JP2000234156A - Bulky amorphous alloy and high strength member using the alloy - Google Patents

Bulky amorphous alloy and high strength member using the alloy

Info

Publication number
JP2000234156A
JP2000234156A JP11036255A JP3625599A JP2000234156A JP 2000234156 A JP2000234156 A JP 2000234156A JP 11036255 A JP11036255 A JP 11036255A JP 3625599 A JP3625599 A JP 3625599A JP 2000234156 A JP2000234156 A JP 2000234156A
Authority
JP
Japan
Prior art keywords
alloy
amorphous
oxygen
bulk
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11036255A
Other languages
Japanese (ja)
Other versions
JP4515548B2 (en
Inventor
Takashi Rokutanda
貴史 六反田
Kiyoshi Nagasaki
潔 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP03625599A priority Critical patent/JP4515548B2/en
Publication of JP2000234156A publication Critical patent/JP2000234156A/en
Application granted granted Critical
Publication of JP4515548B2 publication Critical patent/JP4515548B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PROBLEM TO BE SOLVED: To increase the amorphousness forming performance of the alloy by controlling the content of oxygen therein to a specified range and allowing it to contain an amorphous phase by a specified volume ratio. SOLUTION: This bulky amorphous alloy has an amorphous phase, e.g. with the dimensional shape of >=1 mm even as to any direction of the three dimensions and contains the amorphous phase of >=50% by volume ratio. In this alloy, the content of oxygen is controlled, by atom, to 0.005 to 1.0%. By this, the formation of ununiform nuclei is made less to obtain the alloy contg. the amorphous phase of >=50% by volume, so that the excellent characteristics of high hardness and elongation, high mechanical strength or the like can be obtd. The content of oxygen is more preferably controlled to 0.005 to 0.26%, by which its amorphousness forming performance improves to obtain the alloy having large dimensions. Furthermore, the amorphousness forming performance of the alloy is moreover improved by incorporating it with 0.005 to 1.05 oxygen, >0 to 0.2% nitrogen and >0 to 1.0% hydrogen.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、バルク状非晶質合
金およびこれを用いた高強度部材に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a bulk amorphous alloy and a high strength member using the same.

【0002】[0002]

【従来の技術】金属または合金は溶融状態から冷却する
と通常は結晶化するが、ある種の金属または合金では、
溶融状態から十分に大きな冷却速度で冷却すると、過冷
却されて常温において非晶質の金属または合金が得られ
ることが知られている。その場合の冷却速度としては、
従来は104 〜106 K/秒程度の超急冷が必要であ
り、このため非晶質の金属または合金は薄体、粉末ある
いは細線状などに限られていた。
BACKGROUND OF THE INVENTION Metals or alloys usually crystallize when cooled from the molten state, but for certain metals or alloys,
It is known that when cooled from a molten state at a sufficiently high cooling rate, it is supercooled to obtain an amorphous metal or alloy at room temperature. The cooling rate in that case is
Conventionally, ultra-rapid cooling of about 10 4 to 10 6 K / sec has been required, and as a result, amorphous metals or alloys have been limited to thin bodies, powders, fine wires, or the like.

【0003】しかし最近では、例えばある種のジルコニ
ウム合金などにおいて、1K/ 秒〜103 K/ 秒程度の
冷却速度を臨界冷却速度として有することから、比較的
小さな冷却速度で非晶質合金を得ることができるように
なった。このためバルク状の非晶質合金が作製可能とな
り、薄体や細線状だけではなく、バルク状態の非晶質合
金の特性の応用が可能である。このため、高強度や高硬
度といった良好な機械特性などの非晶質合金特有の特性
を、バルク状態で利用した種々の用途が考えられてい
る。
However, recently, for example, a certain zirconium alloy or the like has a cooling rate of about 1 K / sec to 10 3 K / sec as a critical cooling rate, so that an amorphous alloy can be obtained at a relatively low cooling rate. Now you can do it. For this reason, a bulk amorphous alloy can be manufactured, and the characteristics of the amorphous alloy in a bulk state can be applied in addition to a thin body or a thin line. For this reason, various applications utilizing properties unique to amorphous alloys, such as good mechanical properties such as high strength and high hardness, in a bulk state have been considered.

【0004】こうした比較的小さな冷却速度で非晶質を
得ることができる合金としては、例えば特公平7−12
2120号公報に示されるZr系などの合金や、白金族
元素の添加された特開平8−74010号公報、特開平
8−199318号公報に示された合金、またBeを加
えた米国特許5288344号明細書、米国特許536
8659号明細書に示される合金などが知られている。
As an alloy capable of obtaining an amorphous phase at a relatively low cooling rate, for example, Japanese Patent Publication No. 7-12
Alloys such as Zr-based alloys disclosed in JP-A-2120, alloys disclosed in JP-A-8-74010 and JP-A-8-199318 to which a platinum group element is added, and US Pat. No. 5,288,344 to which Be is added. Specification, US Patent 536
Alloys and the like disclosed in 8659 are known.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上述の
公知例による組成の合金では、溶湯をそのまま金型に鋳
造する方法では非晶質化せず、非晶質合金を得るために
は、例えば米国特許5797443号明細書、あるいは
Material Science Forum Vols. 269-272 (1998)pp.797-
802などに記載されているように、不均一核生成をおさ
えるために酸素含有量を実施可能なレベルに制限しなけ
ればならない。しかし、これらをもってしても、まだ非
晶質合金を得るには不十分であった。とくに後者で記載
されているZr55Al10Cu30Ni5 の合金は酸素含有
量が0.26at%〜0.73at%の範囲内で非晶質を形
成しているが、溶湯から金型鋳造した場合は、一部非晶
質化したものの、バルクサイズとして満足すべき大きさ
を持つ非晶質にはならなかった。また酸素含有量0.2
8at%のZr65Al7.5 Cu17.5Ni10の合金について
も同様であった。またMaterials Transactions,JIM Vo
l.38,pp473-477(1997)には酸素のほか、炭素や窒素の含
有によっても不均一核生成があり得るであろうと記載さ
れているが、どのような挙動をするかについては、何ら
具体的に示されていない。
However, in the alloy having the composition according to the above-mentioned known example, the method of casting the molten metal as it is into a mold does not make it amorphous. Patent No. 5797443, or
Material Science Forum Vols. 269-272 (1998) pp.797-
As described, for example, in 802, the oxygen content must be limited to practicable levels to reduce heterogeneous nucleation. However, even with these, it was still insufficient to obtain an amorphous alloy. In particular, the alloy of Zr 55 Al 10 Cu 30 Ni 5 described in the latter has an amorphous content in the range of 0.26 at% to 0.73 at% in oxygen content. In this case, although a part became amorphous, it did not become an amorphous having a size satisfactory as a bulk size. The oxygen content is 0.2
The same was true for the alloy of 8 at% Zr 65 Al 7.5 Cu 17.5 Ni 10 . Materials Transactions, JIM Vo
l.38, pp473-477 (1997) states that heterogeneous nucleation may be caused by the inclusion of carbon and nitrogen in addition to oxygen. Not specifically shown.

【0006】本発明はこのような従来技術の課題を解決
するものであって、合金の非晶質形成能を高めることに
よって製造されるバルク状非晶質合金およびこのような
バルク状非晶質合金からなる高強度部材の提供を目的と
する。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems of the prior art, and it is an object of the present invention to provide a bulk amorphous alloy produced by enhancing the amorphous forming ability of the alloy and the bulk amorphous alloy. An object is to provide a high-strength member made of an alloy.

