本含水チョコレートを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本含水チョコレート100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。また食してもザラつきがみられず風味の劣化も見られなかった。
実施例22(含水チョコレート2)
製造例6と同様にして得られた固形分30%、平均粒子径150ミクロンのおから45%に砂糖25%とカカオマス10%、パーム分別硬化油20%を加え、横型ニーダーにて65℃で10分間加熱涅和し、ロール掛けし、脱泡タンクに送った後、型取りしてクーリングトンネルで20℃以下まで冷却し含水チョコレートを調製した。本含水チョコレート中のおからの固形分は乾燥固形分当たり6.3%であった。
本含水チョコレートを−28℃の冷凍庫に3日間入れ凍結させて25℃の雰囲気下で解凍したが、水と油は分離していなかった。また本含水チョコレートを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本含水チョコレート100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。また食してもザラつきがみられず風味の劣化も見られなかった。
実施例23(含水チョコレート3)
製造例6と同様にして得られた固形分30%、平均粒子径150ミクロンのおから10%に砂糖40%とカカオマス20%、パーム分別硬化油30%を加え、横型ニーダーにて65℃で10分間加熱涅和し、ロール掛けし、脱泡タンクに送った後、型取りしてクーリングトンネルで20℃以下まで冷却し含水チョコレートを調製した。本含水チョコレート中のおからの固形分は乾燥固形分当たり1.4%であった。
本含水チョコレートを−28℃の冷凍庫に3日間入れ凍結させて25℃の雰囲気下で解凍したが、水と油は分離していなかった。また本含水チョコレートを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本含水チョコレート100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。また食してもザラつきがみられず風味の劣化も見られなかった。
実施例24(ガナッシュ1)
製造例1と同様にして得られた固形分14%、平均粒子径25ミクロンのおから30%に生クリーム20%と菜種硬化油(融点30℃)20%を吸収させた後、カカオマス15%と砂糖15%をアジホモミキサーにて60℃で涅和し、10℃以下まで冷却してガナッシュを製造した。
本ガナッシュの粘度は3,000cpであり、ザラつきもなく風味も良かった。
本ガナッシュのおからの固形分は乾燥固形分当たり4.2%であった。
本ガナッシュを−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油は全く分離しておらず、形も元の状態を保っていた。また本ガナッシュをホイップして180℃のオーブンで焼成したが、水と油は全く分離しておらず、焼き残りもあった。更に本ガナッシュ100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。
実施例25(ガナッシュ2)
製造例1と同様にして得られた固形分14%、平均粒子径25ミクロンのおから25%に生クリーム15%と菜種硬化油(融点30℃)5%を吸収させた後、カカオマス35%と砂糖20%をアジホモミキサーにて60℃で涅和し、10℃以下まで冷却してガナッシュを製造した。
本ガナッシュの粘度は3,000cpであり、ザラつきもなく風味も良かった。
本ガナッシュのおからの固形分は乾燥固形分当たり3.5%であった。
本ガナッシュを−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油は全く分離しておらず、形も元の状態を保っていた。また本ガナッシュをホイップして180℃のオーブンで焼成したが、水と油は全く分離しておらず、焼き残りもあった。
更に本ガナッシュ100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。
実施例26(ガナッシュ3)
製造例1と同様にして得られた固形分14%、平均粒子径25ミクロンのおから10%に生クリーム25%と菜種硬化油(融点30℃)15%を吸収させた後、カカオマス25%と砂糖25%をアジホモミキサーにて60℃で涅和し、10℃以下まで冷却してガナッシュを製造した。
本ガナッシュの粘度は3,000cpであり、ザラつきもなく風味も良かった。本ガナッシュのおからの固形分は乾燥固形分当たり1.4%であった。
本ガナッシュを−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油は全く分離しておらず、形も元の状態を保っていた。また本ガナッシュをホイップして180℃のオーブンで焼成したが、水と油は全く分離しておらず、焼き残りもあった。更に本ガナッシュ100gをとり500W出力の電子レンジで5分間加熱したが、同様に水と油に分離が見られず、形がそのまま残っていた。
実施例27(香辛料ペースト1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから60%に、米醸造酢(酸度4%)を5%と菜種白絞油5%を吸収させた後、カラシ粉末30%を加え、横型ニーダー(特殊機化株式会社製)にて20℃で15分間涅和して香辛料ペーストを調製した。本香辛料ペースト中のおからの固形分は乾燥固形分当たり8.4%であった。
本香辛料ペーストを−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油の分離は全く見られなかった。また本香辛料ペーストを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本香辛料ペースト100gを500W出力の電子レンジで1分間加熱したが、同様に水と油に分離は見られなかった。また食してもザラつきが見られず、風味の劣化も見られなかった。
実施例28(香辛料ペースト2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから45%に、米醸造酢(酸度4%)を11%と菜種白絞油9%を吸収させた後、ワサビ粉末35%を加え、横型ニーダー(特殊機化株式会社製)にて20℃で15分間涅和して香辛料ペーストを調製した。本香辛料ペースト中のおからの固形分は乾燥固形分当たり6.3%であった。
本香辛料ペーストを−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油の分離は全く見られなかった。また本香辛料ペーストを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本香辛料ペースト100gを500W出力の電子レンジで1分間加熱したが、同様に水と油に分離は見られなかった。また食してもザラつきが見られず、風味の劣化も見られなかった。
実施例29(香辛料ペースト3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから70%に、米醸造酢(酸度4%)を13%と菜種白絞油7%を吸収させた後、ワサビ粉末10%を加え、横型ニーダー(特殊機化株式会社製)にて20℃で15分間涅和して香辛料ペーストを調製した。本香辛料ペースト中のおからの固形分は乾燥固形分当たり9.8%であった。
本香辛料ペーストを−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油の分離は全く見られなかった。また本香辛料ペーストを180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本香辛料ペースト100gを500W出力の電子レンジで1分間加熱したが、同様に水と油に分離は見られなかった。また食してもザラつきが見られず、風味の劣化も見られなかった。
実施例30(大豆餡1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから50%に砂糖40%、菜種白絞油5%、水5%を横型ニーダーにて90℃で15分間加熱涅和し、小袋に充填して素早く氷水にて10℃以下まで冷却して大豆餡を製造した。本大豆餡中のおからの固形分は乾燥固形分当たり7.0%であった。
本大豆餡を−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油の分離は全く見られなかった。また本大豆餡を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本大豆餡100gを取り、500W出力の電子レンジで5分間加熱したが、油と水の分離は全く見られず、保形性も良かった。また本大豆餡を食してもザラつきが見られず風味も優れていた。
実施例31(大豆餡2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから26%に砂糖62%、菜種白絞油9%,水3%を横型ニーダーにて90℃で15分間加熱涅和し、小袋に充填して素早く氷水にて10℃以下まで冷却して大豆餡を製造した。本大豆餡中のおからの固形分は乾燥固形分当たり3.6%であった。
本大豆餡を−28℃の冷凍庫に 24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油の分離は全く見られなかった。また本大豆餡を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本大豆餡100gを取り、500W出力の電子レンジで5分間加熱したが、油と水の分離は全く見られず、保形性も良かった。また本大豆餡を食してもザラつきが見られず風味も優れていた。
実施例32(大豆餡3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから58%に砂糖25%、菜種白絞油8%,水9%を横型ニーダーにて90℃で15分間加熱涅和し、小袋に充填して素早く氷水にて10℃以下まで冷却して大豆餡を製造した。本大豆餡中のおからの固形分は乾燥固形分当たり8.1%であった。
本大豆餡を−28℃の冷凍庫に24時間入れ凍結させて20℃の雰囲気下で解凍したが、水と油の分離は全く見られなかった。また本大豆餡を180℃のオーブンで焼成したが、油と水は全く分離しておらず、焼き残りもあった。更に本大豆餡100gを取り、500W出力の電子レンジで5分間加熱したが、油と水の分離は全く見られず、保形性も良かった。また本大豆餡を食してもザラつきが見られず風味も優れていた。
実施例33(冷菓1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから5%にヤシ油10%、水55%、脱脂粉乳10%、砂糖20%を加え攪拌混合し、150kg/cmのホモゲナイザーにて均質化を行い、80℃30分間加熱殺菌処理後、5℃で一晩エージングを行い、フリージングして冷菓を製造した。
本冷菓中のおからの固形分は乾燥固形分当り0.7%であった。本冷菓は乳化剤を一切使用していないにもかかわらず、エージング後の冷菓ミックスの油と水の分離がなく、更にフリージング後の冷菓の油と水の分離も無く、ザラツキも全く感じられなかった。
実施例34(冷菓2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから10%にヤシ油3%、水65%、脱脂粉乳5%、砂糖17%を加え攪拌混合し、150kg/cmのホモゲナイザーにて均質化を行い、80℃30分間加熱殺菌処理後、5℃で一晩エージングを行い、フリージングして冷菓を製造した。
本冷菓中のおからの固形分は乾燥固形分当り1.4%であった。本冷菓は乳化剤を一切使用していないにもかかわらず、エージング後の冷菓ミックスの油と水の分離がなく、更にフリージング後の冷菓の油と水の分離も無く、ザラツキも全く感じられなかった。
実施例35(冷菓3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから40%にヤシ油20%、水7%、脱脂粉乳3%、砂糖30%を加え攪拌混合し、150kg/cmのホモゲナイザーにて均質化を行い、80℃30分間加熱殺菌処理後、5℃で一晩エージングを行い、フリージングして冷菓を製造した。本冷菓中のおからの固形分は乾燥固形分当り5.6%であった。本冷菓は乳化剤を一切使用していないにもかかわらず、エージング後の冷菓ミックスの油と水の分離がなく、更にフリージング後の冷菓の油と水の分離も無く、ザラツキも全く感じられなかった。
実施例36(ポタージュスープ1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから20%に乳脂肪5%、水50%、コーンピューレ10%、調味料5%を加え、ホモミキサーで5000rpmで65℃で15分加熱攪拌して、コーンポタージュスープを製造した。
本ポタージュスープ中のおからの固形分は乾燥固形分当り2.8%であった。本ポタージュスープは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも全く感じられなかった。本ポタージュスープを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。
本ポタージュスープ200gを500W出力の電子レンジで2分間加熱したが、油と水は全く分離していなかった。
実施例37(ポタージュスープ2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから8%に乳脂肪20%、水52%、コーンピューレ8%、調味料12%を加え、ホモミキサーで5000rpmで65℃で15分加熱攪拌して、コーンポタージュスープを製造した。
本ポタージュスープ中のおからの固形分は乾燥固形分当り1.1%であった。
本ポタージュスープは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも全く感じられなかった。本ポタージュスープを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。
本ポタージュスープ200gを500W出力の電子レンジで2分間加熱したが、油と水は全く分離していなかった。
実施例38(ポタージュスープ3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから40%に乳脂肪25%、水19%、コーンピューレ14%、調味料2%を加え、ホモミキサーで5000rpmで65℃で15分加熱攪拌して、コーンポタージュスープを製造した。本ポタージュスープ中のおからの固形分は乾燥固形分当り5.6%であった。本ポタージュスープは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも全く感じられなかった。本ポタージュスープを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。
本ポタージュスープ200gを500W出力の電子レンジで2分間加熱したが、油と水は全く分離していなかった。
実施例39(ポタージュスープ4)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから16%に乳脂肪10%、水60%、コーンピューレ4%、調味料10%を加え、ホモミキサーで5000rpmで65℃で15分加熱攪拌して、コーンポタージュスープを製造した。
本ポタージュスープ中のおからの固形分は乾燥固形分当り2.2%であった。本ポタージュスープは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも全く感じられなかった。本ポタージュスープを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。
本ポタージュスープ200gを500W出力の電子レンジで2分間加熱したが、油と水は全く分離していなかった。
実施例40(ハンバーグ1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから7%に合挽き肉53%、大豆白絞油11%、水6%、玉ねぎ18%、パン粉4%、調味料1%加え、ケンウッドミキサー(中速)にて3分間混合し、成型後、240℃で5分焼成し、ハンバーグを得た。
本ハンバーグ中のおからの固形分は乾燥固形分当り0.98%であった。本ハンバーグは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも感じられなかった。本ハンバーグを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。本ハンバーグ40gを500W出力の電子レンジで40秒間加熱したが、油と水は全く分離していなかった。
実施例41(ハンバーグ2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから16%に合挽き肉40%、大豆白絞油15%、水8%、玉ねぎ15%、パン粉5%、調味料1%加え、ケンウッドミキサー(中速)にて3分間混合し、成型後、240℃で5分焼成し、ハンバーグを得た。本ハンバーグ中のおからの固形分は乾燥固形分当り2.2%であった。本ハンバーグは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも感じられなかった。本ハンバーグを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。
本ハンバーグ40gを500W出力の電子レンジで40秒間加熱したが、油と水は全く分離していなかった。
実施例42(ハンバーグ3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから25%に合挽き肉33%、大豆白絞油20%、水4%、玉ねぎ10%、パン粉7%、調味料1%加え、ケンウッドミキサー(中速)にて3分間混合し、成型後、240℃で5分焼成し、ハンバーグを得た。
本ハンバーグ中のおからの固形分は乾燥固形分当り3.5%であった。
本ハンバーグは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも感じられなかった。本ハンバーグを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。本ハンバーグ40gを500W出力の電子レンジで40秒間加熱したが、油と水は全く分離していなかった。
実施例43(さつま揚げ1)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから5%にスケソウ陸上二級すり身50%、大豆白絞油2.5%、水25%、食塩1.5%、砂糖3.5%、グルコース2%、化学調味料0.3%、馬鈴薯澱粉10.2%を加え、サイレントカッターにて出来あがり温度14℃で生地を作り、成型後、140℃で1分、160℃で1.5分の二段フライを行い、さつま揚げを得た。本さつま揚げ中のおからの固形分は乾燥固形分当り0.7%であった。
本さつま揚げは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも感じられなかった。本さつま揚げを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。本さつま揚げ40gを500W出力の電子レンジで40秒間加熱したが、油と水は全く分離していなかった。
実施例44(さつま揚げ2)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから10%にスケソウ陸上二級すり身59.5%、大豆白絞油5%、水13%、食塩1.5%、砂糖3%、グルコース2%、化学調味料0.3%、馬鈴薯澱粉5.7%を加え、サイレントカッターにて出来あがり温度14℃で生地を作り、成型後、140℃で1分、160℃で1.5分の二段フライを行い、さつま揚げを得た。本さつま揚げ中のおからの固形分は乾燥固形分当り1.4%であった。
本さつま揚げは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも感じられなかった。本さつま揚げを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。本さつま揚げ40gを500W出力の電子レンジで40秒間加熱したが、油と水は全く分離していなかった。
実施例45(さつま揚げ3)
製造例1と同様にして得た固形分14%で平均粒子径が25ミクロンのおから25%にスケソウ陸上二級すり身30%、大豆白絞油10%、水7%、食塩1.5%、砂糖6%、グルコース4%、化学調味料0.3%、馬鈴薯澱粉16.2%を加え、サイレントカッターにて出来あがり温度14℃で生地を作り、成型後、140℃で1分、160℃で1.5分の二段フライを行い、さつま揚げを得た。本さつま揚げ中のおからの固形分は乾燥固形分当り3.5%であった。
本さつま揚げは乳化剤を一切使用していないにもかかわらず、油と水の分離が無く、ザラツキも感じられなかった。本さつま揚げを−28℃の冷凍庫に24時間入れ凍結させた後、20℃の雰囲気下で解凍したが、油と水は全く分離していなかった。本さつま揚げ40gを500W出力の電子レンジで40秒間加熱したが、油と水は全く分離していなかった。
産業上の利用の可能性
本発明により従来の乳化剤を利用したエマルジョン食品に見られるような室温で放置しておいたり、電子レンジやオーブンで加熱したとき油、水が分離したり、形が変化したり、凍結解凍後に油、水が分離する等の問題を解決できたものであり、加熱や冷凍後の解凍によっても水と油が分離しにくいマヨネーズ状食品、マーガリン様食品、液状マーガリン様食品、スプレッド、ホイップクリーム、クリームチーズ様食品、含水チョコレート、ガナッシュ、香辛料ペースト、大豆餡、冷菓、スープ、畜肉製品、水産練製品等の水及び油脂含有食品の分野においての利用が可能である。
Technical field
The present invention relates to a method for producing a food containing fats and oils and water.
