JPWO2002027055A1 - Amorphous alloy and manufacturing method thereof - Google Patents

Amorphous alloy and manufacturing method thereof Download PDF

Info

Publication number
JPWO2002027055A1
JPWO2002027055A1 JP2002530815A JP2002530815A JPWO2002027055A1 JP WO2002027055 A1 JPWO2002027055 A1 JP WO2002027055A1 JP 2002530815 A JP2002530815 A JP 2002530815A JP 2002530815 A JP2002530815 A JP 2002530815A JP WO2002027055 A1 JPWO2002027055 A1 JP WO2002027055A1
Authority
JP
Japan
Prior art keywords
alloy
zrc
particles
dispersed
amorphous alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002530815A
Other languages
Japanese (ja)
Inventor
井上 明久
河村 能人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Publication of JPWO2002027055A1 publication Critical patent/JPWO2002027055A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/10Amorphous alloys with molybdenum, tungsten, niobium, tantalum, titanium, or zirconium or Hf as the major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

本発明は、機械的性質の優れたZrC粒子分散アモルファス合金複合材を安価に作製することを目的とする。本発明の、ZrC粒子分散アモルファス合金複合材の作製法は、母相の合金にカーボン粒子とZr純金属又はZr合金とを加えて、Zr純金属又はZr合金の融点+100K以上の温度で溶解し、溶解中にZrとCを反応させてZrC粒子を生成させる。これにより、ZrC粒子を均一に分散したガラス形成能を持つ母合金を作製して、これを調整することでZrC粒子分散アモルファス合金を作製することができる。An object of the present invention is to produce a ZrC particle-dispersed amorphous alloy composite having excellent mechanical properties at low cost. According to the method for producing a ZrC particle-dispersed amorphous alloy composite material of the present invention, carbon particles and a Zr pure metal or a Zr alloy are added to an alloy of a matrix and melted at a temperature equal to or higher than the melting point of the Zr pure metal or the Zr alloy + 100K. During the dissolution, Zr and C are reacted to generate ZrC particles. Thus, a ZrC particle-dispersed amorphous alloy can be produced by preparing a mother alloy having glass-forming ability in which ZrC particles are uniformly dispersed and adjusting this.