【0007】[0007]

【課題を解決するための手段】本発明者らは合金中に含
まれる酸素、さらには窒素、水素の量と非晶質形成能お
よび得られる非晶質合金の特性について詳細に研究を行
った結果、合金組成中の酸素量、窒素量および水素量を
制御することにより、非晶質形成が明確に制御できるこ
と、例えば合金中に含まれる非晶質相の体積率および機
械特性を制御でき、良好な特性を得ることができること
を見出し、本発明をなすに至った。
Means for Solving the Problems The present inventors have conducted detailed studies on the amounts of oxygen, nitrogen, and hydrogen contained in the alloy, the ability to form an amorphous phase, and the characteristics of the obtained amorphous alloy. As a result, by controlling the amount of oxygen, the amount of nitrogen and the amount of hydrogen in the alloy composition, the amorphous formation can be clearly controlled, for example, the volume ratio and mechanical properties of the amorphous phase contained in the alloy can be controlled, It has been found that good characteristics can be obtained, and the present invention has been accomplished.

【0008】本発明のバルク状非晶質合金は、酸素の含
有量を0.005at%以上1.0at%以下にして非晶質
相を体積率で50%以上含有することを特徴とするもの
である。
[0008] The bulk amorphous alloy of the present invention is characterized in that the content of oxygen is 0.005 at% or more and 1.0 at% or less and the amorphous phase contains 50% or more by volume. It is.

【0009】本発明においては、非晶質合金は104
106 K/秒といった超急冷を行うことを必要とせず、
104 K/秒未満の小さな冷却速度で冷却して非晶質の
形成が可能である。このためバルク状で高強度を有する
ことができる。
[0009] In the present invention, the amorphous alloy is 10 4 -
It does not require ultra-rapid cooling of 10 6 K / sec,
Amorphous formation is possible by cooling at a low cooling rate of less than 10 4 K / sec. For this reason, high strength can be obtained in a bulk form.

【0010】本発明において、バルク状非晶質合金と
は、薄体、粉末あるいは細線状などの微小寸法を有する
ことを必要とせずに、三次元のどの方向についても例え
ば1mm以上を有する寸法形状で非晶質相を有するもの
で、非晶質相を体積率で50%以上含有する合金であ
る。
In the present invention, a bulk amorphous alloy is defined as a dimensional shape having a dimension of, for example, 1 mm or more in any three-dimensional direction without having to have a minute dimension such as a thin body, a powder, or a fine line. And an alloy containing an amorphous phase in a volume ratio of 50% or more.

【0011】本発明のバルク状非晶質合金は、従来のよ
うな急冷を要することなく容易に形成できるので、より
大きな寸法の非晶質合金の製造が可能となり、非晶質合
金が薄いテープ状などの微小寸法に限られていた場合に
比べ、より広い用途に非晶質合金の特徴を生かして用い
ることができる。
Since the bulk amorphous alloy of the present invention can be easily formed without requiring rapid cooling as in the prior art, it is possible to produce an amorphous alloy having a larger dimension, and the amorphous alloy can be formed into a thin tape. Compared to the case where the size is limited to a small size such as a shape, the amorphous alloy can be used for a wider application by utilizing the features of the amorphous alloy.

【0012】本発明において、酸素含有量を1.0at%
以下に限定したのは、それによって不均一核の生成が少
なくなって、非晶質相を体積率で50%以上含有するバ
ルク状非晶質合金を得ることができ、高い硬度とともに
伸びを有し、機械的強度が高いなど、非晶質合金のもつ
優れた特性が得られるためである。酸素含有量が1.0
at%を超えると、バルク状非晶質形成能が向上せず、こ
のため非晶質化が難しくなって、工業的な方法ては体積
率で50%以上の非晶質からなるバルク状非晶質合金を
得ることができなくなり、良好な機械的性質を示すなど
の非晶質合金のもつ優れた特性が失われる。
In the present invention, the oxygen content is set to 1.0 at%.
The reason for limiting to the following is that the formation of heterogeneous nuclei is reduced thereby, and a bulk amorphous alloy containing an amorphous phase in a volume ratio of 50% or more can be obtained. However, excellent properties of the amorphous alloy, such as high mechanical strength, can be obtained. Oxygen content is 1.0
If it exceeds at%, the ability to form a bulk amorphous material does not improve, which makes it difficult to form an amorphous material. Amorphous alloys cannot be obtained, and excellent properties of amorphous alloys, such as exhibiting good mechanical properties, are lost.

【0013】また、本発明において、酸素の含有量を
0.005at%以上に限定したのは、酸素の含有量が
0.005at%未満では、得られるバルク状非晶質合金
の材料の硬度が低下するとともに伸びの低下が認められ
るようになり、非晶質合金の特徴の一つである高強度を
利用した用途での利点が減少するからである。
Further, in the present invention, the oxygen content is limited to 0.005 at% or more because, when the oxygen content is less than 0.005 at%, the hardness of the bulk amorphous alloy material obtained is low. This is because a decrease in elongation is observed along with the decrease, and an advantage in an application utilizing high strength, which is one of the features of the amorphous alloy, is reduced.

【0014】本発明においては、酸素含有量を0.00
5at%以上0.26at%以下にすることがより好まし
い。酸素含有量を0.005at%以上0.26at%以下
にすることによって、さらにバルク状非晶質形成能が向
上し、より寸法の大きいバルク状非晶質合金を得ること
ができる。
In the present invention, the oxygen content is 0.00
More preferably, the content is 5 at% or more and 0.26 at% or less. By making the oxygen content 0.005 at% or more and 0.26 at% or less, the ability to form a bulk amorphous material is further improved, and a bulk amorphous alloy having larger dimensions can be obtained.

【0015】また本発明のバルク状非晶質合金は、酸素
を0.005at%以上0.26at%以下含有し、非晶質
相を体積率で50%以上含有することを特徴とするもの
である。
Further, the bulk amorphous alloy of the present invention is characterized in that it contains oxygen in an amount of 0.005 to 0.26 at% and an amorphous phase in a volume ratio of 50% or more. is there.

【0016】また本発明のバルク状非晶質合金は、酸素
を0.005at%以上1.0at%以下、窒素を0を超え
0.2at%以下および水素を0を超え1.0at%以下含
有し、非晶質相を体積率で50%以上含有することを特
徴とするものである。
Further, the bulk amorphous alloy of the present invention contains 0.005 at% or more and 1.0 at% or less of oxygen, more than 0 and 0.2 at% or less of nitrogen, and more than 0 and 1.0 at% or less of hydrogen. And an amorphous phase containing at least 50% by volume.

【0017】さらに本発明のバルク状非晶質合金は、酸
素を0.005at%以上1.0at%以下、窒素を0を超
え0.2at%以下および水素を0を超え1.0at%以下
含有し、非晶質相を体積率で50%以上含有することを
特徴とするものである。
Further, the bulk amorphous alloy of the present invention contains 0.005 at% or more and 1.0 at% or less of oxygen, more than 0 and 0.2 at% or less of nitrogen, and more than 0 and 1.0 at% or less of hydrogen. And an amorphous phase containing at least 50% by volume.