Background art
Foods containing fats and oils such as mayonnaise, margarine, and filling are used for a wide range of foods such as bread, western confectionery, and prepared foods.However, the use of many emulsifiers increases the viscosity and makes it difficult to work. There were problems such as separation of oil and water after heating in an oven or an oven, change in shape, and separation of oil and water after freezing and thawing. In addition, the use of an emulsifier, a stabilizer such as starch or a natural polysaccharide tends to deteriorate the flavor.
On the other hand, Japanese Patent Publication No. 48-2334 discloses that okara having excellent sorption properties is obtained, but the water absorption capacity of okara obtained is at most about 14 times by weight per okara dry weight. Zaratsuki was also noticeable.
Disclosure of the invention
An object of the present invention is to solve the above-mentioned problems, and it is an object of the present invention to reduce the use of emulsifiers and stabilizers by preventing the separation of oil and water from foods containing fats and oils and water.
BEST MODE FOR CARRYING OUT THE INVENTION
The present inventors have conducted intensive studies with the aim of solving these problems, and as a result, have found that the above-mentioned problem can be solved by making okara particles finer to 10 to 200 microns and using okara in a wet state. As a result, the present invention has been completed.
That is, the present invention is a method for producing water and fat-containing foods, characterized in that fats and oils are absorbed into wet okara (water content: 55 to 95% by weight) having a particle size of 10 to 200 microns. The particle size of wet okara is preferably 20 to 50 microns. The water absorption capacity of the wet okara is 15 to 40 times by weight per dry weight of the okara. The oil absorption capacity of this wet okara is 8 to 20 times by weight per dry weight of the okara. Water can be further absorbed by wet okara and fats and oils. When the food is a mayonnaise-like food, it can absorb water, oil, and acid in moist okara, and can be emulsified in a heated atmosphere to perform oil-in-water emulsification. When the food is a margarine-like food, it can be emulsified in a heated atmosphere using 70 to 90% by weight of a solid fat or oil in wet okara and emulsified in water, followed by quenching. When the food is a liquid margarine-like food, water-oil-in-oil emulsification is performed by wet-oiling 20 to 60% by weight of liquid oil in moist okara and water in a heated atmosphere, followed by cooling and cooling. Can be. When the food is a spread, wet okara can absorb 20 to 60% by weight of the solid fat in the food and water, and can be cured under a heated atmosphere. When the food is a whipped cream, absorb 20 to 50% by weight of solid fat and oil in the wet okara and water, add a polymerized phosphate, homogenize in a heated atmosphere, homogenize the oil in water After emulsification, it can be cooled. If the food is a cream cheese-like food, absorb 5 to 40% by weight of solid oats and water in the wet okara and water, add polymerized phosphate, mix cheese flavor or cheese, and heat And can be quenched. If the food is water-containing chocolate, absorb 10 to 40% by weight of the solid fat or oil in the moist okara, add cacao mass and sugar, mix under a heated atmosphere, roll, conch and defoam. Can be. When the food is ganache, it is possible to absorb solid fats and oils or milk or fresh cream into moist okara, add cacao mass and sugar, soak in a heated atmosphere and quench. When the food is a spice paste, it is possible to absorb brewed vinegar and liquid oil into wet okara, add a spice, and soak under a low-temperature atmosphere. When the food is soybean bean paste, liquid oil can be absorbed in moist okara, sugar can be mixed in the food in an amount of 20 to 70% by weight, and the mixture can be dried under a heated atmosphere. When the food is frozen dessert, solid oats and water can be absorbed into moist okara, sugar can be added, homogenized, frozen and frozen. When the food is soup, moist okara can be made to absorb fats and oils, water can be added, soup ingredients can be added, and the product can be cured under a heated atmosphere. When the food is a livestock meat product, it can be made to absorb fats and oils in moist okara, to be mixed with meat raw materials, and to be heated after molding. When the food is a fishery kneaded product, it is possible to absorb oils and fats and water from moist okara, soak with surimi, and heat after molding.
Hereinafter, the present invention will be described in detail.
The wet okara used in the present invention has a particle size of 10 to 200 microns (hereinafter, simply abbreviated as "micron"), preferably 20 to 50 microns, and has high water and oil absorption capacity in this range. Therefore, it is excellent in freezing resistance and heating resistance and is suitable. If the particle size is less than 10 microns or exceeds 200 microns, the ability to absorb water and fats and oils will decrease. In addition, the particle size of okara described in the present specification is an average particle size measured by a Coulter counter for 200 microns or less, and is measured by sieving when the particle size exceeds 200 microns.
It is necessary to use the okara of the present invention in a wet state. The appropriate amount of wet okara water is usually 55 to 95% by weight (hereinafter simply referred to as "%"). It is preferably from 60 to 95%, more preferably from 65 to 90%, even more preferably from 70 to 90%. If the okara is dried before use and the water content is reduced below the above range, the performance of retaining the fats and oils and water is insufficient, and the okara itself has a crisp texture. However, when used in a state where the water content is too large, the ability to absorb oils and fats is not sufficient.
The oil content of this wet okara varies depending on the raw material. Okara obtained from defatted soybean has a low oil content, but okara obtained from whole soybean usually contains 1 to 4% of oil. Although the oil content does not greatly affect the water absorbing ability and the oil absorbing ability, wet okara obtained from whole soybean is preferable in terms of flavor.
Okara water absorption capacity (water absorption capacity) used in the present invention is 15 to 40 times by weight per okara dry weight (hereinafter simply referred to as “fold”) by using in a wet state and having a specific particle size. Abbreviated) and 18 to 40 times. The water absorption capacity of okara was measured by adding water to wet okara, stirring with a Kenwood mixer (rotation speed: 60 rpm for 1 minute), leaving at 25 ° C. for 24 hours, and measuring the amount of water retained. The water absorption capacity was calculated per dry weight.
Further, the oil absorbing ability of wet okara of the present invention is 8 to 20 times, which is higher than the oil absorbing ability of conventional okara 7 times or less. The measurement of the oil absorption capacity of okara was performed by adding the soybean white squeezed oil to wet okara, stirring with a Kenwood mixer (at 60 rpm for 1 minute), leaving the mixture at 60 ° C. for 24 hours, and then measuring the amount of oil and fat retained. The oil absorption capacity was converted to the dry weight of okara.
A production example of wet okara is described below.
As a method for producing wet okara, okara discharged during production of tofu or soy milk, or defatted okara obtained during production of soy protein can be used as a raw material. For example, okara obtained during the production of soy milk can be obtained by pulverizing the okara obtained by grinding or the like and centrifuging.
Also, for example, after moulting and dehypocotyl soybeans are added with water and cut with a rotary blade-type shearing force (for example, with a commit roll or the like) to obtain a fine slurry, if necessary, using a high-pressure homogenizer at an appropriate pressure. It can be homogenized to obtain a fine soybean slurry having an average particle size of 50 microns or less. The soymilk is removed by centrifugation or filtration to obtain wet fine okara. Note that other means can be used to obtain a fine soybean slurry. For example, the particles can be treated with a fine pulverizer such as a colloid mill or a jet mill to have an appropriate particle size.
Such finely ground wet okara has an increased surface area, thereby improving the water absorbing ability and, consequently, the oil absorbing ability. Okara may be adjusted to the range of the above-mentioned wet moisture as long as it does not undergo heat denaturation. For example, a method of extruding moisture by applying pressure to reduce the moisture, a method of drying with a flash dryer, a rotary dryer, a spray dryer, a freeze dryer, a microwave vacuum dryer, or the like can be used.
The water and oil / fat-containing food of the present invention can be various emulsified foods using oil / fat or similar products by absorbing the oil / fat or oil / fat as a raw material in wet okara. For example, foods that only absorb fats and oils include margarine-like foods, hydrated chocolate, soybean paste, etc. Foods that absorb fats and oils include mayonnaise-like foods (including dressings), liquid margarine-like foods, spreads, and whipped creams And cream cheese-like foods, spice pastes, frozen desserts, soups, livestock meat products, fishery products, and the like. Foods that have absorbed emulsions containing fats and oils include ganache and the like. When the oil or fat is absorbed in the okara, the order may be any and the kneading may be performed at the time of absorption.
In addition, oils and fats are absorbed into wet okara and become emulsified, but water-in-oil emulsified states are margarine-like foods, liquid margarine-like foods and spreads, and most of them are oil-in-water type. It is in an emulsified state.
Hereinafter, a typical method for producing a food containing fats and oils and water will be exemplified.
<Production example of mayonnaise-like food>
The mayonnaise-like food of the present invention can be obtained by absorbing water, oil and fat from moist okara, soaking in a heated atmosphere, and emulsifying in oil-in-water. The ratio of the raw material ratio will be described below.
In this method of producing mayonnaise-like food, it is preferable to use 15 to 70%, preferably 30 to 60% of the present wet okara in the food. If the wet okara is less than 15%, oil and water separate. On the other hand, if it exceeds 70%, the texture becomes rough and the feeling of the mayonnaise-like food decreases.
As the oils and fats used here, liquid oils such as rapeseed, white soybean, and white squeezed oil such as corn at room temperature (25 ° C.) are suitable. This fat is absorbed in the food in an amount of 4 to 60%, preferably 10 to 40%. If the fat or oil is less than 4%, the surface of the mayonnaise-like food is rough and illuminated, and if the fat or oil exceeds 60%, it becomes oily and the oil and water are separated.
Edible organic acids such as brewed vinegar, malic acid, and citric acid can be used as the acid. For example, when rice brewed vinegar having an acidity of 4% is used as a standard, 5 to 20%, preferably 10 to 15% is added to the food. However, if it is less than 5%, the sour taste is less likely to be felt, and if it exceeds 20%, the sour taste is too strong to give a sour taste as a mayonnaise-like food.
Next, water is absorbed in the food in an amount of 10 to 30%, preferably 15 to 20%. When the water content is less than 10%, the raw material is not easily cured, and workability is deteriorated. If it exceeds 30%, oil and water are separated. These are made into oil-in-water emulsification by hydrated in a heated atmosphere, but the same semi-solid mayonnaise-like food can be obtained regardless of whether oil or fat is first absorbed.
Compared to those using oil-in-water emulsions, these mayonnaise-like foods are superior in shape retention over time despite using no emulsifier, and are more frozen than commercial dressings and mayonnaise. Significant improvements have been made in the separation of oil and water and their loss of shape when thawed. The same applies after heating in a microwave oven or oven.
<Production example of margarine-like food>
Examples of the production of margarine-like foods include water-in-oil emulsification using 70 to 90% of a solid fat or oil in wet okara in a food atmosphere under a heated atmosphere, followed by rapid cooling.
In the method for producing a margarine-like food, the wet okara is preferably used in an amount of 5 to 30%, preferably 12 to 20% in the food. If it is less than 5%, the absorption of fats and oils is weak, and a stable margarine-like food cannot be obtained. On the other hand, if it exceeds 30%, the texture of the margarine-like food is rough and the texture is reduced.
One or more solid oils such as hardened rapeseed oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cotton seed oil, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, etc. 70 to 90%, preferably 75 to 84% of the food. If it is less than 70%, it will be out of the margarine standard, and if it exceeds 90%, a margarine-like food with a large amount of fats and oils and emulsion stability cannot be obtained.
Although it depends on the moisture of moist okara, if necessary, the food can further absorb 0 to 10%, preferably 0 to 7% of water. If it exceeds 10%, it will be out of the margarine standard.
These can be emulsified in a heated atmosphere using an azihomomixer or homomixer to emulsify in water-in-oil, and then emulsified under rapid cooling with a combinator, a compressor, a votator or the like.
The temperature at which the heat treatment is carried out under the heating atmosphere can be the same as the usual production conditions for margarine, and can be usually 60 to 80 ° C. This is for dissolving and sterilizing solid fats and oils.
The temperature after quenching is not higher than normal temperature (25 ° C.) and not lower than the temperature at which water does not freeze (0 ° C.).
The margarine-like food obtained in this way is easier to coat bread and the like without using oil and water, even though it does not use any emulsifier, compared with a commercially available water-in-oil emulsion. (Extensibility) is excellent. In addition, the separation of oil and water from each other when frozen and thawed, and the shape of the oil and water are greatly improved. The same applies after heating in a microwave oven or oven.
<Production example of liquid margarine-like food>
The method for producing a margarine-like food has been described above. In the method for producing a margarine-like food, a liquid margarine-like food using liquid oil and having a smaller amount than the margarine-like food can be obtained as follows. That is, liquid oil can be emulsified in a water-in-oil type using a wet okara liquid in an amount of 20 to 60% in food and water in a heated atmosphere to cool and cool.