Description

技術分野
本発明は、アモルファス合金に関し、特にZrC粒子分散アモルファス合金に関する。
背景技術
昨今の金属ガラスの研究はめざましものがある。高いガラス形成能および結晶化に対する高い熱的安定性を有する金属ガラスが見出され、これが基礎から応用に至るまで幅広く用いられている。その中でもZr−Al−TM(TMは遷移金属)は、最もガラス形成能に優れた合金組成の一つに挙げられる。Zr55Al10NiCu30ガラス合金においては、差圧鋳造法により直径30mmに及ぶ円柱状バルクガラス合金の作製に成功している。
この金属ガラスは、他の非晶質合金と同様に、室温における単軸圧縮や引張り試験では、変形は弾性的であり、殆ど塑性伸びを示すことなく、最大せん断面において局所的な不安定破壊を生じる。このような機械的性質を改善することを目的として、セラミックスや金属といった第二相を含有する非晶質合金複合材料の開発が今日に至るまで行われている。1980年に非晶質合金の複合化による降伏強度の上昇と破壊の非局在化が初めて報告された。すなわちこれは、ミクロンサイズの炭化タングステン粒子を分散したNi78Si1012急冷薄帯が高強度を有するというものである。
近年我々は、炭化ジルコニウム(ZrC)粒子分散型Zr−Al−Ni−Cuバルクガラス複合材料が、Zr−Al−Ni−Cu単相バルクガラスよりも高強度・高延性を有することを示した。その後、カリフォルニア工科大学のグループが同様の発想により、タングステンや鉄鋼材料繊維を複合させて、金属ガラスの高強度・高延性化に成功し、同様の効果をそれらの粒子やセラミックス粒子を用いて示している。
このような金属ガラスを母相とした複合材料を設計する際の重要な因子として、次のような事柄が挙げられる。母相および分散相の反応性が無いこと、濡れ性が良いこと、そして熱膨張係数や比重の差が小さいことである。これらを基礎に多くの研究が行われてきた。Zr金属とグラファイト粒子によるZrC粒子の反応生成を複合材料の作製中に行う、いわゆるZrとCのその場反応を利用することが、母相と分散相の濡れおよび粒子の均一分散に効果的である。なぜならば、Zr金属とグラファイト粒子のその場反応が、粒子の凝集を妨げる効果を持つからである。
ZrC粒子とZr合金を溶解して作製したZrC粒子分散母合金を用いて、ZrC粒子分散Zr基アモルファス合金を作製する場合には、
1)ZrC粒子が高価である、
2)ZrC粒子の分散が不均一である、
3)ZrC粒子とアモルファス母相との接合性が不十分である
と言った問題点があった。
そのため、本発明の目的は、機械的性質の優れたZrC粒子分散アモルファス合金複合材を安価に作製することである。
発明の開示
上記目的を達成するために、本発明は、母相となる合金を溶解し、前記合金にカーボン粒子とZr合金とを加え、Zr合金の融点+100K以上の温度で溶解することにより、溶解中にZrとCを反応させてZrC粒子を生成させ、ZrC粒子が均一に分散した合金を作製することを特徴とするZrC粒子分散アモルファス合金の作製法である。
また、前記合金にカーボン粒子とZr純金属とを加え、Zr金属の融点+100K以上の温度で溶解することにより、溶解中にZrとCを反応させてZrC粒子を生成させ、ZrC粒子が均一に分散した合金を作製することを特徴とするZrC粒子分散アモルファス合金の作製法である。
さらに、前記ZrC粒子が均一に分散した合金を調整したガラス形成能を有する合金から、所望の形状を有するZrC粒子分散アモルファス合金を形成することができる。
これらのZrC粒子分散アモルファス合金の作製法で作製したZrC粒子分散アモルファス合金も本発明である。
発明を実施するための最良の形態
本発明を用いた、ZrC粒子分散Zr基アモルファス合金複合材の作製法は、母相の合金にカーボン粒子とZr純金属又はZr合金とを加えて、Zr純金属又はZr合金の融点+100K以上の温度で溶解し、溶解中にZrとCを反応させてZrC粒子を生成させる。これにより、ZrC粒子を均一に分散したガラス形成能を持つ母合金を作製して、これを調整することでZrC粒子分散アモルファス合金を作製することができる。作製に使用するカーボン粒子の大きさは、100マイクロメートル以下であり、ZrC粒子の大きさは100マイクロメートル以下であることが望ましい。また、作製されるZrC粒子の分散の割合は、体積率で20%以下であることが望ましい。
(実施例)
非晶質合金として、Zr55Al10NiCu30(添え字は原子%)の組成からなる母相に、Zr原子とC原子の反応を用いて生成したZrC粒子を分散させる場合で詳しく説明する。
(1)純アルゴン雰囲気中において、Zr55Al10NiCu30原子比になるように計量した純Zr,Al,Ni,Cu金属をアーク溶解法により合金化する。
(2)この合金に、グラファイト粒子(10ミクロン以下の粒径で、純度99.99%)とこれに反応してZrCを生成する余分な純Zrを加えて、再びアーク溶解法によって混ぜ合わせる。このZrとCとは1:1で反応し、母相のZrがCと反応することを考慮する。
Zr金属は他の3つの金属元素と比較して、グラファイトに対して最も高い反応性を有し、生成したジルコニウムの炭化物(ZrC)がもっとも安定であることから、この溶解によってZrC粒子のみが分散相として生成されるのである。(3)このZrC粒子を含む母合金を粉砕して、石英ノズルに装填し、これを10−4Torr以下真空雰囲気中で高周波溶解した後に溶湯温度850℃以上にて銅鋳型(直径2mm,高さ50mm形状)に鋳込む。
前記のように作製した鋳造複合材料の断面の光学顕微鏡写真が図1である。この写真から、母相に対して10ミクロン以下の粒子が均一に分散していることがわかる。
図2は、15vol%(体積分率)の分散粒子を含む鋳造複合材料の断面のX線回折図形を示したものである。これがZrCを示す5つのピークと非晶質構造を示すハロー図形より成り立っていることから、得られた複合材料は母相がZr−Al−Ni−Cu非晶質合金で分散物がZrC粒子であり、グラファイトが消滅したことがわかる。
図3は、15vol%の分散粒子を含むZrC粒子分散Zr基非晶質合金複合材料の示差走査熱量分析(DSC)曲線(昇温速度0.67Ks−1)をZr55Al10NiCu30単相非晶質合金のものと併せて示したものである。これら2つの曲線におけるガラス遷移温度Tgと結晶化開始温度Txがそれぞれ680K,760K程で一致している。このことから、添加したグラファイト全てがアーク溶解中に溶湯内のZr原子と反応してZrC粒子を生成し、その結果母相の非晶質合金は余分な純Zrを添加したにも関わらず、Zr55Al10NiCu30(添え字は原子%)組成を保っていることがわかる。
前記の方法で作製したZrC粒子分散Zr55Al10NiCu30(添え字は原子%)非晶質合金複合材料のうち、7.5vol%および15vol%(いずれも体積分率)のZrC粒子を均一に分散したものの圧縮試験結果(歪速度は5.0×10−4−1)を、Zr55Al10NiCu30(添え字は原子%)単相非晶質合金の結果と併せて図4に示す。
図4から、Zr55Al10NiCu30(添え字は原子%)単相非晶質合金の圧縮破断強度が1836MPaで、塑性歪みがほぼ0%であるのに対して、7.5vol%および15vol%(いずれも体積分率)のZrC粒子を均一に分散したZrC粒子分散Zr55Al10NiCu30(添え字は原子%)非晶質合金複合材料は、圧縮破断強度、塑性歪みがそれぞれ1996MPa,1.4%および2060MPa,5%に達していることがわかる。
図5〜図7は、ZrC粒子の体積分率の変化により、最大応力(図5)、塑性歪み(図6)、ヤング係数(図7)がどの様に変化するかを示している。
これらの図から、体積分率20%以下のとき、最大応力およびヤング係数に関しては、ZrC粒子の割合が多くなるとともにその性能が増すが、塑性歪みに関しては、体積分率10%のときにピークがある。
【図面の簡単な説明】
第1図は、本発明による合金で作製した鋳造複合材料の断面の光学顕微鏡写真である。
第2図は、本発明による合金で作製した鋳造複合材料の断面のX線回折のグラフである。
第3図は、本発明による合金で作製した鋳造複合材料の示差走査熱量分析曲線を示すグラフである。
第4図は、ZrC粒子を均一に分散した合金の圧縮試験下における応力−歪曲線を示すグラフである。
第5図は、ZrC粒子の体積分率に対する圧縮試験による最大応力を示すグラフである。
第6図は、ZrC粒子の体積分率に対する圧縮試験による塑性歪みを示すグラフである。
第7図は、ZrC粒子の体積分率に対する圧縮試験によるヤング係数を示すグラフである。
TECHNICAL FIELD The present invention relates to an amorphous alloy, and more particularly, to a ZrC particle dispersed amorphous alloy.
Background Art There has been a remarkable research on metallic glass in recent years. Metallic glasses having high glass-forming ability and high thermal stability against crystallization have been found and are widely used from basic to applied. Among them, Zr-Al-TM (TM is a transition metal) is one of the alloy compositions having the best glass forming ability. As for the Zr 55 Al 10 Ni 5 Cu 30 glass alloy, a columnar bulk glass alloy having a diameter of 30 mm has been successfully produced by differential pressure casting.