【0018】本発明においては、酸素含有量を規定量範
囲に制御するだけでなく、酸素、窒素および水素の含有
量を規定量範囲に制御することにより、さらにバルク状
非晶質形成能が向上し、より大きな形状のバルク状非晶
質合金を得ることができるので好ましい。この場合にお
いて、酸素の含有量を0.005at%以上1.0at%以
下、窒素の含有量を0を超え0.2at%以下、および水
素の含有量を0を超え1.0at%以下にすることが好ま
しい。窒素の含有量が0.2at%を超えると、バルク状
非晶質形成能が低下する。また水素の含有量が1.0at
%を超える場合も、合金のバルク状非晶質形成能が低下
する。
In the present invention, not only the oxygen content is controlled within the specified range but also the oxygen, nitrogen and hydrogen contents are controlled within the specified range, thereby further improving the ability to form a bulk amorphous. However, it is preferable because a bulk amorphous alloy having a larger shape can be obtained. In this case, the oxygen content is set to 0.005 at% or more and 1.0 at% or less, the nitrogen content is set to more than 0 and 0.2 at% or less, and the hydrogen content is set to more than 0 and 1.0 at% or less. Is preferred. If the nitrogen content exceeds 0.2 at%, the ability to form a bulk amorphous material is reduced. The hydrogen content is 1.0at
%, The ability of the alloy to form a bulk amorphous state is reduced.

【0019】また本発明のバルク状非晶質合金は、一般
式、 (Xa b Alc 100-x-y-z x y z ただし、XはZrおよびHfから選択される1種または
2種の元素、MはNi,Cu,Fe,CoおよびMnか
ら選択される少なくとも1種の元素、a,b,c,x,
y,zは原子パーセントで、 0.005≦x≦1.0, 0≦y≦0.2, 0≦z≦1.0, 25≦a≦85, 5≦b≦70, 0<c≦35, a+b+c=100 で示される組成を有するものを好ましく用いることがで
きる。
Further bulk amorphous alloys of the present invention have the general formula, (X a M b Al c ) 100-xyz O x N y H z , however, X is one or selected from Zr and Hf M is at least one element selected from Ni, Cu, Fe, Co and Mn; a, b, c, x,
y and z are atomic percentages, 0.005 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 1.0, 25 ≦ a ≦ 85, 5 ≦ b ≦ 70, 0 <c ≦ 35, a + b + c = 100 can be preferably used.

【0020】本発明において、Ni,Cu,Fe,Co
およびMnから選択されるM元素は、ZrまたはHfと
共存することによって、非晶質形成能を向上させるとと
もに結晶化温度を上昇させる。そしてAlは上記元素と
共存することにより非晶質相を安定化させるとともに展
延性を向上させ、過冷却液体領域幅を拡大することがで
きる。
In the present invention, Ni, Cu, Fe, Co
The element M selected from Mn and Mn improves the ability to form an amorphous phase and increases the crystallization temperature by coexisting with Zr or Hf. Al coexists with the above elements to stabilize the amorphous phase, improve the spreadability, and increase the width of the supercooled liquid region.

【0021】本発明において、a,bおよびcの数値範
囲を上記のように規定したのは、この範囲の外では合金
のバルク非晶質形成能が低下し、ある程度の大きさを持
ったバルク状非晶質合金が得られなくなるからである。
In the present invention, the numerical ranges of a, b, and c are defined as described above. Outside of this range, the bulk amorphous forming ability of the alloy is reduced, and the bulk having a certain size is reduced. This makes it impossible to obtain an amorphous amorphous alloy.

【0022】本発明は、上記合金の金属組成において、
特に酸素、窒素および水素の含有量x,y,zの範囲を
各々規定することにより、臨界冷却速度を顕著に低下さ
せることができ、その結果、容易に大きな形状のバルク
状非晶質合金を得ることが可能である。なお上記xの値
は0.005以上0.26以下であることがさらに好ま
しい。
The present invention relates to a metal composition of the above alloy,
In particular, by defining the ranges of the contents x, y, and z of oxygen, nitrogen, and hydrogen, respectively, the critical cooling rate can be significantly reduced, and as a result, a bulky amorphous alloy having a large shape can be easily obtained. It is possible to get. It is more preferable that the value of x is 0.005 or more and 0.26 or less.

【0023】また本発明のバルク状非晶質合金は、一般
式 [(Zr1-p Tip a1(ME a2(Cu1-q Niq
b1(ML b2Bec 100-x-y-z x y z ただし、ME はV,Nb,Hf及びCrから選ばれる少
なくとも1種の元素、ML はFe,Co,Mn,Ru,
Ag及びPdから選ばれる少なくとも1種の元素、a1
,a2 ,b1 ,b2 ,c ,x,y,zは原子パーセン
ト、p,qは原子分率であり、 0≦p≦1, 0≦q≦1, 30≦a1 +a2 ≦75, 5≦b1 +b2 ≦62, 2≦c ≦47, a1 +a2 +b1 +b2 +c =100, 0≦a1 , 0≦a2 , 0≦b1 , 0≦b2 , 0.005≦x≦1.0, 0≦y≦0.2, 0≦z≦1.0 で示される組成を有するものが好ましく用いられる。
Further bulk amorphous alloys of the present invention have the general formula [(Zr 1-p Ti p ) a1 (M E) a2 (Cu 1-q Ni q)
b1 (M L) b2 Be c ] 100-xyz O x N y H z , provided that at least one element M E is V, Nb, selected from Hf and Cr, M L is Fe, Co, Mn, Ru,
At least one element selected from the group consisting of Ag and Pd;
, A2, b1, b2, c, x, y, z are atomic percentages, p, q are atomic fractions, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1, 30 ≦ a1 + a2 ≦ 75, 5 ≦ b1 + B2≤62, 2≤c≤47, a1 + a2 + b1 + b2 + c = 100, 0≤a1, 0≤a2, 0≤b1, 0≤b2, 0.005≤x≤1.0, 0≤y≤0. Those having a composition represented by 2, 0 ≦ z ≦ 1.0 are preferably used.

【0024】本発明において、a1 ,a2 ,b1 ,b2
およびcをこのように範囲限定したのは、この範囲から
外れるとバルク非晶質形成能が低下し、ある程度の大き
さを持ったバルク状非晶質合金が得られなくなるからで
ある。
In the present invention, a1, a2, b1, b2
The reason for limiting the ranges of c and c in this manner is that if the ratio is outside this range, the ability to form bulk amorphous is reduced, and a bulk amorphous alloy having a certain size cannot be obtained.

【0025】本発明においては、上記合金の金属組成を
有し、特に酸素、窒素および水素の含有量x,y,zの
範囲を各々規定することにより、臨界冷却速度を著しく
低くすることができ、この結果、大きな形状のバルク状
非晶質合金を容易に得ることができる。なお上記xの値
は0.005以上0.26以下であることがさらに好ま
しい。
In the present invention, the critical cooling rate can be remarkably lowered by having the metal composition of the above alloy, and particularly defining the ranges of the contents x, y and z of oxygen, nitrogen and hydrogen. As a result, a large-sized bulk amorphous alloy can be easily obtained. It is more preferable that the value of x is 0.005 or more and 0.26 or less.

【0026】上記の組成の非晶質合金において、a1 +
a2 を40〜67%、b1 +b2 を10〜48%、cを
10〜35%とすることがさらに好ましい。
In the amorphous alloy having the above composition, a 1 +
More preferably, a2 is 40 to 67%, b1 + b2 is 10 to 48%, and c is 10 to 35%.