In the method for producing a liquid margarine-like food, it is preferable to use 20 to 70%, preferably 35 to 60% of the present wet okara in the food. If the wet okara is less than 20%, stable oil and water cannot be obtained, and if it exceeds 70%, it becomes difficult to produce a liquid margarine-like food.
To this, 20 to 60%, preferably 30 to 45%, of a fat or oil (liquid oil) composed of one or more of soybean oil, corn oil, rapeseed oil, palm oil, fish oil and the like is absorbed and emulsified. If it is less than 20%, it is difficult to produce a liquid margarine-like food in an emulsified state, and if it exceeds 60%, a stable liquid margarine-like food cannot be produced.
Thereafter, the mixture is emulsified in a water-in-oil type under a heating atmosphere, and water is added and absorbed in a liquid margarine-like food by 5 to 30%, preferably 10 to 25%. Cool and make. If it is less than 5%, the okara remains in a state of absorbing fats and oils and does not become an emulsified state, and if it exceeds 30%, the phase is changed to an oil-in-water emulsion.
Liquid margarine sold on the market cannot be made unless a polyglycerin condensed ricinolenic acid ester having a water-in-oil type emulsifying power is usually used, but the flavor is extremely poor and is not worth eating. On the other hand, the liquid margarine-like food has a good flavor, and oil and water do not separate or lose their shape after heating in a microwave oven or an oven.
<Example of spread production>
Spreads have less oil content than margarine-like foods and use solid fats and oils as compared to liquid margarine-like foods using liquid oil. A spread production example can be obtained by absorbing 20 to 60% of solid fats and oils in foods and water in wet okara, and then rehydrated in a heated atmosphere.
It is good to use 20 to 70%, preferably 30 to 60% of the present wet okara in food. If the wet okara content is less than 20%, a spread having oil absorbability and emulsion stability cannot be obtained. If it exceeds 70%, it becomes margarine.
One or more solid oils such as hardened rapeseed oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cotton seed oil, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, etc. Is absorbed in the food in an amount of 20 to 60%, preferably 35 to 45%.
Next, water is absorbed in the food in an amount of 3 to 40%, preferably 7 to 27%. If the water content is less than 3%, the okara is in a state of absorbing fats and oils and does not become emulsified. If it exceeds 40%, the viscosity becomes low and the composition becomes creamy. These are prepared by heating under an atmosphere of heat with an azihomomixer or a homomixer. Spread can be made by absorbing either oil or water first, but it is easier to make it more stable if water is absorbed first and then oils and fats are absorbed.
The mode of hydration under a heated atmosphere is the same as that of a margarine-like food.
These spreads are superior to those using an oil-in-water emulsion, even though they do not use an emulsifier, in terms of shape retention over time. Also, as seen in commercially available spreads, oil and water do not separate or lose their shape when frozen and thawed. The same is true even after heating in a microwave oven or oven, and the heating resistance is excellent.
<Production example of whipped cream>
Example of whipped cream production is to absorb 20-50% of solid fats and oils in food and wet okara, add water, add polymerized phosphate, rehydrate under heating atmosphere, homogenize and oil-in-water emulsification After cooling, it can be obtained.
It is appropriate to use 10 to 55%, preferably 20 to 40%, of the wet okara in food. If this wet okara is less than 10%, it will be difficult to absorb water and emulsify. If it exceeds 55%, the viscosity rises rapidly and whipped cream cannot be formed.
One or more solid oils such as hardened rapeseed oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cotton seed oil, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, etc. Is added to the food in an amount of 20 to 50%, preferably 27 to 35%, and the okara is absorbed. If it is less than 20%, a solid whipped cream is hardly formed, and if it exceeds 50%, a whipped cream cannot be formed due to a sharp increase in viscosity.
Water is absorbed in the food by 20 to 65%, preferably 27 to 50%, and polymerized phosphates such as sodium tripolyphosphate, sodium hexametaphosphate, dibasic sodium phosphate, and ammonium phosphate are added to the food in 0.01%. % To 0.5%, preferably 0.07% to 0.2%, and the mixture is emulsified by mixing with an azihomomixer or a homomixer under a heating atmosphere to emulsify.
If the amount of water is less than 20%, an emulsified cream cannot be formed, and if it exceeds 65%, it is difficult to form a solid whipped cream. If the amount of the polymerized phosphate is less than 0.01%, the whipped cream becomes stiff and hard, and if it exceeds 0.5%, the salty taste becomes strong. The same whipped cream is made regardless of whether oil or water is absorbed first.
Even though this whipped cream does not use an emulsifier, it has a high overrun (contains air) and can be separated from water and oil even when left at room temperature or under refrigeration, or return to a liquid state (self-emulsification). ) Is not seen. Also, when this whipped cream is napped on a sponge, frozen and then thawed, no cracking or discoloration is observed.
<Production example of cream cheese-like food>
The cream cheese-like food is prepared by absorbing the moist okara solid oil and fat of the present invention in 5 to 40% of the food and water, adding a polymerized phosphate, mixing cheese flavor or cheese, and heating under a heated atmosphere. And quenched. The difference from the whipped cream is that it contains cheese and the percentage of solids including fats and oils is higher than that of whipped creams (solids are about 50% in creams with oils and fats, whereas cheeses have solids Is about 60%, and the protein content of cheese is higher than that of cheese). Unlike cream, whipping is not performed. Hereinafter, the raw material ratio will be described.
In the method for producing a cream cheese-like food, it is preferable to use 5 to 50%, preferably 20 to 35% of the present wet okara in the food. If this wet okara is less than 5%, it will be difficult to absorb water and emulsify. If it exceeds 50%, it tends to be rough when eaten.
Natural cheese is added to this in 5-50%, preferably 20-35% in the food. If it is less than 5%, the cheese flavor will be thin, and if it exceeds 50%, the viscosity will increase rapidly and it will be difficult to apply to a sterilizer.
One or more solid oils such as rapeseed hardened oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cottonseed oil, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, etc. Add 5-40%, preferably 15-30% in the food. If it is less than 5%, it will be difficult to obtain appropriate fluidity, and if it exceeds 40%, the viscosity will increase sharply and it will not be applied to the sterilizer.
Water is absorbed in the food by 10 to 50%, preferably 17 to 35%, and polymerized phosphates such as sodium tripolyphosphate, sodium hexametaphosphate, dibasic sodium phosphate and ammonium phosphate are added to the food in an amount of 0.01 to 0.01%. To 0.5%, preferably 0.03 to 0.25%, and emulsified. If the water content is less than 10%, an oily flavor is obtained, and if the water content is more than 50%, a low-viscosity, rough texture is produced. If the amount of the polymerized phosphate is less than 0.01%, the whipped cream becomes stiff and hard, and if it exceeds 0.5%, the salty taste becomes strong.
These cream cheese-like foods have a high overrun (air content) even when whipped, without using an emulsifier, and are creamy cream-like foods having a sticky flavor and a mild taste. Even if this is left at room temperature or under refrigeration, water and oil do not separate. Moreover, even if this cream cheese-like food is frozen and then thawed, water and oil do not separate. Further, even after heating in an oven or a microwave oven, separation of water and oil is not observed.
<Production example of water-containing chocolate>
The hydrated chocolate can be obtained by absorbing 10 to 40% of the solid fat and oil of the present invention in a food, adding cacao mass and sugar, adding a cacao mass and sugar, heating, rolling, conching and defoaming. it can. Hereinafter, the raw material ratio will be described.
In the method for producing hydrated chocolate, it is appropriate to use 5-60%, preferably 20-40%, of the wet okara in the food. If the okara is less than 5%, hydrated chocolate cannot be obtained. On the other hand, when it exceeds 60%, the amount of water increases, and a chocolate in the form of bottling is produced.
Furthermore, solid oils such as rapeseed hardened oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cottonseed oil, hardened corn oil, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, cocoa butter, etc. Is absorbed in the food in an amount of 10 to 40%, preferably 17 to 25%. If it is less than 10%, the gloss of the chocolate becomes difficult to appear. If it exceeds 40%, it becomes an oily chocolate.
Further, add 20 to 50%, preferably 27 to 35% of sugar in the food, and 5 to 40%, preferably 15 to 23% of cocoa mass in the food, hydrate in a heated atmosphere, roll, and conch. The dehydrated method produces a hydrated chocolate. If the sugar is less than 20%, the sweetness will be weak, and if it exceeds 50%, the sweetness will be too strong. If the cocoa mass is less than 5%, the chocolate flavor becomes thin, and if it exceeds 40%, it becomes hard. As means for rolling, conching, defoaming, etc., means generally used for chocolate production can be used.
Despite the fact that these water-containing chocolates do not use emulsifiers, they have extremely good flavor, excellent shape retention over time, and water and oil do not separate even when thawed after freezing. After heating, the oil and water do not separate or lose their shape. In addition, the chocolate that has been dissolved and absorbed does not have a bot-like structure, which often occurs when water enters chocolate, despite the fact that the chocolate has a large amount of water.
<Production example of ganache>
Ganache can be obtained by absorbing the solid oil and fat and milk or fresh cream of the moist okara of the present invention, adding cacao mass and sugar, quenching under a heated atmosphere, and quenching. Hereinafter, the raw material ratio will be described.
In the method for producing ganache, it is preferable to use 5 to 60%, preferably 15 to 28% of the present wet okara in food. If it is less than 5%, it becomes hard chocolate, and if it exceeds 60%, the water content increases and it becomes chocolate-like.
Further, cocoa mass is added to the food in an amount of 10 to 40%, preferably 20 to 30%. If it is less than 10%, the taste of the chocolate becomes thin, and if it exceeds 40%, the viscosity increases and the chocolate becomes hard.
Furthermore, 10 to 40%, preferably 17 to 23% of milk or fresh cream is added to the food, but if it is less than 10%, it becomes difficult to produce milky flavor, and if it exceeds 40%, it becomes difficult to produce chocolate. It is also possible to use soymilk instead of milk to produce soymilk ganache.
The sugar is then added to the food in 10-40%, preferably 17-23%. If the sugar is less than 10%, the sweetness is low, and if it exceeds 40%, the sweetness becomes too strong.
In addition, solid fats such as rapeseed hardened oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cottonseed oil, hardened corn oil, cocoa butter, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, etc. One or two or more are absorbed in the food in an amount of 3 to 30%, preferably 10 to 18%. If the fat or oil is less than 3%, the chocolate becomes dull, and if it exceeds 30%, the chocolate has an oily flavor.
These are mixed under a heating atmosphere with an azihomomixer or a homomixer, and then quenched and solidified by a rapid refrigerating device such as an onlator to produce ganache.
Despite the use of no emulsifier, these ganaches have extremely good flavor, excellent shape retention over time, and water and oil do not separate even when thawed after freezing, and are heated in a microwave oven or oven. After that, no separation of oil and water is observed and the shape is not distorted.
The difference between ganache and chocolate obtained as described above is that chocolate is a water-in-oil emulsion system, while ganache is an oil-in-water emulsion system. The difference from the liquid margarine-like food is that the type of fats and oils, the margarine-like food does not use cacao mass such as ganache, and that it has a large amount of water and weak emulsification.
<Production example of spice paste>
The pasty spice paste can be obtained by absorbing the brewed vinegar and liquid oil from the wet okara of the present invention, adding a spice, and then submerging in a low-temperature atmosphere. Hereinafter, the raw material ratio will be described.
In the method for producing a pasty spice, it is preferable to use 40 to 75%, preferably 50 to 65% of the present wet okara in food. If this wet okara is less than 40%, it has a low viscosity and does not serve as a substrate, and if it exceeds 75%, the flavor of the spice tends to be thin.
This allows the liquid oil to absorb 3-10%, preferably 6-8%, of the food. If the liquid oil is less than 3%, the spice paste becomes dull, and if it exceeds 10%, the spice paste becomes oily.
In addition, 3 to 15%, preferably 7 to 12% of brewed vinegar such as rice vinegar having an acidity of 4% is absorbed in the food. If the brewed vinegar is less than 3%, the pH is in the neutral range, and the shelf life is short. If it exceeds 15%, it is too sour to eat.
One or two or more spices such as wasabi, mustard, ginger, umeboshi, garlic and the like may be added at 5-40%, preferably 20-33%, in food at a low temperature (25 ° C or lower), preferably 5-25 ° C. In addition, it is in a sanitary atmosphere. If the spice is less than 5%, the flavor of the spice paste becomes thin, and if it exceeds 40%, on the contrary, it becomes too strong.
These spice pastes have an extremely good flavor, do not change shape retention and color tone over time, and have excellent extensibility. Water and oil do not separate even after thawing after freezing, and water and oil do not similarly separate even after heating in a microwave oven or oven, and do not lose their shape.
Liquid margarine-like food means that the spice paste has an extremely small amount of oil and contains spices as a main component.
<Production example of soybean paste>
The method for producing soybean bean paste can be produced by absorbing liquid oil from moist okara, mixing sugar in the food in an amount of 20 to 70%, and then mixing under a heated atmosphere. The ratio of the raw materials will be described below.
This bean paste is an oil-containing soybean bean paste, and its production method is to use 20 to 60%, preferably 40 to 55% of the wet okara in the food. If it is less than 20%, it will not be in the form of a bean jam but will be creamy, and if it exceeds 60%, the texture will be rough.
Liquid oils such as rapeseed white oil, soybean white oil, and corn white oil are absorbed into the food in an amount of 3 to 10%, preferably 6 to 8.5%. If the liquid oil content is less than 3%, the bean paste becomes dull and illuminated. If it exceeds 10%, the oil floats on the surface and becomes oily when eaten.
Furthermore, sugar is added to the food in an amount of 20 to 70%, preferably 30 to 60%. If the sugar is less than 20%, the sweetness of the bean jam becomes lighter, and if the sugar exceeds 70%, the food becomes a syrup-like food and is not a bean jam.
Although not essential, water dissolves 0 to 10%, preferably 0 to 8%, but if the water exceeds 10%, it becomes a syrupy liquid. These waters are absorbed, and the water is absorbed in a heated homomixer or a homomixer or the like under a heating atmosphere.
This soybean paste has a very good flavor and excellent shape retention over time, and does not show separation of oil and water or lose its shape after being heated in a microwave oven or an oven as seen in commercial products. Water and oil do not separate even when thawed after freezing.
It differs from liquid margarine-like foods in that soybean bean jam has more water and sugar is essential. It differs from mayonnaise-like food in that soybean paste is essential for sugar and has a different pH.