This metallic glass, like other amorphous alloys, is elastic in uniaxial compression and tensile tests at room temperature, exhibits almost no plastic elongation, and has local unstable fracture at the maximum shear plane. Is generated. For the purpose of improving such mechanical properties, amorphous alloy composite materials containing a second phase such as ceramics and metals have been developed to date. In 1980, it was reported for the first time that the yield strength was increased and the delocalization of fracture was caused by the composite of an amorphous alloy. In other words, this means that the Ni 78 Si 10 B 12 quenched ribbon in which micron-sized tungsten carbide particles are dispersed has high strength.
In recent years, we have shown that zirconium carbide (ZrC) particle dispersed Zr-Al-Ni-Cu bulk glass composites have higher strength and higher ductility than Zr-Al-Ni-Cu single phase bulk glass. Later, the California Institute of Technology group succeeded in increasing the strength and ductility of metallic glass by combining tungsten and steel material fibers with the same idea, and demonstrated the same effect using these particles and ceramic particles. ing.
Important factors in designing a composite material using such a metallic glass as a matrix are as follows. The absence of reactivity between the mother phase and the dispersed phase, good wettability, and a small difference in coefficient of thermal expansion and specific gravity. Many studies have been conducted on the basis of these. Utilizing the so-called in-situ reaction of Zr and C, in which the reaction generation of ZrC particles by Zr metal and graphite particles is performed during the production of the composite material, is effective for the wetting of the mother phase and the dispersed phase and the uniform dispersion of the particles. is there. This is because the in-situ reaction between the Zr metal and the graphite particles has the effect of preventing aggregation of the particles.
When a ZrC particle-dispersed Zr-based amorphous alloy is produced by using a ZrC particle-dispersed mother alloy produced by melting ZrC particles and a Zr alloy,
1) ZrC particles are expensive,
2) the dispersion of the ZrC particles is non-uniform;
3) There was a problem that the bonding property between the ZrC particles and the amorphous matrix was insufficient.
Therefore, an object of the present invention is to produce a ZrC particle-dispersed amorphous alloy composite having excellent mechanical properties at low cost.
DISCLOSURE OF THE INVENTION In order to achieve the above object, the present invention provides a method of melting a matrix alloy, adding carbon particles and a Zr alloy to the alloy, and melting the alloy at a temperature equal to or higher than the melting point of the Zr alloy + 100K. This is a method for producing a ZrC particle-dispersed amorphous alloy, which comprises reacting Zr and C during melting to produce ZrC particles and producing an alloy in which the ZrC particles are uniformly dispersed.
Further, by adding carbon particles and Zr pure metal to the alloy and melting the alloy at a temperature equal to or higher than the melting point of the Zr metal + 100 K, Zr and C are reacted during melting to generate ZrC particles, and the ZrC particles are uniformly formed. This is a method for producing a ZrC particle-dispersed amorphous alloy, characterized by producing a dispersed alloy.
Further, a ZrC particle-dispersed amorphous alloy having a desired shape can be formed from an alloy having glass forming ability obtained by adjusting an alloy in which the ZrC particles are uniformly dispersed.
The present invention also includes a ZrC particle-dispersed amorphous alloy produced by the method for producing a ZrC particle-dispersed amorphous alloy.
BEST MODE FOR CARRYING OUT THE INVENTION A method for producing a ZrC-particle-dispersed Zr-based amorphous alloy composite material using the present invention is characterized in that carbon particles and a Zr pure metal or a Zr alloy are added to an alloy of a parent phase to obtain a Zr pure alloy. Melting is performed at a temperature equal to or higher than the melting point of the metal or the Zr alloy + 100 K, and Zr and C are reacted during melting to generate ZrC particles. Thus, a ZrC particle-dispersed amorphous alloy can be produced by preparing a mother alloy having glass-forming ability in which ZrC particles are uniformly dispersed and adjusting this. It is desirable that the size of the carbon particles used for the fabrication be 100 micrometers or less, and the size of the ZrC particles be 100 micrometers or less. Further, it is desirable that the dispersion ratio of the produced ZrC particles is 20% or less by volume.
(Example)
A detailed description will be given in the case of dispersing ZrC particles generated by using a reaction between Zr atoms and C atoms in a parent phase having a composition of Zr 55 Al 10 Ni 5 Cu 30 (subscript is atomic%) as an amorphous alloy. I do.