【0027】さらに本発明の高強度部材は上記バルク状
非晶質合金を含有することを特徴とするものである。非
晶質合金の基本特性である高強度をバルクサイズで用い
ることができる。
Further, the high-strength member of the present invention is characterized by containing the above-mentioned bulk amorphous alloy. High strength, which is a basic property of an amorphous alloy, can be used in a bulk size.

【0028】[0028]

【発明の実施の形態】本発明においては、バルク状非晶
質合金における酸素、窒素および水素の含有量は、合金
を構成する各金属について、使用する各金属素材の酸
素、窒素および水素の含有量と、これらを溶融して合金
を作製する際の雰囲気ガスの酸素、窒素および水素の含
有量を制御することによって所定値に調整することがで
きる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the content of oxygen, nitrogen and hydrogen in a bulk amorphous alloy depends on the content of oxygen, nitrogen and hydrogen in each metal material used for each metal constituting the alloy. It can be adjusted to a predetermined value by controlling the amount and the content of oxygen, nitrogen and hydrogen in the atmosphere gas when melting these to produce an alloy.

【0029】次に本発明の実施の形態を実施例に基づい
て具体的に述べる。
Next, the embodiments of the present invention will be specifically described based on examples.

【0030】[実施例]表1は本発明の実施例および比
較例に用いた合金組成をまとめて示した表である。
[Examples] Table 1 is a table collectively showing alloy compositions used in Examples and Comparative Examples of the present invention.

【0031】[0031]

【表1】 表1において、A1〜A8は一般式:Xa b Alc
ここにXはZrおよびHfから選択される1種または2
種の元素、MはNi,Cu,Fe,CoおよびMnの合
金組成の具体例である。また表1において、B1〜B8
は一般式:(Zr1-x Tix a1(ME a2(Cu1-y
Niy b1(ML b2Bec 、ここにME はV,Nb,
Hf及びCrから選ばれる少なくとも1種の元素、ML
は Fe,Co,Mn,Ru,Ag及びPdから選ばれ
る少なくとも1種の元素である各合金組成の具体例であ
る。
[Table 1] In Table 1, A1 to A8 have the general formula: X a M b Al c,
Here, X is one or two selected from Zr and Hf.
The seed element, M, is a specific example of the alloy composition of Ni, Cu, Fe, Co, and Mn. In Table 1, B1 to B8
General formula: (Zr 1-x Ti x ) a1 (M E) a2 (Cu 1-y
Ni y) b1 (M L) b2 Be c, where the M E is V, Nb,
At least one element selected from Hf and Cr, M L
Is a specific example of each alloy composition which is at least one element selected from Fe, Co, Mn, Ru, Ag and Pd.

【0032】(実施例1〜4および比較例1〜4)まず
本発明の合金の酸素含有量と非晶質体積率、硬度および
伸びとの関係について示す。
(Examples 1 to 4 and Comparative Examples 1 to 4) First, the relationship between the oxygen content and the amorphous volume fraction, hardness and elongation of the alloy of the present invention will be described.

【0033】A1の合金組成について、酸素の含有量を
表2の酸素量の欄に示される値に近い量を含有した材料
をるつぼにセットして高周波誘導加熱により真空溶解と
鋳込みを行って合金体を作製した。ここで真空溶解の真
空度は1.33Pa以下の真空度とするとともに酸素雰
囲気を調整し、溶融後の撹拌の後、同じ真空容器内にセ
ットした銅製鋳型に鋳込むことによって、板厚4mmの
バルク合金材を得た。酸素雰囲気および真空度の調整に
より、鋳込み後の各合金組成の酸素含有量として表2に
示された値を有する各合金体を得た。このときの銅製鋳
型は水冷等の強制冷却は行わず、自然放冷とした。
Regarding the alloy composition of A1, a material containing an oxygen content close to the value shown in the column of oxygen content in Table 2 was set in a crucible, and vacuum melting and casting were performed by high-frequency induction heating to obtain an alloy. The body was made. Here, the degree of vacuum in the vacuum melting was adjusted to a degree of vacuum of 1.33 Pa or less and the oxygen atmosphere was adjusted. After stirring after melting, the mixture was cast into a copper mold set in the same vacuum vessel to obtain a plate having a thickness of 4 mm. A bulk alloy material was obtained. By adjusting the oxygen atmosphere and the degree of vacuum, each alloy body having the value shown in Table 2 as the oxygen content of each alloy composition after casting was obtained. At this time, the copper mold was not subjected to forced cooling such as water cooling, but allowed to cool naturally.

【0034】[0034]

【表2】 このようにして得られた合金体について、組織観察を行
い、その画像解析により合金の非晶質体積率を測定し
た。また、得られた各合金材の硬度(ビッカース硬度H
v)と伸び(破断伸び、%)を測定し、ともに表2に示
した。
[Table 2] The structure of the thus obtained alloy body was observed, and the amorphous volume ratio of the alloy was measured by image analysis. The hardness (Vickers hardness H) of each obtained alloy material
v) and elongation (elongation at break,%) were measured, and both are shown in Table 2.

【0035】得られた合金体の酸素量と非晶質体積率の
関係を図1に示す。さらに得られた合金体の酸素量と硬
度(Hv)および伸びとの関係を図2に示す。
FIG. 1 shows the relationship between the oxygen content and the amorphous volume ratio of the obtained alloy. FIG. 2 shows the relationship between the oxygen content and the hardness (Hv) and elongation of the obtained alloy body.

【0036】表2および図1,2の結果から、合金体の
硬度および伸びは、酸素量が0.005at%以上1.0
at%以下で高い値が得られることがわかる。
From the results shown in Table 2 and FIGS. 1 and 2, the hardness and elongation of the alloy body were determined when the oxygen content was 0.005 at% or more and 1.0
It can be seen that a high value is obtained at at% or less.

【0037】(実施例5〜8および比較例5〜7)次に
本発明の合金の窒素含有量と非晶質体積率および伸びと
の関係について述べる。
(Examples 5 to 8 and Comparative Examples 5 to 7) Next, the relationship between the nitrogen content of the alloy of the present invention and the amorphous volume fraction and elongation will be described.

【0038】A2の合金組成について、窒素の含有量を
表3の窒素量の欄に示される値に近い量を含有した材料
をるつぼにセットして高周波誘導加熱により真空溶解と
鋳込みを行って合金体を作製した。ここで真空溶解の真
空度は1.33Pa以下の真空度とするとともに窒素雰
囲気を調整し、溶融後の撹拌の後、同じ真空容器内にセ
ットした銅製鋳型に鋳込むことによって、板厚4mmの
バルク合金材を得た。窒素雰囲気および真空度の調整に
より、鋳込み後の各合金組成の窒素含有量として表3に
示された値を有する各合金体を得た。このときの銅製鋳
型は水冷等の強制冷却は行わず、自然放冷とした。
With respect to the alloy composition of A2, a material containing an amount of nitrogen close to the value shown in the column of nitrogen amount in Table 3 was set in a crucible, and vacuum melting and casting were performed by high frequency induction heating to obtain an alloy. The body was made. Here, the vacuum degree of the vacuum melting was adjusted to a vacuum degree of 1.33 Pa or less, and the nitrogen atmosphere was adjusted. After stirring after melting, the mixture was cast into a copper mold set in the same vacuum vessel to obtain a plate thickness of 4 mm. A bulk alloy material was obtained. By adjusting the nitrogen atmosphere and the degree of vacuum, each alloy body having the value shown in Table 3 as the nitrogen content of each alloy composition after casting was obtained. At this time, the copper mold was not subjected to forced cooling such as water cooling, but allowed to cool naturally.