<Production example of frozen dessert>
The frozen dessert can be obtained by absorbing the solid fat and oil into the wet okara of the present invention, adding sugar to the mixture, homogenizing, freezing and freezing. Hereinafter, the raw material ratio will be described.
In the method for producing frozen dessert, it is preferable to use 2 to 50%, preferably 7 to 30% of the wet okara in food. If the wet okara is less than 2%, the emulsifiability and stability will deteriorate, and the frozen dessert will lose its shape-retaining property. If it exceeds 50%, the flavor derived from soybean will increase and the flavor of other ingredients will be impaired, dissolving in the mouth. It becomes worse and has a heavy texture.
One or more solid oils such as hardened rapeseed oil, hardened soybean oil, hardened palm oil, hardened palm kernel oil, hardened cottonseed oil, coconut oil, hardened coconut oil, kapok oil, milk fat, hardened fish oil, etc. Is added to the food in an amount of 2 to 30%, preferably 5 to 15%, and the okara is absorbed. If it is less than 2%, the body taste will be reduced. If it exceeds 30%, it becomes greasy when eaten.
This allows the water to be absorbed 5 to 80%, preferably 30 to 60% in the food. If the water content is less than 5%, the texture becomes heavy, and if it exceeds 80%, the mouthfeel becomes cold and crisp.
Furthermore, the sugar in the frozen dessert can be used in 10 to 40%, preferably 18 to 25% in the food. If it is less than 10%, the sweetness is insufficient, and if it exceeds 40%, the sweetness becomes too strong. In the present invention, known sugars such as fructose, glucose and lactose can be used instead of part or all of sugar. Of course, syrup, sugar alcohol and the like can also be used.
Known means can be used for the production process of the frozen dessert. For example, the temperature at which the temperature is reduced can be generally 60 to 70 ° C.
As a mode of kneading, a homogenizing means such as a homogenizer is used to obtain 150 kg / cm. 2 (Usually 100-600 kg / cm 2 It is preferable to carry out the treatment twice or more at a pressure of about). This is because there is an effect of smoothing the particles of the wet okara of the present invention.
The freezing temperature may be any temperature below the freezing point sufficient for the frozen dessert to freeze.
Although this frozen dessert does not use an emulsifier, the frozen dessert has excellent shape retention over time, and has good flavor and texture.
<Example of soup production>
This soup can be obtained by absorbing oils and fats from moist okara, adding soup ingredients, and soaking in a heated atmosphere. Hereinafter, the raw material ratio will be described.
Wet okara can be used in the food in an amount of 3 to 50%, preferably 10 to 30%. If the okara is less than 3%, the flavor becomes watery, and if it exceeds 50%, the viscosity becomes high and it becomes difficult to drink.
Next, fats and oils can be used in the food in an amount of 5 to 30%, preferably 12 to 22%. The fat or oil may be a liquid or a solid, as long as it is dissolved in the soup production process. For example, rapeseed oil, soybean oil, palm oil, palm kernel oil, corn oil, cottonseed oil, coconut oil, milk fat, etc. are added and absorbed in okara. If there is too much fat, it will become greasy when eaten.
Next, water can be used in the food at 15-65%, preferably 25-55%.
Furthermore, soup ingredients can be used in the food in an amount of 3 to 20%, preferably 6 to 12%. As the soup ingredients, for example, vegetables such as corn and beans, and those lining them, potage, cream and the like can be used. Also, soup stocks such as consomme, bouillon, butter and the like can be used in combination.
Although this soup does not use any emulsifier, the separation of oil and water after retort sterilization, after freeze-thawing, and after heating in a microwave oven is greatly improved.
<Production example of meat products>
Livestock meat products can be obtained by absorbing oils and fats in wet okara, mixing with meat raw materials, heating after molding. Hereinafter, the raw material ratio will be described.
It is preferable to use 3 to 30%, preferably 10 to 20% of the wet okara in foods. If this wet okara is less than 3%, oil and water are separated and the effect of improving the yield and texture is lost, and if it exceeds 30%, the dough becomes soft and loses shape retention, resulting in a sticky texture. .
One or more fats such as rapeseed oil, soybean oil, palm oil, palm kernel oil, corn oil, cottonseed oil, coconut oil, milk fat and the like are added to the food in an amount of 5 to 25%, preferably 12 to 18%. Absorb okara. If it is less than 5%, it will have a crunchy texture, and if it exceeds 25%, oil will float and it will be greasy when eaten. The oils and fats may be liquid or solid, but liquid oils are preferred because of better workability.
Next, 25-60%, preferably 35-50%, of the meat material can be used in the food. As meat raw materials, edible meat such as cows, pigs and chickens, minced meats thereof, and the like can be used.
Although water is not always necessary, it can be used in an amount of 0 to 12%, preferably 3 to 7%. If it exceeds 12%, the dough becomes soft. Further, soybean protein and the above fats and oils can be used as an emulsion as a pickle liquid. Examples of meat products include hamburgers, meatballs, meatballs, hams, sausages and the like.
This livestock meat product has a high yield and a soft and juicy texture even though no emulsifier is used. In addition, after retort sterilization, after freezing and thawing, and after heating in a microwave oven, hardening and dripping are greatly improved.
<Production example of fishery products>
The fishery kneaded product can be obtained by absorbing the oil and fats and water from the wet okara of the present invention, making the surimi with the surimi, molding and then heating. Hereinafter, the raw material ratio will be described.
It is good to use 3 to 30%, preferably 7 to 20% of the present wet okara in foods. If this wet okara is less than 3%, oil and water are separated and the effect of improving the yield and texture is lost, and if it exceeds 30%, the dough becomes soft and loses shape retention, resulting in a sticky texture. .
Next, one or two or more kinds of fats and oils such as rapeseed oil, soybean oil, palm oil, palm kernel oil, corn oil, cottonseed oil, coconut oil, milk fat and the like are contained in the food at 2 to 15%, preferably 3.5 to 8%. Add okara to okara. If it is less than 2%, it will have a crunchy texture, and if it exceeds 15%, oil will float and it will be greasy when eaten. Usually, a liquid oil is preferable as the fat used.
Next, water is absorbed in the food in an amount of 3 to 30%, preferably 10 to 20%. If the water content is less than 3%, the texture becomes hard, and if it exceeds 30%, the dough becomes soft, loses shape retention and becomes watery.
Furthermore, 25 to 65%, preferably 40 to 55% of the surimi can be used in the food. As surimi, cod (scallop, southern cod, madara, etc.), bream (red snapper, lotus bream, golden bream, etc.), sardine, saury, horse mackerel, mackerel, flounder, Itoyori, hake, hoki, gull, eso, etc. Commonly used fish species can be used.
Examples of fishery kneaded products include kamaboko, bamboo rings, hampan, and satsumaage.
This fishery kneaded product has a high yield and a soft and juicy texture even though no emulsifier is used. In addition, after retort sterilization, after freezing and thawing, and after heating in a microwave oven, hardening and dripping are greatly improved.
Example
Hereinafter, embodiments of the present invention will be described with reference to Production Examples 1 to 6, Examples 1 to 45, and Comparative Examples 1 to 4.
In Production Examples 1 to 6, production examples of various kinds of okara are shown.
Production Example 1 (wet fine okara)
Using a commit roll (manufactured by Arshel Co., Ltd.) obtained by adding 5 times the amount of water to dehulled and dehybridized soybeans by a rotary blade shear force, a fine soybean slurry having an average particle diameter of 45 microns is obtained. 200 kg / cm using a high-pressure homogenizer (manufactured by APV Co., Ltd.) 2 To obtain a fine soybean slurry having an average particle diameter of 25 microns. The soymilk was removed from this with a centrifugal separator to obtain wet fine okara. The resulting wet fine okara had a water content of 86% and an average particle size of 25 microns. The water absorption capacity of this okara was 34 times that of the okara dry solid, and the oil absorption capacity was 13 times that of the oil content.
Production Example 2 (general tofu okara)
Okara that is traditionally produced in a commercial tofu production process for producing tofu from whole soybeans is okara that can be obtained with a stone mill without being refined with a commit roll or a high-pressure homogenizer as in Production Example 1, The okara had a moisture content of 81% and an average particle size of 1,000 microns. The water absorption capacity of this okara was 8 times the solid content of the okara dry solid, and the oil absorption capacity was 4 times the oil absorption capacity.
Production Example 3 (Semi-dried ultra-fine okara)
In order to make the average particle diameter of okara obtained in the same manner as in Production Example 1 7 μm, it is impossible in a wet state. Therefore, the water content is set to 45% with a flash dryer, and a counter jet mill (manufactured by Hosokawa Micron Corporation) is used. And jetted from the nozzle at the speed of sound to collide with each other to obtain fine okara. The okara had a water content of 45% and an average particle size of 7 microns. The water absorption capacity of this okara was 7 times that of the dried okara solid, and the oil absorption capacity was 3 times that of the oil content.
Production Example 4 (flash drying okara)
The fine okara obtained in Production Example 1 was dried while being finely pulverized with a pin mill in a hot air stream at 180 ° C. using a micron dryer (manufactured by Hosokawa Micron Corporation). The resulting fine okara had a water content of 3% and an average particle size of 150 microns. The water absorption capacity of this okara was 12 times that of the okara dry solid, and the oil absorption capacity was 7 times.
Production Example 5 (freeze-dried okara)
2 kg of the fine okara obtained in Production Example 1 was rapidly frozen to −40 ° C., and frozen at a shelf temperature of 50 ° C. and a degree of vacuum of −40 mmHg for 3 days using a freeze dryer (manufactured by Nisku Kogyo Co., Ltd.). Dried. The resulting fine okara had a water content of 3% and an average particle size of 100 microns. The water absorption capacity of this okara was 14 times that of the okara dry solid, and the oil absorption capacity was 4 times that of the oil content.
Production Example 6 (wet okara)
When producing in the same manner as in Production Example 1, using a high-pressure homogenizer, 200 kg / cm 2 The okara was homogenized once at a pressure of 5 ° C and flash dried. The resulting okara had a water content of 70% and an average particle size of 150 microns. The water absorption capacity of the okara was 25 times the solid content of the dried okara, and the oil absorption capacity was 10 times the oil absorption capacity.
The water absorption capacity of these okara was measured by adding water to wet okara, stirring with a Kenwood mixer (rotation speed: 60 rpm for 1 minute), and leaving at 25 ° C. for 24 hours to retain water. The water absorption capacity was converted to okara dry weight.
The oil absorption capacity of these okara was measured by adding the oil and fat to wet okara, stirring with a Kenwood mixer (at 60 rpm for 1 minute), leaving the mixture at 60 ° C. for 24 hours, and holding the oil and fat. The oil absorption capacity was converted to the dry weight of okara.
Example 1 (mayonnaise-like food using wet fine okara)
Okara 50% obtained in the same manner as in Production Example 1, rapeseed white squeezed oil 20%, rice brewed vinegar 13% (acidity 4%), water 17%, powdered mustard 0.8%, salt and flavor each 0 The water portions prepared by adding 0.1% were separately aged for 5 minutes at 65 ° C. using an Ajihomomixer (manufactured by Tokushu Kika Co., Ltd.), filled in small sachets, and cooled in a refrigerator at 5 ° C. for 17 hours. To produce a mayonnaise-like food (semi-solid dressing).
The viscosity of the present mayonnaise-like food was maintained at 60,000 cp or more despite an extremely low oil content of 21%. The solid content of okara in this mayonnaise-like food was 7.0% per dry solid content.
I ate this mayonnaise-like food, but did not feel any roughness. This mayonnaise-like food was frozen in a freezer at -28 ° C for 24 hours, and then thawed in an atmosphere at 20 ° C, but the oil and water were not separated at all, and the original shape was maintained. . Also, 100 g of the present mayonnaise-like food was heated in a microwave oven with a 500 W output for 1 minute, but the oil and water were not separated at all, and the shape was kept in its original state.
50 g of this mayonnaise-like food was sandwiched between bread doughs and baked in an oven at 180 ° C. for 15 minutes, but oil and water were not separated at all.
Example 2 (Mayonnaise-like food using wet fine okara)
Okara 65% obtained in the same manner as in Production Example 1, rapeseed white squeezed oil 5%, rice brewed vinegar 7% (acidity 4%), water 23%, powdered mustard 0.8%, salt and flavor each 0 The water portions prepared by adding 0.1% were separately aged for 5 minutes at 65 ° C. using an Ajihomomixer (manufactured by Tokushu Kika Co., Ltd.), filled in small sachets, and cooled in a refrigerator at 5 ° C. for 17 hours. To produce a mayonnaise-like food (semi-solid dressing).
This mayonnaise-like food had a viscosity of 60,000 cp or more despite an extremely low oil content of 6.8%. The solid content of okara in the mayonnaise-like food was 9.1% based on dry solids. I ate this mayonnaise-like food, but did not feel any roughness. This mayonnaise-like food was frozen in a freezer at −28 ° C. for 24 hours, and then thawed in an atmosphere of 20 ° C. However, oil and water were not separated at all, and the shape remained in its original state. .
Further, 100 g of the present mayonnaise-like food was heated for 1 minute in a microwave oven with a 500 W output, but the oil and water were not separated, and the shape was kept in its original state.
50 g of this mayonnaise-like food was sandwiched between bread doughs and baked in an oven at 180 ° C. for 15 minutes, but oil and water were not separated at all.
Example 3 (Mayonnaise-like food using wet fine okara)
Okara 20% obtained in the same manner as in Production Example 1, rapeseed white squeezed oil 50%, rice brewed vinegar 17% (acidity 4%), water 13%, powdered mustard 0.8%, salt and flavor each 0 The water portions prepared by adding 0.1% were separately aged for 5 minutes at 65 ° C. using an Ajihomomixer (manufactured by Tokushu Kika Co., Ltd.), filled in small sachets, and cooled in a refrigerator at 5 ° C. for 17 hours. To produce a mayonnaise-like food (semi-solid dressing).
This mayonnaise-like food had a viscosity of 60,000 cp or more despite an extremely low oil content of 6.8%. The solid content of okara in this mayonnaise-like food was 2.8% per dry solid content.
I ate this mayonnaise-like food, but did not feel any roughness.
This mayonnaise-like food was frozen in a freezer at −28 ° C. for 24 hours, and then thawed in an atmosphere of 20 ° C. However, oil and water were not separated at all, and the shape remained in its original state. .