(1) In a pure argon atmosphere, pure Zr, Al, Ni, and Cu metals measured so as to have an atomic ratio of Zr 55 Al 10 Ni 5 Cu 30 are alloyed by an arc melting method.
(2) Graphite particles (particle size of less than 10 microns, purity 99.99%) and excess pure Zr which reacts with the particles to generate ZrC are added to the alloy and mixed again by the arc melting method. It is considered that Zr reacts with C at a ratio of 1: 1 and that Zr in the mother phase reacts with C.
Zr metal has the highest reactivity with graphite as compared to the other three metal elements, and since the generated zirconium carbide (ZrC) is the most stable, only ZrC particles are dispersed by this dissolution. It is created as a phase. (3) The mother alloy containing the ZrC particles is pulverized, charged into a quartz nozzle, and subjected to high frequency melting in a vacuum atmosphere of 10 −4 Torr or less, and then a copper mold (diameter 2 mm, high (50 mm shape).
FIG. 1 is an optical micrograph of a cross section of the cast composite material produced as described above. From this photograph, it can be seen that particles of 10 μm or less are uniformly dispersed in the parent phase.
FIG. 2 shows an X-ray diffraction pattern of a cross section of a cast composite material containing 15 vol% (volume fraction) dispersed particles. Since this is composed of five peaks indicating ZrC and a halo pattern indicating an amorphous structure, the obtained composite material has a matrix of Zr-Al-Ni-Cu amorphous alloy and a dispersion of ZrC particles. Yes, it can be seen that the graphite has disappeared.
FIG. 3 shows a differential scanning calorimetry (DSC) curve (heating rate of 0.67 Ks −1 ) of a ZrC particle-dispersed Zr-based amorphous alloy composite material containing 15 vol% of dispersed particles, and Zr 55 Al 10 Ni 5 Cu 30. These are shown together with those of a single-phase amorphous alloy. The glass transition temperature Tg and the crystallization onset temperature Tx in these two curves coincide at about 680K and 760K, respectively. From this, all of the added graphite reacts with Zr atoms in the molten metal during arc melting to form ZrC particles. As a result, the amorphous alloy of the parent phase, despite the addition of extra pure Zr, It can be seen that the composition of Zr 55 Al 10 Ni 5 Cu 30 (subscript is atomic%) is maintained.
Among the ZrC particle-dispersed Zr 55 Al 10 Ni 5 Cu 30 (subscript is atomic%) amorphous alloy composite material produced by the method described above, 7.5 vol% and 15 vol% (both volume fraction) of ZrC particles of the amorphous alloy composite material The results of a compression test (strain rate of 5.0 × 10 −4 s −1 ) of a sample in which Zr 55 Al 10 Ni 5 Cu 30 (subscripts are atomic%) of a single-phase amorphous alloy obtained by uniformly dispersing Also shown in FIG.
From FIG. 4, it can be seen that the compression rupture strength of the Zr 55 Al 10 Ni 5 Cu 30 (subscript is atomic%) single-phase amorphous alloy is 1836 MPa and the plastic strain is almost 0%, whereas 7.5 vol% And ZrC particles in which ZrC particles of 15 vol% (both volume fractions) are uniformly dispersed Zr 55 Al 10 Ni 5 Cu 30 (subscript is atomic%) The amorphous alloy composite material has a compressive rupture strength and a plastic strain. Have reached 1996 MPa, 1.4% and 2060 MPa, 5%, respectively.
FIGS. 5 to 7 show how the maximum stress (FIG. 5), the plastic strain (FIG. 6), and the Young's modulus (FIG. 7) change according to the change in the volume fraction of the ZrC particles.
From these figures, it can be seen that when the volume fraction is 20% or less, the ZrC particle ratio increases and the performance increases with respect to the maximum stress and Young's modulus, but the plastic strain peaks at a volume fraction of 10%. There is.
[Brief description of the drawings]
FIG. 1 is an optical micrograph of a cross section of a cast composite made of an alloy according to the present invention.
FIG. 2 is a graph of X-ray diffraction of a cross section of a cast composite material made of the alloy according to the present invention.
FIG. 3 is a graph showing a differential scanning calorimetry curve of a cast composite material made of the alloy according to the present invention.
FIG. 4 is a graph showing a stress-strain curve under a compression test of an alloy in which ZrC particles are uniformly dispersed.
FIG. 5 is a graph showing the maximum stress in a compression test with respect to the volume fraction of ZrC particles.
FIG. 6 is a graph showing plastic strain in a compression test with respect to the volume fraction of ZrC particles.
FIG. 7 is a graph showing a Young's modulus by a compression test with respect to a volume fraction of ZrC particles.