【0039】このようにして得られた合金体について、
組織観察を行い、その画像解析により合金の非晶質体積
率を測定した。また、得られた各合金材の硬度(ビッカ
ース硬度Hv)と伸び(%)を測定し、ともに表3に示
した。
With respect to the alloy body thus obtained,
The structure was observed, and the amorphous volume fraction of the alloy was measured by image analysis. In addition, the hardness (Vickers hardness Hv) and elongation (%) of each of the obtained alloy materials were measured.

【0040】[0040]

【表3】 得られた合金体の窒素量と非晶質体積率の関係を図3に
示す。
[Table 3] FIG. 3 shows the relationship between the nitrogen content and the amorphous volume ratio of the obtained alloy.

【0041】表3および図3から、窒素量が0.2at%
以下であれば非晶質の体積率が50%以上の合金体が得
られ、また合金体の伸びとしても高い値が得られること
がわかる。
From Table 3 and FIG. 3, the nitrogen content is 0.2 at%.
If it is less than or equal to, it can be seen that an alloy body having an amorphous volume fraction of 50% or more can be obtained, and a high value can be obtained as the elongation of the alloy body.

【0042】(実施例9〜12および比較例8〜10)
次に本発明の合金の水素含有量と非晶質体積率および伸
びとの関係について述べる。
(Examples 9 to 12 and Comparative Examples 8 to 10)
Next, the relationship between the hydrogen content of the alloy of the present invention and the amorphous volume fraction and elongation will be described.

【0043】A3の合金組成について、水素の含有量を
表4の水素量の欄に示される値に近い量を含有した材料
をるつぼにセットして高周波誘導加熱により真空溶解と
鋳込みを行って合金体を作製した。ここで真空溶解の真
空度は1.33Pa以下の真空度とするとともに水素雰
囲気を調整し、溶融後の撹拌の後、同じ真空容器内にセ
ットした銅製鋳型に鋳込むことによって、板厚4mmの
バルク合金材を得た。水素雰囲気および真空度の調整に
より、鋳込み後の各合金組成の水素含有量として表4に
示された値を有する各合金体を得た。このときの銅製鋳
型は水冷等の強制冷却は行わず、自然放冷とした。
With respect to the alloy composition of A3, a material containing an amount of hydrogen close to the value shown in the column of hydrogen amount in Table 4 was set in a crucible, and vacuum melting and casting were performed by high-frequency induction heating. The body was made. Here, the vacuum degree of the vacuum melting is adjusted to a vacuum degree of 1.33 Pa or less and the hydrogen atmosphere is adjusted, and after stirring after melting, the mixture is poured into a copper mold set in the same vacuum vessel to obtain a plate having a thickness of 4 mm. A bulk alloy material was obtained. By adjusting the hydrogen atmosphere and the degree of vacuum, alloy bodies having the values shown in Table 4 as the hydrogen content of each alloy composition after casting were obtained. At this time, the copper mold was not subjected to forced cooling such as water cooling, but allowed to cool naturally.

【0044】このようにして得られた合金体について、
組織観察を行い、その画像解析により合金の非晶質体積
率を測定した。また、得られた各合金材の硬度(ビッカ
ース硬度Hv)と伸び(%)を測定し、ともに表4に示
した。
With respect to the alloy body thus obtained,
The structure was observed, and the amorphous volume fraction of the alloy was measured by image analysis. In addition, the hardness (Vickers hardness Hv) and elongation (%) of each of the obtained alloy materials were measured.

【0045】[0045]

【表4】 得られた合金体の水素量と非晶質体積率の関係を図4に
示す。
[Table 4] FIG. 4 shows the relationship between the hydrogen content and the amorphous volume fraction of the obtained alloy.

【0046】表4および図4から、水素量が1.0at%
以下であれば非晶質の体積率が50%以上の合金体が得
られ、また合金体の伸びとしても高い値が得られること
がわかる。
From Table 4 and FIG. 4, it can be seen that the hydrogen content is 1.0 at%.
If it is less than or equal to, it can be seen that an alloy body having an amorphous volume fraction of 50% or more can be obtained, and a high value can be obtained as the elongation of the alloy body.

【0047】(実施例13〜44および比較例11〜4
2)さらに本発明の合金の酸素、窒素、水素の各含有量
と非晶質体積率、硬度および伸びとの関係について述べ
る。
(Examples 13 to 44 and Comparative Examples 11 to 4)
2) The relationship between the oxygen, nitrogen, and hydrogen contents of the alloy of the present invention and the amorphous volume fraction, hardness, and elongation will be described.

【0048】表1のA1〜A8およびB1〜B8の各合
金組成について、酸素、窒素および水素の含有量を表5
〜8の「合金ガス成分」の欄に示される値に近い量を含
有する材料をるつぼにセットして高周波誘導加熱により
真空溶解と鋳込みを行って合金を作製した。
Table 5 shows the contents of oxygen, nitrogen and hydrogen for each of the alloy compositions A1 to A8 and B1 to B8 in Table 1.
A material containing an amount close to the value shown in the column of “alloy gas component” of No. 8 was set in a crucible, and vacuum melting and casting were performed by high-frequency induction heating to produce an alloy.

【0049】[0049]

【表5】 [Table 5]

【表6】 [Table 6]

【表7】 [Table 7]

【表8】 ここで真空溶解の真空度は1.33Pa以下の真空度と
するとともに雰囲気を調整し、溶融後の撹拌の後、同じ
真空容器内にセットした銅製鋳型に鋳込むことによっ
て、板厚1mmおよび4mmの各バルク合金材を得た。
雰囲気および真空度の調整により、鋳込み後の各合金組
成の酸素、窒素および水素の含有量として表5〜8の合
金ガス成分欄に示された値を有する各合金材を得た。こ
のときの銅製鋳型は水冷等の強制冷却は行わず、自然放
冷とした。
[Table 8] Here, the degree of vacuum in the vacuum melting was adjusted to 1.33 Pa or less and the atmosphere was adjusted. After stirring after melting, the mixture was cast into a copper mold set in the same vacuum vessel to obtain a plate thickness of 1 mm and 4 mm. Of each bulk alloy material were obtained.
By adjusting the atmosphere and the degree of vacuum, each alloy material having the values shown in the alloy gas component columns of Tables 5 to 8 as the contents of oxygen, nitrogen and hydrogen of each alloy composition after casting was obtained. At this time, the copper mold was not subjected to forced cooling such as water cooling, but allowed to cool naturally.

【0050】このようにして得られた合金材について、
X線回折と組織観察を行い、画像解析により合金の非晶
質体積率を測定し、表5〜8の鋳込み厚さと非晶質体積
率の欄に示した。また、得られた各合金の硬度(ビッカ
ース硬度)と伸び(%)を測定し、表5〜8の硬度欄お
よび伸び欄に示した。
With respect to the alloy material thus obtained,
X-ray diffraction and structure observation were performed, and the amorphous volume fraction of the alloy was measured by image analysis. The results are shown in Tables 5 to 8 in the columns of cast thickness and amorphous volume fraction. The hardness (Vickers hardness) and elongation (%) of each of the obtained alloys were measured and shown in the hardness column and the elongation column of Tables 5 to 8.