Also, 100 g of the present mayonnaise-like food was heated in a microwave oven with a 500 W output for 1 minute, but the oil and water were not separated at all, and the shape was kept in its original state.
50 g of this mayonnaise-like food was sandwiched between bread dough and baked in an oven at 180 ° C. for 15 minutes, but oil and water were not separated at all.
Example 4 (Mayonnaise-like food using moist okara)
Okara (obtained in the same manner as in Production Example 6) was added with water to give a solid content of 14%, 50% of which was rapeseed white oil, 20% of rice brewed vinegar (acidity 4%), and 17% of water. , Powdered mustard 0.8%, salt, and flavor 0.1% each were added, and the water portions were separately aged at 65 ° C for 5 minutes using an Ajihomo mixer, filled in small sachets, and then cooled at 5 ° C. For 17 hours to produce a mayonnaise-like food (semi-solid dressing).
This mayonnaise-like food kept the viscosity of 100,000 cp or more despite its extremely low oil content of 31%.
The solid content of okara in this mayonnaise-like food was 7.0% per dry solid content.
The present mayonnaise-like food was eaten, but had a slight texture but had a good mouthfeel.
This mayonnaise-like food was frozen in a freezer at −28 ° C. for 24 hours, and then thawed in an atmosphere of 20 ° C. However, oil and water were not separated at all, and the shape remained in its original state. .
Also, 100 g of the present mayonnaise-like food was heated in a microwave oven with a 500 W output for 1 minute, but the oil and water were not separated at all, and the shape was kept in its original state.
50 g of this mayonnaise-like food was sandwiched between bread dough and baked in an oven at 180 ° C. for 15 minutes, but oil and water were not separated at all.
Comparative Example 1 (mayonnaise-like food using common tofu okara)
Water is added to the okara obtained in Production Example 2 to make the okara 50% having a solid content of 14% and an average particle diameter of 1,000 microns, rapeseed white oil 20%, and rice brewing vinegar 13% (acidity 4 %), Water 17%, powdered mustard 0.8%, salt, and flavor 0.1% each, and separately prepared water portions at 65 ° C. for 5 minutes using an Ajihomo mixer (8,000 rpm). Then, after filling in a small bag, it was cooled in a refrigerator at 5 ° C. for 17 hours to produce a mayonnaise-like food (semi-solid dressing).
This mayonnaise-like food had a viscosity of 3,000 cp or less, despite the extremely low oil content of 21% oil, and was a low-viscosity mayonnaise-like food. The solid content of okara in this mayonnaise-like food was 7.0% per dry solid content.
I ate this mayonnaise-like food, but it had a lot of grain and was hard to eat.
This mayonnaise-like food was placed in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in an atmosphere of 20 ° C., but oil and water were separated, and 100 g of this mayonnaise-like food was microwaved at 500 W output. For 1 minute, oil and water were also separated.
Comparative Example 2 (mayonnaise-like food using semi-dried ultra-fine okara)
Water was added to the fine okara obtained in Production Example 3 to make okara 50% having a solid content of 14% and an average particle size of 7 microns, rapeseed white oil 20%, and rice brewing vinegar 13% (acidity 4 %), Water 17%, powdered mustard 0.8%, salt, and flavor 0.1% each, and separately prepared water portions at 65 ° C. for 5 minutes using an Ajihomo mixer (8,000 rpm). Then, after filling in a small bag, it was cooled in a refrigerator at 5 ° C. for 17 hours to produce a mayonnaise-like food (semi-solid dressing).
This mayonnaise-like food had a viscosity of 3,000 cp or less, despite the extremely low oil content of 21% oil, and was a low-viscosity mayonnaise-like food. The solid content of okara in this mayonnaise-like food was 9.8% per dry solid content. This mayonnaise-like food was eaten, but there was no graininess, but it had a watery flavor due to low water absorption.
This mayonnaise-like food was placed in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in an atmosphere of 20 ° C., but oil and water were separated, and 100 g of this mayonnaise-like food was microwaved at 500 W output. For 1 minute, oil and water were also separated.
Comparative Example 3 (mayonnaise-like food using flash dried okara)
Water is added to okara obtained in the same manner as in Production Example 4 to obtain a solid content of 14%, okara 50%, rapeseed white oil 20%, rice brewed vinegar 13% (acidity 4%), water 17% , Powdered mustard, 0.8% salt, and 0.1% each of flavor were added, and the water portions were separately aged at 65 ° C. for 5 minutes with an azihomomixer, but the viscosity was as small as 800 cp and the fluidity was low. Yes, it was left as it was for about 5 minutes, but water and oil were separated, so it did not become mayonnaise-like food.
Comparative Example 4 (Mayonnaise-like food using freeze-dried okara)
Water is added to okara obtained in the same manner as in Production Example 5 to obtain okara 50% having a solid content of 14% and an average particle size of 100 microns, rapeseed white oil 20%, and rice brewing vinegar 13% ( Acidity 4%), water 17%, powdered mustard 0.8%, salt and flavor 0.1% each was added, and the water portions were separately prepared at 65 ° C for 5 minutes using an azihomomixer. 000 rpm), filled in a small bag, and cooled in a refrigerator at 5 ° C. for 17 hours to produce a mayonnaise-like food (semi-solid dressing).
This mayonnaise-like food had an extremely low oil content of 21%, and had a viscosity of 50,000 cp or more.
The solid content of okara in this mayonnaise-like food was 7.0% per dry solid content.
This mayonnaise-like food was eaten, but some graininess remained. After placing in a -28 ° C freezer for 24 hours and freezing, it was thawed in an atmosphere of 20 ° C. Separation of oil and water was observed. Did not keep the state. When 100 g of the present mayonnaise-like food was heated in a microwave oven with a 500 W output for 1 minute, oil and water were similarly separated.
Example 5 (Margarine-like food 1)
To 15% of okara 15% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, 35% of hardened fish oil and 50% of hardened palm oil were added, and emulsified at 65 ° C for 10 minutes with a homomixer. (10,000 rpm) and rapidly cooled to 5 ° C. with a combinator (manufactured by Schroeder Co., Ltd.) to obtain a margarine-like food.
The solid content of okara in the present margarine-like food was 2.1% per dry solid content. This margarine-like food did not use any emulsifiers, but did not separate oil and water, and was excellent in spreadability of bread and the like (spreadability) compared to those using a water-in-oil emulsion. .
This margarine-like food was put in a freezer at -28 ° C for 3 days to freeze it, and then thawed in an atmosphere at 20 ° C, but no separation of oil and water was observed and the shape retention was good. Further, 100 g of the present margarine-like food was heated for 1 minute in a microwave oven with a power of 500 W, but no separation of oil and water was observed and the preservation was good. In addition, the present margarine-like food was baked in an oven at 180 ° C., but oil and water were not separated at all and there was unburned residue. No roughness was observed even when this margarine-like food was eaten, and the flavor was excellent.
Example 6 (Margarine-like food 2)
To 10% of okara 10% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, 40% of hardened fish oil and 42% of hardened palm oil were added, and 8% of water was added. The mixture was emulsified at 10,000C for 10 minutes (10,000 rpm) and rapidly cooled to 5C with a combinator (manufactured by Schrader) to obtain a margarine-like food.
The solid content of okara in this margarine-like food was 1.4% per dry solid content. This margarine-like food did not use any emulsifiers, but did not separate oil and water, and was excellent in spreadability of bread and the like (spreadability) compared to those using a water-in-oil emulsion. . This margarine-like food was put in a freezer at -28 ° C for 3 days to freeze it, and then thawed in an atmosphere at 20 ° C, but no separation of oil and water was observed and the shape retention was good. Further, 100 g of the present margarine-like food was heated for 1 minute in a microwave oven with a power of 500 W, but no separation of oil and water was observed and the preservation was good.
In addition, the present margarine-like food was baked in an oven at 180 ° C., but oil and water were not separated at all and there was unburned residue. No roughness was observed even when this margarine-like food was eaten, and the flavor was excellent.
Example 7 (Margarine-like food 3)
40% fish hardened oil and 32% palm hardened oil were added to okara 23% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and 5% of water was added. The mixture was emulsified at 10,000C for 10 minutes (10,000 rpm) and rapidly cooled to 5C with a combinator (manufactured by Schrader) to obtain a margarine-like food.
The solid content of okara in the present margarine-like food was 3.2% per dry solid content. This margarine-like food did not use any emulsifiers, but did not separate oil and water, and was excellent in spreadability of bread and the like (spreadability) compared to those using a water-in-oil emulsion. . This margarine-like food was put in a freezer at -28 ° C for 3 days to freeze it, and then thawed in an atmosphere at 20 ° C, but no separation of oil and water was observed and the shape retention was good. Also, 100 g of the present margarine-like food was heated for 1 minute with an electronic cash register having a power of 500 W, but no separation of oil and water was observed, and the retention was good.
Further, when this margarine-like food was baked in an oven at 180 ° C., oil and water were not separated at all, and there was unburned residue. No roughness was observed even when this margarine-like food was eaten, and the flavor was excellent.
Example 8 (liquid margarine-like food 1)
Absorbed 40% of rapeseed white oil and 20% of water to 40% of okara having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and then 65 ° C at 10,000 rpm with a homomixer. For 15 minutes, and cooled to 5 ° C. to prepare a liquid margarine-like food. The solid content of okara in the liquid margarine-like food was 5.6% per dry solid content. This liquid margarine-like food does not change with time, even though it does not use any emulsifier, compared to the one using a water-in-oil emulsion. The mixture was heated in a microwave for 1 minute, but no separation of oil and water was observed and the preservation was good. When the liquid margarine-like food was baked in an oven at 180 ° C., oil and water were not separated at all, and there was unburned residue. This was eaten, but had a flavor in which bitterness and odor of the emulsifier were not felt at all as compared with those using polyglycerin condensed ricinolenate, which is a commonly used emulsifier.
Example 9 (liquid margarine-like food 2)
Absorbed 50% of rapeseed white oil and 20% of water to 30% of okara, having a solid content of 14% and an average particle diameter of 25 microns, and obtained in the same manner as in Production Example 1, and then 65 ° C at 10,000 rpm with a homomixer. For 15 minutes, and cooled to 5 ° C. to prepare a liquid margarine-like food. The solid content of okara in the liquid margarine-like food was 4.2% per dry solid content. This liquid margarine-like food does not change with time, even though it does not use any emulsifier, compared to the one using a water-in-oil emulsion. The mixture was heated in a microwave for 1 minute, but no separation of oil and water was observed and the preservation was good. When the liquid margarine-like food was baked in an oven at 180 ° C., oil and water were not separated at all, and there was unburned residue. This was eaten, but had a flavor in which bitterness and odor of the emulsifier were not felt at all as compared with those using polyglycerin condensed ricinolenate, which is a commonly used emulsifier.
Example 10 (liquid margarine-like food 3)
Absorbed 25% of rapeseed white oil and 7% of water to 68% of okara having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and then 65 ° C at 10,000 rpm with a homomixer. For 15 minutes, and cooled to 5 ° C. to prepare a liquid margarine-like food. The solid content of okara in this liquid margarine-like food was 9.5% per dry solid content. This liquid margarine-like food does not change with time, even though it does not use any emulsifier, compared to the one using a water-in-oil emulsion. The mixture was heated in a microwave for 1 minute, but no separation of oil and water was observed and the preservation was good. When the liquid margarine-like food was baked in an oven at 180 ° C., oil and water were not separated at all, and there was unburned residue. This was eaten, but had a flavor in which bitterness and odor of the emulsifier were not felt at all as compared with those using polyglycerin condensed ricinolenate, which is a commonly used emulsifier.
Example 11 (Spread 1)
Absorbed 50% of rapeseed oil and 10% of water to 40% of okara having a solid content of 14% and an average particle size of 25 microns obtained in the same manner as in Production Example 1, and then subjected to homomixer at 10,000 rpm at 65 ° C. Spread was prepared by heating and stirring for 15 minutes and cooling to 5 ° C. The solid content of okara in the spread was 5.6% per dry solids. This spread was heated for 1 minute in a microwave oven of 500 W output without changing over time, even though it did not use any emulsifier, compared to the one using a water-in-oil emulsion. However, no separation of oil and water was observed, and the formation was good. The spread was baked in an oven at 180 ° C., but the oil and water were not separated at all, and there was unburned residue. I ate this, but I could not feel any graininess and the flavor was excellent.
Example 12 (Spread 2)
Absorbed 50% of rapeseed hardened oil and 25% of water to 25% of okara having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and then subjected to a homomixer at 10,000 rpm at 65 ° C. Spread was prepared by heating and stirring for 15 minutes and cooling to 5 ° C. The solid content of okara in the spread was 3.5% per dry solids. This spread was heated for 1 minute in a microwave oven of 500 W output without changing over time, even though it did not use any emulsifier, compared to the one using a water-in-oil emulsion. However, no separation of oil and water was observed, and the formation was good. The spread was baked in an oven at 180 ° C., but the oil and water were not separated at all, and there was unburned residue. I ate this, but I could not feel any graininess and the flavor was excellent.
Example 13 (spread 3)
Absorbed 40% of rapeseed oil and 25% of water to 35% of okara 35% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and then homogenized at 10,000 rpm at 65 ° C. with a homomixer. Spread was prepared by heating and stirring for 15 minutes and cooling to 5 ° C. The solid content of okara in the spread was 4.9% per dry solids. This spread was heated for 1 minute in a microwave oven of 500 W output without changing over time, even though it did not use any emulsifier, compared to the one using a water-in-oil emulsion. However, no separation of oil and water was observed, and the formation was good. The spread was baked in an oven at 180 ° C., but the oil and water were not separated at all, and there was unburned residue. I ate this, but I could not feel any graininess and the flavor was excellent.
Example 14 (Spread 4)
Absorbed 30% of rapeseed hardened oil and 5% of water to 65% of okara, having a solid content of 14% and an average particle size of 25 microns obtained in the same manner as in Production Example 1, and then homogenized at 10,000 rpm at 65 ° C. with a homomixer. Spread was prepared by heating and stirring for 15 minutes and cooling to 5 ° C. The solid content of okara in the spread was 9.1% per dry solids. This spread was heated for 1 minute in a microwave oven of 500 W output without changing over time, even though it did not use any emulsifier, compared to the one using a water-in-oil emulsion. However, no separation of oil and water was observed, and the formation was good. The spread was baked in an oven at 180 ° C., but the oil and water were not separated at all, and there was unburned residue. I ate this, but I could not feel any graininess and the flavor was excellent.