Claims (4)

母相となる合金を溶解し、
前記合金にカーボン粒子とZr合金とを加え、Zr合金の融点+100K以上の温度で溶解することにより、溶解中にZrとCを反応させてZrC粒子を生成させ、
ZrC粒子が均一に分散した合金を作製することを特徴とするZrC粒子分散アモルファス合金の作製法。
Dissolve the alloy that will be the parent phase,
By adding carbon particles and a Zr alloy to the alloy and melting at a temperature equal to or higher than the melting point of the Zr alloy + 100 K, Zr and C are reacted during melting to generate ZrC particles,
A method for producing a ZrC particle-dispersed amorphous alloy, which comprises producing an alloy in which ZrC particles are uniformly dispersed.
母相となる合金を溶解し、
前記合金にカーボン粒子とZr純金属とを加え、Zr金属の融点+100K以上の温度で溶解することにより、溶解中にZrとCを反応させてZrC粒子を生成させ、
ZrC粒子が均一に分散した合金を作製することを特徴とするZrC粒子分散アモルファス合金の作製法。
Dissolve the alloy that will be the parent phase,
By adding carbon particles and Zr pure metal to the alloy and melting at a temperature equal to or higher than the melting point of Zr metal + 100 K, Zr and C are reacted during melting to form ZrC particles,
A method for producing a ZrC particle-dispersed amorphous alloy, which comprises producing an alloy in which ZrC particles are uniformly dispersed.
請求項1又は2に記載のZrC粒子分散アモルファス合金において、
さらに、前記ZrC粒子が均一に分散した合金を調整したガラス形成能を有する合金から、所望の形状を有するZrC粒子分散アモルファス合金を形成することを特徴とするZrC粒子分散アモルファス合金。
The ZrC particle-dispersed amorphous alloy according to claim 1 or 2,
Further, a ZrC particle-dispersed amorphous alloy, wherein a ZrC particle-dispersed amorphous alloy having a desired shape is formed from an alloy having a glass forming ability obtained by adjusting an alloy in which the ZrC particles are uniformly dispersed.
請求項1〜3のいずれかに記載のZrC粒子分散アモルファス合金の作製法で作製したZrC粒子分散アモルファス合金。A ZrC particle-dispersed amorphous alloy produced by the method for producing a ZrC particle-dispersed amorphous alloy according to claim 1.
JP2002530815A 2000-09-25 2000-09-25 Amorphous alloy and manufacturing method thereof Pending JPWO2002027055A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/006589 WO2002027055A1 (en) 2000-09-25 2000-09-25 Amorphous alloy and method for preparing the same

Publications (1)

Publication Number Publication Date
JPWO2002027055A1 true JPWO2002027055A1 (en) 2004-02-05

Family

ID=11736516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002530815A Pending JPWO2002027055A1 (en) 2000-09-25 2000-09-25 Amorphous alloy and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JPWO2002027055A1 (en)
TW (1) TWI235770B (en)
WO (1) WO2002027055A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4602210B2 (en) * 2005-09-27 2010-12-22 独立行政法人科学技術振興機構 Magnesium-based metallic glass alloy-metal particle composite with ductility
WO2007038882A1 (en) * 2005-10-03 2007-04-12 Eth Zurich Bulk metallic glass/graphite composites
CN102529191B (en) * 2011-12-15 2015-05-13 比亚迪股份有限公司 Amorphous alloy product and method for manufacturing same
CN105316603B (en) * 2015-10-26 2017-05-24 深圳市锆安材料科技有限公司 High-toughness amorphous alloy and preparation method thereof
CN105316604B (en) * 2015-10-26 2017-04-19 宋佳 High-hardness amorphous alloy and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502201A (en) * 1985-03-01 1987-08-27 ロンドン アンド スカンジナビアン メタラ−ジカル カンパニ− リミテツド Production of titanium carbide
JPS6475641A (en) * 1987-09-18 1989-03-22 Takeshi Masumoto Amorphous alloy containing carbon grain and its manufacture
JPH07300634A (en) * 1994-05-02 1995-11-14 Kobe Steel Ltd Production of aluminum or aluminum alloy composite material
JP2000234156A (en) * 1999-02-15 2000-08-29 Toshiba Corp Bulky amorphous alloy and high strength member using the alloy

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2734891B2 (en) * 1992-07-02 1998-04-02 トヨタ自動車株式会社 Method for producing metal carbide particle-dispersed metal matrix composite material
JPH0688154A (en) * 1992-09-04 1994-03-29 Mitsubishi Kasei Corp Metal compoisition and production of foamed metal composition
JPH07157834A (en) * 1993-12-03 1995-06-20 Honda Motor Co Ltd Production of carbide grain dispersion strengthening al alloy

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62502201A (en) * 1985-03-01 1987-08-27 ロンドン アンド スカンジナビアン メタラ−ジカル カンパニ− リミテツド Production of titanium carbide
JPS6475641A (en) * 1987-09-18 1989-03-22 Takeshi Masumoto Amorphous alloy containing carbon grain and its manufacture
JPH07300634A (en) * 1994-05-02 1995-11-14 Kobe Steel Ltd Production of aluminum or aluminum alloy composite material
JP2000234156A (en) * 1999-02-15 2000-08-29 Toshiba Corp Bulky amorphous alloy and high strength member using the alloy

Also Published As

Publication number Publication date
WO2002027055A1 (en) 2002-04-04
TWI235770B (en) 2005-07-11

Similar Documents

Publication Publication Date Title
Kato et al. High strength and good ductility of Zr55Al10Ni5Cu30 bulk glass containing ZrC particles
JP6435359B2 (en) Mechanism of structure formation of composites based on metallic glass exhibiting ductility
US6692590B2 (en) Alloy with metallic glass and quasi-crystalline properties
Yuan et al. The effect of Ni substitution on the glass-forming ability and mechanical properties of Mg–Cu–Gd metallic glass alloys
JP4094030B2 (en) Super high strength Ni-based metallic glass alloy
US8906172B2 (en) Amorphous alloy composite material and manufacturing method of the same
KR20060110111A (en) Monolithic metallic glasses with enhanced ductility
JPH03158446A (en) Amorphous alloy excellent in workability
KR101629985B1 (en) Ductile metallic glasses in ribbon form
US6918973B2 (en) Alloy and method of producing the same
Hirano et al. Synthesis and mechanical properties of Zr55Al10Ni5Cu30 bulk glass composites containing ZrC particles formed by the in-situ reaction
JP6198806B2 (en) Use of carbon dioxide and / or carbon monoxide gas in the treatment of glassy metal compositions
JP4602210B2 (en) Magnesium-based metallic glass alloy-metal particle composite with ductility
JPWO2002027055A1 (en) Amorphous alloy and manufacturing method thereof
US5397533A (en) Process for producing TiB2 -dispersed TiAl-based composite material
Zhang et al. Formation of high strength in-situ bulk metallic glass composite with enhanced plasticity in Cu50Zr47. 5Ti2. 5 alloy
Kim et al. Origin of the simultaneous improvement of strength and plasticity in Ti-based bulk metallic glass matrix composites
Sun et al. Effect of Nb content on the microstructure and mechanical properties of Zr–Cu–Ni–Al–Nb glass forming alloys
Zhang et al. Synthesis and mechanical properties of Cu-based Cu-Zr-Ti bulk glassy alloys containing ZrC particles
US5352537A (en) Plasma sprayed continuously reinforced aluminum base composites
Eckert et al. Bulk nanostructured multicomponent alloys
Xie et al. Fabrication of ZrCuAlNi metallic glassy matrix composite containing ZrO2 particles by spark plasma sintering process
Liu et al. Formation of bulk Pd-Cu-Si-P glass with good mechanical properties
JP2006241484A (en) New niobium based composite and its use
Chu et al. The effect of matrix fracture toughness on the plastic deformation of the metallic glassy composite

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20030219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100615