【0051】図5は実施例13の厚さ4mmの合金の顕
微鏡写真であって、非晶質相と結晶相が体積率にて64
%と36%で混在しているものである。図6は実施例2
9の厚さ4mmの合金の顕微鏡写真であって、非晶質相
体積率93%に結晶相が体積率7%にて少々混在してい
るものである。さらに図7は比較例11の厚さ4mmの
合金の顕微鏡写真であって、結晶相が体積率72%に対
し、非晶質相が体積率28%混在しているものである。
FIG. 5 is a micrograph of the alloy of Example 13 having a thickness of 4 mm.
% And 36% are mixed. FIG. 6 shows the second embodiment.
9 is a micrograph of a 4 mm-thick alloy of Example 9, in which a crystal phase is slightly mixed at a volume ratio of 7% with an amorphous phase volume ratio of 93%. FIG. 7 is a micrograph of the alloy of Comparative Example 11 having a thickness of 4 mm, in which the crystal phase has a volume ratio of 72% and the amorphous phase has a volume ratio of 28%.

【0052】表5〜8の結果から、酸素、窒素および水
素を含有する合金においては、酸素の含有量を1.0at
%以下とし、窒素の含有量を0.2at%以下とし、さら
に水素含有量を1.0at%以下とすることによって、良
好にバルク状の非晶質が形成でき、さらに酸素量を0.
005at%以上にすることによって、バルク状非晶質の
硬度および伸びの低下を防ぐことができることがわか
る。
From the results shown in Tables 5 to 8, in the alloy containing oxygen, nitrogen and hydrogen, the oxygen content was set at 1.0 at.
% Or less, the nitrogen content is set to 0.2 at% or less, and the hydrogen content is set to 1.0 at% or less, a bulk amorphous can be formed well, and the oxygen content is reduced to 0.1 at%.
It can be seen that by setting the content to 005 at% or more, it is possible to prevent the hardness and elongation of the bulk amorphous from decreasing.

【0053】[0053]

【発明の効果】本発明によれば、非晶質形成のための臨
界冷却速度を小さくすることができるので、合金の非晶
質形成能を向上させることができる。このため本発明の
バルク状非晶質形成能を有する合金をバルク状非晶質合
金を製造するための母合金として用い、溶融して金型を
用いて鋳造することによってバルク状非晶質合金が製造
できる。また本発明のバルク状非晶質合金は、従来に比
べて容易に形成できるので、より大きな寸法など、より
広い用途に非晶質合金の特徴を生かすことができる。
According to the present invention, since the critical cooling rate for forming an amorphous phase can be reduced, the ability of the alloy to form an amorphous phase can be improved. Therefore, the alloy having the ability to form a bulk amorphous material of the present invention is used as a master alloy for producing a bulk amorphous alloy, and is melted and cast using a mold to form a bulk amorphous alloy. Can be manufactured. Further, since the bulk amorphous alloy of the present invention can be formed more easily than in the past, the characteristics of the amorphous alloy can be utilized for wider applications such as larger dimensions.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 合金材の酸素量と非晶質体積率との関係を示
す図である。
FIG. 1 is a view showing a relationship between an oxygen content of an alloy material and an amorphous volume ratio.

【図2】 合金材の酸素量と硬度(Hv)および伸びと
の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the oxygen content of an alloy material, hardness (Hv), and elongation.

【図3】 合金材の窒素量と非晶質体積率および伸びと
の関係を示す図である。
FIG. 3 is a diagram showing the relationship between the nitrogen content of an alloy material, the amorphous volume ratio, and the elongation.

【図4】 合金材の水素量と非晶質体積率および伸びと
の関係を示す図である。
FIG. 4 is a diagram showing the relationship between the amount of hydrogen in the alloy material, the amorphous volume ratio, and the elongation.

【図5】 本発明の一実施例の合金の顕微鏡写真であ
る。
FIG. 5 is a micrograph of an alloy of one example of the present invention.

【図6】 本発明の他の一実施例の合金の顕微鏡写真で
ある。
FIG. 6 is a micrograph of an alloy according to another embodiment of the present invention.

【図7】 本発明に対する一比較例の合金の顕微鏡写真
である。
FIG. 7 is a micrograph of an alloy of a comparative example for the present invention.

─────────────────────────────────────────────────────
────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成12年5月15日(2000.5.1
5)
[Submission date] May 15, 2000 (2000.5.1)
5)

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】特許請求の範囲[Correction target item name] Claims

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【特許請求の範囲】[Claims]

【手続補正2】[Procedure amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0017[Correction target item name] 0017

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0017】さらに本発明のバルク状非晶質合金は、酸
素を0.005at%以上0.26at%以下、窒素を0を
超え0.2at%以下および水素を0を超え1.0at%以
下含有し、非晶質相を体積率で50%以上含有すること
を特徴とするものである。
Further, the bulk amorphous alloy of the present invention contains oxygen in a range of 0.005 to 0.26 at%, nitrogen in a range of more than 0 to 0.2 at%, and hydrogen in a range of more than 0 to 1.0 at%. , Containing at least 50% by volume of the amorphous phase.

【手続補正3】[Procedure amendment 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0049[Correction target item name] 0049

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0049】[0049]

表5 [ Table 5 ]

表6 [ Table 6 ]

表7 [ Table 7 ]