Example 15 (Whipped cream 1)
A fat and oil portion prepared in the same manner as in Production Example 1 and having a solid content of 14% and an average particle size of 25 μm and a rapeseed hardened oil (melting point 30 ° C.) 40% to 30% and water 30% adjusted with flavor Is added to each of the water portions, and 0.05% of sodium hexametaphosphate is further added thereto. The mixture is rehydrated at 65 ° C. for 5 minutes with an azihomomixer, and 70 kg / cm with a homogenizer. 2 After homogenizing at a pressure of 5 ° C., the mixture was quickly cooled to 5 ° C. or less with ice water to produce a whipped cream. The viscosity of this whipped cream was 300 cp, the overrun was 90%, and a whipped cream having a light texture was obtained.
The solid content of okara in this whipped cream was 4.2% per dry solid content.
The whipped cream was allowed to stand at room temperature of 15 ° C. for 24 hours, but there was no water separation, the shape retention was excellent, and the texture and flavor were very good. When the whipped cream was left in a refrigerator at 5 ° C. for 24 hours, no self-emulsification phenomenon returning to a liquid state was observed. Furthermore, this whipped cream was napped into a decoration cake, frozen in a freezer at −28 ° C. for one week, and then thawed in an atmosphere of 20 ° C. However, there was no cracking of the whipped cream on the cake surface, and oil and water were completely separated. And its shape remained intact.
Example 16 (Whipped cream 2)
An oil and fat portion prepared in the same manner as in Production Example 1 and having a solid content of 14% and an average particle size of 25 microns, and a rapeseed oil (melting point 30 ° C.) 30% to arachis 15%, and water 55% adjusted by flavor Was added to each of the water portions prepared, and 0.1% of sodium hexametaphosphate was further added. The mixture was hydrated at 65 ° C. for 5 minutes with an azimohomomixer, and 70 kg / cm with a homogenizer. 2 After homogenizing at a pressure of 5 ° C., the mixture was quickly cooled to 5 ° C. or less with ice water to produce a whipped cream.
The viscosity of this whipped cream was 300 cp, the overrun was 90%, and a whipped cream having a light texture was obtained. The solid content of okara in this whipped cream was 2.1% per dry solid content.
The whipped cream was allowed to stand at room temperature of 15 ° C. for 24 hours, but there was no water separation, the shape retention was excellent, and the texture and flavor were very good. When the whipped cream was left in a refrigerator at 5 ° C. for 24 hours, no self-emulsification phenomenon returning to a liquid state was observed. Furthermore, this whipped cream was napped into a decoration cake, frozen in a freezer at −28 ° C. for one week, and then thawed in an atmosphere of 20 ° C. However, there was no cracking of the whipped cream on the cake surface, and oil and water were completely separated. And its shape remained intact.
Example 17 (Whipped cream 3)
An oil and fat portion prepared in the same manner as in Production Example 1 and having a solid content of 14% and an average particle size of 25 μm and a karase hardened oil (melting point 30 ° C.) 25% to 25%, and water 25% adjusted with flavor Was added to each of the water portions, and 0.3% of sodium hexametaphosphate was further added thereto. The mixture was hydrated at 65 ° C. for 5 minutes using an azimohomomixer, and 70 kg / cm using a homogenizer. 2 After homogenizing at a pressure of 5 ° C., the mixture was quickly cooled to 5 ° C. or less with ice water to produce a whipped cream.
The viscosity of this whipped cream was 300 cp, the overrun was 90%, and a whipped cream having a light texture was obtained. The solid content of okara in this whipped cream was 7.0% per dry solid content.
The whipped cream was allowed to stand at room temperature of 15 ° C. for 24 hours, but there was no water separation, the shape retention was excellent, and the texture and flavor were very good. When the whipped cream was left in a refrigerator at 5 ° C. for 24 hours, no self-emulsification phenomenon returning to a liquid state was observed. Furthermore, this whipped cream was napped into a decoration cake, frozen in a freezer at −28 ° C. for one week, and then thawed in an atmosphere of 20 ° C. However, there was no cracking of the whipped cream on the cake surface, and oil and water were completely separated. And its shape remained intact.
Example 18 (cream cheese-like food 1)
Oil and fat prepared by the same method as in Production Example 1 and having a solid content of 14%, an average particle size of 25 microns, okara 30%, natural cheese 30%, rapeseed hardened oil (melting point 30 ° C) 20%, and a flavor. The water portion prepared by adding 20% of adjusted water was absorbed, and 0.05% of sodium hexametaphosphate was further added thereto. The mixture was hydrated at 65 ° C. for 5 minutes with an azihomomixer, and 50 kg / cm with a homogenizer. 2 After the mixture was homogenized under the pressure described above, it was quickly cooled to 5 ° C. or less with ice water to produce a cream cheese-like food.
The viscosity of this cream cheese-like food was 1,000 cp, and when whipped, the overrun was 70% and had a light texture with no roughness and good flavor. The solid content of okara in this cream cheese-like food was 4.2% per dry solid content.
The cream cheese-like food was left at 35 ° C. for 24 hours, but no separation of water and oil was observed. Similarly, this cream cheese-like food was left under refrigeration at 5 ° C. for 24 hours, but no separation of water and oil was observed. Furthermore, this cream cheese-like food was placed in a freezer at −28 ° C. for 24 hours, frozen and thawed in an atmosphere at 20 ° C. for 20 hours, but the oil and water were not separated at all, and the original shape was maintained. I was
The product was whipped and baked in an oven at 180 ° C., but the oil and water were not separated at all, and some were left unburned. Further, 100 g of the cream cheese-like food was taken and heated in a microwave oven with a power of 500 W for 5 minutes. Similarly, no separation was observed between water and oil, and the shape remained as it was. In addition, no roughness was observed when eating, and no deterioration in flavor was observed.
Example 19 (cream cheese-like food 2)
An oil and fat portion prepared in the same manner as in Production Example 1 and having a solid content of 14%, an average particle size of 25 μm, okara 10%, natural cheese 40%, rapeseed hardened oil (melting point 30 ° C.) 35%, and a flavor The water portion prepared by adding 15% of the adjusted water was absorbed, and 0.02% of sodium hexametaphosphate was further added. The mixture was washed with an azihomomixer at 65 ° C for 5 minutes, and then homogenized with a homogenizer at 50 kg / cm. 2 After the mixture was homogenized under the pressure described above, it was quickly cooled to 5 ° C. or less with ice water to produce a cream cheese-like food. The viscosity of this cream cheese-like food was 1,000 cp, and when whipped, the overrun was 70% and had a light texture with no roughness and good flavor. The solid content of okara in this cream cheese-like food was 1.4% per dry solid content.
The cream cheese-like food was left at 35 ° C. for 24 hours, but no separation of water and oil was observed. Similarly, this cream cheese-like food was left under refrigeration at 5 ° C. for 24 hours, but no separation of water and oil was observed. Furthermore, this cream cheese-like food was placed in a freezer at −28 ° C. for 24 hours, frozen and thawed in an atmosphere of 20 ° C. for 20 hours, but the oil and water were not separated at all, and the original shape was maintained. I was The product was whipped and baked in an oven at 180 ° C., but the oil and water were not separated at all, and some were left unburned. Further, 100 g of the present cream cheese-like food was taken and heated in a microwave oven with a power of 500 W for 5 minutes. Similarly, no separation was observed between water and oil, and the shape remained as it was. In addition, no roughness was observed when eating, and no deterioration in flavor was observed.
Example 20 (cream cheese-like food 3)
Oil and fat prepared with the same method as in Production Example 1 and having a solid content of 14%, an average particle diameter of 25 microns, okara 40%, natural cheese 10%, rapeseed hardened oil (melting point 30 ° C) 10%, and a flavor. The water portion prepared by adding 40% of the adjusted water was absorbed, and 0.3% of sodium hexametaphosphate was further added. The mixture was hydrated at 65 ° C. for 5 minutes using an azihomomixer, and 50 kg / cm using a homogenizer. 2 After the mixture was homogenized under the pressure described above, it was quickly cooled to 5 ° C. or less with ice water to produce a cream cheese-like food.
The viscosity of this cream cheese-like food was 1,000 cp, and when whipped, the overrun was 70% and had a light texture with no roughness and good flavor. The solid content of okara in the cream cheese-like food was 5.6% per dry solid content.
The cream cheese-like food was left at 35 ° C. for 24 hours, but no separation of water and oil was observed.
Similarly, this cream cheese-like food was left under refrigeration at 5 ° C. for 24 hours, but no separation of water and oil was observed. Furthermore, this cream cheese-like food was placed in a freezer at −28 ° C. for 24 hours, frozen and thawed in an atmosphere at 20 ° C. for 20 hours, but the oil and water were not separated at all, and the original shape was maintained. I was The product was whipped and baked in an oven at 180 ° C., but the oil and water were not separated at all, and some were left unburned. Further, 100 g of the present cream cheese-like food was taken and heated in a microwave oven with a power of 500 W for 5 minutes. Similarly, no separation was observed between water and oil, and the shape remained as it was. In addition, no roughness was observed when eating, and no deterioration in flavor was observed.
Example 21 (hydrated chocolate 1)
30% of sugar, 30% of cacao mass, and 15% of palm fractionated hardened oil were added to 30% of solid content, 30% of average particle diameter of 150 microns obtained from the same manner as in Production Example 6, and the mixture was heated at 65 ° C in a horizontal kneader. The mixture was heated for 10 minutes, rolled, sent to a defoaming tank, molded, cooled to 20 ° C. or lower in a cooling tunnel, and a water-containing chocolate was prepared. The solid content of okara in the wet chocolate was 4.2% per dry solid content.
This water-containing chocolate was put in a freezer at -28 ° C for 3 days, frozen and thawed at 25 ° C, but water and oil were not separated. The hydrated chocolate was baked in an oven at 180 ° C., but the oil and water were not separated at all and there was unburned residue. Further, 100 g of the water-containing chocolate was taken and heated in a microwave oven with a power of 500 W for 5 minutes. However, no separation was observed between water and oil, and the shape remained as it was. In addition, no roughness was observed when eating, and no deterioration in flavor was observed.
Example 22 (hydrated chocolate 2)
25% of sugar, 10% of cacao mass, and 20% of palm fractionated hardened oil were added to 30% of solid content and 45% of average particle diameter of 150 micron obtained in the same manner as in Production Example 6, and the mixture was heated at 65 ° C in a horizontal kneader. The mixture was heated for 10 minutes, rolled, sent to a defoaming tank, molded, cooled to 20 ° C. or lower in a cooling tunnel, and a water-containing chocolate was prepared. The solid content of okara in the wet chocolate was 6.3% per dry solid content.
This water-containing chocolate was put in a freezer at -28 ° C for 3 days, frozen and thawed at 25 ° C, but water and oil were not separated. The hydrated chocolate was baked in an oven at 180 ° C., but the oil and water were not separated at all and there was unburned residue. Further, 100 g of the water-containing chocolate was taken and heated in a microwave oven with a power of 500 W for 5 minutes. However, no separation was observed between water and oil, and the shape remained as it was. In addition, no roughness was observed when eating, and no deterioration in flavor was observed.
Example 23 (hydrated chocolate 3)
40% of sugar, 20% of cacao mass, and 30% of palm fractionated hardened oil were added to 30% of solid content obtained in the same manner as in Production Example 6 and 10% of okara having an average particle size of 150 microns, and the mixture was heated at 65 ° C in a horizontal kneader. The mixture was heated for 10 minutes, rolled, sent to a defoaming tank, molded, cooled to 20 ° C. or lower in a cooling tunnel, and a water-containing chocolate was prepared. The solid content of okara in the wet chocolate was 1.4% per dry solid content.
This water-containing chocolate was put in a freezer at -28 ° C for 3 days, frozen and thawed at 25 ° C, but water and oil were not separated. The hydrated chocolate was baked in an oven at 180 ° C., but the oil and water were not separated at all and there was unburned residue. Further, 100 g of the water-containing chocolate was taken and heated in a microwave oven with a power of 500 W for 5 minutes. However, no separation was observed between water and oil, and the shape remained as it was. In addition, no roughness was observed when eating, and no deterioration in flavor was observed.
Example 24 (Ganache 1)
After absorbing 20% of fresh cream and 20% of rapeseed hardened oil (melting point 30 ° C.) to 30% of okara 30% having a solid content of 14% and an average particle diameter of 25 μm obtained in the same manner as in Production Example 1, cacao mass 15% And sugar 15% at 60 ° C. with an azihomomixer and cooled to 10 ° C. or less to produce ganache.
The viscosity of this ganache was 3,000 cp, and the flavor was good without roughness.
The solid content of okara of this ganache was 4.2% per dry solid content.
This ganache was placed in a freezer at -28 ° C for 24 hours, frozen and thawed in an atmosphere at 20 ° C, but water and oil were not separated at all, and the original shape was maintained. The ganache was whipped and baked in an oven at 180 ° C., but water and oil were not separated at all, and there was unburned residue. Further, 100 g of the ganache was taken and heated in a microwave oven with a power of 500 W for 5 minutes. Similarly, no separation was observed between water and oil, and the shape remained as it was.
Example 25 (Ganache 2)
After absorbing 15% of fresh cream and 5% of rapeseed hardened oil (melting point 30 ° C.) to 14% of solid content and 25% of average particle diameter of 25 μm obtained in the same manner as in Production Example 1, 35% of cacao mass And 20% of sugar were mixed at 60 ° C. with an azihomomixer and cooled to 10 ° C. or less to produce ganache.
The viscosity of this ganache was 3,000 cp, and the flavor was good without roughness.
The solid content of okara of this ganache was 3.5% per dry solid content.
This ganache was placed in a freezer at -28 ° C for 24 hours, frozen and thawed in an atmosphere at 20 ° C, but water and oil were not separated at all, and the original shape was maintained. The ganache was whipped and baked in an oven at 180 ° C., but water and oil were not separated at all, and there was unburned residue.
Further, 100 g of the ganache was taken and heated in a microwave oven with a power of 500 W for 5 minutes. Similarly, no separation was observed between water and oil, and the shape remained as it was.
Example 26 (Ganache 3)
After absorbing 25% of fresh cream and 15% of rapeseed hardened oil (melting point 30 ° C.) to 10% of okara 10% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, cacao mass 25% And 25% of sugar were mixed at 60 ° C. with an azihomomixer and cooled to 10 ° C. or less to produce ganache.
