JPWO2002023578A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
JPWO2002023578A1
JPWO2002023578A1 JP2002527533A JP2002527533A JPWO2002023578A1 JP WO2002023578 A1 JPWO2002023578 A1 JP WO2002023578A1 JP 2002527533 A JP2002527533 A JP 2002527533A JP 2002527533 A JP2002527533 A JP 2002527533A JP WO2002023578 A1 JPWO2002023578 A1 JP WO2002023578A1
Authority
JP
Japan
Prior art keywords
main surface
substrate
display device
cathode
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002527533A
Other languages
Japanese (ja)
Inventor
宮田 健治
衣川 清重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of JPWO2002023578A1 publication Critical patent/JPWO2002023578A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/028Mounting or supporting arrangements for flat panel cathode ray tubes, e.g. spacers particularly relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/126Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using line sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure

Abstract

電子放出を利用した表示装置に関し、表示特性が良く且つ量産に好適な(組み立て易い)構造を提供する。このために、本発明は、電界放出型表示装置を構成する陰極基板と陽極基板の夫々の主面の間に配置され且つ主面間を一定の距離に保つ複数の隔壁材を、これらの主面のいずれかに沿った面で連結し保持する隔壁材連結保持板を設ける。複数の隔壁材は隔壁材連結保持板に機械的に固定されて、上記陰極基板と陽極基板に配置される。また、隔壁材と隔壁材連結保持板からなる集合体には、陰極基板から陽極基板への電子の流れを制御する電極を固定してもよい。Provided is a display device using electron emission, which provides a structure having good display characteristics and suitable for mass production (easy to assemble). For this purpose, the present invention provides a plurality of partition members that are disposed between the respective main surfaces of the cathode substrate and the anode substrate that constitute the field emission display device and that maintain a constant distance between the main surfaces. A partition material connection holding plate for connecting and holding a surface along any one of the surfaces is provided. The plurality of partition members are mechanically fixed to the partition member connection holding plate, and are disposed on the cathode substrate and the anode substrate. In addition, an electrode that controls the flow of electrons from the cathode substrate to the anode substrate may be fixed to the assembly including the partition wall material and the partition wall connection holding plate.