表8ここで真空溶解の真空度は1.33Pa以下の真空度と
するとともに雰囲気を調整し、溶融後の撹拌の後、同じ
真空容器内にセットした銅製鋳型に鋳込むことによっ
て、板圧1mmおよび4mmの各バルク合金材を得た。
雰囲気および真空度の調整により、鋳込み後の各合金組
成の酸素、窒素および水素の含有量として表5〜8の合
金ガス成分欄に示された値を有する各合金材を得た。こ
のときの銅製鋳型は水冷等の強制冷却は行わず、自然放
冷とした。
[ Table 8 ] Here, the degree of vacuum in the vacuum melting was adjusted to 1.33 Pa or less, the atmosphere was adjusted, and after stirring after melting, the mixture was cast into a copper mold set in the same vacuum vessel to obtain a plate pressure of 1 mm and 4 mm. Of each bulk alloy material were obtained.
By adjusting the atmosphere and the degree of vacuum, each alloy material having the values shown in the alloy gas component columns of Tables 5 to 8 as the contents of oxygen, nitrogen and hydrogen of each alloy composition after casting was obtained. At this time, the copper mold was not subjected to forced cooling such as water cooling, but allowed to cool naturally.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 酸素を0.005at%以上1.0at%以
下含有し、非晶質相を体積率で50%以上含有すること
を特徴とするバルク状非晶質合金。
1. A bulk amorphous alloy comprising 0.005 at% or more and 1.0 at% or less of oxygen and 50% or more by volume of an amorphous phase.
【請求項2】 酸素を0.005at%以上0.26at%
以下含有し、非晶質相を体積率で50%以上含有するこ
とを特徴とするバルク状非晶質合金。
2. The oxygen content is 0.005 at% or more and 0.26 at%.
A bulk amorphous alloy containing the following, and containing an amorphous phase in a volume ratio of 50% or more.
【請求項3】 酸素を0.005at%以上1.0at%以
下、窒素を0を超え0.2at%以下および水素を0を超
え1.0at%以下含有し、非晶質相を体積率で50%以
上含有することを特徴とするバルク状非晶質合金。
3. The composition contains 0.005 at% or more and 1.0 at% or less of oxygen, more than 0 and 0.2 at% or less of nitrogen, and more than 0 and 1.0 at% or less of hydrogen. A bulk amorphous alloy containing 50% or more.
【請求項4】 酸素を0.005at%以上1.0at%以
下、窒素を0を超え0.2at%以下および水素を0を超
え1.0at%以下含有し、非晶質相を体積率で50%以
上含有することを特徴とするバルク状非晶質合金。
4. The composition contains oxygen in an amount of 0.005 to 1.0 at%, nitrogen in an amount of more than 0 and 0.2 at% and hydrogen in an amount of more than 0 and 1.0 at% or less. A bulk amorphous alloy containing 50% or more.
【請求項5】 一般式、 (Xa b Alc 100-x-y-z x y z ただし、XはZrおよびHfから選択される1種または
2種の元素、MはNi,Cu,Fe,CoおよびMnか
ら選択される少なくとも1種の元素、a,b,c,x,
y,zは原子パーセントで、 0.005≦x≦1.0, 0≦y≦0.2, 0≦z≦1.0, 25≦a≦85, 5≦b≦70, 0<c≦35, a+b+c=100 で示される組成を有することを特徴とするバルク状非晶
質合金。
5. A general formula, (X a M b Al c ) 100-xyz O x N y H z where either or both of the two elements X are selected from Zr and Hf, M is Ni, Cu, At least one element selected from the group consisting of Fe, Co and Mn, a, b, c, x,
y and z are atomic percentages, 0.005 ≦ x ≦ 1.0, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 1.0, 25 ≦ a ≦ 85, 5 ≦ b ≦ 70, 0 <c ≦ 35. A bulk amorphous alloy having a composition represented by: a + b + c = 100.
【請求項6】 一般式、 (Xa b Alc 100-x-y-z x y z ただし、XはZrおよびHfから選択される1種または
2種の元素、MはNi,Cu,Fe,CoおよびMnか
ら選択される少なくとも1 種の元素、a,b,c,x,
y,zは原子パーセントで、 0.005≦x≦0.26, 0≦y≦0.2, 0≦z≦1.0, 25≦a ≦85, 5≦b ≦70, 0<c ≦35, a+b+c=100 で示される組成を有することを特徴とするバルク状非晶
質合金。
6. general formula, (X a M b Al c ) 100-xyz O x N y H z where either or both of the two elements X are selected from Zr and Hf, M is Ni, Cu, At least one element selected from the group consisting of Fe, Co and Mn, a, b, c, x,
y and z are atomic percentages, 0.005 ≦ x ≦ 0.26, 0 ≦ y ≦ 0.2, 0 ≦ z ≦ 1.0, 25 ≦ a ≦ 85, 5 ≦ b ≦ 70, 0 <c ≦ 35. A bulk amorphous alloy having a composition represented by: a + b + c = 100.
【請求項7】 一般式、 [(Zr1-p Tip a1(ME a2(Cu1-q Niq
b1(ML b2Bec 100-x-y-z x y z ただし、ME はV,Nb,Hf及びCrから選ばれる少
なくとも1種の元素、ML はFe,Co,Mn,Ru,
Ag及びPdから選ばれる少なくとも1種の元素、a1
,a2 ,b1 ,b2 ,c ,x,y,zは原子パーセン
ト、p,qは原子分率であり、 0≦p≦1, 0≦q≦1, 30≦a1 +a2 ≦75, 5≦b1 +b2 ≦62, 2≦c ≦47, a1 +a2 +b1 +b2 +c =100, 0≦a1 , 0≦a2 , 0≦b1 , 0≦b2 , 0.005≦x≦1.0, 0≦y≦0.2, 0≦z≦1.0 で示される組成を有することを特徴とするバルク状非晶
質合金。
7. A general formula, [(Zr 1-p Ti p) a1 (M E) a2 (Cu 1-q Ni q)
b1 (M L) b2 Be c ] 100-xyz O x N y H z , provided that at least one element M E is V, Nb, selected from Hf and Cr, M L is Fe, Co, Mn, Ru,
At least one element selected from the group consisting of Ag and Pd;
, A2, b1, b2, c, x, y, z are atomic percentages, p, q are atomic fractions, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1, 30 ≦ a1 + a2 ≦ 75, 5 ≦ b1 + B2≤62, 2≤c≤47, a1 + a2 + b1 + b2 + c = 100, 0≤a1, 0≤a2, 0≤b1, 0≤b2, 0.005≤x≤1.0, 0≤y≤0. 2. A bulk amorphous alloy having a composition represented by the formula: 0 ≦ z ≦ 1.0.
【請求項8】 一般式、 [(Zr1-p Tip a1(ME a2(Cu1-q Niq
b1(ML b2Bec 100-x-y-z x y z ただし、ME はV,Nb,Hf及びCrから選ばれる少
なくとも1種の元素、ML はFe,Co,Mn,Ru,
Ag及びPdから選ばれる少なくとも1種の元素、a1
,a2 ,b1 ,b2 ,c ,x,y,zは原子パーセン
ト、p,qは原子分率であり、 0≦p≦1, 0≦q≦1, 30≦a1 +a2 ≦75, 5≦b1 +b2 ≦62, 2≦c ≦47, a1 +a2 +b1 +b2 +c =100, 0≦a1 , 0≦a2 , 0≦b1 , 0≦b2 , 0.005≦x≦0.26, 0≦y≦0.2, 0≦z≦1.0 で示される組成を有することを特徴とするバルク状非晶
質合金。
8. A general formula, [(Zr 1-p Ti p) a1 (M E) a2 (Cu 1-q Ni q)
b1 (M L) b2 Be c ] 100-xyz O x N y H z , provided that at least one element M E is V, Nb, selected from Hf and Cr, M L is Fe, Co, Mn, Ru,
At least one element selected from the group consisting of Ag and Pd;
, A2, b1, b2, c, x, y, z are atomic percentages, p, q are atomic fractions, 0 ≦ p ≦ 1, 0 ≦ q ≦ 1, 30 ≦ a1 + a2 ≦ 75, 5 ≦ b1 + B2≤62, 2≤c≤47, a1 + a2 + b1 + b2 + c = 100, 0≤a1, 0≤a2, 0≤b1, 0≤b2, 0.005≤x≤0.26, 0≤y≤0. 2. A bulk amorphous alloy having a composition represented by the formula: 0 ≦ z ≦ 1.0.
【請求項9】 非晶質相を体積率で50%以上含有する
ことを特徴とする請求項5ないし8のいずれか1項記載
のバルク状非晶質合金。
9. The bulk amorphous alloy according to claim 5, wherein the amorphous phase contains at least 50% by volume of an amorphous phase.
【請求項10】 請求項1ないし9のいずれか1項記載
のバルク状非晶質合金からなることを特徴とする高強度
部材。
10. A high-strength member comprising the bulk amorphous alloy according to any one of claims 1 to 9.
JP03625599A 1999-02-15 1999-02-15 Bulk amorphous alloy and high strength member using the same Expired - Lifetime JP4515548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03625599A JP4515548B2 (en) 1999-02-15 1999-02-15 Bulk amorphous alloy and high strength member using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03625599A JP4515548B2 (en) 1999-02-15 1999-02-15 Bulk amorphous alloy and high strength member using the same