The viscosity of this ganache was 3,000 cp, and the flavor was good without roughness. The solid content of okara of this ganache was 1.4% per dry solid content.
This ganache was placed in a freezer at -28 ° C for 24 hours, frozen and thawed in an atmosphere at 20 ° C, but water and oil were not separated at all, and the original shape was maintained. The ganache was whipped and baked in an oven at 180 ° C., but water and oil were not separated at all, and there was unburned residue. Further, 100 g of the ganache was taken and heated in a microwave oven with a power of 500 W for 5 minutes. Similarly, no separation was observed between water and oil, and the shape remained as it was.
Example 27 (Spice paste 1)
After absorbing 14% of solid content obtained in the same manner as in Production Example 1 to okara 60% having an average particle diameter of 25 microns, 5% of rice brewed vinegar (acidity 4%) and 5% of rapeseed white oil were absorbed. And 30% of mustard powder were added thereto, and the mixture was cured with a horizontal kneader (manufactured by Tokushu Kika Co., Ltd.) at 20 ° C. for 15 minutes to prepare a spice paste. The solid content of okara in the spice paste was 8.4% per dry solid content.
This spice paste was placed in a -28 ° C freezer for 24 hours, frozen and thawed at 20 ° C, but no separation of water and oil was observed. The spice paste was baked in an oven at 180 ° C., but oil and water were not separated at all, and there was unburned residue. Further, 100 g of the spice paste was heated for 1 minute in a microwave oven with a power of 500 W, but no separation was observed between water and oil. In addition, no roughness was observed even after eating, and no deterioration in flavor was observed.
Example 28 (Spice paste 2)
After absorbing 14% of solid content obtained in the same manner as in Production Example 1 to okara 45% having an average particle diameter of 25 microns, 11% of rice brewed vinegar (acidity 4%) and 9% of rapeseed squeezed oil were absorbed. And 35% of wasabi powder were added, and the mixture was subjected to tanning at 20 ° C. for 15 minutes using a horizontal kneader (manufactured by Tokushu Kika Co., Ltd.) to prepare a spice paste. The solid content of okara in the spice paste was 6.3% per dry solid content.
This spice paste was placed in a -28 ° C freezer for 24 hours, frozen and thawed at 20 ° C, but no separation of water and oil was observed. The spice paste was baked in an oven at 180 ° C., but oil and water were not separated at all, and there was unburned residue. Further, 100 g of the spice paste was heated for 1 minute in a microwave oven with a power of 500 W, but no separation was observed between water and oil. In addition, no roughness was observed even after eating, and no deterioration in flavor was observed.
Example 29 (Spice paste 3)
After absorbing 14% of solid content obtained in the same manner as in Production Example 1 to okara 70% having an average particle size of 25 microns, 13% of rice brewed vinegar (acidity 4%) and 7% of rapeseed white oil were absorbed. And wasabi powder (10%), and the mixture was dried at 20 ° C. for 15 minutes using a horizontal kneader (manufactured by Tokushu Kika Co., Ltd.) to prepare a spice paste. The solid content of okara in the spice paste was 9.8% per dry solid content.
This spice paste was placed in a -28 ° C freezer for 24 hours, frozen and thawed at 20 ° C, but no separation of water and oil was observed. The spice paste was baked in an oven at 180 ° C., but oil and water were not separated at all, and there was unburned residue. Further, 100 g of the spice paste was heated for 1 minute in a microwave oven with a power of 500 W, but no separation was observed between water and oil. In addition, no roughness was observed even after eating, and no deterioration in flavor was observed.
Example 30 (soybean bean jam 1)
Okara 50% with a solid content of 14% and an average particle size of 25 microns obtained in the same manner as in Production Example 1, sugar 40%, rapeseed white oil 5%, and water 5% in a horizontal kneader at 90 ° C. for 15 minutes. The mixture was heat-cured, filled into small sachets, and quickly cooled to 10 ° C. or less with ice water to produce soybean paste. The solid content of okara in this soybean bean paste was 7.0% per dry solid content.
This soybean paste was put in a freezer at -28 ° C for 24 hours, frozen and thawed in an atmosphere at 20 ° C, but no separation of water and oil was observed. The soybean bean paste was baked in an oven at 180 ° C., but the oil and water were not separated at all and there was unburned residue. Further, 100 g of this soybean bean jam was taken and heated in a microwave oven with a power of 500 W for 5 minutes, but no separation of oil and water was observed and the shape retention was good. In addition, even if this soybean bean was eaten, no roughness was seen and the flavor was excellent.
Example 31 (soybean bean jam 2)
Okara, 26%, sugar 62%, rapeseed white oil 9%, and water 3% obtained in the same manner as in Production Example 1 with a solid content of 14% and an average particle size of 25 microns at 90 ° C. for 15 minutes in a horizontal kneader. The mixture was heat-cured, filled into small sachets, and quickly cooled to 10 ° C. or less with ice water to produce soybean paste. The solid content of okara in this soybean bean paste was 3.6% per dry solid content.
The soybean paste was put in a freezer at -28 ° C for 24 hours, frozen and thawed in an atmosphere at 20 ° C, but no separation of water and oil was observed. The soybean bean paste was baked in an oven at 180 ° C., but the oil and water were not separated at all and there was unburned residue. Further, 100 g of this soybean bean jam was taken and heated in a microwave oven with a power of 500 W for 5 minutes, but no separation of oil and water was observed and the shape retention was good. In addition, even if this soybean bean was eaten, no roughness was seen and the flavor was excellent.
Example 32 (soybean bean jam 3)
Okara 58% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, sugar 25%, rapeseed white oil 8%, and water 9% were placed in a horizontal kneader at 90 ° C. for 15 minutes. The mixture was heat-cured, filled into small sachets, and quickly cooled to 10 ° C. or less with ice water to produce soybean paste. The solid content of okara in this soybean bean paste was 8.1% per dry solid content.
This soybean paste was put in a freezer at -28 ° C for 24 hours, frozen and thawed in an atmosphere at 20 ° C, but no separation of water and oil was observed. The soybean bean paste was baked in an oven at 180 ° C., but the oil and water were not separated at all and there was unburned residue. Further, 100 g of this soybean bean jam was taken and heated in a microwave oven with a power of 500 W for 5 minutes, but no separation of oil and water was observed and the shape retention was good. In addition, even if this soybean bean was eaten, no roughness was seen and the flavor was excellent.
Example 33 (Frozen dessert 1)
10% of coconut oil, 55% of water, 10% of skim milk powder, and 20% of sugar were added to 5% of okara 5% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and stirred and mixed. / Cm 2 Was homogenized with a homogenizer, heat sterilized at 80 ° C. for 30 minutes, and then aged at 5 ° C. overnight, followed by freezing to produce a frozen dessert.
The solid content of okara in the frozen dessert was 0.7% per dry solid content. Although this frozen dessert did not use any emulsifier, there was no separation of oil and water from the frozen dessert mix after aging, no further separation of oil and water from frozen dessert after freezing, and no roughness was felt at all. .
Example 34 (Frozen dessert 2)
Okara 10% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, 3% of coconut oil, 65% of water, 5% of skim milk powder, and 17% of sugar were added, and mixed by stirring. / Cm 2 Was homogenized with a homogenizer, heat sterilized at 80 ° C. for 30 minutes, and then aged at 5 ° C. overnight, followed by freezing to produce a frozen dessert.
The solid content of okara in this frozen dessert was 1.4% per dry solid content. Although this frozen dessert did not use any emulsifier, there was no separation of oil and water from the frozen dessert mix after aging, no further separation of oil and water from frozen dessert after freezing, and no roughness was felt at all. .
Example 35 (Frozen dessert 3)
20% of coconut oil, 7% of water, 3% of skim milk powder and 30% of sugar are added to 40% of okara 40% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, and are stirred and mixed. / Cm 2 Was homogenized with a homogenizer, heat sterilized at 80 ° C. for 30 minutes, and then aged at 5 ° C. overnight, followed by freezing to produce a frozen dessert. The solid content of okara in the frozen dessert was 5.6% per dry solid content. Although this frozen dessert did not use any emulsifier, there was no separation of oil and water from the frozen dessert mix after aging, no further separation of oil and water from frozen dessert after freezing, and no roughness was felt at all. .
Example 36 (Potage soup 1)
Okara 20% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, 5% of milk fat, 50% of water, 10% of corn puree, and 5% of seasoning are added, and the mixture is mixed with a homomixer. The mixture was heated and stirred at 65 ° C. for 15 minutes at 5000 rpm to produce a corn potage soup.
The solid content of okara in this potage soup was 2.8% per dry solid content. Although this potage soup did not use any emulsifier, there was no separation of oil and water, and no roughness was felt at all. The potage soup was placed in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C., but oil and water were not separated at all.
When 200 g of this potage soup was heated in a microwave oven with a power of 500 W for 2 minutes, oil and water were not separated at all.
Example 37 (Potage soup 2)
To 8% of okara 8% having a solid content of 14% and an average particle diameter of 25 microns obtained in the same manner as in Production Example 1, add 20% milk fat, 52% water, 8% corn puree, and 12% seasoning, and use a homomixer. The mixture was heated and stirred at 65 ° C. for 15 minutes at 5000 rpm to produce a corn potage soup.
The solid content of okara in this potage soup was 1.1% per dry solid content.
Although this potage soup did not use any emulsifier, there was no separation of oil and water, and no roughness was felt at all. The potage soup was placed in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C., but oil and water were not separated at all.
When 200 g of this potage soup was heated in a microwave oven with a power of 500 W for 2 minutes, oil and water were not separated at all.
Example 38 (Potage soup 3)
Okara 40% having a solid content of 14% and an average particle size of 25 microns obtained in the same manner as in Production Example 1, 25% of milk fat, 19% of water, 14% of corn puree, and 2% of seasoning are added. The mixture was heated and stirred at 65 ° C. for 15 minutes at 5000 rpm to produce a corn potage soup. The solid content of okara in the potage soup was 5.6% per dry solid content. Although this potage soup did not use any emulsifier, there was no separation of oil and water, and no roughness was felt at all. The potage soup was placed in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C., but oil and water were not separated at all.
When 200 g of this potage soup was heated in a microwave oven with a power of 500 W for 2 minutes, oil and water were not separated at all.
Example 39 (Potage soup 4)
10% milk fat, 60% water, 4% corn puree, 10% seasoning are added to okara 16% having a solid content of 14% and an average particle size of 25 microns obtained in the same manner as in Production Example 1, and use a homomixer. The mixture was heated and stirred at 65 ° C. for 15 minutes at 5000 rpm to produce a corn potage soup.
The solid content of okara in this potage soup was 2.2% per dry solid content. Although this potage soup did not use any emulsifier, there was no separation of oil and water, and no roughness was felt at all. The potage soup was placed in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C., but oil and water were not separated at all.
When 200 g of this potage soup was heated in a microwave oven with a power of 500 W for 2 minutes, oil and water were not separated at all.
Example 40 (Hamburger 1)
Okara 7% with a solid content of 14% and an average particle size of 25 microns obtained in the same manner as in Production Example 1 53% minced meat, 11% soybean white squeezed oil, 6% water, 18% onion, 4% bread crumbs, 1% of seasoning was added, mixed for 3 minutes with a Kenwood mixer (medium speed), molded, and baked at 240 ° C. for 5 minutes to obtain a hamburger.
The solid content of okara in this hamburger was 0.98% per dry solids. Although this hamburger did not use any emulsifier, there was no separation of oil and water, and no roughness was felt. This hamburger was placed in a -28 ° C freezer for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C, but oil and water were not separated at all. When 40 g of the hamburger was heated in a microwave oven with a 500 W output for 40 seconds, oil and water were not separated at all.
Example 41 (Hamburger 2)
A solid content of 14% obtained in the same manner as in Production Example 1 and an average particle size of 25 μm, okara 16%, ground minced meat 40%, soybean white oil 15%, water 8%, onion 15%, bread crumbs 5%, 1% of seasoning was added, mixed for 3 minutes with a Kenwood mixer (medium speed), molded, and baked at 240 ° C. for 5 minutes to obtain a hamburger. The solid content of okara in this hamburger was 2.2% per dry solid content. Although this hamburger did not use any emulsifier, there was no separation of oil and water, and no roughness was felt. This hamburger was placed in a -28 ° C freezer for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C, but oil and water were not separated at all.
When 40 g of the hamburger was heated in a microwave oven with a 500 W output for 40 seconds, oil and water were not separated at all.
Example 42 (Hamburger 3)
A solid content of 14% obtained in the same manner as in Production Example 1 and an average particle size of 25 μm and okara 25%, ground grind 33%, soybean white squeezed oil 20%, water 4%, onion 10%, bread crumb 7%, 1% of seasoning was added, mixed for 3 minutes with a Kenwood mixer (medium speed), molded, and baked at 240 ° C. for 5 minutes to obtain a hamburger.
The solid content of okara in the hamburger was 3.5% per dry solids.
Although this hamburger did not use any emulsifier, there was no separation of oil and water, and no roughness was felt. This hamburger was placed in a -28 ° C freezer for 24 hours and frozen, and then thawed in an atmosphere at 20 ° C, but oil and water were not separated at all. When 40 g of the hamburger was heated in a microwave oven with a 500 W output for 40 seconds, oil and water were not separated at all.
Example 43 (Satsumaage 1)
Okara 5 ground okara 2nd grade surimi 50%, soybean white squeezed oil 2.5%, water 25%, salt 1. Add 5%, sugar 3.5%, glucose 2%, chemical seasoning 0.3%, potato starch 10.2%, make a dough at a temperature of 14 ° C with a silent cutter, mold at 140 ° C Two-stage frying was performed at 160 ° C. for 1.5 minutes for 1 minute to obtain Satsuma-age. The solid content of okara during the deep-fried fish cake was 0.7% per dry solid content.
Despite not using any emulsifier, this fish fried fish did not separate oil and water and did not feel rough. The fish cake was put in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in a 20 ° C. atmosphere, but oil and water were not separated at all. When 40 g of this fish cake was heated in a microwave oven with a power of 500 W for 40 seconds, oil and water were not separated at all.
Example 44 (Satsumaage 2)
The same as in Production Example 1, solid content 14%, average particle size 25 μm, okara 10%, oatmeal land-grade second surimi 59.5%, soybean white squeezed oil 5%, water 13%, salt 1. 5%, Sugar 3%, Glucose 2%, Chemical seasoning 0.3%, Potato starch 5.7% were added, and the dough was made with a silent cutter at a temperature of 14 ° C. A two-stage fry was performed at 160 ° C. for 1.5 minutes to obtain Satsuma-age. The solid content of okara during this deep-fried fish cake was 1.4% per dry solid content.