Description

技術分野
本発明は真空中への電子放出を利用した表示装置に関し、特に表示特性が良く、かつ組み立てやすい表示装置の構造とその製造方法に関するものである。
背景技術
真空中への電子放出を利用した表示装置(以下、電子放出型表示装置又は電界放出型表示装置と呼ばれる)には、C.A.Spindtらにより発案されたスピント型と称する電子放出構造を持つ種類(例えば、米国特許第3453478号公報、特開2000−21305号公報参照)、量子論的トンネル効果による電子放出現象を利用する種類(表面伝導型電子源とも呼ばれる、特開2000−21305号公報参照)、固体物質内で電子を加速して放出するもの、さらにはダイヤモンド膜やグラファイト膜、カーボンナノチューブの持つ電子放出現象を利用した群(「真空」…Journal of Vacuum Society of Japanの日本語版,Vol.42,No.8.(1999),pages722−726参照)等が知られている。
電界放出型表示装置の一例を第57図に模式的に示す。第57図の(a)は、この表示装置を分解して示す斜視図、(b)は組み立てられた表示装置の断面図を夫々示す。第57図(a)に示すように、電界放出型表示装置はガラス、アルミナ等からなる基板を含めた陰極基板1とガラス又はこれと同等又はこれ以上の光透過率を有する材料からなる基板を含めた陽極基板2とを、夫々の主面の周縁部に支持枠30(側板とも呼ばれる)の上面又は下面を合わせて組み立てられる。陽極基板2は、電子源が設けられた陰極基板1に対向して配置されるため、対向基板とも呼ばれる。図示された例では、陰極基板1はガラス基板6上に電子源(電子放出部)とこの電子放出を制御する為の電気的配線とが形成されている。これらの詳細に関しては後述するが、電子放出部を動作されるための2種類の配線群は、図示された絶縁膜8により分離されている。ガラス基板6の面積(xy平面)支持枠30より広く、その周縁には上記配線群の一方(制御電極又はゲート電極と呼ばれる)に電流を供給する端子50(制御電極端子)及び他方(陰極と呼ばれる)に電流を供給する端子70(陰極端子)が設けられている。上記ガラス基板6は、ガラスやアルミナ等のセラミックスに限定されず、例えば表面を絶縁膜でコートしたステンレス等の金属膜で形成してもよい。一方、この陰極基板に対向した陽極基板2はガラス又はこれと同等又はそれ以上の光透過性を有する材料からなる基板上に電極、蛍光体等が形成される。陰極基板1と陽極基板2との間には、ガラス等からなる支持枠30が挿入され、これと陰極基板1及び陽極基板2の夫々の主面に囲まれた空間は10−5〜10−7Torrの真空に排気される。この空間の真空を保つため、支持枠30は陰極基板1及び陽極基板2の夫々にフリットガラス等により密着される。支持枠30には、この空間を大気から遮断し真空に保つ機能が要請されるため、しばしば密封枠とも呼ばれる。上記ガラス基板6の上面に示した点線は、これに支持枠30の外周が当たる位置を示し、上記絶縁膜8はこの真空に維持される空間の内部に収まるように形成される。従って、電界放出型表示装置は陰極基板1から真空に保たれた上記空間に電子を放出し、電子放出部と陽極基板2に設けられた電極との電位差により電子を加速して、陽極基板2に設けられた電極に当てて上記蛍光体を光らせる。蛍光体を光らせるために要する電子のエネルギーは6000eV(eV=電子ボルト)程度に至るため、陰極基板1と陽極基板2との間には6kV程度の高い電位差が設けられる。このため、陰極基板1と陽極基板2との対向しあう主面間に1cm又はそれ以上の隙間を設け、これらの基板間における絶縁破壊を防止する。なお、第57図(a)の直交座標は、これ以外の斜視図、平面図、断面図、及び等価回路図に示される直交座標とともに、夫々の図に示される構造物又は回路の配置を関連付ける。
第58図は、上述のスピント型電子源を備えた電界放出型表示装置の一例を説明する図であり、(a)はその等価回路を、(b)は電子源の近傍の平面図を、(c)は(b)におけるC−C線に沿った断面図を夫々示す。第58図(a)は、m行n列に配列された画素毎に電子放出部を設けた表示装置の構成を示す。第58図(a)におけるG,B,Rと付された箱は、画素毎に設けられた電子放出部(電子源)を示す。電子放出部の各々から放出される電子は、陽極基板2に設けられた夫々の蛍光体にエネルギーを与え、電子放出部Gは緑の、電子放出部Bは青の、電子放出部Rは赤の光を蛍光体から放出させる。第58図(a)にてy軸方向に並ぶm個の電子放出部の各々には、映像信号駆動回路(水平走査回路)Hから端子70及びy軸方向に延びる陰極7を通して、所定の電圧が印加される。一方、第58図(a)にてx軸方向(y軸に交差する方向)に延びる制御電極5には、x軸方向に並設された複数の上記陰極7(列番号:X1,X2,…,Xnが付されている)の夫々との交差部分に陰極7を露出する開口が設けられる。y軸方向に並設された制御電極5(行番号:Y1,Y2,…,Ymが付されている)の各々には垂直走査回路Vから走査信号が端子50を介してy軸方向に逐次供給される。各々の陰極7に印加される電圧は、走査信号が印加される制御電極5の行番号に応じて(制御電極5が変わる毎に)、適宜変調され、(Xi,Yj)のアドレス(Address)で特定される各画素に設けられた電子放出部からの電子の放出を制御し、所望のアドレスの画素に対応する蛍光体を発光させる。
第58図(b)は、第58図(a)の等価回路を有する電界放出型表示装置にスピント型電子源を用いた場合の画素構造(電子放出部とその周囲)の平面図を示し、そのC−C線に沿った断面図を第58図(c)に示す。陰極7は、ガラス基板6上に形成されたNi(ニッケル)、Cr(クロム)、Au(金)、Mo(モリブデン)、W(タングステン)、Pt(白金)、Ti(チタン)、Al(アルミニウム)、Cu(銅)、Pd(パラジウム)等の金属又はこれらを含む合金、ITO(In−SnO、インジウム−錫酸化物)、IZO(In−SnO、インジウム−亜鉛酸化物)、RuO(ルテニウム酸化物)等の金属酸化物、又は不純物をドープした半導体等の材料である。
制御電極5は、陰極7を覆うように成長された絶縁膜(制御電極用絶縁材)8の上面に形成された陰極7と同様な種類の導電性材料からなる薄膜である。制御電極5が陰極7を跨ぐ部分では、制御電極5及び絶縁膜8を貫く開口が設けられる。この開口により露出された陰極7の上面には、エミッタ・コーン(Emitter Cone)100と呼ばれる円錐状又はこれに近い形状の電子放出部が形成される。エミッタ・コーン100と陰極7とは導通されるため、陰極7と制御電極5との電位差は、エミッタ・コーン100の先端と制御電極5との間に電位差ΔVを発生させる。電位差ΔVが数十eVを越えると、第58図(c)に示すようにエミッタ・コーン100の先端から電子がz軸に沿って放出される。この電子は、陽極基板を構成するガラス基板13に設けられた陽極10に当たり、これにより蛍光体11を発光させる。蛍光体11は、画素毎に遮光膜(ブラック・マトリクス)12により分離されているため、画素の周縁に放出された電子がこの画素に隣接する画素の蛍光体を発光させることはない。
エミッタ・コーンは陰極7と同じ材料で形成してもよいが、これより仕事関数の小さい材料を用いると電子の放出効率も上がり、画像を明るく表示し易い。一方、陽極10は上述のITOやIZO等の光透過性の高い導電性薄膜で形成してもよいが、アルミニウムや銀を蒸着して形成してもよい。このような反射率の高い金属薄膜で陽極10を形成すると、蛍光体11で生じた光のうち、陰極7側に伝播する成分をガラス基板13側に反射できるため、その分、表示画像も明るくなる。このような効果を示すことから、反射率の高い金属薄膜で形成された陽極10をメタルバックと呼ぶ。
以上の説明から明らかなように、この電界放出型表示装置は、そのユーザ(観測者)側に配置された陽極基板2に発光部を有するため、蛍光体11から陰極基板1側に位置する部材の光の透過性は実質上不問となる。従って、ガラス基板6は不透明なセラミックスや金属の板に置換えることもできる。但し、ガラス基板に代えて金属等の導電性基板を用いる場合、その陽極基板側の主面に上述の陰極7を形成するため、この主面に絶縁膜を形成するか、または主面の抵抗値を酸化や窒化により高めることが必要となる。また、制御電極5は開口を有する金属又は合金等からなる導電性の板状部材で形成することもできる。この場合、制御電極用絶縁材8として上記複数の陰極7をy軸に沿って横切るように複数の絶縁体のブロックを互いに離間させて配置し、これらの間隙をフリット・ガラスのような絶縁性の接着剤で埋める。上述の導電性の板状部材は、この絶縁性接着剤により絶縁体のブロック上に固定される。なお、制御電極用絶縁材8は、以降、その機能がその形状(例えば、薄膜かブロック状等のバルクか)に特化されない限り、単に絶縁材8とも記す。
第59図は、表面伝導型電子源を備えた電界放出型表示装置の概要を説明する図であり、(a)はその等価回路を、(b)は電子源の近傍の平面図を、(c)は(b)におけるC−C線に沿った断面図を夫々、第58図(a)〜(c)と同じ要領で示す。第59図(a)に示す等価回路から明らかなように、この図に示す電界放出型表示装置では、電子源G,B,Rの各々に、その電子源の位置する画素のアドレス(Xi,Yj)に対応したYj行の陰極7とXi列の制御電極5から電圧を印加して電子を放出させる駆動態様において、第58図(a)のそれと異なる。
このような駆動形態が利用できる理由は、表面伝導型の電子源の形状に起因する。第59図(b)及び第59図(c)に示すように、表面伝導型電子源は、陰極7を覆う制御電極用絶縁材8の画素に対応する部分に開口9’を設け、この開口9’を介して制御電極用絶縁材8上に設けられた制御電極5と陰極7とを導電層57にて接続し、その一部分にフォーミング処理(通電処理等)を施して、この部分(101)の抵抗を導電層57の他の部分より高くする。導電層57を制御電極5側と陰極7側に分割する高抵抗部分101が、表面伝導型の電子源(電子放出部)となる。この電子源は、制御電極5と陰極7との間に所定の電圧を印加したときに導電層57−高抵抗部分101−導電層57の接合に生じるトンネル効果を利用して、電子を放出させる。導電層57は導電材料の微粒子等で形成するのが好ましく、高抵抗部分101の形成には上述の導電層57のフォーミング処理のみならず、導電層57への集束イオンビーム(Focused Ion Beam)の照射等も利用できる。
表面伝導型の電子源を用いた表示装置は、第58図(a)に示す等価回路でも動作できる。この場合、X1列〜Xn列の陰極7の各々として異なる電圧を有する一対の導電層を設け、少なくとも個々の画素に対応する位置において、陰極7を覆う絶縁材8に開口を設け、または絶縁材8を設けないようにする。この絶縁材に覆われない領域において一対の導電層を電気的に接続し、その接続部に上述の高抵抗部分を形成する。一方、制御電極5はこの高抵抗部分を挟み又は囲むように設け、その電位により高抵抗部分から放出される電子の通過と遮断を制御する。このように陰極7と制御電極5とを構成することにより、陰極7から放出される電子を陽極基板側に通過させる電位に設定された制御陰極5に応じて、X1列〜Xn列の陰極7からの電子放出を変調して画像を表示することができる。
従って、本明細書にて以下に記す電界放出型表示装置の陰極7、陽極10、及び制御電極5は、これに設けられる電子放出部の種類により夫々の機能が相違する場合がある。このため、これらの要素は、その順に第1電極(電子放出部から電子を放出させる、所謂エミッタ)、第2電極(放出された電子が照射される、所謂コレクタ)、及び第3電極(第1電極から第2電極への電子の流れをオン・オフする)とも呼ぶことができる。
上述のスピント型電子源や表面伝導型電子源、その他の種類の電子源の電子放出作用の相違に問わず、これらから放出される電子により励起される蛍光体11は、ブラウン管として知られる陰極線管と同じ蛍光材料を用いて形成できる。例えば、赤を表示する画素にはYS:Eu,Smを、緑を表示する画素にはZnS:Cu,Au,Alを、青を表示する画素にはZnS:Agを夫々用いて蛍光体11が形成される。ここで例示した各蛍光体材料は、コロンを挟んで「蛍光体結晶:付活剤」として表記される。付活剤は、蛍光体11におけるその濃度やその種類、蛍光体結晶との焼成(合成)条件で蛍光体11の残光特性等を決める。また、蛍光体11が非発光時に黒又はこれに近い色(反射色)を呈するように、その表面には顔料がコートされる(この顔料コーティングが無い場合、蛍光体11は灰色に近い色を反射し、表示画面をぎらぎらさせる)。
以上に説明した電界放出型表示装置において、陰極基板1及び陽極基板2の夫々の主面と支持枠30とで囲まれた空間は、第57図(b)に示されるガラス基板6の裏面に設けられた排気口61から排気され、その圧力が上述の値(真空度)に至るまで減圧される。この排気工程において、陰極基板1と陽極基板2とが、これらにより挟まれた空間と大気との圧力差により撓み、最終的にはこの空間が大気圧により押し潰されるのを防ぐ為に隔壁材3と称する部材を表示装置の真空空間に適切に配置している。この技術に関しては、例えば特開2000−21335号公報にて論じられている。
第60図は上述した従来の電界放出型表示装置の構造の一例を模式的に描いたものである。この図は、画素(電子放出部)の周囲を拡大して示すものであり、上述の支持枠(側壁)30は省略してある。隔壁材3は陰極基板1と陽極基板2の間に配置される絶縁性の材料である。絶縁抵抗は十分高く保たれるが、電子が衝突して帯電するのを防ぐ為に表面にわずかに導電性を付与する場合もある。上述の電界放出型表示装置の動作上、陰極基板1から陽極基板2へ真空中を走行する電子を妨げないように、出来るだけ薄く、かつ各画素間に適当な間隔で正確に位置決めして配置する必要がある。電界放出型表示装置の駆動においては陽極基板2(上述の陽極10…図示せず)は陰極基板1(上述の陰極7…図示せず)に対してプラスの電位が印加される。電子を十分に加速して発光効率を確保する為に電位として数百ボルト以上、時には数千ボルト以上が使われる。高い電圧を使う場合には陰極基板1と陽極基板2間で電圧破壊が起きないように十分に間隔を確保する必要がある。例えば、陰極基板1と陽極基板2との間に数千ボルトの電位差を設定する場合、これらを少なくとも1mm以上隔てることが必要となる。一方隔壁材3の存在が表示画面に影響が出ないように例えば100μmの厚さが選ばれる。
発明の開示
上述のように、電界放出型表示装置を製造する上で、これに30〜150μmの範囲の厚さ(例えば、100μm)と1mm以上の高さ(例えば、2〜3mmの範囲のいずれかの値)を有する隔壁材3を正確かつ効率よく配置し、組み込む必要がある。また、この隔壁材3の数としては少なくとも大気圧による応力(例えば、ガラス基板13の撓み)に耐えられるだけの数を配置する必要がある。この数は陰極基板1と陽極基板2、及び隔壁材3の強度によって大きく変わるが、例えば対角寸法が40インチ(inch)・クラスの大型の電界放出型表示装置では少なくとも数百個以上、設計によっては数万個以上必要とする。
一方、この隔壁材3は、これに電子が衝突することにより、この表面から2次電子が発生したり、この表面が帯電する(チャージ・アップする)ことがある。これらの現象に因り、隔壁材3近くにおける電子の走行が妨げられ、電界放出型表示装置の表示画面内におけるの画素の表示性能の一様性を損なうことがある。この問題に対して、電子の走行空間を適切に制御すると共に隔壁材3を出来るだけ均一に配置することが重要になる。この目的に対し、例えば、陰極基板1と陽極基板2との間に配置される隔壁材3を十分に多くすることで、これらに囲まれた空間と大気圧との圧力差に対する表示装置の強度を確保すると共にその表示画面内の表示性能の一様性を維持する。
しかしながら、従来提案された隔壁材3の配置形態は、これを必ずしも効率的に且つ正確に適切な場所に配置するに十分でなく、これを用いて上述の電界放出型表示装置を大量に生産しようとすると生産性に著しい支障をきたす恐れがあった。
また、隔壁材3を陰極基板1と陽極基板2を一度に無機接着剤等で結合する所謂隔壁材3の一括配置を採用せず、陽極基板2及び陰極基板1のいずれか一方に隔壁材3を結合した後にこの一方に対向する他方を結合する製造方法も取られている。この方法においては、上記一括配置が困難な問題に加えて更に以下の問題が加わる。例えば、最初に陰極基板1と隔壁材3を結合させる場合、隔壁材3が少なくとも製造工程中にその位置が変わらないように無機接着剤などで固着する。この固着工程で陰極基板1に設けられた電子放出部への影響が無視できない熱処理(例えば、500℃前後の熱処理)が加わるため、陰極基板1に予め設けられた電子放出部の電子放出性能を劣化させる確率が大きい。しかもこの電子放出性能の劣化は隔壁材3付近で著しくなり、結果的にこの電界放出型表示装置の表示特性で面内の一様性が損なう。無機接着剤の処理温度としてより低温度の材料も存在するが、最初に陰極基板1と隔壁材3を結合させる場合、その後の組立工程で使われる温度で軟化、変形する接着剤は使えない。このため最初の組み立てで使用する接着剤の処理温度は最も高い温度で処理するように設定しなければならない。なお、隔壁材3が結合された陰極基板1に電子放出部を設けることは、既に例示した電子放出部の構造からして事実上困難である。
また、最初に陽極基板2と隔壁材3を結合させる場合も同じく陽極基板2に無視できない熱処理、例えば500℃前後の熱処理が加わり、陽極基板2に予め形成された蛍光体11の発光効率を劣化させる危険性がある。しかもこの発光効率の劣化は隔壁材3付近で著しくなり、結果的にこの電界放出型表示装置の表示特性で面内の一様性が損なわれる危険性がある。なお、隔壁材3が結合された陽極基板2に蛍光体11を設けることも、この陽極基板2の構造上困難である。
本発明は上記の問題点を解決するものであり、隔壁材3を表示性能を損なうこと無く、効率的かつ正確に配置することの出来る構造と、その製造手段とを提供することを目的としている。
この目的に対し、本発明は次の表示装置を提供する。
本発明による表示装置の一つは、電子放出部が設けられた陰極基板とこの電子放出部から放出された電子の照射により発光する発光部(例えば、蛍光部)が設けられた陽極基板とを所定の間隙(距離)を以って離間させる複数の隔壁材を一括する(個々の隔壁材に連結し、これらの位置関係を保持する)「隔壁材連結保持板」を有することに特徴付けられる。以降、この表示装置を本発明による第1の表示装置とも呼ぶ。
本発明による表示装置の他の一つは、電子放出部が設けられた陰極基板とこの電子放出部から放出された電子の照射により発光する発光部(例えば、蛍光部)が設けられた陽極基板とを所定の間隙(距離)を以って離間させる複数の隔壁材と、上記電子放出部から陽極基板への電子の流れを制御する電極(制御電極)とを、一括する(個々の隔壁材及び電極に連結し、これらの位置関係を保持する)「隔壁材・制御電極連結保持板」を有することに特徴付けられる。以降、この表示装置を本発明による第2の表示装置と呼ぶ。
これらの表示装置は、例えば電界放出型表示装置のように、これを構成する2つの基板(板状部材)を液晶表示装置やプラズマ・ディスプレイ・パネルよりも広く離間させる装置に適用され、特に2つの基板間を大気圧より低い圧力に保つ場合に有効である。また、2つの基板間で荷電粒子を走行させることにより画像表示を行なう電界放出型表示装置に、多くの利点をもたらす。
本発明によれば、上述の第1及び第2の表示装置に問わず、これらの構成要件を組合せ、上記表示装置の構成要件をその代替物に置換え、又は上記表示装置に更に新たな構成要件を加えることで、新たな表示装置を提供することもできる。本発明に係る上述の及びその他の目的、特徴、及び効果は以降の記載とこれに付された図面とを関連させることにより、更に明確にされよう。
発明を実施するための最良の形態
以下、図面を参照しながら本発明を説明する。
第1図は本発明による第1の表示装置を概念的に説明するための説明図で、その表示装置の画素(電子放出部)付近の配置を簡略に示す。第1図は、本発明による第1の表示装置の構造的な特徴を強調するために、この特徴に直接関与しない以下の部分が省略されている。
(1)隔壁材(壁部材)3と隔壁材連結保持板(連結部材)4、または隔壁材3と隔壁材・制御電極連結保持板(連結部材、後述)4を結合する手段(例えば、接着剤)。
(2)電界放出型表示装置内を真空に保つ為の支持枠(側壁)3と、陰極基板1と、陽極基板2とを気密に封止する手段。
(3)隔壁材3と陰極基板1、又は隔壁材3と陽極基板2を固定する手段。
(4)電界放出型表示装置内(電子を走行させる筐体内)を真空封じする為の機構(例えば、筐体に設けられた排気口)。
(5)電界放出型表示装置内を高真空に維持する為のゲッタ材。
(6)陰極基板1、陽極基板2、隔壁材連結保持板4または隔壁材・制御電極連結保持板4を電気的に接続する手段。
(7)陰極基板1に設けられた電子を真空中(上記筐体内)へ放出する手段(上述の電子放出部)。
これらの構成要素は、後述する本発明の実施例(以下、実施例と呼ぶ)にて参照する他の図面においても省略されるが、いずれかの構成要素、またはその組合わせに特徴のある実施例に参照する図面においては適宜示される。
第1図に示された構造を有する電界放出型表示装置は、陰極基板1、陽極基板2、及び図示されない支持枠(側壁)により囲まれた空間(筐体)を有し、且つこの空間内を真空に保つ気密性と強度を持っている。第57図(b)を参照して説明すれば、陰極基板1(ガラス基板6として示される)及び陽極基板2は、夫々に加わる上記空間内と大気圧との圧力差に因るz軸方向の応力(撓み)で破壊されない程度の強度を有する。陽極基板2は陰極基板1に対してプラス(正)の電位が印加され、且つ陰極基板1から飛来した電子を受けて発光する蛍光体11を有する。
この陰極基板1と陽極基板2の間には、複数の隔壁材3とこれらが機械的に結合された隔壁材連結保持板4とにより構成される隔壁材集合体17が配置されている。隔壁材3は電子の走行方向に沿った面を有し、この面の下辺を陰極基板1に、この面の上辺を陽極基板2に夫々接触させることにより陰極基板1と陽極基板2との間に所望の間隙を形成する。隔壁材3と隔壁材連結保持板4との連結形態には種々の例がある。また隔壁材3及び隔壁材連結保持板4の形状と配置にも種々の形態があり得る。これらの組み合わせのうち代表的な形態を以下の実施例で説明するが、ここに述べる実施例だけが本発明の特徴を実現するものではない。
第2図は本発明による第2の表示装置を概念的に説明するための説明図で、その表示装置の画素(電子放出部)付近の配置を第1図と同様に簡略に示す。
第2図に示された構造を有する電界放出型表示装置は、陰極基板1、陽極基板2、及び図示されない支持枠(側壁)により囲まれた空間(筐体)を有し、且つこの空間内を真空に保つ気密性と強度を持っている。
陰極基板1は電子を上記空間(真空)中へ放出する手段を有し、且つこの空間を真空に保ち得る気密性と強度を持っている。陽極基板2は陰極基板1に対してプラス(正)の電位が印加され、且つ陰極基板2から飛来した電子を受けて発光する蛍光体11を有する。陽極基板2も陰極基板1と同様に、上記空間内を真空に保ち得る気密性と強度を持っている。陰極基板1と陽極基板2の間には、複数の隔壁材3、これらが機械的に結合された隔壁材連結保持板4、及び制御電極5から構成された隔壁材・制御電極集合体18が配置されている。隔壁材3は電子の走行方向に沿った面を有し、この面の下辺に固定された制御電極5を陰極基板1に、この面の上辺を陽極基板2に夫々接触させることにより陰極基板1と陽極基板2との間に所望の間隙を与える。隔壁材3と隔壁材連結保持板4との連結形態には種々の例がある。また隔壁材3、隔壁材連結保持板4及び制御電極5の形状と配置にも多くの形態がある。これらの組み合わせのうち代表的な形態を以下の実施例で説明するが、ここに述べる実施例だけが本発明の特徴を実現するものではない。
上述の本発明による第1及び第2の表示装置の夫々に設けられる隔壁材3は、真空(例えば、10−5〜10−7Torrの圧力)に保たれた上記空間(上記筐体内)を第57図に示すx軸方向又はy軸方向に沿って完全に仕切る必要はなく、これと陰極基板1又は陽極基板2との間に筐体内の真空排気のコンダクタンスを上げるに好ましい開口が形成されるような形状にしても本発明の実施に支障を来たすものでない。また、隔壁材3は上記筐体内での電子の走行を妨げないために、その走行方向(陰極基板1主面から陽極基板2主面に引かれる仮想的な線の延伸方向、第2図におけるz軸方向)に沿って広がる面(例えば、第2図におけるy−z面やx−z面)を有する板状部材とすることが望ましい。電子の走行方向に沿った面は、電子の走行を妨げない範囲において電子の走行方向に対し傾斜を示してもよい。また、隔壁材3の電子の走行方向に沿った面(第2図の例ではy−z面)の面積を、この面の各辺にて接する他の面の面積より大きく(広く)することにより、表示画面(第2図のx−y面)における電子の走行領域(換言すれば陽極基板2における電子の照射領域)の面積比を大きくできる。このように形成された隔壁材3の電子の走行方向に沿った面(他の面に比べて広い)は、「隔壁材の主面」とも呼ばれる。表示画面における電子の走行領域の面積比を大きくすることは、表示装置の画素数の増加に望ましく、また個々の画素の輝度を上げる利点をもたらす。隔壁材3には、その強度を損なわない限りにおいて、開口を設けてもよい。隔壁材3と呼ばれる部材は、その視覚的な特徴に基づき、本願明細書において、この名称にて特定されるが、表示装置における実施態様に応じて壁部材や、板状部材、プレート(Plate)として呼ばれ得る。
上述の本発明による第1及び第2の表示装置の夫々に設けられる隔壁連結保持板4は、上記複数の隔壁材3を上記陰極基板1や上記陽極基板2に固定することなく、これらの基板間に配置するために各々の隔壁材3と機械的に固定されるように形成される。隔壁連結保持板4と隔壁材3との機械的な固定は、例えば、隔壁連結保持板4に開口部を設け、この開口部に隔壁材3に設けた突起部を嵌め込むことにより、また隔壁連結保持板4の面に隔壁材3の面を接着剤やソルダにより固定することにより達成できる。表示装置における電子が走行する空間を排気する際に生じる大気圧による陰極基板1又は陽極基板2の撓みは隔壁材3により吸収されるが、隔壁材3をこれらの基板に固定していない場合、隔壁材3の各々は基板から加わる応力を緩和するために、夫々の位置が変動し得る。このような変動は、電子の走行方向に沿った夫々の面が互いに交差する2種類の隔壁材3を組合わせた上記特開2000−21335号公報に開示される一例でも生じる。この変動は、画素毎に電子の走行領域の形状や容積を変え、陽極基板への電子照射条件を画素毎に異ならせ得る。しかしながら、本発明による表示装置に設けられる隔壁連結保持板4は、その上記筐体内における電子の走行方向(第2図におけるz軸方向)に交差するように広がる面(例えば、第2図におけるx−y面)で上記複数の隔壁材3の各々に接合する。例えば、隔壁連結保持板4の電子の走行方向に交差する面に上述の開口部を設け、この開口部に隔壁材3の各々に設けた電子の走行方向に沿って突き出る上述の突起部を嵌める。このような接合により、特定の隔壁材3に大きく加わる応力(第2図ではz軸方向)を、隔壁連結保持板4の電子の走行方向に交差する面内(第2図ではx−y面)を通して他の隔壁材3に分散し、画素間における電子の走行条件の相違を抑える。また、隔壁連結保持板4の電子の走行方向に交差する面には陰極基板2に設けられた電子放出部の各々に対応して複数の開口(上述の突起部が嵌められる開口部とは別)が設けられる。電子放出部から放出される電子(荷電粒子)は、電荷を有するため、陰極基板1から陽極基板2に向けて空間電荷効果を受けながら、第58図(c)及び第59図(c)に示すように所定の軌道に沿って走行する。このため、隔壁連結支持板4に設けられた開口は、陽極基板2に到達する電子を制限するより、むしろ、この電子軌道を成形する所謂電子レンズ(又はその類似物)として働く。従って、電子放出部に対応する開口をその形状を揃えて隔壁連結支持板4に設けることにより、電子放出部毎(換言すれば、画素毎)の電子走行条件が揃う。これにより、陽極基板への電子照射が画素毎に相違する問題が解消され、表示装置の画面に亘り各画素の蛍光体をばらつきなく発光させることができる。この効果は、表示装置に「ムラ」のない画像を表示させるという大きな利点をもたらす。このような筐体内での電子の走行方向(第2図におけるz軸方向)に交差する面を有する隔壁連結保持板4は、板状に形成することが望ましい。板状部材として形成される隔壁連結保持板4は、その電子の走行方向に交差する面(第2図の例では、x−y面)の面積を、その各辺にて接する他の面(第2図の例では、x−z面やy−z面)の面積より大きく(広く)する。このように形成された隔壁連結保持板4の電子の走行方向に交差する面(他の面に比べて広い)は、「隔壁連結保持板の主面」とも呼ばれる。板状に形成された隔壁連結保持板4は、その主面による複数の隔壁材3を連結し且つ保持する性能を損なうことなく、筐体内における電子の走行領域(第2図のz軸方向)を十分に広げることができる。筐体内における電子の走行領域が広がると、この電子の軌道は上述の隔壁連結保持板4の主面に設けられた開口によるレンズ効果に大きく依存する。このため、陰極基板2の電子放出部の各々に対応させて隔壁連結保持板4の主面に設けた開口の形状を一様に設計する限りにおいて、いずれの電子放出部(画素)においても電子は陰極基板1から陽極基板2に同様な軌道で走行でき、その結果、画素間におけるの輝度のバラツキも解消される。さらに、上記本発明による第2の表示装置では、隔壁連結保持板4の基材を絶縁材料で形成し、その主面の開口を囲むように導電材料の膜を形成することで、制御電極を形成できる。なお、隔壁連結保持板4と呼ばれる部材は、その視覚的な特徴に基づいて、この名称にて本願明細書では特定されるが、その実施態様に応じて連結部材や、連結板、ジョイナ(Joiner)とも呼ばれ得る。
さらに、上述及び後述の説明における陰極、陽極(メタルバック)、制御電極の機能は、既に説明した通り、表示装置に設けられる電子放出部(電子源)の形態やその駆動方法により変わり得る。従って、陰極、陽極、制御電極は、この順に、第1電極(電子放出部から電子を放出させる)、第2電極(放出された電子を受ける)、及び第3電極(第1電極から第2電極への電子の流れを調整する)とも呼ぶことができる。
但し、以下の各実施例においては、夫々の参照番号に対して、3:「隔壁材」、4:「隔壁材連結保持板」、又は単に「連結板」、5:「制御電極」、7:「陰極」、8:「制御電極用絶縁材」又は単に「絶縁部材」、10:「メタルバック」又は「陽極」と便宜的に呼ぶ。また、表示装置において電子の走行する空間(上記筐体)は、この内部を真空に保つ機能を有することから、真空槽、気密手段とも呼ばれる。
<第1の実施例>
第3図乃至第5図は本発明の第1の実施例を説明する図である。第1図において、陰極基板1は陰極用ガラス基板6、陰極7、制御電極用絶縁材(以下、絶縁材)8及び制御電極5から構成される。陽極基板2は陽極用ガラス基板13、蛍光体11、ブラックマトリクス12及びメタルバック10から構成されている。また第4図は第3図のC−D断面を示している。陰極基板1において、陰極7と制御電極5は互いに交差するように配置されており、それぞれ導電性を持つ材料が選ばれている。この2種類の電極間を絶縁する目的で絶縁材8が配置されている。陰極7は制御電極5にプラスの電位が印加された時に電子を真空空間に放出する機能を有し、炭素原子を利用したダイヤモンド膜、グラファイト膜あるいはカーボンナノチューブ(Carbon Nano Tube;CNT)に加え、円錐状の先端から電子を放出するいわゆるSpindt構造、量子的トンネル効果を利用する材料などが使われる。制御電極5には第4図のように制御電極孔9が設けられている。この実施例では制御電極孔9は円形に形成されているが正方形または矩形でも同じ機能を有する。制御電極5を図のように設置する手段としては金属板を機械加工、レーザ加工あるいはフォト・エッチング(被加工物上にPhotolithographyでパターンを描き、これをマスクとして被加工物をEtchingする手法)することによって制御電極孔9を形成して配置する。
一方、陽極基板2においては、陽極用ガラス基板13上に電子の入射によって赤(R)、緑(G)及び青(B)を発光する蛍光体11が空間的に塗り分けられている。この3色の蛍光体11の間には混色を防ぐ為にブラックマトリックス12が配置されている。また、これら蛍光体11とブラックマトリクス12の上には導電性を有し、かつ陰極基板1から走行して来た電子を透過して蛍光体11と衝突させ、発光した光を陽極用ガラス基板13側に反射させる機能を持つメタルバック(陽極)10を前面に形成されている。
以上の構成を持つ陰極基板1と陽極基板2の間に、隔壁材3とこれに連結する隔壁材連結保持板(以下、連結板)4から構成される隔壁材の集合体17がある。実際に電界放出型表示装置を組み立てるにはこれら3つの構成部品に加え、大気を遮断する為の側壁と、これら4つの部品を気密を保ちながら連結する手段、真空封止の手段、ゲッタリング手段、及び陰極7、制御電極5、隔壁材の集合体17(Assemblage)ならびにメタルバック10へ電気的に接続する手段を付加するがこれらは図面及び詳細説明から省かれている。このように隔壁材3とこれに連結する連結板4とを隔壁材の集合材17という一つの部品に機械的(物理的)にまとめることによって電界放出型表示装置の組み立てが極めて容易になる。第3図において、隔壁材集合体17のA−B断面を第5図に示す。
第5図は隔壁材3が隔壁材連結保持板(連結板)4を一部貫いており、陰極7側で接着剤15によって固着されている構造を示している。連結板4には電子線通過孔(開口)14があり、電子の大部分はこの開口を通って陽極基板2に到達する。
隔壁材3は陰極基板1と陽極基板2の間を隔てる為に設置されるので、その電気的特性は絶縁物である。しかし必要に応じて適切に導電性を持たせて表面の電子による帯電を防止することがある。この適切な導電性は隔壁材3の体積全体ではなく表面にのみに付与することもある。隔壁材3の材料として、セラミックス、無機ガラス、結晶化ガラスなどが使われる。あらかじめ焼結・固化、または半焼結・固化したセラミックス、無機ガラス、結晶化ガラス製の隔壁材3を接着剤15により連結板4に固着される。
連結板4は絶縁物、半導体、および金属材料が使用できる。電子が付着することにより全体又は局所的に帯電して画素の電界分布が不安定になる場合には適切な導電性を持ち、かつその電位を制御する電気的装置に接続されていることが望ましい。この第1の実施例では電位として第3図の陽極基板2の電位、具体的にはのメタルバック10の電位にほぼ等しい電位に保持されている。陽極電位と同じに設定するのがもっとも簡単であるが、電子の集束状態をより適正に維持する為に陽極電位と異なった電位を選択してもよい。
連結板4は、表面に導電性の膜を形成した絶縁物、又は金属製材料の部材を使用するとよい。いずれの場合でも陰極用ガラス基板6及び陽極用ガラス基板13に線熱膨張係数を略一致させることが望ましい。絶縁物として、セラミックス、又はガラスの板を用いる場合、これに電子線通過孔14と隔壁材挿入孔21とを開ける。これらの孔はレーザ加工や機械加工、又はフォト・エッチング法等の既存の加工方法で形成できる。また、雲母板は優れた耐熱性、耐絶縁性、弾力性を有し、真空中でのガスの発生も少ないため、連結板4の作製に好適な材料の一つである。絶縁物の部材に導電性を付与するには、その表面に例えばニッケル金属(Ni)、タンタル金属(Ta)の膜をスパッタリング法で形成する。連結板4の一方の主面に導電性を持たせる場合は、電子が衝突しやすい陰極基板1側に金属層を設けるとよい。一方、連結板4の作製に適した導電性材料として、例えば鉄(Fe)、鉄・ニッケル合金(FeNi)、鉄・ニッケル・クロム合金(FeNiCr)、又は鉄・ニッケル・コバルト合金(FeNiCo)やアンバー材がある。
<第2の実施例>
第6図は、第3図に示す隔壁材の集合体17を隔壁材連結保持板4の陽極基板側で接着剤15により隔壁材3を固定した第2の実施例を、第3図のC−D断面として示す。接着剤15を陽極基板側に供給することで、これが電子の流れに直接曝されるのを防止できる。
<第3の実施例>
第7図、第3図に示す隔壁材の集合体17を接着剤を用いずに、隔壁材3と隔壁材連結保持板4との機械的摩擦と弾性変形とを利用して組み立てた第3の実施例を、第3図のC−D断面として示す。本実施例では、隔壁材3又は隔壁材連結保持板(連結板)4の少なくとも一方を弾力性のある素材で形成することで、実施できる。第8図は本実施例に使用する連結板4の一例の主面を示す平面図で、この主面に隔壁材3を挿入するための隔壁材挿入孔(以下、開口部)21が設けられている。この開口部21は、第9図の各々に拡大して示される。第9図(a)は隔壁材挿入孔21の長さlaの範囲で開口部21が矩形でなく折れ曲がった形状を持つ例を示す。ここで、taがゼロ(0)でない。また、第9図(b)は開口部21の一部lb(長さlbの部分)を折り曲げた例を示す。この例でもtbがゼロでない点に特徴を有する。
弾力性のある素材として、例えば雲母板がある。連結板4を鉄系合金で、隔壁材3を雲母で夫々形成すると、隔壁材3の開口部21に嵌められた部分が弾性変形し、その弾性摩擦力で連結板4に結合する。本実施例は、接着剤を使用せず、機械的な加工と組み立てだけで隔壁材集合体17が作製できる利点を有する。また、連結板4と隔壁材3の両方を雲母板で形成してもよい。
<第4の実施例>
第10図は、第3図の隔壁材集合体17を別の連結態様で組み立てた第4の実施例を示す。本実施例では、隔壁材3が隔壁材連結保持板4に挿入されて機械的な摩擦力で固定されるが、その端部が隔壁材連結保持板4の一方の表面と略一致している。隔壁材挿入孔21は第8図乃至第9図に示す形状に成形することもできる。この構造では、隔壁材連結支持板4の一方の主面に凹凸が生じないため、平面の作業台上で隔壁材3を隔壁材挿入孔21に挿入できる。
<第5の実施例>
第11図は、第3図の隔壁材集合体17を別の接着方法で組み立てた第5の実施例を示す。隔壁材3は隔壁材保持板4に設けられた隔壁材挿入孔(開口部)21に挿入され、隔壁材保持板4の裏面(陽極基板2側の主面)に略一致する隔壁材3の挿入端部(上部)は接着剤15で隔壁材保持板4に固定される。この構造では、接着剤15の塗布領域が略平坦なため、組立作業性及び塗布精度を向上させる。
<第6の実施例>
第12図は、第3図の隔壁材集合体17を、焼結セラミックスからなる隔壁材3をグリーンシート等と称する焼結前のセラミックスを設けたした隔壁材連結保持板(連結板)4の主面に配置し、このセラミックスを所定の温度で焼結して組み立てる第6の実施例を示す。本実施例の連結板4の作製には、上記焼結温度に耐える金属、セラミックス、及びガラス等が用いられる。また、焼結前のセラミックスを連結板4の主面に配置する方法として、連結板4の主面へのスクリーン印刷法によるセラミックス材料の供給を複数回繰り返す方法、グリーンシートを埋め込んだロール型を連結板4の主面に押し付けて転写する方法等がある。いずれの方法を採用しても、複数の隔壁材3を連結板4に同時に形成できるので、表示装置の生産効率向上に好適である。
<第7の実施例>
第13図は、上述の実施例とは異なる陰極基板構造を有する第7の実施例の表示装置を示す。第13図のC−D断面を第14図に示す。制御電極5には制御電極孔9があるが、これに対応する絶縁材8の開口89を覆うことはない。換言すれば、制御電極孔9の輪郭が絶縁材8の開口89内に入らない。本実施例では、金属板に機械加工、レーザ加工、又はフォト・エッチング法で制御電極孔9を形成し、第13図に示す制御電極5を作製する。また、絶縁材8上に金属材料を蒸着、スパッタ、イオン・プレーティング等で供給して金属膜を形成し、これにフォト・エッチングで制御電極孔のパターンを形成しても、また、絶縁材8上に導電性のペースト状材料を塗布し、これにスクリーン印刷法で直接パターンを形成しても、制御電極5を作製できる。
<第8の実施例>
第15図は上述の実施例とは異なる隔壁構造を持つ第8の実施例を示し、隔壁材3がその長手方向に分断されている構造に特徴を有する。隔壁材3は電界放出型表示装置の全体に亘り連続している必要はなく、分断されることで、隔壁材3と隔壁材連結保持板4との熱膨張係数の差に因る起こる応力が緩和できるため、隔壁材3に用いる材料の選択範囲も広がる。
<第9の実施例>
第16図は、隔壁材3を制御電極5の延伸方向に交差(直交)するように配置した第9の実施例を示す。このような配置により、制御電極5を隔壁材集合材17で押さえて、表示装置の構造的安定性を高める。
<第10の実施例>
第17図は、第9の実施例の隔壁材3をその長手方向に分断したその長手方向に分断した第10の実施例を示す。実施例8と同様、隔壁材3と隔壁材連結保持板4との熱膨張係数差に因ってこれらの間に生じる応力が緩和できるため、隔壁材3に用いる材料の選択範囲も広がる。
<第11の実施例>
第18図は、第9の実施例の制御電極5を棒状に形成した第11の実施例を示す。第19図は第18図のC−D断面を示す。第18図に示されるように、本実施例の制御電極5は、第1制御電極19と第2制御電極20の2本が一対となって陰極7の各々の電子放出を制御する。第1制御電極19と第2制御電極20とを同じ電位に設定する場合、これらの機械的強度を上げるために、絶縁膜8の開口89(この中に電子放出部が配置される)以外の位置で、第1制御電極19と第2制御電極20とを機械的に連結させてもよい。なお、陰極7の面積に応じ、制御電極5を構成する棒状電極を3本以上に増やしてもよい。第19図に示す制御電極5は矩形の断面を有するが、この断面を円形や楕円形としてもよい。本実施例の構造の利点は、上述の棒状の制御電極を機械加工、レーザ加工、又はフォト・エッチング法のみならず、複数の線材を各々の端部を連結した部品を用いても形成できる点にある。また、制御電極5はその上部から隔壁3で押さえられているため、電界放出型表示装置の構造的な安定性も増す。
<第12の実施例>
第20図は、上述の実施例とは異なる形状の隔壁集合体を用いた第12の実施例を示し、第20図のA−B断面を第21図に示す。この実施例では、隔壁材3を連結板4の隔壁材挿入孔(開口部)21に嵌め合せず、その陰極基板1側の主面に接着剤15で固定する。本実施例の構造では、連結板4の一方の主面(第21図の上面)が平坦に保たれるので、これに隔壁材3を連結する作業が平面の作業台上で可能になり、開口部21を設けない分、連結板4の加工も容易となる。
<第13の実施例>
第22図は、第12の実施例に類似する隔壁材集合体17を、接着剤15を主として連結材4の主面と隔壁材3の端面との間に塗布して組み立てた第13の実施例を示す。この実施例の構造は、連結材4の一方の主面(図示される上面)に平坦に保たれ、且つ開口部21の形成も不要なため、第12の実施例と同様な利点をもたらし、更に接着剤15が平坦な面に塗布されるので組立て作業の効率も上げる。
<第14の実施例>
第23図は、隔壁材3を焼結セラミックスで形成し、これらをグリーンシート等と称する焼結前のセラミックスが塗布された隔壁材連結保持板(連結板)4の主面に配置し、この焼結前のセラミックスを所定の温度で焼結して連結板4の主面に隔壁材3を固定して隔壁材集合体を組み立てる第14の実施例を示す。連結板4の材料には、この焼結温度に耐える金属、セラミックス、及びガラスのいずれかが選ばれる。また、焼結前のセラミックスを連結板4の主面に配置する方法として、第6の実施例と同様に、スクリーン印刷法の繰り返しや、グリーンシートが埋め込まれたロールを連結板4の主面に押し付けて転写する方法等がある。本実施例の構造は、連結板4の一方の主面が平坦に保たれ、且つ開口部(隔壁材挿入孔)21の形成も不要なため、第12の実施例と同様な利点の他、複数の隔壁材3を隔壁材連結保持板4に同時に固定することで表示装置の生産効率(スループット)を向上させるという利点ももたらす。
<第15の実施例>
第24図は、隔壁集合体17が第12の実施例等とは異なる構造を有する第15の実施例を示す。第24図に示されるように、隔壁材3は電子線通過孔14毎に配置されず、複数の(図示された例では3個の)電子線通過孔14毎に間引かれて配置される。陰極基板1又は陽極基板2を介して加わる大気の圧力により隔壁材3が変形、破壊しない十分な強度を持つ限り、本実施例の構造は可能である。また、本実施例の構造は、使用する材料の低減と、組立工程の簡素化という利点ももたらす。
<第16の実施例>
第25図は、隔壁材3を制御電極5の延伸方向に交差するように配置した第16の実施例を示す。本実施例は、制御電極5を隔壁材の集合材17で押さえるため、第9の実施例と同じ利点をもたらす。
<第17の実施例>
第26図は、隔壁材3を互いに交差する2種類の主面(例えば、x−z面とy−z面)を組合わせて、その断面(陰極基板1又は陽極基板2の主面に対向する、例えば、x−y面)が十字型を示す(2次元的に広がる)ように構成した第17の実施例を示す。本実施例では、陰極基板1又は陽極基板2の主面の法線方向から加わる力に対する隔壁材3の強度が高められ、また隔壁材連結保持板4の主面上で隔壁材3が倒れ難いため、隔壁材集合体17の組立て作業の効率も上がる。
<第18の実施例>
第27図は、絶縁材8を陰極7の表面全体を覆うことなく形成した第18の実施例を示す。絶縁材8は、厚膜印刷による直接パターニングやこれにフォト・エッチングを組み合わせた既知の方法、CVD法による絶縁膜形成とフォト・エッチング、又は棒状に加工した絶縁性部材をガラス基板6の上部に並設することのいずれでも形成できる。制御電極5は、この絶縁材8の延伸方向に交差して延びた棒状に形成される。棒状の制御電極5は、括弧で括られて図示される2本が一対となって、この一対と交差する陰極7の各々とともに1つの画素を構成する。各対をなす棒状の制御電極5の各々に同一の電位を印加する場合、一対の制御電極5毎にこれらを陰極7上以外の位置で機械的に連結して、これらを機械的に補強してもよい。また、第11の実施例と同様に、交差する陰極7毎に1つの画素を構成する一対の制御電極5を陰極7の面積に応じて3本以上に増やしてもよい。さらに、制御電極5の断面は図示された矩形に限らず、これを円形や楕円形としても制御電極5としての機能を損なうものでない。本実施例に示された構造の利点の一つは、端部にて互いに結合された複数の線材を絶縁材8上に配置した後、これらの端部を切断することで、複数の棒状制御電極5を一度に効率よく形成できることにある。本実施例の他の利点の一つは、陰極7と制御電極5との間の静電容量を小さく保てることで、これにより陰極7や制御電極5への高周波の信号の入力が可能になり、電界放出型表示装置の表示特性が更に向上される。
<第19の実施例>
第28図は、第18の実施例の構造において隔壁材3を制御電極5の延伸方向に交差するように配置した第19の実施例を示す。このため、第18の実施例の利点に加えて、制御電極5を隔壁材集合材17で押さえることにより、電界放出型表示装置の構造的な安定性が高められる。
<第20の実施例>
第29図は、第18の実施例の構造において絶縁材8を複数の制御電極孔8に跨るシート状に形成した第20の実施例を示し、これにより電界放出型表示装置全体にて絶縁材8を一枚のシートとして設けることができる。この実施例の利点の一つは、絶縁材8を予め陰極基板1とは別の部材として加工、成形した後に、陰極7の上に精度良く適切に配置することで陰極基板1が完成されるので、陰極基板1の作製工程が簡素になり、また、本実施例の絶縁材8の基材として利用できる絶縁材料の選択範囲が広がる。本実施例で利用できる基材の一つとして、薄板化が容易で且つ制御電極孔9に対応する開口形成も可能であり、良好な絶縁特性を示す雲母がある。
<第21の実施例>
第30図は、絶縁材8を第20の実施例と同様に複数の制御電極孔8に跨るシート状に形成し、更にこの絶縁材8上に制御電極5を直接形成した第21の実施例を示す。本実施例の構造では、制御電極5を絶縁材8とともに加工、成形して制御電極孔9を有する絶縁材8と制御電極5との積層体(陰極基板1本体とは別の部材)を作製し、これを陰極7の上に精度良く適切に配置することで陰極基板1が完成できるので、第20の実施例の利点に加えて陰極基板1の生産効率(スループット)が向上するという利点がもたらされる。
<第22の実施例>
第31図は、隔壁材3が陽極基板2の陽極10に接触している第22の実施例を示す。図示されるように、隔壁材連結保持板4は制御電極5と接触するため、絶縁物で形成されるか、又は金属板を用い且つ制御電極5側の主面に絶縁膜又は絶縁層を形成する。本実施例では、電子線通過孔14が制御電極5の近くに位置されるので電子の走行を妨げることなく隔壁材集合体17を配置し易く、その結果、陽極基板2に照射される飛び込む電子の量を増大できる。第31図には、第21の実施例の陰極基板1を一例として示したが、その構造はこれに限られることはなく、第1の実施例乃至第20の実施例で図示したいずれの陰極基板1も使用できる。
<第23の実施例>
第32図は、隔壁材3に加えて第2隔壁材16を有する隔壁材集合体17の形状に特徴付けられる第23の実施例を示す。この実施例において、隔壁材集合体形状17は。これら2種類の隔壁材3,16の高さと隔壁材連結保持板4への印加電位を適切に設定することで陰極7から放射された電子の集束条件を最適化し、電界放出型表示装置の表示特性を上げることができる。隔壁材3の高さ(第32図におけるz軸方向の寸法)を第2隔壁材16のそれより低くして隔壁材連結保持板4を制御電極に近づけてもよい。
<第24の実施例>
第33図は、隔壁材連結板4の隔壁材3が結合される主面とは反対側の主面に、第2隔壁材16をその主面(y−z面として図示)が隔壁材3の主面(x−z面として図示)と交差するように結合した第24の実施例を示す。本実施例の構造は、第23の実施例の利点に加えて、大気圧に因る応力に対して表示装置を構造的に安定化し、隔壁材集合体17の構造を組み立て易くするという利点をもたらす。
<第25の実施例>
第34図は、隔壁材連結板4に固定された隔壁材3に制御電極5を固定して、隔壁材・制御電極集合体18と称する集合体を構成した第25の実施例を示す。第34図のC−D断面を第35図に示す。制御電極5を陰極基板1に設けず、隔壁材・制御電極集合体18に設けることにより、陰極基板1の構造が簡素化され、作り易くなる。制御電極5の形状は図示された棒状に限らず、上述の実施例で使われた他の形状に変えてもよい。また、陰極基板1の形状も、上述の実施例のいずれかに倣って変えてもよい。
<第26の実施例>
第36図は、隔壁材3とともに隔壁材連結板4に結合された第2隔壁材16に制御電極5を固定した隔壁材・制御電極集合体18を構成した第26の実施例を示す。には隔壁材3に加えてがあり、この第2隔壁材16を介してされている。本実施例では、第2隔壁材16の高さ(z軸方向の寸法)を隔壁材3より低くすることで、隔壁材・制御電極集合体18の可撓性を上げた。
<第27の実施例>
第37図は、第26の実施例と第17の実施例とを組合わせた第27の実施例を示し、十字状の断面を持つ隔壁材3の強度と断面内(x−y面内)での安定性(倒れ難さ)により、これらの隔壁材連結保持板、4への結合作業の効率が向上する。
<第28の実施例>
第38図は、第26の実施例の隔壁材・制御電極集合体18に複数の制御電極孔9が形成された板状の制御電極5を用いた第28の実施例を示す。
<第29の実施例>
第39図は、隔壁材連結保持板(連結板)4の陰極基板1側の主面に絶縁性の連結材22を設け、これに制御電極5を固定した第29の実施例を示す。絶縁性連結材22は、連結板4と制御電極5とを電気的に短絡しないように連結している。絶縁性連結材22を連結板4の主面に形成する代わりに、連結板4自体を絶縁物で作製して絶縁性連結材22と連結板4を一体化してもよい。
<第30の実施例>
第40図は、第29の実施例の制御電極5を絶縁性連結材22上に厚膜又は薄膜の成長手法を用いて形成した第30の実施例を示す。本実施例でも、絶縁性連結材22を隔壁材連結保持板4の主面に形成する代わりに隔壁材連結保持板4を絶縁物で作製して、隔壁材連結保持板4に絶縁性連結材22の機能を付与してもよい。
<第31の実施例>
第41図は、グリッド(Grid)状の隔壁材3を絶縁材料からなる隔壁材連結保持板(連結板)4に固定し、この連結板4に制御電極5を直接形成した第31の実施例を示す。グリッド状の隔壁材3の構造は、第42図により詳しく図解される。互いに直交する隔壁材3の夫々に溝23を形成し、これらを図のように嵌め合せることで、隔壁材3を倒れ難く且つ潰れ難くする。この構造の隔壁材3は、本実施例に限らず、本発明による他の実施例の全てに利用できる。
<第32の実施例>
第43図は、第30の実施例に第20の実施例を組合わせた第32の実施例を示す。本実施例では、絶縁材8を複数の制御電極孔9に跨る(これらに対応する複数の開口89が設けられた)シートとして形成されるため、第20の実施例と同様な利点をもたらす。シート状の絶縁材8は、例えば雲母で形成するとよい。且つ電界放出型表示装置全体で一枚のシートとすることも出来る。また、隔壁材連結保持板4自体をこのようなシート状の絶縁基材(望ましくは、絶縁材8より厚い膜厚を有する)で構成し、これに絶縁性連結材22の機能を持たせてもよい。
<第33の実施例>
第44図は、第32の実施例の隔壁材連結保持板4を絶縁物で形成し、その陰極基板1側の主面に制御電極5を形成した第33の実施例を示す。
<第34の実施例>
第45図は、第31の実施例の隔壁材連結保持板(連結板)4を絶縁物で形成し、この連結板4の陽極基板2側の主面に制御電極5を形成した第34の実施例を示す。本実施例の連結板4は上述の絶縁材8の機能も兼ね備え(これ故、参照番号4,8で表示される)、この連結板4には隔壁材3の一部が制御電極5を介して固定されている。本実施例の構造は、表示装置の組立てに要する材料及び部品数を削減し、且つ簡単に(少ない工程数で)表示装置を完成させるという利点をもたらす。
<第35の実施例>
第46図は、隔壁材連結保持板4を絶縁物で形成して、これに絶縁材8の機能も与え、その陽極基板2側の主面に制御電極5を形成し、更に制御電極5の陽極基板2側に隔壁材3を固定した第35の実施例を示す。本実施例の構造は、第34の実施例と同様、表示装置の組立てに要する材料数、部品数、組立工程数を削減するに好適なため、表示装置の生産効率を高めるという利点をもたらす。また、板状の制御電極5は、機械加工、レーザ加工、又はフォト・エッチングなどの加工方法で、隔壁材や隔壁材連結保持板4とは別に製造できる。
<第36の実施例>
第47図は、制御電極5を絶縁材8で被覆された表面を有する一対の第1制御電極19と第2制御電極20とを隔壁材連結保持板4に固定した第36の実施例を示す。本実施例の構造は、第1制御電極19及び第2制御電極20を絶縁膜を被覆した線材として予め作製し、又は準備することができるため、表示装置の生産効率の向上に望ましい。
<第37の実施例>
第48図は、制御電極5をなす一対の第1制御電極19及び第2制御電極20を、夫々の表面に絶縁材8を被覆して、ガラス基板6(陰極基板1)に固定した第37の実施例を示す。本実施例の構造でも、絶縁膜を被覆した線材として第1制御電極19及び第2制御電極20を予め作製し、又は準備できるため、表示装置の生産効率が向上するという利点がもたらされる。
<第38の実施例>
第49図は、隔壁材連結保持板4を絶縁物で作製し、その陰極基板1側の主面上に制御電極5を、この制御電極5の上に絶縁材8を夫々形成した第38の実施例を示す。本実施例の構造は、陰極基板1の構造を簡素化して、その生産効率を高め、隔壁材・制御電極集合体18を陰極基板1並びに陽極基板2とは別に自由に加工、製作させるという利点をもたらす。制御電極孔9は、図示されるように複数個の矩形の開口を規則的に並べる例に限らず、本発明による他の実施例に倣い、その形状及び配置を変えてもよい。
<第39の実施例>
第50図は、隔壁材連結保持板4を絶縁物で作製し、その陰極基板1側の主面に制御電極5を形成した第39の実施例を示す。本実施例の構造は、隔壁材3、隔壁材連結保持板4、及び制御電極5を相互に固定してなる隔壁材・制御電極集合体18が、陰極基板1及び陽極基板2とは別に自由に加工し又は組み立てられるという利点をもたらす。制御電極孔9として、略円形の形状を有する複数の開口を規則的に並べた例を図示したが、その形状を矩形又は楕円形に変えてもよく、その配列態様の変更も可能である。
<第40の実施例>
第51図は、隔壁材連結保持板4を絶縁物で作製し、その陰極基板1側の主面上に制御電極5と絶縁材8とをこの順に形成した第40の実施例を示す。本実施例の構造は、陰極基板1を極めて簡単な構造にならしめ、且つ隔壁材・制御電極集合体18を陰極基板1及び陽極基板2とは別に、自由に加工、製作できるようにするという利点をもたらす。制御電極孔9として、略矩形の形状を有する複数の開口を規則的に並べた例を図示したが、これらの形状を円形又は楕円形等に変更しても、また、これらの配列を本発明による他の実施例に倣い変更してもよい。
<第41の実施例>
第52図は、隔壁材連結保持板4を絶縁物で作製し、その陰極基板側の主面に棒状の制御電極5を固定した第41の実施例を示す。本実施例の構造は、隔壁材・制御電極集合体18を陰極基板1及び陽極基板2とは別に、自由に加工し、製作できるようにするという利点をもたらす。また、本実施例の構造の特筆すべき利点は、隔壁材・制御電極集合体18を所謂薄膜技術又は厚膜技術を使用することなく製作し得ることである。制御電極5として、その長軸方向(図におけるx軸方向)に直交する断面を角型にした例を図示したが、この断面を円形、楕円形、又は多角形に変えても本発明の実施を妨げるものでない。
<第42の実施例>
第53図は、隔壁材連結保持板4は絶縁物で作製し、その陰極基板1側の主面に制御電極5を設け、この主面における制御電極間の間隙を埋めるように絶縁材8を部分的に形成した第42の実施例を示す。本実施例の構造は、陰極基板1の構造を極めて簡素化し、隔壁材・制御電極集合体18を陰極基板1並びに陽極基板2とは別に、自由に加工、製作できるようにするという利点をもたらす。また、絶縁材8の比誘電率は通常1より大きいので、隔壁材連結保持板4の主面において、絶縁材8が配置される領域を制御電極5の間隙及びその周縁に制限するように、絶縁材8を部分的形成した結果、陰極7と制御電極5との間の静電容量が低減した。陰極7と制御電極5との間の静電容量が小さくなる分、これらの電極(導体)に供給される信号(制御信号)の周波数を高めることができる。従って、本実施例の構造を有する表示装置は、高精細の画像を表示し易くなる(高精細の画像表示に要する表示装置の周辺機器の変更を軽減できる)。なお、制御電極孔9として、略矩形の形状を有する複数の開口を規則的に並べた例を図示したが、これらの形状を円形又は楕円形等に変更しても、又はこれらの配列態様を変更してもよい。
<第43の実施例>
第54図は、隔壁材連結保持板4を絶縁物で作製し、その陰極基板1側の主面に制御電極5を形成した第43の実施例を示す。本実施例の構造は、隔壁材・制御電極集合体18を陰極基板1及び陽極基板2とは別に、自由に加工、製作できるようになるという利点をもたらす。また、本実施例では、絶縁材8をガラス基板6の主面における陰極7の間隙を埋めるように部分的に形成する。従って、陰極基板1の形状は第18の実施例(第27図)に類似する。絶縁材8の比誘電率は通常1より大きいため、これらの陰極基板1のように、ガラス基板6の主面において絶縁材8が配置又は形成される領域を制限するように、この絶縁材8を陰極7に対して部分的に形成すると、陰極7と制御電極5との間の静電容量が低減する。第42の実施例で述べたように、陰極7と制御電極5との間の静電容量が小さくなる分、これらにより高周波の制御信号を供給することが可能になり、その結果、表示装置における表示画像の精細度が向上し、又は高精細の画像表示が実現し易くなる。なお、制御電極孔9として、略円形の形状を有する複数の開口を規則的に並べた例を示したが、これらの形状を矩形又は楕円形等に変更し、その配列態様を本発明による他の実施例に倣い変更しても本発明の実施を妨げるものでない。
<第44の実施例>
第55図は、隔壁材連結保持板4を絶縁物で作製し、その陰極基板1側の主面に一対の棒状の制御電極5を複数組固定した第44の実施例を示す。本実施例の構造は、隔壁材・制御電極集合体18を陰極基板1並びに陽極基板2とは別に、自由に加工、製作できるようにするという利点をもたらす。また、第43の実施例と同様に陰極基板1の主面において絶縁材8を部分的に設けることにより、この絶縁材8の比誘電率が1より大きくとも、陰極7と制御電極5との間の静電容量をこれらの少なくとも一方に高周波の制御信号を供給できるだけ小さくできる。従って、より高周波の制御信号を表示装置の画像表示動作に使用できるようになり、その結果、この表示装置による高精細の画像表示が実現し易くなる。さらに、本実施例の構造の特筆すべき利点は、隔壁材・制御電極集合体18が所謂薄膜技術、又は厚膜技術(成長手法)を使用することなく製作し得ることである。制御電極5の延伸方向(図におけるx軸方向)に直交する断面を角型にした例を図示したが、この断面を円形、楕円形、又は多角形に変えても本発明の実施を妨げるものでない。
最後に、本発明による上述の表示装置の電子放出部として好適なカーボン・ナノ・チューブを用いた電子源を第56図に示す。第56図(a)はこの電子源の平面図、第56図(b)はこの電子源を第56図(a)のB−B線に沿って切断した断面図を夫々示す。この電子源の構造及び動作は、第58図(b)及び(c)を用いて既に説明したSpindt型電子源に類似するが、電子放出部としてエミッタ・コーン100に代えてカーボン・ナノ・チューブ102と呼ばれる棒状の炭素分子をもちいる。カーボン・ナノ・チューブ102は、その名の通り、長手方向の寸法を含めて数nm(ナノ・メートル=10−9m)から数十nmの非常に微細な物質であるが、第56図(a)及び(b)にはこれを拡大して示す。このように微細な物質を陰極7に固定するに際し、図示された電子源は、複数のカーボン・ナノ・チューブ102を銀等の導電性ペーストに分散させ、これを絶縁材8の開口又は隙間から露出した陰極7の上面に滴下し、導電性ペーストを硬化させて導電膜103を形成する。これにより、カーボン・ナノ・チューブ102は導電膜103の表面に固定される。このように導電膜103に固定されたカーボン・ナノ・チューブ102の特に導電膜103から突出した部分は、これと制御電極5との間に生じる電位差ΔVに応じて、電子を放出する。上述のようにSpindt型電子源に比べてカーボン・ナノ・チューブ102を用いた電子源は、簡易なプロセスで形成でき、また第58図(c)と第56図(b)とを比較しても明らかなように、電子放出部も多く形成できる。従って、カーボン・ナノ・チューブ102を用いた電界放出型表示装置は、量産に好適であり且つ画像をより明るく表示できる利点を有する。
以上に説明した本発明による表示装置(電界放出型表示装置)は、陰極基板1と陽極基板2を一定距離だけ離して配置する隔壁材3を一括して連結保持する「隔壁材連結保持板」が設けられているため、この表示装置による画像表示性能を損なうこと無く隔壁材3を効率的かつ正確に配置できる。
また、本発明による第2の表示装置及びその類似物は、陰極基板1と陽極基板2とを一定距離だけ離して配置する隔壁材3と、陰極基板から放出される電子の流れを制御する電極(制御電極)5とを一括して連結保持する「隔壁材・制御電極連結保持板」が設けられているため、この表示装置による画像表示性能を損なうこと無く、隔壁材3と制御電極5とを効率的かつ正確に配置できる。
本発明に係るいくつかの実施例を示し、これらについて述べたが、同発明はこれらに限定されることなく当業者の知り得る範囲においてこれらになされる種々の変形並びに改善をも許容するものと理解されるものである。従って本願明細書に付された請求項の範囲はこれに示され且つ記載される詳細に拘束されることなく、かような変形及び改善をも全て包含することを意図するものである。
【図面の簡単な説明】
第1図は、本発明による第1の表示装置の構造的な特徴を簡単に説明する為の模式図(主な構成要素に分解された表示装置を斜視図)である。
第2図は、本発明による第2の表示装置の構造的な特徴を簡単に説明する為の模式図(主な構成要素に分解された表示装置を斜視図)である。
第3図は、本発明による表示装置の第1の実施例を説明する斜視図(表示装置を主な構成要素に分解して示す分解斜視図、以下、断りの無い限り、「斜視図」と略す)である。
第4図は、第3図における陰極基板1のC−D断面図である。
第5図は、第3図における陰極基板1のA−B断面の一例である。
第6図は、第3図において陰極基板1の他のA−B断面を持つ第2の実施例を示す図である。
第7図は、第3図において陰極基板1の他のA−B断面を持つ第3の実施例を示す図である。
第8図は、第7図に示す隔壁材連結保持板4の平面図である。
第9図は、第7図に示す隔壁材連結保持板4の平面図における隔壁材挿入孔21の拡大図である。
第10図は、第3図において陰極基板1の他のA−B断面を持つ第4の実施例を示す図である。
第11図は、第3図において陰極基板1の他のA−B断面を持つ第5の実施例を示す図である。
第12図は、第3図において陰極基板1の他のA−B断面を持つ第6の実施例を示す図である。
第13図は、本発明による表示装置の第7の実施例を説明する斜視図である。
第14図は、第13図における陰極基板1のC−D断面図である。
第15図は、本発明の第8の実施例を説明する斜視図である。
第16図は、本発明による表示装置の第9の実施例を説明する斜視図である。
第17図は、本発明による表示装置の第10の実施例を説明する斜視図である。
第18図は、本発明による表示装置の第11の実施例を説明する斜視図である。
第19図は、第18図における陰極基板1のC−D断面図である。
第20図は、本発明による表示装置の第12の実施例を説明する斜視図である。
第21図は、第20図における陰極基板1のA−B断面図である。
第22図は、第20図において陰極基板1の他のA−B断面を持つ第13の実施例を示す図である。
第23図は、第20図において陰極基板1の他のA−B断面を持つ第14の実施例を示す図である。
第24図は、本発明による表示装置の第15の実施例を説明する斜視図である。
第25図は、本発明による表示装置の第16の実施例を説明する斜視図である。
第26図は、本発明による表示装置の第17の実施例を説明する斜視図である。
第27図は、本発明による表示装置の第18の実施例を説明する斜視図である。
第28図は、本発明による表示装置の第19の実施例を説明する斜視図である。
第29図は、本発明による表示装置の第20の実施例を説明する斜視図である。
第30図は、本発明による表示装置の第21の実施例を説明する斜視図である。
第31図は、本発明による表示装置の第22の実施例を説明する斜視図である。
第32図は、本発明による表示装置の第23の実施例を説明する斜視図である。
第33図は、本発明による表示装置の第24の実施例を説明する斜視図である。
第34図は、本発明による表示装置の第25の実施例を説明する斜視図である。
第35図は、第34図における陰極基板1のC−D断面図である。
第36図は、本発明による表示装置の第26の実施例を説明する斜視図である。
第37図は、本発明による表示装置の第27の実施例を説明する斜視図である。
第38図は、本発明による表示装置の第28の実施例を説明する斜視図である。
第39図は、本発明による表示装置の第29の実施例を説明する斜視図である。
第40図は、本発明による表示装置の第30の実施例を説明する斜視図である。
第41図は、本発明による表示装置の第31の実施例を説明する斜視図である。
第42図は、第41図において隔壁材3の組み合わせ構造例を示す斜視図である。
第43図は、本発明による表示装置の第32の実施例を説明する斜視図である。
第44図は、本発明による表示装置の第33の実施例を説明する斜視図である。
第45図は、本発明による表示装置の第34の実施例を説明する斜視図である。
第46図は、本発明による表示装置の第35の実施例を説明する斜視図である。
第47図は、本発明による表示装置の第36の実施例を説明する斜視図である。
第48図は、本発明による表示装置の第37の実施例を説明する斜視図である。
第49図は、本発明による表示装置の第38の実施例を説明する斜視図である。
第50図は、本発明による表示装置の第39の実施例を説明する斜視図である。
第51図は、本発明による表示装置の第40の実施例を説明する斜視図である。
第52図は、本発明による表示装置の第41の実施例を説明する斜視図である。
第53図は、本発明による表示装置の第42の実施例を説明する斜視図である。
第54図は、本発明による表示装置の第43の実施例を説明する斜視図である。
第55図は、本発明による表示装置の第44の実施例を説明する斜視図である。
第56図は、本発明による表示装置の陰極基板に設けられる電子放出部の一例を示す図であり、(a)はその平面図を、(b)は(a)のC−C線に沿って描かれた断面図である。
第57図は、電子放出型表示装置の一例を示す説明図で、(a)はこれを分解した状態を示す斜視図、(b)は(a)に示す表示装置を分解する前の状態でx−z面に沿って切断したときの断面図を夫々示す。
第58図は、Spindt型電子源を用いた電界放出型表示装置を説明する図で、(a)はその等価回路図、(b)はその電子放出部の平面図、(c)は(b)の電子放出部をC−C線で切断したときの断面図を夫々示す。
第59図は、表面伝導型電子源を用いた電界放出型表示装置を説明する図で、(a)はその等価回路図、(b)はその電子放出部の平面図、(c)は(b)の電子放出部をC−C線で切断したときの断面図を夫々示す。
第60図は、従来の電界放出型表示装置の画素(電子放出部)周辺を模式的に示す斜視図である。
Technical field
The present invention relates to a display device utilizing electron emission into a vacuum, and more particularly to a structure of a display device having good display characteristics and easy to assemble, and a method of manufacturing the same.
Background art
A display device utilizing electron emission into a vacuum (hereinafter, referred to as an electron emission display device or a field emission display device) includes C.I. A. A type having an electron emission structure called Spindt type proposed by Spindt et al. (See, for example, US Pat. No. 3,453,478 and Japanese Patent Application Laid-Open No. 2000-21305), and a type utilizing an electron emission phenomenon by a quantum tunnel effect ( Also referred to as a surface conduction type electron source, see JP-A-2000-21305), those that emit electrons by accelerating electrons in a solid substance, and a group utilizing the electron emission phenomenon of a diamond film, a graphite film, and a carbon nanotube. ("Vacuum": Japanese version of Journal of Vacuum Society of Japan, Vol. 42, No. 8. (1999), pages 722-726) and the like are known.
An example of a field emission display is schematically shown in FIG. FIG. 57 (a) is an exploded perspective view showing the display device, and FIG. 57 (b) is a sectional view of the assembled display device. As shown in FIG. 57 (a), the field emission display device comprises a cathode substrate 1 including a substrate made of glass, alumina or the like, and a substrate made of glass or a material having a light transmittance equal to or higher than glass. The assembled anode substrate 2 is assembled by aligning the upper or lower surface of the support frame 30 (also called a side plate) with the peripheral edge of each main surface. Since the anode substrate 2 is disposed so as to face the cathode substrate 1 provided with the electron source, the anode substrate 2 is also called a counter substrate. In the illustrated example, the cathode substrate 1 has a glass substrate 6 on which an electron source (electron emitting portion) and electric wiring for controlling the electron emission are formed. As will be described later in detail, the two types of wiring groups for operating the electron-emitting portion are separated by the illustrated insulating film 8. The area (xy plane) of the glass substrate 6 is wider than the support frame 30, and the periphery of the support frame 30 is provided with a terminal 50 (control electrode terminal) for supplying a current to one of the wiring groups (called a control electrode or a gate electrode) and the other (control electrode terminal). ) Is provided with a terminal 70 (cathode terminal) for supplying a current. The glass substrate 6 is not limited to glass and ceramics such as alumina, but may be formed of a metal film such as stainless steel whose surface is coated with an insulating film. On the other hand, for the anode substrate 2 facing the cathode substrate, electrodes, phosphors, and the like are formed on a substrate made of glass or a material having light transmittance equal to or higher than glass. A support frame 30 made of glass or the like is inserted between the cathode substrate 1 and the anode substrate 2, and a space surrounded by each of the main surfaces of the cathode substrate 1 and the anode substrate 2 is 10 mm. -5 -10 -7 It is evacuated to Torr vacuum. In order to maintain a vacuum in this space, the support frame 30 is adhered to each of the cathode substrate 1 and the anode substrate 2 with frit glass or the like. Since the support frame 30 is required to have a function of shielding this space from the atmosphere and keeping the space in a vacuum, the support frame 30 is often called a sealed frame. The dotted line shown on the upper surface of the glass substrate 6 indicates the position where the outer periphery of the support frame 30 comes into contact with the dotted line, and the insulating film 8 is formed so as to fit inside the space maintained in vacuum. Therefore, the field emission display device emits electrons from the cathode substrate 1 into the above-mentioned space kept in a vacuum, accelerates the electrons by the potential difference between the electron emission portion and the electrode provided on the anode substrate 2, The phosphor is illuminated by hitting the electrode provided in the above. Since the energy of electrons required to illuminate the phosphor reaches about 6000 eV (eV = electron volt), a high potential difference of about 6 kV is provided between the cathode substrate 1 and the anode substrate 2. For this reason, a gap of 1 cm or more is provided between the opposing main surfaces of the cathode substrate 1 and the anode substrate 2 to prevent dielectric breakdown between these substrates. The orthogonal coordinates shown in FIG. 57 (a) are associated with the arrangement of the structures or circuits shown in the respective figures, together with the orthogonal coordinates shown in the other perspective views, plan views, cross-sectional views, and equivalent circuit diagrams. .
FIG. 58 is a view for explaining an example of a field emission display device provided with the above-mentioned Spindt-type electron source, (a) showing an equivalent circuit thereof, (b) showing a plan view near the electron source, (C) is a sectional view taken along the line CC in (b). FIG. 58 (a) shows a configuration of a display device provided with an electron emission section for each pixel arranged in m rows and n columns. Boxes labeled G, B, and R in FIG. 58 (a) indicate electron emission portions (electron sources) provided for each pixel. Electrons emitted from each of the electron emitting portions give energy to respective phosphors provided on the anode substrate 2, the electron emitting portion G is green, the electron emitting portion B is blue, and the electron emitting portion R is red. Is emitted from the phosphor. In FIG. 58 (a), a predetermined voltage is applied to each of the m electron emitting portions arranged in the y-axis direction through a terminal 70 and a cathode 7 extending in the y-axis direction from a video signal driving circuit (horizontal scanning circuit) H. Is applied. On the other hand, the control electrode 5 extending in the x-axis direction (direction intersecting the y-axis) in FIG. 58 (a) has a plurality of cathodes 7 (column numbers: X1, X2, , Xn) are provided with openings for exposing the cathode 7. Scanning signals from the vertical scanning circuit V are sequentially applied to the control electrodes 5 (row numbers: Y1, Y2,..., Ym) arranged in the y-axis direction via the terminal 50 in the y-axis direction. Supplied. The voltage applied to each cathode 7 is appropriately modulated according to the row number of the control electrode 5 to which the scanning signal is applied (every time the control electrode 5 is changed), and the (Xi, Yj) address (Address) The emission of electrons from the electron emission portion provided in each pixel specified by the above is controlled, and the phosphor corresponding to the pixel of the desired address is caused to emit light.
FIG. 58 (b) is a plan view of a pixel structure (electron emission portion and its surroundings) when a Spindt-type electron source is used in the field emission display device having the equivalent circuit of FIG. 58 (a), FIG. 58 (c) shows a cross-sectional view along the line CC. The cathode 7 is formed of Ni (nickel), Cr (chromium), Au (gold), Mo (molybdenum), W (tungsten), Pt (platinum), Ti (titanium), Al (aluminum) formed on the glass substrate 6. ), Metals such as Cu (copper), Pd (palladium) or alloys containing them, ITO (In 2 O 3 -SnO 2 , Indium-tin oxide), IZO (In 2 O 3 -SnO 2 , Indium-zinc oxide), RuO 2 (Ruthenium oxide) or a material such as a semiconductor doped with impurities.
The control electrode 5 is a thin film made of the same kind of conductive material as the cathode 7 formed on the upper surface of the insulating film (insulating material for control electrode) 8 grown to cover the cathode 7. At a portion where the control electrode 5 straddles the cathode 7, an opening penetrating the control electrode 5 and the insulating film 8 is provided. On the upper surface of the cathode 7 exposed by the opening, a conical or nearly electron-emitting portion called an emitter cone (Emitter Cone) 100 is formed. Since the emitter cone 100 and the cathode 7 are electrically connected, the potential difference between the cathode 7 and the control electrode 5 causes a potential difference ΔV between the tip of the emitter cone 100 and the control electrode 5. When the potential difference ΔV exceeds several tens eV, electrons are emitted from the tip of the emitter cone 100 along the z-axis as shown in FIG. 58 (c). The electrons impinge on the anode 10 provided on the glass substrate 13 constituting the anode substrate, thereby causing the phosphor 11 to emit light. Since the phosphor 11 is separated by a light-shielding film (black matrix) 12 for each pixel, electrons emitted to the periphery of the pixel do not cause the phosphor of a pixel adjacent to this pixel to emit light.
The emitter cone may be formed of the same material as the cathode 7, but if a material having a smaller work function is used, the electron emission efficiency is increased, and an image is easily displayed brightly. On the other hand, the anode 10 may be formed of a conductive thin film having high light transmittance such as the above-described ITO or IZO, or may be formed by evaporating aluminum or silver. When the anode 10 is formed of a metal thin film having such a high reflectivity, a component of the light generated by the phosphor 11 that propagates toward the cathode 7 can be reflected toward the glass substrate 13, and accordingly, the display image becomes brighter. Become. Because of such an effect, the anode 10 formed of a metal thin film having a high reflectance is called a metal back.
As is apparent from the above description, since the field emission display device has the light emitting portion on the anode substrate 2 disposed on the user (observer) side, the member positioned from the phosphor 11 to the cathode substrate 1 side. The transmittance of the light is virtually unquestioned. Therefore, the glass substrate 6 can be replaced with an opaque ceramic or metal plate. However, when a conductive substrate such as a metal is used in place of the glass substrate, the above-mentioned cathode 7 is formed on the main surface on the anode substrate side. Therefore, an insulating film is formed on this main surface or the resistance of the main surface is reduced. It is necessary to increase the value by oxidation or nitridation. Further, the control electrode 5 may be formed of a conductive plate-shaped member made of a metal or an alloy having an opening. In this case, as the control electrode insulating material 8, a plurality of insulator blocks are arranged so as to be separated from each other so as to cross the plurality of cathodes 7 along the y-axis, and these gaps are formed of insulating material such as frit glass. Fill with adhesive. The above-described conductive plate-shaped member is fixed on the insulator block by the insulating adhesive. Hereinafter, the control electrode insulating material 8 is also simply referred to as the insulating material 8 unless its function is specialized in its shape (for example, thin film or bulk such as block shape).
FIG. 59 is a diagram for explaining an outline of a field emission display device provided with a surface conduction electron source, (a) shows an equivalent circuit thereof, (b) shows a plan view near the electron source, (c) is a sectional view taken along the line CC in (b) in the same manner as in FIGS. 58 (a) to (c). As is clear from the equivalent circuit shown in FIG. 59 (a), in the field emission display device shown in FIG. 59, each of the electron sources G, B, and R has the address (Xi, Xi, The driving mode in which a voltage is applied from the cathode 7 in the Yj-th row corresponding to Yj) and the control electrode 5 in the Xi-column to emit electrons is different from that in FIG. 58 (a).
The reason that such a driving mode can be used is due to the shape of the surface conduction type electron source. As shown in FIGS. 59 (b) and 59 (c), the surface conduction electron source is provided with an opening 9 'at a portion corresponding to the pixel of the control electrode insulating material 8 covering the cathode 7, and this opening 9' The control electrode 5 provided on the control electrode insulating material 8 and the cathode 7 are connected via a conductive layer 57 via a 9 ', and a part thereof is subjected to a forming process (an energizing process or the like), and this portion (101 ) Is made higher than other portions of the conductive layer 57. The high resistance portion 101 that divides the conductive layer 57 into the control electrode 5 side and the cathode 7 side becomes a surface conduction type electron source (electron emission portion). The electron source emits electrons by utilizing a tunnel effect generated at a junction between the conductive layer 57, the high-resistance portion 101, and the conductive layer 57 when a predetermined voltage is applied between the control electrode 5 and the cathode 7. . The conductive layer 57 is preferably formed of fine particles of a conductive material or the like. The formation of the high-resistance portion 101 includes not only the above-described forming treatment of the conductive layer 57 but also the formation of a focused ion beam (Focused Ion Beam) on the conductive layer 57. Irradiation can also be used.
A display device using a surface conduction electron source can also operate with the equivalent circuit shown in FIG. 58 (a). In this case, a pair of conductive layers having different voltages is provided as each of the cathodes 7 in the X1 to Xn columns, and an opening is provided in the insulating material 8 covering the cathode 7 at least at a position corresponding to each pixel. 8 is not provided. The pair of conductive layers is electrically connected in a region not covered with the insulating material, and the above-described high-resistance portion is formed in the connection portion. On the other hand, the control electrode 5 is provided so as to sandwich or surround the high resistance portion, and controls the passage and cutoff of electrons emitted from the high resistance portion by its potential. By configuring the cathode 7 and the control electrode 5 in this manner, the cathodes 7 in the X1 to Xn columns are set in accordance with the control cathode 5 set to a potential at which electrons emitted from the cathode 7 pass to the anode substrate side. An image can be displayed by modulating the electron emission from.
Accordingly, the functions of the cathode 7, the anode 10, and the control electrode 5 of the field emission display device described below in this specification may be different depending on the type of the electron emission unit provided therein. Therefore, these elements include, in that order, a first electrode (a so-called emitter that emits electrons from the electron-emitting portion), a second electrode (a so-called collector to which the emitted electrons are irradiated), and a third electrode (a so-called collector). (Turning on and off the flow of electrons from the first electrode to the second electrode).
Regardless of the electron emission effect of the above-mentioned Spindt-type electron source, surface-conduction electron source, and other types of electron sources, the phosphor 11 excited by electrons emitted from these sources is a cathode ray tube known as a cathode ray tube. It can be formed using the same fluorescent material as described above. For example, for a pixel displaying red, Y 2 O 2 The phosphor 11 is formed using S: Eu, Sm, ZnS: Cu, Au, Al for a pixel displaying green, and ZnS: Ag for a pixel displaying blue. Each phosphor material exemplified here is described as "phosphor crystal: activator" with a colon interposed therebetween. The activator determines the afterglow characteristics and the like of the phosphor 11 based on the concentration and type of the phosphor 11 and the firing (synthesis) conditions with the phosphor crystal. In addition, a pigment is coated on the surface of the phosphor 11 so that the phosphor 11 exhibits a black color or a color close thereto (reflection color) when no light is emitted. Reflection will cause the display screen to shimmer).
In the field emission display device described above, the space surrounded by the respective main surfaces of the cathode substrate 1 and the anode substrate 2 and the support frame 30 is formed on the back surface of the glass substrate 6 shown in FIG. Air is exhausted from the exhaust port 61 provided, and the pressure is reduced until the pressure reaches the above-mentioned value (degree of vacuum). In this evacuation step, the cathode substrate 1 and the anode substrate 2 are deflected by the pressure difference between the space interposed therebetween and the atmosphere, and finally the partition wall material is used to prevent the space from being crushed by the atmospheric pressure. A member referred to as 3 is appropriately arranged in the vacuum space of the display device. This technique is discussed in, for example, JP-A-2000-21335.
FIG. 60 schematically illustrates an example of the structure of the above-mentioned conventional field emission display device. In this figure, the periphery of a pixel (electron emission portion) is shown in an enlarged manner, and the above-described support frame (side wall) 30 is omitted. The partition material 3 is an insulating material disposed between the cathode substrate 1 and the anode substrate 2. Although the insulation resistance is kept high enough, the surface may be slightly conductive to prevent electrons from colliding and becoming charged. In the operation of the above-mentioned field emission display device, it is arranged as thin as possible and accurately positioned at appropriate intervals between pixels so as not to hinder electrons traveling in vacuum from the cathode substrate 1 to the anode substrate 2. There is a need to. In driving the field emission display, a positive potential is applied to the anode substrate 2 (the above-described anode 10... Not shown) with respect to the cathode substrate 1 (the above-described cathode 7... Not shown). In order to sufficiently accelerate electrons and secure luminous efficiency, a potential of several hundred volts or more, and sometimes thousands of volts or more, is used. When a high voltage is used, it is necessary to secure a sufficient space between the cathode substrate 1 and the anode substrate 2 so that voltage breakdown does not occur. For example, when setting a potential difference of several thousand volts between the cathode substrate 1 and the anode substrate 2, it is necessary to separate them by at least 1 mm or more. On the other hand, a thickness of, for example, 100 μm is selected so that the presence of the partition member 3 does not affect the display screen.
Disclosure of the invention
As described above, in manufacturing a field emission display, a thickness in the range of 30 to 150 μm (for example, 100 μm) and a height of 1 mm or more (for example, any value in the range of 2 to 3 mm) ) Must be accurately and efficiently arranged and incorporated. In addition, it is necessary to arrange the number of the partition members 3 to be at least enough to withstand stress due to atmospheric pressure (for example, bending of the glass substrate 13). This number greatly varies depending on the strengths of the cathode substrate 1, the anode substrate 2, and the partition material 3. For example, in a large field emission display device having a diagonal dimension of 40 inches (inch) class, at least several hundreds or more are designed. Some require more than tens of thousands.
On the other hand, when electrons collide with the partition wall material 3, secondary electrons may be generated from the surface or the surface may be charged (charged up). Due to these phenomena, the traveling of electrons near the partition member 3 is hindered, and the uniformity of the display performance of the pixels in the display screen of the field emission display device may be impaired. In order to solve this problem, it is important to appropriately control the electron traveling space and to arrange the partition members 3 as uniformly as possible. For this purpose, for example, by increasing the number of partition members 3 disposed between the cathode substrate 1 and the anode substrate 2 sufficiently, the strength of the display device against the pressure difference between the space surrounded by these and the atmospheric pressure is increased. And the uniformity of the display performance within the display screen is maintained.
However, the conventionally proposed arrangement of the partition member 3 is not always sufficient to efficiently and accurately arrange it at an appropriate place, and will be used to mass-produce the above-mentioned field emission display device. If so, there is a risk that productivity will be significantly impaired.
In addition, the bulkhead 3 is not attached to the cathode substrate 1 and the anode substrate 2 at a time by using an inorganic adhesive or the like, and the bulkhead 3 is provided on one of the anode substrate 2 and the cathode substrate 1. A manufacturing method is also adopted in which, after bonding, one is bonded to the other opposing the one. In this method, the following problem is added in addition to the above-mentioned problem that the collective arrangement is difficult. For example, when the cathode substrate 1 and the partition member 3 are first bonded, the partition member 3 is fixed with an inorganic adhesive or the like so that its position does not change at least during the manufacturing process. In this fixing step, a heat treatment (for example, a heat treatment at about 500 ° C.) that does not have a significant effect on the electron emission portions provided on the cathode substrate 1 is applied, so that the electron emission performance of the electron emission portions provided in advance on the cathode substrate 1 is reduced. The probability of deterioration is large. In addition, the deterioration of the electron emission performance becomes remarkable in the vicinity of the partition wall member 3, and as a result, the in-plane uniformity is deteriorated in the display characteristics of the field emission display. Although there is a material having a lower temperature as the processing temperature of the inorganic adhesive, when bonding the cathode substrate 1 and the partition wall material 3 first, an adhesive that softens and deforms at the temperature used in the subsequent assembly process cannot be used. Therefore, the processing temperature of the adhesive used in the first assembly must be set so as to process at the highest temperature. In addition, it is practically difficult to provide an electron emission portion on the cathode substrate 1 to which the partition wall member 3 is bonded, because of the structure of the electron emission portion described above.
When the anode substrate 2 and the partition wall material 3 are first joined together, a heat treatment that cannot be ignored, for example, a heat treatment at about 500 ° C. is applied to the anode substrate 2, thereby deteriorating the luminous efficiency of the phosphor 11 formed in advance on the anode substrate 2. There is a risk of causing In addition, the deterioration of the luminous efficiency becomes remarkable in the vicinity of the partition member 3, and as a result, there is a risk that the in-plane uniformity of the display characteristics of the field emission display device may be impaired. In addition, it is difficult to provide the phosphor 11 on the anode substrate 2 to which the partition wall material 3 is bonded, due to the structure of the anode substrate 2.
The present invention has been made to solve the above problems, and has as its object to provide a structure capable of efficiently and accurately arranging the partition members 3 without impairing the display performance, and a manufacturing means therefor. .
To this end, the present invention provides the following display device.
One of the display devices according to the present invention includes a cathode substrate provided with an electron-emitting portion and an anode substrate provided with a light-emitting portion (for example, a fluorescent portion) that emits light by irradiation of electrons emitted from the electron-emitting portion. It is characterized in that it has a "partition material connection holding plate" that collectively (connects to the individual partition materials and maintains their positional relationship) a plurality of partition materials separated by a predetermined gap (distance). . Hereinafter, this display device is also referred to as a first display device according to the present invention.
Another one of the display devices according to the present invention is a cathode substrate provided with an electron emitting portion and an anode substrate provided with a light emitting portion (for example, a fluorescent portion) which emits light by irradiation of electrons emitted from the electron emitting portion. And a plurality of electrodes (control electrodes) for controlling the flow of electrons from the electron-emitting portion to the anode substrate (individual partition members). And a “partition material / control electrode connection holding plate” that is connected to the electrode and holds these positional relationships). Hereinafter, this display device is referred to as a second display device according to the present invention.
These display devices are applied to, for example, a field emission type display device in which two substrates (plate-like members) constituting the display device are separated more widely than a liquid crystal display device or a plasma display panel. This is effective when the pressure between two substrates is kept lower than the atmospheric pressure. In addition, the present invention brings many advantages to a field emission display device that performs image display by moving charged particles between two substrates.
According to the present invention, regardless of the first and second display devices described above, these components are combined, and the components of the display device are replaced with alternatives, or the display device is further updated with new components. , A new display device can be provided. The above and other objects, features, and advantages of the present invention will become more apparent by referring to the following description and the accompanying drawings.
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings.
FIG. 1 is an explanatory view for conceptually explaining a first display device according to the present invention, and schematically shows an arrangement near a pixel (electron emission portion) of the display device. FIG. 1 omits the following parts which do not directly relate to the structural features of the first display device according to the invention, in order to emphasize them.
(1) Means (for example, adhesion) for connecting the partition wall material (wall member) 3 and the partition wall material connection holding plate (connection member) 4 or the partition wall material 3 and the partition wall material / control electrode connection holding plate (connection member, described later) 4 Agent).
(2) A means for hermetically sealing the support frame (sidewall) 3, the cathode substrate 1, and the anode substrate 2 for keeping the inside of the field emission display device at a vacuum.
(3) A means for fixing the partition member 3 and the cathode substrate 1 or the partition member 3 and the anode substrate 2.
(4) A mechanism (for example, an exhaust port provided in the housing) for vacuum-sealing the inside of the field emission display device (the inside of the housing in which electrons travel).
(5) A getter material for maintaining the inside of the field emission display at a high vacuum.
(6) Means for electrically connecting the cathode substrate 1, the anode substrate 2, the partition material connection holding plate 4, or the partition material / control electrode connection holding plate 4.
(7) Means for emitting electrons provided on the cathode substrate 1 into a vacuum (in the housing) (the above-described electron emission unit).
These components are omitted in other drawings referred to in the embodiments of the present invention (hereinafter, referred to as embodiments), which will be described later. It is shown as appropriate in the drawings referred to in the examples.
The field emission display having the structure shown in FIG. 1 has a space (housing) surrounded by a cathode substrate 1, an anode substrate 2, and a support frame (side wall) (not shown). Has airtightness and strength to keep the vacuum. Referring to FIG. 57 (b), the cathode substrate 1 (shown as a glass substrate 6) and the anode substrate 2 are arranged in the z-axis direction due to the pressure difference between the space and the atmospheric pressure applied to each. It is strong enough not to be destroyed by stress (bending). The anode substrate 2 has a phosphor 11 to which a positive (positive) potential is applied to the cathode substrate 1 and which emits light by receiving electrons flying from the cathode substrate 1.
Between the cathode substrate 1 and the anode substrate 2, a partition wall assembly 17 composed of a plurality of partition walls 3 and a partition wall connection holding plate 4 in which these are mechanically connected is arranged. The partition member 3 has a surface along the traveling direction of the electrons. The lower side of this surface is brought into contact with the cathode substrate 1 and the upper side of this surface is brought into contact with the anode substrate 2 so that the gap between the cathode substrate 1 and the anode substrate 2 is increased. To form a desired gap. There are various examples of the connection form between the partition wall member 3 and the partition wall connection holding plate 4. Further, the partition material 3 and the partition material connection holding plate 4 may have various shapes and arrangements. Representative embodiments of these combinations will be described in the following embodiments, but only the embodiments described here do not realize the features of the present invention.
FIG. 2 is an explanatory diagram for conceptually explaining a second display device according to the present invention, and schematically shows an arrangement near a pixel (electron emission portion) of the display device as in FIG.
The field emission display device having the structure shown in FIG. 2 has a space (housing) surrounded by a cathode substrate 1, an anode substrate 2, and a support frame (side wall) (not shown). Has airtightness and strength to keep the vacuum.
The cathode substrate 1 has means for emitting electrons into the space (vacuum), and has airtightness and strength capable of keeping this space vacuum. The anode substrate 2 has a phosphor 11 to which a positive (positive) potential is applied to the cathode substrate 1 and which emits light by receiving electrons flying from the cathode substrate 2. Similarly to the cathode substrate 1, the anode substrate 2 has airtightness and strength capable of keeping the space in a vacuum. Between the cathode substrate 1 and the anode substrate 2, a plurality of partition members 3, a partition member connection holding plate 4 in which these are mechanically connected, and a partition member / control electrode assembly 18 including the control electrode 5 are provided. Are located. The partition member 3 has a surface along the traveling direction of the electrons. The control electrode 5 fixed to the lower side of this surface is brought into contact with the cathode substrate 1, and the upper side of this surface is brought into contact with the anode substrate 2. A desired gap is provided between the substrate and the anode substrate 2. There are various examples of the connection form between the partition wall member 3 and the partition wall connection holding plate 4. There are many forms in the shape and arrangement of the partition wall member 3, the partition wall connection holding plate 4, and the control electrode 5. Representative embodiments of these combinations will be described in the following embodiments, but only the embodiments described here do not realize the features of the present invention.
The partition member 3 provided in each of the first and second display devices according to the present invention is a vacuum (for example, 10 -5 -10 -7 It is not necessary to completely partition the space (inside of the housing) maintained at (Torr pressure) along the x-axis direction or the y-axis direction shown in FIG. Even if the shape is such that a preferable opening for increasing the conductance of the vacuum exhaust inside the housing is formed, this does not hinder the implementation of the present invention. In addition, in order to prevent the partition member 3 from obstructing the traveling of electrons in the housing, the traveling direction (extending direction of a virtual line drawn from the main surface of the cathode substrate 1 to the main surface of the anode substrate 2; It is desirable to use a plate-shaped member having a surface (for example, the yz plane or the xz plane in FIG. 2) extending along the z-axis direction. The surface along the traveling direction of the electrons may be inclined with respect to the traveling direction of the electrons within a range that does not hinder the traveling of the electrons. In addition, the area of the surface (the yz surface in the example of FIG. 2) of the partition wall material 3 along the traveling direction of the electrons is made larger (wider) than the area of the other surface that is in contact with each side of this surface. Accordingly, the area ratio of the electron traveling region (in other words, the electron irradiation region on the anode substrate 2) on the display screen (the xy plane in FIG. 2) can be increased. The surface (wider than the other surfaces) of the partition wall material 3 formed in this way along the traveling direction of electrons is also referred to as “principal surface of the partition wall member”. Increasing the area ratio of the electron traveling region on the display screen is desirable for increasing the number of pixels of the display device, and has the advantage of increasing the brightness of each pixel. The partition wall member 3 may be provided with an opening as long as its strength is not impaired. The member called the partition wall member 3 is specified by this name in the specification of the present application based on its visual characteristics. However, depending on the embodiment of the display device, a wall member, a plate-like member, and a plate (Plate) are used. Can be called as
The partition connection holding plate 4 provided in each of the first and second display devices according to the present invention described above can be used to fix the plurality of partition members 3 to the cathode substrate 1 or the anode substrate 2 without fixing the plurality of partition members 3 to the cathode substrate 1 or the anode substrate 2. It is formed so as to be mechanically fixed to each partition wall member 3 to be disposed therebetween. The mechanical fixing between the partition wall connecting and holding plate 4 and the partition wall member 3 is performed, for example, by providing an opening in the partition wall connecting and holding plate 4 and fitting the projection provided on the partition wall member 3 into the opening. This can be achieved by fixing the surface of the partition wall material 3 to the surface of the connection holding plate 4 with an adhesive or solder. The deflection of the cathode substrate 1 or the anode substrate 2 due to the atmospheric pressure that occurs when exhausting the space in which electrons travel in the display device is absorbed by the partition material 3, but when the partition material 3 is not fixed to these substrates, The position of each of the partition members 3 can be changed in order to reduce the stress applied from the substrate. Such a variation also occurs in an example disclosed in Japanese Patent Application Laid-Open No. 2000-21335 in which two types of partition members 3 whose respective surfaces along the traveling direction of electrons intersect with each other are combined. This variation may change the shape and volume of the electron traveling region for each pixel, and may make the electron irradiation condition on the anode substrate different for each pixel. However, the partition connection holding plate 4 provided in the display device according to the present invention has a surface (for example, x in FIG. 2) that extends so as to intersect with the traveling direction of electrons (the z-axis direction in FIG. 2) in the housing. (Y-plane) to each of the plurality of partition members 3. For example, the above-described opening is provided on a surface of the partition connection holding plate 4 that intersects with the traveling direction of electrons, and the above-described projections provided on each of the partition members 3 and protruding along the traveling direction of electrons are fitted into the openings. . Due to such bonding, the stress (z-axis direction in FIG. 2) greatly applied to the specific partition wall material 3 is transferred in a plane (xy plane in FIG. 2) intersecting the traveling direction of the electrons of the partition connection holding plate 4. ), And is distributed to other partition members 3 to suppress a difference in electron traveling conditions between pixels. A plurality of openings (separate from the openings into which the above-described projections are fitted) are provided on the surface of the partition connection holding plate 4 that intersects the electron traveling direction in correspondence with each of the electron emission portions provided on the cathode substrate 2. ) Is provided. Since the electrons (charged particles) emitted from the electron emitting portion have electric charges, they undergo the space charge effect from the cathode substrate 1 to the anode substrate 2 while being charged as shown in FIGS. 58 (c) and 59 (c). The vehicle travels along a predetermined track as shown. For this reason, the opening provided in the partition connection support plate 4 functions as a so-called electron lens (or the like) for shaping the electron trajectory, rather than restricting the electrons reaching the anode substrate 2. Therefore, by providing the openings corresponding to the electron emission portions in the partition connection support plate 4 in the same shape, the electron traveling conditions for each electron emission portion (in other words, for each pixel) are uniformed. Thus, the problem that the electron irradiation on the anode substrate differs for each pixel is solved, and the phosphor of each pixel can emit light without variation over the screen of the display device. This effect brings a great advantage of displaying an image without “unevenness” on the display device. It is desirable that the partition wall connection holding plate 4 having a surface intersecting with the traveling direction of electrons (z-axis direction in FIG. 2) in such a housing is formed in a plate shape. The partition wall connecting and holding plate 4 formed as a plate-like member has an area of a plane (xy plane in the example of FIG. 2) intersecting with the traveling direction of the electron, and the other surface ( In the example of FIG. 2, the area is larger (wider) than the area of the xz plane or the yz plane. The surface (wider than the other surfaces) of the partition wall connecting and holding plate 4 formed in this way, which crosses the traveling direction of electrons, is also referred to as “principal surface of the partition wall connecting and holding plate”. The partition connection holding plate 4 formed in the shape of a plate has a region in which electrons travel in the housing (in the z-axis direction in FIG. 2) without impairing the performance of connecting and holding the plurality of partition members 3 by its main surface. Can be spread sufficiently. When the traveling region of the electrons in the housing is widened, the trajectory of the electrons largely depends on the lens effect by the opening provided on the main surface of the partition connection holding plate 4 described above. For this reason, as long as the shape of the opening provided in the main surface of the partition connection holding plate 4 is designed to be uniform in correspondence with each of the electron emission portions of the cathode substrate 2, the electron emission portions (pixels) in any of the electron emission portions Can travel along the same orbit from the cathode substrate 1 to the anode substrate 2, and as a result, the variation in luminance between pixels is eliminated. Further, in the second display device according to the present invention, the base material of the partition wall connection holding plate 4 is formed of an insulating material, and a film of a conductive material is formed so as to surround the opening of the main surface thereof, so that the control electrode is formed. Can be formed. In addition, the member called the partition connection holding plate 4 is specified in this specification by this name based on its visual characteristics, but depending on the embodiment, a connection member, a connection plate, a joiner (Joiner). ).
Further, the functions of the cathode, the anode (metal back), and the control electrode in the above and below descriptions can be changed depending on the form of the electron emission portion (electron source) provided in the display device and the driving method thereof, as described above. Therefore, the cathode, the anode, and the control electrode are, in this order, a first electrode (for emitting electrons from the electron emitting portion), a second electrode (for receiving emitted electrons), and a third electrode (for receiving the second electrons from the first electrode). Adjusting the flow of electrons to the electrodes).
However, in each of the following embodiments, for each reference number, 3: “partition material”, 4: “partition material connection holding plate”, or simply “connection plate”, 5: “control electrode”, 7 : “Cathode”, 8: “insulating material for control electrode” or simply “insulating member”, 10: “metal back” or “anode” for convenience. Further, the space in which electrons travel in the display device (the above-described housing) has a function of keeping the inside thereof vacuum, and thus is also referred to as a vacuum chamber or airtight means.
<First embodiment>
FIG. 3 to FIG. 5 are diagrams for explaining the first embodiment of the present invention. In FIG. 1, the cathode substrate 1 includes a cathode glass substrate 6, a cathode 7, an insulating material for control electrodes (hereinafter, insulating material) 8, and a control electrode 5. The anode substrate 2 includes an anode glass substrate 13, a phosphor 11, a black matrix 12, and a metal back 10. FIG. 4 shows a CD section of FIG. In the cathode substrate 1, the cathode 7 and the control electrode 5 are arranged so as to cross each other, and a material having conductivity is selected for each. An insulating material 8 is provided for the purpose of insulating the two types of electrodes. The cathode 7 has a function of emitting electrons into a vacuum space when a positive potential is applied to the control electrode 5, and in addition to a diamond film, a graphite film or a carbon nanotube (Carbon Nano Tube; CNT) using carbon atoms, A so-called Spindt structure that emits electrons from a conical tip, a material utilizing a quantum tunnel effect, and the like are used. The control electrode 5 is provided with a control electrode hole 9 as shown in FIG. In this embodiment, the control electrode hole 9 is formed in a circular shape, but a square or rectangular shape has the same function. As a means for installing the control electrode 5 as shown in the figure, a metal plate is machined, laser-processed, or photo-etched (a method of drawing a pattern on a work by photolithography and etching the work using the mask as a mask). Thus, the control electrode holes 9 are formed and arranged.
On the other hand, in the anode substrate 2, the phosphors 11 that emit red (R), green (G), and blue (B) by the incidence of electrons are spatially painted on the glass substrate for anode 13. A black matrix 12 is arranged between the three color phosphors 11 to prevent color mixture. In addition, the phosphor 11 and the black matrix 12 have conductivity, and transmit electrons that have traveled from the cathode substrate 1 and collide with the phosphor 11 to emit light. A metal back (anode) 10 having a function of reflecting light toward the side 13 is formed on the front surface.
Between the cathode substrate 1 and the anode substrate 2 having the above-described configuration, there is a partition material assembly 17 composed of the partition material 3 and a partition material connection holding plate (hereinafter, connection plate) 4 connected thereto. In order to actually assemble the field emission display device, in addition to these three components, a side wall for shielding the atmosphere, a means for connecting these four parts while maintaining airtightness, a means for vacuum sealing, and a gettering means And means for electrically connecting to the cathode 7, the control electrode 5, the partition wall assembly 17 (Assemblage) and the metal back 10, but these are omitted from the drawings and detailed description. In this way, the partition member 3 and the connecting plate 4 connected thereto are mechanically (physically) combined into a single member called the aggregate member 17 of the partition members, thereby making it extremely easy to assemble the field emission display device. In FIG. 3, an AB cross section of the partition wall assembly 17 is shown in FIG.
FIG. 5 shows a structure in which the partition wall material 3 partially penetrates the partition wall connection holding plate (connection plate) 4 and is fixed on the cathode 7 side with an adhesive 15. The connection plate 4 has an electron beam passage hole (opening) 14, and most of the electrons reach the anode substrate 2 through this opening.
Since the partition member 3 is provided to separate the cathode substrate 1 and the anode substrate 2 from each other, the electrical characteristics thereof are insulators. However, if necessary, the surface may be appropriately made conductive to prevent the surface from being charged by electrons. This appropriate conductivity may be provided only on the surface of the partition wall material 3 and not on the entire volume. Ceramics, inorganic glass, crystallized glass, or the like is used as a material of the partition wall material 3. The partition member 3 made of ceramics, inorganic glass, or crystallized glass that has been sintered and solidified or semi-sintered and solidified in advance is fixed to the connecting plate 4 with an adhesive 15.
The connection plate 4 can use an insulator, a semiconductor, and a metal material. When the electric field distribution of the pixel becomes unstable due to the overall or local charge due to the attachment of the electrons, it is desirable that the device has appropriate conductivity and is connected to an electric device that controls the potential. . In the first embodiment, the potential is maintained at the potential of the anode substrate 2 in FIG. 3, specifically, the potential substantially equal to the potential of the metal back 10. Although it is easiest to set the same as the anode potential, a potential different from the anode potential may be selected in order to more appropriately maintain the electron focusing state.
The connecting plate 4 is preferably made of an insulator having a conductive film formed on its surface, or a member made of a metal material. In any case, it is desirable that the coefficient of linear thermal expansion of the cathode glass substrate 6 and that of the anode glass substrate 13 be substantially the same. When a ceramic or glass plate is used as the insulator, the electron beam passage hole 14 and the partition wall material insertion hole 21 are formed in the plate. These holes can be formed by existing processing methods such as laser processing, mechanical processing, or photo-etching. In addition, the mica plate has excellent heat resistance, insulation resistance, and elasticity, and generates little gas in a vacuum. In order to impart conductivity to the insulator member, a film of, for example, nickel metal (Ni) or tantalum metal (Ta) is formed on the surface thereof by a sputtering method. When one of the main surfaces of the connecting plate 4 is made conductive, it is preferable to provide a metal layer on the side of the cathode substrate 1 where electrons easily collide. On the other hand, as a conductive material suitable for manufacturing the connecting plate 4, for example, iron (Fe), iron-nickel alloy (FeNi), iron-nickel-chromium alloy (FeNiCr), iron-nickel-cobalt alloy (FeNiCo), There is amber wood.
<Second embodiment>
FIG. 6 shows a second embodiment in which the partition wall member assembly 17 shown in FIG. 3 is fixed to the partition wall member 3 with an adhesive 15 on the anode substrate side of the partition wall member connection holding plate 4, and FIG. Shown as -D section. By supplying the adhesive 15 to the anode substrate side, it can be prevented that the adhesive 15 is directly exposed to the flow of electrons.
<Third embodiment>
The assembly 17 of the partition material shown in FIGS. 7 and 3 is assembled by using mechanical friction and elastic deformation between the partition material 3 and the partition material connection holding plate 4 without using an adhesive. Is shown as a CD section in FIG. In this embodiment, at least one of the partition wall member 3 and the partition wall connection holding plate (connection plate) 4 can be formed by using an elastic material. FIG. 8 is a plan view showing a main surface of an example of the connecting plate 4 used in the present embodiment, and a partition material insertion hole (hereinafter referred to as an opening) 21 for inserting the partition material 3 is provided on the main surface. ing. This opening 21 is shown enlarged in each of FIGS. FIG. 9 (a) shows an example in which the opening 21 has a bent shape instead of a rectangle in the range of the length la of the partition wall material insertion hole 21. Here, ta is not zero (0). FIG. 9 (b) shows an example in which a part lb (length lb) of the opening 21 is bent. This example is also characterized in that tb is not zero.
An example of an elastic material is a mica plate. When the connecting plate 4 is formed of an iron-based alloy and the partition wall member 3 is formed of mica, respectively, the portion of the partition wall member 3 fitted in the opening 21 is elastically deformed and connected to the connecting plate 4 by its elastic frictional force. The present embodiment has an advantage that the partition wall assembly 17 can be manufactured only by mechanical processing and assembly without using an adhesive. Further, both the connecting plate 4 and the partition wall member 3 may be formed of mica plates.
<Fourth embodiment>
FIG. 10 shows a fourth embodiment in which the partition wall assembly 17 of FIG. 3 is assembled in another connection mode. In the present embodiment, the partition wall member 3 is inserted into the partition wall member connection holding plate 4 and fixed by mechanical frictional force, but the end thereof substantially coincides with one surface of the partition wall connection holding plate 4. . The partition wall material insertion hole 21 can also be formed into the shape shown in FIGS. In this structure, since the one main surface of the partition wall connection support plate 4 does not have unevenness, the partition wall 3 can be inserted into the partition wall insertion hole 21 on a flat work table.
<Fifth embodiment>
FIG. 11 shows a fifth embodiment in which the partition wall assembly 17 of FIG. 3 is assembled by another bonding method. The partition wall material 3 is inserted into a partition wall material insertion hole (opening) 21 provided in the partition wall material holding plate 4, and the partition wall material 3 substantially coincides with the back surface (the main surface on the anode substrate 2 side) of the partition wall holding plate 4. The insertion end (upper part) is fixed to the partition wall holding plate 4 with an adhesive 15. In this structure, the application area of the adhesive 15 is substantially flat, so that assembling workability and application accuracy are improved.
<Sixth embodiment>
FIG. 12 shows the partition wall assembly 17 of FIG. 3 as a partition wall connecting and holding plate (connecting plate) 4 provided with ceramics before sintering in which the partition wall 3 made of sintered ceramics is called a green sheet or the like. A sixth embodiment in which the ceramics are arranged on the main surface and the ceramics are sintered at a predetermined temperature and assembled is shown. In manufacturing the connecting plate 4 of this embodiment, metals, ceramics, glass, and the like that can withstand the above sintering temperature are used. Further, as a method of arranging the ceramics before sintering on the main surface of the connecting plate 4, a method of repeating the supply of the ceramic material by a screen printing method to the main surface of the connecting plate 4 a plurality of times, or a roll type in which a green sheet is embedded is used. For example, there is a method of pressing the main surface of the connecting plate 4 to transfer the image. Whichever method is employed, a plurality of partition members 3 can be simultaneously formed on the connecting plate 4, which is suitable for improving the production efficiency of the display device.
<Seventh embodiment>
FIG. 13 shows a display device of a seventh embodiment having a cathode substrate structure different from that of the above-described embodiment. FIG. 14 shows a CD cross section of FIG. The control electrode 5 has a control electrode hole 9, but does not cover the corresponding opening 89 of the insulating material 8. In other words, the contour of the control electrode hole 9 does not enter the opening 89 of the insulating material 8. In this embodiment, a control electrode hole 9 is formed in a metal plate by machining, laser processing, or photo-etching to produce the control electrode 5 shown in FIG. Alternatively, a metal material is supplied on the insulating material 8 by vapor deposition, sputtering, ion plating, or the like to form a metal film, and a control electrode hole pattern is formed on the metal film by photo-etching. The control electrode 5 can also be manufactured by applying a conductive paste-like material on the surface 8 and forming a pattern directly on the paste-like material by a screen printing method.
<Eighth embodiment>
FIG. 15 shows an eighth embodiment having a partition structure different from the above-described embodiment, which is characterized in that the partition material 3 is divided in the longitudinal direction. The partition member 3 does not need to be continuous over the entire field emission type display device. When the partition member 3 is divided, a stress generated due to a difference in thermal expansion coefficient between the partition member 3 and the partition member connection holding plate 4 is reduced. Since it can be relaxed, the selection range of the material used for the partition wall member 3 is widened.
<Ninth embodiment>
FIG. 16 shows a ninth embodiment in which the partition wall members 3 are arranged so as to intersect (perpendicularly) the extending direction of the control electrodes 5. With such an arrangement, the control electrode 5 is pressed by the partition wall aggregate 17 to enhance the structural stability of the display device.
<Tenth embodiment>
FIG. 17 shows a tenth embodiment in which the partition wall member 3 of the ninth embodiment is divided in the longitudinal direction and is divided in the longitudinal direction. As in the eighth embodiment, since the stress generated between the partition wall member 3 and the partition wall connection holding plate 4 due to the difference in thermal expansion coefficient therebetween can be reduced, the selection range of the material used for the partition wall member 3 is also widened.
<Eleventh embodiment>
FIG. 18 shows an eleventh embodiment in which the control electrode 5 of the ninth embodiment is formed in a bar shape. FIG. 19 shows a CD section of FIG. As shown in FIG. 18, in the control electrode 5 of the present embodiment, the first control electrode 19 and the second control electrode 20 are paired to control each electron emission of the cathode 7. When the first control electrode 19 and the second control electrode 20 are set to the same potential, in order to increase their mechanical strength, other than the opening 89 of the insulating film 8 (in which the electron emission portion is disposed). At the position, the first control electrode 19 and the second control electrode 20 may be mechanically connected. The number of rod-shaped electrodes constituting the control electrode 5 may be increased to three or more according to the area of the cathode 7. Although the control electrode 5 shown in FIG. 19 has a rectangular cross section, this cross section may be circular or elliptical. The advantage of the structure of this embodiment is that the rod-shaped control electrode can be formed not only by machining, laser processing, or photo-etching, but also by using a plurality of wire rods each having a connected end. It is in. In addition, since the control electrode 5 is pressed from above by the partition wall 3, the structural stability of the field emission display device is also increased.
<Twelfth embodiment>
FIG. 20 shows a twelfth embodiment using a partition aggregate having a shape different from that of the above-described embodiment, and FIG. 21 shows a cross section taken along a line AB in FIG. In this embodiment, the partition wall member 3 is not fitted into the partition wall insertion hole (opening) 21 of the connecting plate 4 but is fixed to the main surface on the cathode substrate 1 side with the adhesive 15. In the structure of the present embodiment, one main surface (the upper surface in FIG. 21) of the connecting plate 4 is kept flat, so that the operation of connecting the partition member 3 thereto can be performed on a flat work table. Since the opening 21 is not provided, the processing of the connecting plate 4 is also facilitated.
<Thirteenth embodiment>
FIG. 22 shows a thirteenth embodiment in which a partition wall assembly 17 similar to the twelfth embodiment is assembled by applying an adhesive 15 mainly between the main surface of the connecting member 4 and the end surface of the partition wall member 3. Here is an example. The structure of this embodiment has the same advantages as the twelfth embodiment because the structure is kept flat on one main surface (the upper surface shown) of the connecting member 4 and the formation of the opening 21 is unnecessary. Further, since the adhesive 15 is applied to the flat surface, the efficiency of the assembling work is increased.
<Fourteenth embodiment>
In FIG. 23, the partition wall members 3 are formed of sintered ceramics, and these are arranged on the main surface of a partition wall connection holding plate (connection plate) 4 coated with ceramic before sintering called a green sheet or the like. A fourteenth embodiment in which ceramics before sintering is sintered at a predetermined temperature and the partition wall member 3 is fixed to the main surface of the connecting plate 4 to assemble a partition wall aggregate is shown. The material of the connecting plate 4 is selected from metals, ceramics, and glass that can withstand the sintering temperature. Further, as a method of arranging the ceramics before sintering on the main surface of the connection plate 4, as in the sixth embodiment, the screen printing method is repeated, and a roll in which a green sheet is embedded is attached to the main surface of the connection plate 4. And a method of transferring by pressing. In the structure of this embodiment, one main surface of the connecting plate 4 is kept flat, and the formation of the opening (partition material insertion hole) 21 is unnecessary. Simultaneously fixing the plurality of partition members 3 to the partition member connection holding plate 4 also provides an advantage of improving the production efficiency (throughput) of the display device.
<Fifteenth embodiment>
FIG. 24 shows a fifteenth embodiment in which the partition wall assembly 17 has a different structure from the twelfth embodiment and the like. As shown in FIG. 24, the partition wall members 3 are not arranged for each of the electron beam passage holes 14 but are thinned and arranged for each of a plurality of (three in the illustrated example) electron beam passage holes 14. . The structure of the present embodiment is possible as long as the partition wall material 3 has sufficient strength so as not to be deformed or broken by the atmospheric pressure applied through the cathode substrate 1 or the anode substrate 2. In addition, the structure of the present embodiment also has the advantage of using less material and simplifying the assembly process.
<Sixteenth embodiment>
FIG. 25 shows a sixteenth embodiment in which the partition wall members 3 are arranged so as to intersect the direction in which the control electrodes 5 extend. The present embodiment provides the same advantages as the ninth embodiment because the control electrode 5 is pressed by the aggregate 17 of the partition wall material.
<Seventeenth embodiment>
FIG. 26 is a diagram showing a combination of two types of main surfaces (for example, an xz plane and a yz plane) intersecting the partition wall material 3 with each other, and the cross section thereof (facing the main surface of the cathode substrate 1 or the anode substrate 2). A seventeenth embodiment is shown in which the xy plane (for example, the xy plane) shows a cross shape (spreads two-dimensionally). In the present embodiment, the strength of the partition wall member 3 against the force applied from the normal direction of the main surface of the cathode substrate 1 or the anode substrate 2 is increased, and the partition wall member 3 is hard to fall on the main surface of the partition wall connection holding plate 4. Therefore, the efficiency of the assembling work of the partition wall material assembly 17 also increases.
<Eighteenth embodiment>
FIG. 27 shows an eighteenth embodiment in which the insulating material 8 is formed without covering the entire surface of the cathode 7. The insulating material 8 is formed by a known method combining direct patterning by thick film printing or photo-etching, forming an insulating film by CVD and photo-etching, or an insulating member processed into a rod shape on the glass substrate 6. It can be formed by any of juxtaposition. The control electrode 5 is formed in a rod shape extending in the direction in which the insulating material 8 extends. Two rod-shaped control electrodes 5 shown in parentheses form a pair, and constitute one pixel together with each of the cathodes 7 intersecting the pair. When the same potential is applied to each pair of rod-shaped control electrodes 5, each pair of control electrodes 5 is mechanically connected at a position other than on the cathode 7 to reinforce them mechanically. May be. Further, similarly to the eleventh embodiment, the number of the pair of control electrodes 5 constituting one pixel for each intersecting cathode 7 may be increased to three or more according to the area of the cathode 7. Further, the cross section of the control electrode 5 is not limited to the illustrated rectangle, and a circular or elliptical shape does not impair the function of the control electrode 5. One of the advantages of the structure shown in the present embodiment is that a plurality of wires connected at the ends are arranged on the insulating material 8 and then cut off at the ends, whereby a plurality of rod-shaped control members are cut. That is, the electrode 5 can be efficiently formed at one time. One of the other advantages of the present embodiment is that the capacitance between the cathode 7 and the control electrode 5 can be kept small, so that a high-frequency signal can be input to the cathode 7 and the control electrode 5. The display characteristics of the field emission display device are further improved.
<19th embodiment>
FIG. 28 shows a nineteenth embodiment in which the partition wall member 3 in the structure of the eighteenth embodiment is arranged so as to intersect the direction in which the control electrode 5 extends. For this reason, in addition to the advantage of the eighteenth embodiment, the structural stability of the field emission display device is improved by pressing the control electrode 5 with the partition wall aggregate 17.
<Twentieth embodiment>
FIG. 29 shows a twentieth embodiment in which the insulating material 8 is formed in a sheet shape over a plurality of control electrode holes 8 in the structure of the eighteenth embodiment, whereby the insulating material 8 is formed in the entire field emission display device. 8 can be provided as one sheet. One of the advantages of this embodiment is that after processing and molding the insulating material 8 as a separate member from the cathode substrate 1 in advance, the cathode substrate 1 is completed by accurately and appropriately arranging it on the cathode 7. Therefore, the manufacturing process of the cathode substrate 1 is simplified, and the selection range of the insulating material that can be used as the base material of the insulating material 8 of the present embodiment is expanded. One of the base materials that can be used in the present embodiment is mica, which can be easily formed into a thin plate, can form an opening corresponding to the control electrode hole 9, and has good insulating properties.
<Twenty-first embodiment>
FIG. 30 shows a twenty-first embodiment in which an insulating material 8 is formed in a sheet shape extending over a plurality of control electrode holes 8 as in the twentieth embodiment, and a control electrode 5 is directly formed on the insulating material 8. Is shown. In the structure of the present embodiment, the control electrode 5 is processed and formed together with the insulating material 8 to produce a laminate (a member different from the main body of the cathode substrate 1) of the insulating material 8 having the control electrode hole 9 and the control electrode 5. However, since the cathode substrate 1 can be completed by arranging it accurately and appropriately on the cathode 7, the production efficiency (throughput) of the cathode substrate 1 is improved in addition to the advantage of the twentieth embodiment. Brought.
<Twenty-second embodiment>
FIG. 31 shows a twenty-second embodiment in which the partition wall member 3 is in contact with the anode 10 of the anode substrate 2. As shown in the figure, the partition wall connection holding plate 4 is in contact with the control electrode 5 and is therefore formed of an insulating material, or a metal plate is used and an insulating film or an insulating layer is formed on the main surface on the control electrode 5 side. I do. In this embodiment, since the electron beam passage hole 14 is located near the control electrode 5, the partition wall aggregate 17 can be easily arranged without obstructing the traveling of the electrons. Can be increased. FIG. 31 shows the cathode substrate 1 of the twenty-first embodiment as an example, but the structure is not limited to this, and any cathode shown in the first to twentieth embodiments can be used. Substrate 1 can also be used.
<Twenty-third embodiment>
FIG. 32 shows a twenty-third embodiment characterized by the shape of the partition wall aggregate 17 having the second partition wall member 16 in addition to the partition wall member 3. In this embodiment, the partition wall aggregate shape 17 is. By appropriately setting the heights of these two types of partition members 3 and 16 and the potential applied to the partition member connection holding plate 4, the focusing condition of the electrons emitted from the cathode 7 is optimized, and the display of the field emission display device is performed. Characteristics can be improved. The height (the dimension in the z-axis direction in FIG. 32) of the partition wall member 3 may be lower than that of the second partition wall member 16 so that the partition wall connection holding plate 4 is close to the control electrode.
<24th embodiment>
FIG. 33 shows a second partition wall member 16 having a main surface (shown as a yz plane) on the main surface of the partition wall connecting plate 4 opposite to the main surface to which the partition wall member 3 is joined. 24 shows a twenty-fourth embodiment of the present invention, which is coupled so as to intersect with the principal surface (shown as xz plane) of FIG. The structure of this embodiment has, in addition to the advantages of the twenty-third embodiment, the advantage that the display device is structurally stabilized against the stress caused by the atmospheric pressure, and the structure of the partition wall assembly 17 is easily assembled. Bring.
<Twenty-fifth embodiment>
FIG. 34 shows a twenty-fifth embodiment in which the control electrode 5 is fixed to the partition member 3 fixed to the partition wall connecting plate 4 to form an assembly called a partition member / control electrode assembly 18. FIG. 35 shows a CD cross section of FIG. By providing the control electrode 5 on the partition wall material / control electrode assembly 18 instead of providing the control electrode 5 on the cathode substrate 1, the structure of the cathode substrate 1 is simplified and easily manufactured. The shape of the control electrode 5 is not limited to the illustrated bar shape, and may be changed to another shape used in the above-described embodiment. Further, the shape of the cathode substrate 1 may be changed according to any of the above-described embodiments.
<Twenty-sixth embodiment>
FIG. 36 shows a twenty-sixth embodiment in which the control electrode 5 is fixed to the second partition 16 joined to the partition connecting plate 4 together with the partition 3 and the control electrode 5 is assembled. Is provided in addition to the partition wall member 3 and is provided through the second partition wall member 16. In the present embodiment, the height of the second partition member 16 (dimension in the z-axis direction) is made lower than that of the partition member 3 to increase the flexibility of the partition member / control electrode assembly 18.
<Twenty-seventh embodiment>
FIG. 37 shows a twenty-seventh embodiment in which the twenty-sixth embodiment and the seventeenth embodiment are combined, and shows the strength and the cross section (in the xy plane) of the partition wall member 3 having a cross-shaped cross section. , The efficiency of the work of connecting these to the partition wall connection holding plate 4 is improved.
<Twenty-eighth embodiment>
FIG. 38 shows a twenty-eighth embodiment using a plate-like control electrode 5 in which a plurality of control electrode holes 9 are formed in the partition wall / control electrode assembly 18 of the twenty-sixth embodiment.
<Twenty-ninth embodiment>
FIG. 39 shows a twenty-ninth embodiment in which an insulating connecting member 22 is provided on the main surface of the partition wall connecting and holding plate (connecting plate) 4 on the side of the cathode substrate 1 and the control electrode 5 is fixed thereto. The insulating connecting material 22 connects the connecting plate 4 and the control electrode 5 so as not to be electrically short-circuited. Instead of forming the insulating connecting member 22 on the main surface of the connecting plate 4, the connecting plate 4 itself may be made of an insulating material to integrate the insulating connecting member 22 and the connecting plate 4.
<Thirtieth embodiment>
FIG. 40 shows a thirtieth embodiment in which the control electrode 5 of the twenty-ninth embodiment is formed on the insulating connecting material 22 by using a method of growing a thick film or a thin film. Also in the present embodiment, instead of forming the insulating connecting member 22 on the main surface of the partition wall connecting and holding plate 4, the partition wall connecting and holding plate 4 is made of an insulating material, and the insulating connecting member 4 is formed on the partition wall connecting and holding plate 4. 22 functions may be provided.
<Thirty-first embodiment>
FIG. 41 shows a thirty-first embodiment in which a grid-shaped partition wall member 3 is fixed to a partition wall connection holding plate (connection plate) 4 made of an insulating material, and a control electrode 5 is directly formed on the connection plate 4. Is shown. The structure of the grid-shaped partition wall member 3 is illustrated in more detail in FIG. Grooves 23 are formed in each of the partition members 3 orthogonal to each other, and these are fitted together as shown in the figure, so that the partition members 3 are hard to fall down and are hard to be crushed. The partition member 3 having this structure can be used not only in this embodiment but also in all other embodiments according to the present invention.
<Thirty-second embodiment>
FIG. 43 shows a thirty-second embodiment in which the twentieth embodiment is combined with the thirtieth embodiment. In the present embodiment, since the insulating material 8 is formed as a sheet straddling the plurality of control electrode holes 9 (provided with a plurality of openings 89 corresponding thereto), the same advantages as in the twentieth embodiment are provided. The sheet-shaped insulating material 8 may be formed of mica, for example. Moreover, one sheet can be used for the entire field emission display device. Further, the partition wall connection holding plate 4 itself is formed of such a sheet-shaped insulating base material (preferably, having a film thickness larger than that of the insulating material 8), and has the function of the insulating connecting material 22. Is also good.
<33rd embodiment>
FIG. 44 shows a thirty-third embodiment in which the partition wall connecting and holding plate 4 of the thirty-second embodiment is formed of an insulator, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side.
<34th embodiment>
FIG. 45 shows a thirty-fourth embodiment in which the partition wall connection holding plate (connection plate) 4 of the thirty-first embodiment is formed of an insulator, and the control electrode 5 is formed on the main surface of the connection plate 4 on the anode substrate 2 side. An example will be described. The connecting plate 4 of the present embodiment also has the function of the above-mentioned insulating material 8 (hence, denoted by reference numerals 4 and 8), and a part of the partition wall material 3 is provided on the connecting plate 4 via the control electrode 5. Is fixed. The structure of this embodiment has the advantages of reducing the number of materials and the number of parts required for assembling the display device and completing the display device easily (with a small number of steps).
<Thirty-fifth embodiment>
FIG. 46 shows that the partition wall connecting and holding plate 4 is formed of an insulator, which also has the function of the insulating material 8, the control electrode 5 is formed on the main surface of the anode substrate 2 side, and the control electrode 5 is further formed. A thirty-fifth embodiment in which the partition material 3 is fixed to the anode substrate 2 side is shown. As in the thirty-fourth embodiment, the structure of this embodiment is suitable for reducing the number of materials, parts, and the number of assembling steps required for assembling the display device, and thus has the advantage of increasing the production efficiency of the display device. Further, the plate-like control electrode 5 can be manufactured separately from the partition wall material and the partition wall connection holding plate 4 by a processing method such as mechanical processing, laser processing, or photo-etching.
<Thirty-sixth embodiment>
FIG. 47 shows a thirty-sixth embodiment in which a pair of the first control electrode 19 and the second control electrode 20 each having the surface covered with the insulating material 8 are fixed to the partition wall connection holding plate 4. . In the structure of this embodiment, the first control electrode 19 and the second control electrode 20 can be prepared or prepared in advance as wires coated with an insulating film, which is desirable for improving the production efficiency of the display device.
<Seventh embodiment>
FIG. 48 shows a 37th embodiment in which a pair of the first control electrode 19 and the second control electrode 20 forming the control electrode 5 are fixed to the glass substrate 6 (cathode substrate 1) by covering the respective surfaces with the insulating material 8 and covering them. Examples of the present invention will be described. Also in the structure of the present embodiment, the first control electrode 19 and the second control electrode 20 can be prepared or prepared in advance as a wire coated with an insulating film, so that there is an advantage that the production efficiency of the display device is improved.
<Thirty-eighth embodiment>
FIG. 49 shows a thirty-eighth embodiment in which the partition wall connection holding plate 4 is made of an insulating material, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side, and the insulating material 8 is formed on the control electrode 5. An example will be described. The structure of this embodiment is advantageous in that the structure of the cathode substrate 1 is simplified, the production efficiency is increased, and the partition wall material / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Bring. The control electrode hole 9 is not limited to an example in which a plurality of rectangular openings are regularly arranged as shown in the figure, but may have a different shape and arrangement according to another embodiment of the present invention.
<Thirty-ninth embodiment>
FIG. 50 shows a thirty-ninth embodiment in which the partition wall connecting and holding plate 4 is made of an insulator, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side. The structure of the present embodiment is such that the partition wall member / control electrode assembly 18 in which the partition wall member 3, the partition wall member connecting / holding plate 4, and the control electrode 5 are fixed to each other is free from the cathode substrate 1 and the anode substrate 2. This has the advantage of being machined or assembled. Although an example in which a plurality of openings having a substantially circular shape are regularly arranged as the control electrode holes 9 is illustrated, the shape may be changed to a rectangle or an ellipse, and the arrangement of the holes may be changed.
<Fortieth embodiment>
FIG. 51 shows a fortieth embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the control electrode 5 and the insulating material 8 are formed in this order on the main surface of the cathode substrate 1 side. The structure of this embodiment allows the cathode substrate 1 to have an extremely simple structure, and allows the partition wall / control electrode assembly 18 to be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Bring benefits. Although an example in which a plurality of openings having a substantially rectangular shape are regularly arranged as the control electrode holes 9 is illustrated, even if these shapes are changed to a circular shape or an elliptical shape or the like, the arrangement of the present invention is changed. May be changed according to the other embodiments.
<Forty-first embodiment>
FIG. 52 shows a forty-first embodiment in which the partition wall connecting and holding plate 4 is made of an insulator, and the rod-shaped control electrode 5 is fixed to the main surface of the cathode substrate side. The structure of the present embodiment has an advantage that the partition wall / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. A notable advantage of the structure of this embodiment is that the partition wall and control electrode assembly 18 can be manufactured without using a so-called thin film technique or thick film technique. Although an example in which the control electrode 5 has a rectangular cross section orthogonal to the long axis direction (x-axis direction in the figure) is illustrated, the present invention can be implemented even if the cross section is changed to a circle, an ellipse, or a polygon. It does not hinder.
<Forty-second embodiment>
In FIG. 53, the partition wall connecting and holding plate 4 is made of an insulating material, the control electrode 5 is provided on the main surface on the cathode substrate 1 side, and the insulating material 8 is filled so as to fill the gap between the control electrodes on this main surface. The forty-second embodiment is shown partially formed. The structure of this embodiment has an advantage that the structure of the cathode substrate 1 is extremely simplified, and the partition wall material / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. . Also, since the relative permittivity of the insulating material 8 is usually larger than 1, on the main surface of the partition wall connecting and holding plate 4, the region where the insulating material 8 is arranged is limited to the gap of the control electrode 5 and its periphery. As a result of the partial formation of the insulating material 8, the capacitance between the cathode 7 and the control electrode 5 was reduced. Since the capacitance between the cathode 7 and the control electrode 5 decreases, the frequency of a signal (control signal) supplied to these electrodes (conductors) can be increased. Therefore, the display device having the structure of the present embodiment can easily display a high-definition image (reduction of change in peripheral devices of the display device required for high-definition image display). Although an example in which a plurality of openings having a substantially rectangular shape are regularly arranged as the control electrode hole 9 is illustrated, the shape may be changed to a circular or elliptical shape or the arrangement of these may be changed. May be changed.
<Forty-third embodiment>
FIG. 54 shows a forty-third embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side. The structure of this embodiment has an advantage that the partition wall / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. In this embodiment, the insulating material 8 is partially formed so as to fill the gap between the cathodes 7 on the main surface of the glass substrate 6. Therefore, the shape of the cathode substrate 1 is similar to that of the eighteenth embodiment (FIG. 27). Since the dielectric constant of the insulating material 8 is usually larger than 1, the insulating material 8 is limited so that the region where the insulating material 8 is arranged or formed on the main surface of the glass substrate 6 like the cathode substrate 1 is limited. Is partially formed with respect to the cathode 7, the capacitance between the cathode 7 and the control electrode 5 is reduced. As described in the forty-second embodiment, since the capacitance between the cathode 7 and the control electrode 5 is reduced, a high-frequency control signal can be supplied by them, and as a result, the The definition of the display image is improved, or high-definition image display is easily realized. Although an example in which a plurality of openings having a substantially circular shape are regularly arranged as the control electrode holes 9 is shown, these shapes may be changed to a rectangle or an ellipse, and the arrangement may be changed according to the present invention. Modifications following the embodiment do not hinder the implementation of the present invention.
<Forty-fourth embodiment>
FIG. 55 shows a forty-fourth embodiment in which the partition wall connecting and holding plate 4 is made of an insulator, and a plurality of sets of a pair of rod-shaped control electrodes 5 are fixed to the main surface of the cathode substrate 1 side. The structure of the present embodiment has an advantage that the partition wall / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Further, by providing the insulating material 8 partially on the main surface of the cathode substrate 1 as in the forty-third embodiment, even if the relative permittivity of the insulating material 8 is larger than 1, the distance between the cathode 7 and the control electrode 5 is increased. The capacitance between them can be made as small as possible to supply a high-frequency control signal to at least one of them. Therefore, a higher-frequency control signal can be used for an image display operation of the display device, and as a result, a high-definition image display by the display device can be easily realized. Furthermore, a remarkable advantage of the structure of this embodiment is that the partition wall material / control electrode assembly 18 can be manufactured without using a so-called thin film technique or a thick film technique (growth technique). Although an example in which a cross section orthogonal to the extending direction (x-axis direction in the drawing) of the control electrode 5 is square is illustrated, the cross section may be changed to a circle, an ellipse, or a polygon to hinder the implementation of the present invention. Not.
Finally, FIG. 56 shows an electron source using a carbon nano tube suitable as an electron emitting portion of the above-mentioned display device according to the present invention. FIG. 56 (a) is a plan view of the electron source, and FIG. 56 (b) is a cross-sectional view of the electron source taken along the line BB of FIG. 56 (a). The structure and operation of this electron source are similar to the Spindt-type electron source already described with reference to FIGS. 58 (b) and (c), but a carbon nano tube is used instead of the emitter cone 100 as an electron emitting portion. A rod-shaped carbon molecule called 102 is used. As the name implies, the carbon nanotube 102 has a length of several nanometers (nanometers = 10 nanometers) including its longitudinal dimension. -9 It is a very fine substance from m) to several tens of nanometers, which are enlarged in FIGS. 56 (a) and 56 (b). When fixing such a fine substance to the cathode 7, the illustrated electron source disperses a plurality of carbon nanotubes 102 in a conductive paste such as silver, and disperses the carbon nanotubes 102 through openings or gaps in the insulating material 8. The conductive paste is hardened to form a conductive film 103 by dripping on the exposed upper surface of the cathode 7. Thereby, the carbon nanotubes 102 are fixed to the surface of the conductive film 103. The portion of the carbon nanotube 102 fixed to the conductive film 103 as described above, particularly, the portion protruding from the conductive film 103 emits electrons according to the potential difference ΔV generated between the control electrode 5 and the portion. As described above, the electron source using the carbon nanotube 102 can be formed by a simple process as compared with the Spindt type electron source, and FIG. 58 (c) is compared with FIG. 56 (b). As is clear, many electron-emitting portions can be formed. Therefore, the field emission display device using the carbon nano tube 102 is suitable for mass production and has an advantage that an image can be displayed brighter.
The above-described display device (field emission display device) according to the present invention is a “partition material connection holding plate” that collectively connects and holds the partition materials 3 in which the cathode substrate 1 and the anode substrate 2 are arranged at a predetermined distance from each other. Is provided, the partition wall member 3 can be efficiently and accurately arranged without impairing the image display performance of the display device.
In addition, the second display device and the like according to the present invention comprise a partition member 3 for disposing a cathode substrate 1 and an anode substrate 2 at a predetermined distance, and an electrode for controlling the flow of electrons emitted from the cathode substrate. (The control electrode) 5 is provided with a “partition material / control electrode connection holding plate” that collectively connects and holds the partition material 3 and the control electrode 5 without impairing the image display performance of the display device. Can be arranged efficiently and accurately.
Although several embodiments according to the present invention have been shown and described, the present invention is not limited to these embodiments, and various modifications and improvements made thereto can be made within a range known to those skilled in the art. It is understood. It is therefore intended that the scope of the claims appended hereto include all such modifications and improvements without being bound by the details shown and described herein.
[Brief description of the drawings]
FIG. 1 is a schematic diagram (perspective view of a display device disassembled into main components) for briefly explaining the structural features of a first display device according to the present invention.
FIG. 2 is a schematic diagram (a perspective view of the display device disassembled into main components) for briefly explaining the structural features of the second display device according to the present invention.
FIG. 3 is a perspective view for explaining a first embodiment of the display device according to the present invention (an exploded perspective view showing the display device disassembled into main components, hereinafter referred to as a “perspective view” unless otherwise specified). (Abbreviated).
FIG. 4 is a CD sectional view of the cathode substrate 1 in FIG.
FIG. 5 is an example of a cross section taken along AB of the cathode substrate 1 in FIG.
FIG. 6 is a view showing a second embodiment having another section A-B of the cathode substrate 1 in FIG.
FIG. 7 is a view showing a third embodiment having another section A-B of the cathode substrate 1 in FIG.
FIG. 8 is a plan view of the partition wall connection holding plate 4 shown in FIG.
FIG. 9 is an enlarged view of the partition wall material insertion hole 21 in the plan view of the partition wall member connection holding plate 4 shown in FIG.
FIG. 10 is a view showing a fourth embodiment having another section A-B of the cathode substrate 1 in FIG.
FIG. 11 is a view showing a fifth embodiment having another AB cross section of the cathode substrate 1 in FIG.
FIG. 12 is a view showing a sixth embodiment having another AB cross section of the cathode substrate 1 in FIG.
FIG. 13 is a perspective view illustrating a seventh embodiment of the display device according to the present invention.
FIG. 14 is a CD sectional view of the cathode substrate 1 in FIG.
FIG. 15 is a perspective view for explaining an eighth embodiment of the present invention.
FIG. 16 is a perspective view for explaining a ninth embodiment of the display device according to the present invention.
FIG. 17 is a perspective view for explaining a tenth embodiment of the display device according to the present invention.
FIG. 18 is a perspective view for explaining an eleventh embodiment of the display device according to the present invention.
FIG. 19 is a CD sectional view of the cathode substrate 1 in FIG.
FIG. 20 is a perspective view for explaining a twelfth embodiment of the display device according to the present invention.
FIG. 21 is a sectional view of the cathode substrate 1 taken along a line AB in FIG.
FIG. 22 is a view showing a thirteenth embodiment having another AB section of the cathode substrate 1 in FIG.
FIG. 23 is a diagram showing a fourteenth embodiment having another AB cross section of the cathode substrate 1 in FIG.
FIG. 24 is a perspective view for explaining a fifteenth embodiment of the display device according to the present invention.
FIG. 25 is a perspective view for explaining a sixteenth embodiment of the display device according to the present invention.
FIG. 26 is a perspective view for explaining a seventeenth embodiment of the display device according to the present invention.
FIG. 27 is a perspective view for explaining an eighteenth embodiment of the display device according to the present invention.
FIG. 28 is a perspective view for explaining a nineteenth embodiment of the display device according to the present invention.
FIG. 29 is a perspective view for explaining a twentieth embodiment of the display device according to the present invention.
FIG. 30 is a perspective view for explaining a twenty-first embodiment of the display device according to the present invention.
FIG. 31 is a perspective view for explaining a twenty-second embodiment of the display device according to the present invention.
FIG. 32 is a perspective view for explaining a twenty-third embodiment of the display device according to the present invention.
FIG. 33 is a perspective view for explaining a twenty-fourth embodiment of the display device according to the present invention.
FIG. 34 is a perspective view for explaining a twenty-fifth embodiment of the display device according to the present invention.
FIG. 35 is a CD sectional view of the cathode substrate 1 in FIG.
FIG. 36 is a perspective view for explaining a twenty-sixth embodiment of the display device according to the present invention.
FIG. 37 is a perspective view for explaining a twenty-seventh embodiment of the display device according to the present invention.
FIG. 38 is a perspective view for explaining a twenty-eighth embodiment of the display device according to the present invention.
FIG. 39 is a perspective view for explaining a twenty-ninth embodiment of the display device according to the present invention.
FIG. 40 is a perspective view for explaining a thirtieth embodiment of the display device according to the present invention.
FIG. 41 is a perspective view for explaining a thirty-first embodiment of the display device according to the present invention.
FIG. 42 is a perspective view showing an example of a combination structure of the partition members 3 in FIG.
FIG. 43 is a perspective view for explaining a 32nd embodiment of the display device according to the present invention.
FIG. 44 is a perspective view for explaining a thirty-third embodiment of the display device according to the present invention.
FIG. 45 is a perspective view for explaining a thirty-fourth embodiment of the display device according to the present invention.
FIG. 46 is a perspective view for explaining a thirty-fifth embodiment of the display device according to the present invention.
FIG. 47 is a perspective view for explaining a thirty-sixth embodiment of the display device according to the present invention.
FIG. 48 is a perspective view for explaining a 37th embodiment of the display device according to the present invention.
FIG. 49 is a perspective view for explaining a thirty-eighth embodiment of the display device according to the present invention.
FIG. 50 is a perspective view for explaining a thirty-ninth embodiment of the display device according to the present invention.
FIG. 51 is a perspective view for explaining a fortieth embodiment of the display device according to the present invention.
FIG. 52 is a perspective view for explaining a forty-first embodiment of the display device according to the present invention.
FIG. 53 is a perspective view for explaining a forty-second embodiment of the display device according to the present invention.
FIG. 54 is a perspective view for explaining a forty-third embodiment of the display device according to the present invention.
FIG. 55 is a perspective view for explaining a forty-fourth embodiment of the display device according to the present invention.
FIG. 56 is a view showing an example of an electron-emitting portion provided on a cathode substrate of a display device according to the present invention, wherein (a) is a plan view thereof, and (b) is a view taken along line CC of (a). It is sectional drawing drawn.
FIGS. 57 (a) and 57 (b) are explanatory views showing an example of an electron emission type display device. FIG. 57 (a) is a perspective view showing a disassembled state, and FIG. Sectional views when cut along the xz plane are shown, respectively.
FIG. 58 is a view for explaining a field emission display device using a Spindt-type electron source, wherein (a) is an equivalent circuit diagram, (b) is a plan view of the electron emission portion, and (c) is (b) 3) are cross-sectional views when the electron-emitting portion is cut along the line CC.
FIG. 59 is a view for explaining a field emission display device using a surface conduction electron source, (a) is an equivalent circuit diagram, (b) is a plan view of the electron emission portion, and (c) is ( Sectional views when the electron emitting portion of b) is cut along the line CC are shown.
FIG. 60 is a perspective view schematically showing the periphery of a pixel (electron emission portion) of a conventional field emission display device.

Claims (20)

一方の主面に電界により電子を放出する制御手段を有する陰極基板と、陰極基板に対向して且つ離間して配置され且つ一方の主面に上記電子を吸収して発光する手段を有する陽極基板と、上記陰極基板と上記陽極基板との間の空間を真空に維持する気密手段と、上記陰極基板と上記陽極基板との間隙を維持する複数の隔壁材と、上記陰極基板又は上記陽極基板のいずれかの主面に沿う面において上記複数の隔壁材を連結し且つ保持する連結保持手段を有することを特徴とする表示装置。A cathode substrate having control means for emitting electrons by an electric field on one main surface, and an anode substrate having a means for absorbing and emitting light by absorbing the electrons on one main surface which is arranged opposite to and away from the cathode substrate; And, a hermetic means for maintaining the space between the cathode substrate and the anode substrate in a vacuum, a plurality of partition members for maintaining a gap between the cathode substrate and the anode substrate, and the cathode substrate or the anode substrate. A display device comprising: a connecting and holding means for connecting and holding the plurality of partition members on a surface along any one of the main surfaces. 請求の範囲第1項において、上記連結保持手段は導電性材料で形成されていることを特徴とする表示装置。2. A display device according to claim 1, wherein said connection holding means is formed of a conductive material. 請求の範囲第1項において、上記連結保持手段は絶縁性材料で形成されている表示装置。2. The display device according to claim 1, wherein said connection holding means is formed of an insulating material. 請求項の範囲第3項において、上記絶縁性材料からなる連結保持手段導電性材料には導電性材料からなる領城が形成されていることを特徴とする表示装置。4. The display device according to claim 3, wherein the connection holding means conductive material made of an insulating material is provided with a castle made of a conductive material. 請求の範囲第1項において、上記連結保持手段は上記陰極基板又は上記陽極基板のいずれかの主面に沿う主面を有することを特徴とする表示装置。2. A display device according to claim 1, wherein said connection holding means has a main surface along one of the main surface of said cathode substrate or said anode substrate. 請求の範囲第5項において、上記複数の隔壁材の各々は上記連結保持手段の上記主面に接着されることにより連結保持手段に保持されていることを特徴とする表示装置。6. The display device according to claim 5, wherein each of the plurality of partition members is held by the connection holding means by being adhered to the main surface of the connection holding means. 請求の範囲第5項において、上記連結保持手段の上記主面には複数の開口が設けられ、上記複数の隔壁材の各々には突起が設けられ、上記複数の隔壁材の各々は上記突起を上記連結保持手段の複数の開口のいずれかに挿入されて該連結保持手段に保持されていることを特徴とする表示装置。In claim 5, a plurality of openings are provided on the main surface of the connection holding means, a projection is provided on each of the plurality of partition members, and each of the plurality of partition members is provided with the projection. A display device, wherein the display device is inserted into any one of the plurality of openings of the connection holding means and held by the connection holding means. 一方の主面に電界により電子を放出する手段を有する陰極基板と、上記陰極基板に対向し且つ離間して配置され且つ一方の主面に上記電子を吸収して発光する手段を有する陽極基板と、上記陰極基板と上記陽極基板との間の空間を真空に維持する気密手段と、上記陰極基板と上記陽極基板との間隙を維持する複数の隔壁材と、上記陰極基板又は上記陽極基板のいずれかの主面に沿う面において上記複数の隔壁材を連結し且つ保持する連結保持手段と、上記陰極基板からの電子放出を制御する制御手段とを備え、上記制御手段は上記複数の隔壁材に固定されて上記陰極基板と上記陽極基板との間に配置されていることを特徴とする表示装置。A cathode substrate having means for emitting electrons by an electric field on one main surface, and an anode substrate having a means for absorbing and emitting light by absorbing the electrons on one main surface, which is arranged to face and be spaced apart from the cathode substrate; Airtight means for maintaining the space between the cathode substrate and the anode substrate in a vacuum, a plurality of partition members for maintaining a gap between the cathode substrate and the anode substrate, and any one of the cathode substrate or the anode substrate A connection holding unit that connects and holds the plurality of partition members on a surface along the main surface thereof, and a control unit that controls electron emission from the cathode substrate, wherein the control unit controls the plurality of partition members. A display device fixed and disposed between the cathode substrate and the anode substrate. 一方の主面に電界により電子を放出する手段を有する陰極基板と、上記陰極基板に対向し且つ離間して配置され且つ一方の主面に上記電子を吸収して発光する手段を有する陽極基板と、上記陰極基板と上記陽極基板との間の空間を真空に維持する気密手段と、上記陰極基板と上記陽極基板との間隙を維持する複数の隔壁材と、上記陰極基板又は上記陽極基板のいずれかの主面に沿う面において上記複数の隔壁材を連結し且つ保持する連結保持手段とを備え、上記連結保持手段には上記陰極基板からの電子放出を制御する制御手段が設けられていることを特徴とする表示装置。A cathode substrate having means for emitting electrons by an electric field on one main surface, and an anode substrate having a means for absorbing and emitting light by absorbing the electrons on one main surface, which is arranged to face and be spaced apart from the cathode substrate; Airtight means for maintaining the space between the cathode substrate and the anode substrate in a vacuum, a plurality of partition members for maintaining a gap between the cathode substrate and the anode substrate, and any one of the cathode substrate or the anode substrate Connection holding means for connecting and holding the plurality of partition members on a surface along the main surface, wherein the connection holding means is provided with control means for controlling electron emission from the cathode substrate. A display device characterized by the above-mentioned. 第1主面を有する第1の基板及び該第1の主面に対向する第2の主面を有する第2の基板と、上記第1の基板と上記第2の基板とを連結し且つ上記第1の主面及び第2の主面との間に挟まれた空間を囲む支持部材と、上記空間に配置され且つ上記第1の主面から上記第2の主面に至る仮想的な線に沿って広がる面を有する複数の壁部材と、上記第1主面に形成された陰極と、上記第2主面に形成された蛍光体と該蛍光体を被うように形成された陽極とを備え、上記複数の壁部材の各々は上記第1の主面又は上記第2の主面に沿って広がる面を有する連結部材に結合されていることを特徴とする表示装置。A first substrate having a first main surface, a second substrate having a second main surface opposed to the first main surface, connecting the first substrate and the second substrate, and A support member surrounding a space sandwiched between the first main surface and the second main surface, and a virtual line disposed in the space and extending from the first main surface to the second main surface. A plurality of wall members having a surface extending along the first surface, a cathode formed on the first main surface, a phosphor formed on the second main surface, and an anode formed so as to cover the phosphor. And wherein each of the plurality of wall members is connected to a connecting member having a surface extending along the first main surface or the second main surface. 上記壁部材は、上記第1の主面から上記第2の主面に至る仮想的な線に沿って広がる面を主面とする板状に形成されていることを特徴とする請求の範囲第10項に記載の表示装置。The wall member is formed in a plate shape having a main surface extending along a virtual line extending from the first main surface to the second main surface. Item 11. The display device according to Item 10. 上記連結部材は、上記第1の主面又は上記第2の主面に沿って広がる面を主面とする板状に形成されていることを特徴とする請求の範囲第10項に記載の表示装置。The display according to claim 10, wherein the connecting member is formed in a plate shape having a main surface extending along the first main surface or the second main surface. apparatus. 上記第1の主面には、上記陰極からの電子放出を制御する電極が設けられ、該電子放出を制御する電極は該陰極の上部に設けられた絶縁部材の上面に配置されていることを特徴とする請求の範囲第10項に記載の表示装置。An electrode for controlling electron emission from the cathode is provided on the first main surface, and the electrode for controlling electron emission is arranged on an upper surface of an insulating member provided above the cathode. The display device according to claim 10, wherein: 上記連結部材の上記第1の主面又は上記第2の主面に沿って広がる面には、上記陰極に対向して開口が設けられていることを特徴とする請求の範囲第10項に記載の表示装置。11. The connection member according to claim 10, wherein an opening is provided on a surface extending along the first main surface or the second main surface of the connecting member so as to face the cathode. Display device. 上記連結部材の開口の周囲には上記陰極の電子放出を制御する電極が設けられたことを特徴とする請求の範囲第10項に記載の表示装置。11. The display device according to claim 10, wherein an electrode for controlling electron emission of the cathode is provided around an opening of the connecting member. 第1主面を有する第1の基板と第2主面を有し且つ該第2主面が該第1主面と対向するように該第1の基板と離間して配置された第2の基板と、上記第1の基板と上記第2の基板とを連結し且つ上記第1の主面と第2の主面との間隙を囲む支持部材と、上記第1主面と上記第2主面との間に配置され且つこれらの主面を隔てる上記間隙に沿う主面を有する複数の壁部材と、上記第1主面に形成された陰極と、上記第2主面に形成された蛍光体及び該蛍光体を被うように形成された陽極とを備え、上記複数の壁部材の各々は上記第1の主面又は上記第2の主面に沿う主面を有する連結部材に結合されていることを特徴とする表示装置。A first substrate having a first main surface and a second substrate having a second main surface and being spaced apart from the first substrate such that the second main surface faces the first main surface. A substrate, a support member connecting the first substrate and the second substrate, and surrounding a gap between the first main surface and the second main surface; a first main surface and the second main surface; A plurality of wall members disposed between the first and second surfaces and having a main surface along the gap separating the main surfaces; a cathode formed on the first main surface; and a fluorescent light formed on the second main surface. A body and an anode formed to cover the phosphor, wherein each of the plurality of wall members is connected to a connecting member having a main surface along the first main surface or the second main surface. A display device, comprising: 上記連結部材の主面には、上記第1の基板に設けられた陰極に対向する開口が設けられていることを特徴とする請求の範囲第16項に記載の表示装置。17. The display device according to claim 16, wherein an opening facing a cathode provided on the first substrate is provided on a main surface of the connecting member. 上記複数の壁部材は、上記連結部材の上記第1基板側の主面及び上記第2基板側の主面の各々に設けられていることを特徴とする請求の範囲第16項に記載の表示装置。17. The display according to claim 16, wherein the plurality of wall members are provided on each of the first substrate-side main surface and the second substrate-side main surface of the connection member. apparatus. 上記連結部材の第1基板側の主面に設けられた上記複数の壁部材のうちの一群と上記第2基板側の主面に設けられた該複数の壁部材のうちの他の群とは、夫々の主面が交差するように配置されたことを特徴とする請求の範囲第18項に記載の表示装置。One group of the plurality of wall members provided on the main surface of the connection member on the first substrate side and another group of the plurality of wall members provided on the main surface of the second substrate side are provided. 19. The display device according to claim 18, wherein the respective main surfaces are arranged so as to intersect. 上記連結部材の第1基板側の主面に設けられた上記複数の壁部材のうちの一群と上記第2基板側の主面に設けられた該複数の壁部材のうちの他の群とは、上記間隙に沿う夫々の高さが異なることを特徴とする請求の範囲第18項に記載の表示装置。One group of the plurality of wall members provided on the main surface of the connection member on the first substrate side and another group of the plurality of wall members provided on the main surface of the second substrate side are provided. 19. The display device according to claim 18, wherein respective heights along the gap are different.
JP2002527533A 2000-09-18 2000-09-18 Display device Pending JPWO2002023578A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/006349 WO2002023578A1 (en) 2000-09-18 2000-09-18 Display device

Publications (1)

Publication Number Publication Date
JPWO2002023578A1 true JPWO2002023578A1 (en) 2004-01-22

Family

ID=11736462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002527533A Pending JPWO2002023578A1 (en) 2000-09-18 2000-09-18 Display device

Country Status (2)

Country Link
JP (1) JPWO2002023578A1 (en)
WO (1) WO2002023578A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349008A (en) * 2003-05-20 2004-12-09 Toshiba Corp Image display device
EP1722392A1 (en) * 2004-02-03 2006-11-15 Kabushiki Kaisha Toshiba Image display device
JP2005285474A (en) * 2004-03-29 2005-10-13 Toshiba Corp Image display device and its manufacturing method
JP2006024515A (en) * 2004-07-09 2006-01-26 Toshiba Corp Picture display device
JP5074810B2 (en) * 2007-04-18 2012-11-14 トヨタ自動車株式会社 Field emission type light emitting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3450714B2 (en) * 1989-05-15 2003-09-29 キヤノン株式会社 Display device
NL9100122A (en) * 1991-01-25 1992-08-17 Philips Nv DISPLAY DEVICE.
JP3564913B2 (en) * 1997-01-29 2004-09-15 双葉電子工業株式会社 Support member for hermetic envelope and hermetic envelope
JP2000208072A (en) * 1999-01-11 2000-07-28 Canon Inc Image forming device

Also Published As

Publication number Publication date
WO2002023578A1 (en) 2002-03-21

Similar Documents

Publication Publication Date Title
US7449826B2 (en) Image display device with voltage applier
US7473154B2 (en) Method for manufacturing carbon nanotube field emission display
JP2003263951A (en) Field emission type electron source and driving method
US6998769B2 (en) Image displaying apparatus having a potential regulating electrode, an anode, and a spacing member, for suppressing undesired discharge
TW583707B (en) Flat-panel display and flat-panel display cathode manufacturing method
JPWO2002023578A1 (en) Display device
US7285901B2 (en) Display device having a connecting portion between cathode line and electron source
US7839071B2 (en) Vacuum container and method for manufacturing the same, and image display apparatus and method for manufacturing the same
WO2004090930A1 (en) Image disply unit and production method for spacer assembly used in image display unit
EP1347489A2 (en) High voltage type image display apparatus
JP4132502B2 (en) Flat display and manufacturing method thereof
JP3478774B2 (en) Image display device
JP3091945B2 (en) Image forming device
JP2002367542A (en) Field emission display and method of manufacturing the same
JP3118683B2 (en) Image forming device
JP2004111292A (en) Display device and its manufacturing method
JP2004227822A (en) Image display apparatus
JP2005093125A (en) Image display device and its manufacturing method
JP3825703B2 (en) Image display device
WO2006006470A1 (en) Image display device
JP2005190789A (en) Image display device
JP2003217479A (en) Electron beam device
KR20070024133A (en) Electron emission device
JP2005135827A (en) Light-emitting element base plate and image display device using the same
JP2002245939A (en) Manufacturing method of display device and display device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060420