Publications (2)

Publication Number Publication Date
JP2000234156A true JP2000234156A (en) 2000-08-29
JP4515548B2 JP4515548B2 (en) 2010-08-04

Family

ID=12464675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03625599A Expired - Lifetime JP4515548B2 (en) 1999-02-15 1999-02-15 Bulk amorphous alloy and high strength member using the same

Country Status (1)

Country Link
JP (1) JP4515548B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342701A (en) * 2002-05-22 2003-12-03 Howmet Research Corp Yttrium modified amorphous alloy
JPWO2002027055A1 (en) * 2000-09-25 2004-02-05 株式会社東北テクノアーチ Amorphous alloy and manufacturing method thereof
JP2004149914A (en) * 2002-10-31 2004-05-27 Howmet Research Corp Tantalum amorphous alloy
JP2007204812A (en) * 2006-02-01 2007-08-16 Tohoku Univ Method for producing metal glass alloy and method for producing metal glass alloy product
WO2011050695A1 (en) * 2009-10-30 2011-05-05 Byd Company Limited Zirconium-based amorphous alloy and preparing method thereof
CN101906598B (en) * 2009-06-08 2012-05-02 比亚迪股份有限公司 Zirconium-based amorphous alloy and preparation method thereof
US8308877B2 (en) 2009-10-22 2012-11-13 Byd Company Limited Amorphous alloys having zirconium and methods thereof
US8603266B2 (en) 2009-11-11 2013-12-10 Byd Company Limited Amorphous alloys having zirconium and methods thereof
US8906172B2 (en) 2009-05-14 2014-12-09 Byd Company Limited Amorphous alloy composite material and manufacturing method of the same
US9005376B2 (en) 2009-10-26 2015-04-14 Byd Company Limited Amorphous alloys having zirconium and methods thereof
WO2015093407A1 (en) * 2013-12-18 2015-06-25 功平 田口 Metal-based structure or nanoparticles containing hydrogen, and method for producing same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020601A1 (en) * 1995-12-04 1997-06-12 Amorphous Technologies International Golf club made of a bulk-solidifying amorphous metal

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5711363A (en) * 1996-02-16 1998-01-27 Amorphous Technologies International Die casting of bulk-solidifying amorphous alloys
US5735975A (en) * 1996-02-21 1998-04-07 California Institute Of Technology Quinary metallic glass alloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997020601A1 (en) * 1995-12-04 1997-06-12 Amorphous Technologies International Golf club made of a bulk-solidifying amorphous metal

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2002027055A1 (en) * 2000-09-25 2004-02-05 株式会社東北テクノアーチ Amorphous alloy and manufacturing method thereof
JP4653388B2 (en) * 2002-05-22 2011-03-16 ハウメット リサーチ コーポレイション Yttrium modified amorphous alloy
JP2003342701A (en) * 2002-05-22 2003-12-03 Howmet Research Corp Yttrium modified amorphous alloy
JP2004149914A (en) * 2002-10-31 2004-05-27 Howmet Research Corp Tantalum amorphous alloy
JP2007204812A (en) * 2006-02-01 2007-08-16 Tohoku Univ Method for producing metal glass alloy and method for producing metal glass alloy product
US8906172B2 (en) 2009-05-14 2014-12-09 Byd Company Limited Amorphous alloy composite material and manufacturing method of the same
CN101906598B (en) * 2009-06-08 2012-05-02 比亚迪股份有限公司 Zirconium-based amorphous alloy and preparation method thereof
US8308877B2 (en) 2009-10-22 2012-11-13 Byd Company Limited Amorphous alloys having zirconium and methods thereof
US9005376B2 (en) 2009-10-26 2015-04-14 Byd Company Limited Amorphous alloys having zirconium and methods thereof
CN102154596A (en) * 2009-10-30 2011-08-17 比亚迪股份有限公司 Zirconium-based amorphous alloy and preparation method thereof
US8333850B2 (en) 2009-10-30 2012-12-18 Byd Company Limited Zr-based amorphous alloy and method of preparing the same
WO2011050695A1 (en) * 2009-10-30 2011-05-05 Byd Company Limited Zirconium-based amorphous alloy and preparing method thereof
US8603266B2 (en) 2009-11-11 2013-12-10 Byd Company Limited Amorphous alloys having zirconium and methods thereof
WO2015093407A1 (en) * 2013-12-18 2015-06-25 功平 田口 Metal-based structure or nanoparticles containing hydrogen, and method for producing same
US10125019B2 (en) 2013-12-18 2018-11-13 Kohei Taguchi Metal-based structure or nanoparticles containing hydrogen, and method for producing same
JP2020076156A (en) * 2013-12-18 2020-05-21 功平 田口 Metal-based structure or nanoparticles containing hydrogen, and method for producing the same
JP7138400B2 (en) 2013-12-18 2022-09-16 功平 田口 Metal-based structure or nanoparticles containing hydrogen, and method for producing the same

Also Published As

Publication number Publication date
JP4515548B2 (en) 2010-08-04

Similar Documents

Publication Publication Date Title
CN102471856B (en) Alloy composition, fe-based nanocrystalline alloy and manufacturing method of the same
WO1980002159A1 (en) Amorphous alloy containing iron family element and zirconium,and articles obtained therefrom
US5578144A (en) High-strength, high-ductility cast aluminum alloy and process for producing the same
KR100690281B1 (en) Iron-based multi-element amorphous alloy composition
JPH0673479A (en) High strength and high toughness al alloy
JP5916983B2 (en) Alloy composition, Fe-based nanocrystalline alloy and method for producing the same, and magnetic component
JPH03500188A (en) Method for producing oxide dispersion hardened sintered alloy
JP2000234156A (en) Bulky amorphous alloy and high strength member using the alloy
JP4515596B2 (en) Bulk amorphous alloy, method for producing bulk amorphous alloy, and high strength member
US3974001A (en) Paramagnetic alloy
US5714018A (en) High-strength and high-toughness aluminum-based alloy
JPH05335129A (en) Fe-based soft magnetic alloy powder and method for producing the same
JP2003239051A (en) HIGH-STRENGTH Zr-BASE METALLIC GLASS
JP2000178700A (en) HIGH CORROSION RESISTANCE Zr AMORPHOUS ALLOY
JP4557368B2 (en) Bulk amorphous alloy and high strength member using the same
WO1994013847A1 (en) Method of manufacturing cast iron of high strength and low expansion
JPH10265917A (en) High hardness glassy alloy, and high hardness tool using same
JPS63223101A (en) Production of alloy powder
JP2006348333A (en) Mo-BASED HEAT-RESISTANT AMORPHOUS ALLOY
JPH10102223A (en) Fe amorphous alloy
JP3710698B2 (en) Ni-Ti-Zr Ni-based amorphous alloy
JPS61177343A (en) Sintered tini alloy having high plastic workability
JPS61177345A (en) High density sintered tini alloy
JPH05320803A (en) High-strength al alloy
JPH0525578A (en) Aluminum-based alloy laminated solidification material and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100513

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

EXPY Cancellation because of completion of term