Despite not using any emulsifier, this fish fried fish did not separate oil and water and did not feel rough. The fish cake was put in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in a 20 ° C. atmosphere, but oil and water were not separated at all. When 40 g of this fish cake was heated in a microwave oven with a power of 500 W for 40 seconds, oil and water were not separated at all.
Example 45 (Satsumaage 3)
A solid content of 14% obtained in the same manner as in Production Example 1 and an average particle size of 25 μm. Okara 25%, Okasou land second-class surimi 30%, soybean white squeezed oil 10%, water 7%, salt 1.5%. , Sugar 6%, glucose 4%, chemical seasoning 0.3%, potato starch 16.2%, and finished with a silent cutter to make a dough at a temperature of 14 ° C. Two-stage frying was performed at 1.5 ° C. for 1.5 minutes to obtain Satsuma-age. The solid content of okara during the present fish fry was 3.5% per dry solid content.
Despite not using any emulsifier, this fish fried fish did not separate oil and water and did not feel rough. The fish cake was put in a freezer at −28 ° C. for 24 hours and frozen, and then thawed in a 20 ° C. atmosphere, but oil and water were not separated at all. When 40 g of this fish cake was heated in a microwave oven with a power of 500 W for 40 seconds, oil and water were not separated at all.
Industrial potential
According to the present invention, an emulsion food using a conventional emulsifier is left at room temperature or oil or water is separated when heated in a microwave oven or an oven. Water, oil, etc., which are difficult to separate from water and oil even when thawed after heating or freezing, spread, whipped cream, cream It can be used in the field of water- and oil-containing foods such as cheese-like foods, hydrated chocolate, ganache, spice paste, soybean paste, frozen desserts, soups, meat products, fishery products, and the like.

Claims (19)

粒子径が10〜200ミクロンの湿潤おから(水分55〜95重量%)に、油脂を吸収させることを特徴とする水及び油脂含有食品の製造法。A method for producing a water- and oil-containing food, wherein the oil and fat is absorbed into wet okara (water content: 55 to 95% by weight) having a particle size of 10 to 200 microns. 湿潤おからの粒子径が20〜50ミクロンである請求の範囲1の製造法。2. The method according to claim 1, wherein the particle size of the wet okara is 20 to 50 microns. 湿潤おからの吸水能がおからの乾燥重量当たり15〜40重量倍である請求の範囲1又は2の製造法。3. The method according to claim 1, wherein the water absorption capacity of wet okara is 15 to 40 times by weight per dry weight of okara. おからの吸油能がおからの乾燥重量当たり8〜20重量倍である請求の範囲1〜3のいずれかの製造法。The method according to any one of claims 1 to 3, wherein the oil absorption capacity of the okara is 8 to 20 times by weight per dry weight of the okara. 湿潤おから及び油脂に更に水を吸収させる請求の範囲1〜4のいずれかの製造法。The method according to any one of claims 1 to 4, wherein the wet okara and the fats and oils further absorb water. 食品がマヨネーズ状食品であって、湿潤おからに水、油及び酸を吸収させ、加熱雰囲気下で涅和し水中油型乳化することを特徴とする請求の範囲1〜5のいずれかの製造法。The production according to any one of claims 1 to 5, wherein the food is a mayonnaise-like food, wherein water, oil and acid are absorbed in moist okara, and the oil is emulsified and oil-in-water emulsified under a heated atmosphere. Law. 食品がマーガリン様食品であって、湿潤おからに固体油脂を食品中70〜90重量%用いて加熱雰囲気下で涅和して油中水型乳化し、その後急冷することを特徴とする請求の範囲1〜5のいずれかの製造法。The food is a margarine-like food, wherein 70 to 90% by weight of moist okara solid oil is used in the food, and the mixture is emulsified in a heated atmosphere to emulsify in water-in-oil, followed by quenching. The production method according to any one of ranges 1 to 5. 食品が液状マーガリン様食品であって、湿潤おからに液体油を食品中20〜60重量%、及び水を用い加熱雰囲気下で涅和して油中水型乳化し、冷却涅和する請求の範囲1〜5のいずれかの製造法。The food is a liquid margarine-like food, wherein the liquid oil is moistened with water at 20 to 60% by weight in a wet okara and water under a heating atmosphere to emulsify and cool by cooling. The production method according to any one of ranges 1 to 5. 食品がスプレッドであって、湿潤おからに固体油脂を食品中20〜60重量%、及び水を吸収させ、加熱雰囲気下で涅和する請求の範囲1〜5のいずれかの製造法。The production method according to any one of claims 1 to 5, wherein the food is a spread, and 20 to 60% by weight of a solid fat or oil in wet okara is absorbed in the food, and water is absorbed, and the mixture is dried under a heated atmosphere. 食品がホイップクリームであって、湿潤おからに固体油脂を食品中20〜50重量%、及び水を吸収させ、重合リン酸塩を添加し、加熱雰囲気下で涅和し、均質化して水中油型乳化した後冷却する請求の範囲1〜5のいずれかの製造法。The food is whipped cream, 20-50% by weight of solid oats and moisturized okara in the food and water are absorbed, polymerized phosphate is added, and the mixture is homogenized under a heated atmosphere, and homogenized to obtain an oil-in-water. The method according to any one of claims 1 to 5, wherein the emulsion is cooled after the emulsification. 食品がクリームチーズ様食品であって、湿潤おからに固体油脂を食品中5〜40重量%、及び水を吸収させ、重合リン酸塩を添加し、チーズフレーバー或いはチーズを混合し、加熱雰囲気下で涅和し急冷する請求の範囲1〜5のいずれかの製造法。The food is cream cheese-like food, absorb 5 to 40% by weight of solid oils and fats in the food and wet water, add polymerized phosphate, mix cheese flavor or cheese, and heat The method according to any one of claims 1 to 5, wherein the mixture is quenched and quenched. 食品が含水チョコレートであって、湿潤おからに固体油脂を食品中10〜40重量%を吸収させ、カカオマス及び砂糖を加えて加熱雰囲気下で涅和し、ロール掛けし、コンチングし脱泡する請求の範囲1〜5のいずれかの製造法。The food is a water-containing chocolate, the solid oil and fat of moist okara is absorbed in the food by 10 to 40% by weight, cacao mass and sugar are added, the mixture is heated under an atmosphere, rolled, conched and defoamed. The method according to any one of the ranges 1 to 5. 食品がガナッシュであって、湿潤おからに固体油脂並びに牛乳もしくは生クリームを吸収させ、カカオマス、砂糖を加えて加熱雰囲気下で涅和し急冷する請求の範囲1〜5のいずれかの製造法。The production method according to any one of claims 1 to 5, wherein the food is ganache, and the solid oil and fat and milk or fresh cream are absorbed in moist okara, cacao mass and sugar are added, and the mixture is quenched in a heated atmosphere and rapidly cooled. 食品が、香辛料ペーストであって、湿潤おからに醸造酢及び液体油を吸収させ、香辛料を添加し、低温雰囲気下で涅和する請求の範囲1〜5のいずれかの製造法。6. The method according to any one of claims 1 to 5, wherein the food is a spice paste, wherein the vinegar and liquid oil are absorbed into the wet okara, the spice is added, and the mixture is dried under a low-temperature atmosphere. 食品が、大豆餡であって、湿潤おからに液体油を吸収させ砂糖を食品中20〜70重量%混合して加熱雰囲気下で涅和する請求の範囲1〜5のいずれかの製造法。The method according to any one of claims 1 to 5, wherein the food is soybean bean paste, wherein liquid oil is absorbed in wet okara, sugar is mixed in the food in an amount of 20 to 70% by weight, and the mixture is dried under a heated atmosphere. 食品が冷菓であって、湿潤おからに固体油脂及び水を吸収させ、砂糖を添加涅和し、均質化の後冷凍、フリージングする請求の範囲1〜5のいずれかの製造法。The method according to any one of claims 1 to 5, wherein the food is a frozen dessert, wherein solid oils and fats are absorbed in wet okara, sugar is added, the mixture is homogenized, and then frozen and frozen. 食品がスープであって、湿潤おからに油脂及び水を吸収させ、スープ具材を添加し、加熱雰囲気下で涅和する請求の範囲1〜5のいずれかの製造法。The production method according to any one of claims 1 to 5, wherein the food is soup, and the fat and water are absorbed into moist okara, soup ingredients are added, and the mixture is cured under a heated atmosphere. 食品が畜肉製品であって、湿潤おからに油脂を吸収させ、肉原料と涅和し、成型後加熱する請求の範囲1〜5のいずれかの製造法。The production method according to any one of claims 1 to 5, wherein the food is a livestock meat product, wherein the oil and fat are absorbed in moist okara, mixed with the meat raw material, heated after molding. 食品が水産練製品であって、湿潤おからに油脂及び水を吸収させ、すり身と涅和し、成型後加熱する請求の範囲1〜5のいずれかの製造法。The method according to any one of claims 1 to 5, wherein the food is a fishery kneaded product, wherein the oil and fat are absorbed in moist okara, the surimi is mixed with the surimi, and the product is heated after molding.
JP2002552418A 2000-12-26 2001-12-25 Manufacturing method of food containing water and fat Expired - Fee Related JP4269681B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000395706 2000-12-26
JP2000395706 2000-12-26
PCT/JP2001/011411 WO2002051262A1 (en) 2000-12-26 2001-12-25 Process for producing water and fat-containing food

Publications (2)

Publication Number Publication Date
JPWO2002051262A1 true JPWO2002051262A1 (en) 2004-04-22
JP4269681B2 JP4269681B2 (en) 2009-05-27

Family

ID=18861121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002552418A Expired - Fee Related JP4269681B2 (en) 2000-12-26 2001-12-25 Manufacturing method of food containing water and fat

Country Status (2)

Country Link
JP (1) JP4269681B2 (en)
WO (1) WO2002051262A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3610517B2 (en) * 2001-09-28 2005-01-12 京子 大野 Food using okara
WO2006135089A1 (en) * 2005-06-17 2006-12-21 Fuji Oil Company, Limited Cream cheese-like food and process for production thereof
JPWO2007023800A1 (en) * 2005-08-22 2009-03-26 靖幸 山田 Food
WO2007116819A1 (en) * 2006-03-31 2007-10-18 Fuji Oil Company, Limited Protein-containing oily food
JP5065357B2 (en) * 2009-03-12 2012-10-31 良蔵 白石 Ice confectionery and ice confectionery ingredients
JP5131862B2 (en) * 2009-08-27 2013-01-30 日本製粉株式会社 Frozen carbonara sauce using okara paste
JP2014131505A (en) * 2012-12-08 2014-07-17 Nisshin Kako Kk Confectionery comprising chocolate and production method of the same
US10645957B2 (en) * 2014-12-22 2020-05-12 Societe Des Produits Nestle S.A. Oil filler compositions and uses thereof
JP6809829B2 (en) * 2016-07-12 2021-01-06 森永製菓株式会社 chocolate candy
EP3632220A4 (en) 2017-09-11 2020-06-24 Mizkan Holdings Co., Ltd. Emulsified seasoning and method for manufacturing same
JP7146343B2 (en) * 2018-08-01 2022-10-04 日清オイリオグループ株式会社 Foods containing medium-chain fatty acids
WO2020044922A1 (en) 2018-08-27 2020-03-05 株式会社Mizkan Holdings Food particulate-containing fat and oil composition and production method therefor
TW202145900A (en) * 2020-03-04 2021-12-16 日商不二製油集團控股股份有限公司 Oily food material for combination use, and method for producing same
CN115644261B (en) * 2022-10-17 2024-04-12 湖北工业大学 Preparation method of fermented bean dreg stable nutritional solid fat

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734062B2 (en) * 1989-02-28 1998-03-30 味の素株式会社 High viscosity emulsified composition
JP3477785B2 (en) * 1994-02-04 2003-12-10 鐘淵化学工業株式会社 Oil-in-water emulsified fat composition
JP3477786B2 (en) * 1994-02-04 2003-12-10 鐘淵化学工業株式会社 Oil-in-water emulsified fat composition
JP3424395B2 (en) * 1995-06-23 2003-07-07 不二製油株式会社 Center material and bakery products for bakery dough
JP2000279140A (en) * 1999-03-30 2000-10-10 Fuji Oil Co Ltd Preparation of takoyaki (grilled dumpling with bits of octopus)
JP3414322B2 (en) * 1999-05-28 2003-06-09 不二製油株式会社 Donut manufacturing method

Also Published As

Publication number Publication date
JP4269681B2 (en) 2009-05-27
WO2002051262A1 (en) 2002-07-04

Similar Documents

Publication Publication Date Title
JP4269681B2 (en) Manufacturing method of food containing water and fat
JP4655933B2 (en) Oil-in-water emulsion composition
EP0521707A1 (en) Food additive comprising water soluble hemicellulose
DE112004000519T5 (en) A component for food containing a soybean ingredient, food containing a soybean ingredient using the component, and a process for producing the food containing a soybean ingredient
JP4288477B2 (en) Method for preparing bubble-containing food composition and food prepared by the method
US4680194A (en) Process of preparing food products
JP2001186855A (en) Crealminess-retaining food
JP2003102404A (en) Quality improver for food
JP2021194000A (en) Processed food dough and processed food
JP2778512B2 (en) Clothes, fried food and fried frozen food for microwave heating
JP7027192B2 (en) Cream croquette and its manufacturing method
JP6361853B2 (en) Luo water-in-oil emulsion and sauces or soups using the same
JP3519637B2 (en) Emulsion composition for improving texture
JPH05292874A (en) Bread crumb
JP4085938B2 (en) Pasta sauce
JP4152060B2 (en) Oil-in-water emulsified composition and plastic emulsified oil / fat composition using the same
JP6809976B2 (en) Solid emulsified seasoning composition
JP6892255B2 (en) Tofu-like fluid food and its manufacturing method
JP2001507939A (en) Organizing agent
JP4284864B2 (en) Cream croquette and its manufacturing method
JPH01108957A (en) Seasoning
JP2002065194A (en) Frying coating material
RU2035878C1 (en) Method for production of mayonnaise
JP2024046026A (en) Texture improver for minced meat processed foods or meat substitute foods
JP2844376B2 (en) Whipping cream and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees