WO2002023578A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2002023578A1
WO2002023578A1 PCT/JP2000/006349 JP0006349W WO0223578A1 WO 2002023578 A1 WO2002023578 A1 WO 2002023578A1 JP 0006349 W JP0006349 W JP 0006349W WO 0223578 A1 WO0223578 A1 WO 0223578A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
main surface
display device
cathode
partition wall
Prior art date
Application number
PCT/JP2000/006349
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Miyata
Kiyoshige Kinugawa
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP2002527533A priority Critical patent/JPWO2002023578A1/en
Priority to PCT/JP2000/006349 priority patent/WO2002023578A1/en
Publication of WO2002023578A1 publication Critical patent/WO2002023578A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • H01J29/028Mounting or supporting arrangements for flat panel cathode ray tubes, e.g. spacers particularly relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J31/00Cathode ray tubes; Electron beam tubes
    • H01J31/08Cathode ray tubes; Electron beam tubes having a screen on or from which an image or pattern is formed, picked up, converted, or stored
    • H01J31/10Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes
    • H01J31/12Image or pattern display tubes, i.e. having electrical input and optical output; Flying-spot tubes for scanning purposes with luminescent screen
    • H01J31/123Flat display tubes
    • H01J31/125Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection
    • H01J31/126Flat display tubes provided with control means permitting the electron beam to reach selected parts of the screen, e.g. digital selection using line sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8625Spacing members
    • H01J2329/863Spacing members characterised by the form or structure

Definitions

  • the present invention relates to a display device utilizing electron emission into a vacuum, and more particularly to a structure of a display device having excellent display characteristics and being easy to assemble, and a method of manufacturing the same.
  • a display device utilizing electron emission into a vacuum includes a spin-type electron emission structure proposed by A.
  • Spindt et al. (For example, refer to US Pat. No. 3,435,478, Japanese Patent Application Laid-Open No. 2000-213505), utilizing the electron emission phenomenon due to the quantum tunnel effect.
  • the type also referred to as a surface conduction electron source, see Japanese Patent Application Laid-Open No. 2000-213505), one that accelerates and emits electrons in a solid material, and one that has a diamond film.
  • a group that uses the electron emission phenomena of graphite membranes and carbon nanotubes (“vacuum”... Journal of Vacuum Society of Japan's original version, Vol. 42, No. 8. 1999), pages 722-726).
  • FIG. 57A is an exploded perspective view showing the display device
  • FIG. 57B is a sectional view of the assembled display device.
  • the field emission display is composed of a cathode substrate 1 including a substrate made of glass, alumina, etc., and glass or a material having a light transmittance equal to or higher than glass.
  • the anode substrate 2 including the base plate made of is assembled with the upper surface or the lower surface of the holding frame 30 (also called a side plate) on the periphery of each main surface.
  • Anode substrate 2 Since it is arranged to face the cathode substrate 1 provided with the electron source, it is also called a counter substrate.
  • the cathode substrate 1 has a glass substrate 6 on which an electron source (electron emitting portion) and an electric wiring for controlling the electron emission are formed.
  • an electron source electron emitting portion
  • an electric wiring for controlling the electron emission are separated by the illustrated insulating film 8.
  • the area of the glass substrate 6 (xy plane) is wider than the support frame 30, and its periphery is a terminal 50 (control electrode terminal) for supplying a current to one of the above wiring groups (called a control electrode or a gate electrode).
  • the other called the cathode
  • the cathode are provided with a terminal 70 (cathode terminal) for supplying current.
  • the glass substrate 6 is not limited to ceramics such as glass or alumina, but may be formed of a metal film such as stainless steel coated on the surface with an insulating film.
  • electrodes, phosphors and the like are formed on a substrate made of glass or a material having light transmittance equal to or higher than glass.
  • a support frame 30 made of glass or the like is inserted between the cathode substrate 1 and the anode substrate 2, and the space surrounded by the respective main surfaces of the cathode substrate 1 and the anode substrate 2 is: 10 ⁇ 5 - 1 0 - is evacuated to 7 Torr vacuum.
  • the support frame 30 is adhered to each of the cathode substrate 1 and the anode substrate 2 by means of a flat glass or the like. Since the support frame 30 is required to have a function of isolating this space from the atmosphere and keeping it in a vacuum, it is often called a sealed frame.
  • the dotted line shown on the upper surface of the glass substrate 6 indicates a position where the outer periphery of the support frame 30 comes into contact with the dotted line, and the insulating film 8 is formed so as to fit inside the space maintained in the vacuum.
  • the field emission display emits electrons from the cathode substrate 1 into the above-mentioned space kept in a vacuum, and accelerates the electrons by a potential difference between the electron emission portion and the electrode provided on the anode substrate 2, thereby increasing the anode.
  • the phosphor is illuminated by hitting an electrode provided on the substrate 2.
  • the cathode base A gap of 1 cm or more is provided between the opposing raw surfaces of the plate 1 and the anode substrate 2 to prevent dielectric breakdown between these substrates.
  • the rectangular coordinates in FIG. 57 (a) are the same as those in the perspective view, plan view, cross-sectional view, and equivalent circuit diagram, as well as the structure or structure shown in each figure. Relate circuit layout.
  • FIG. 58 is a view for explaining an example of a field emission display device having the above-mentioned spin-type electron source, where (a) shows an equivalent circuit thereof, and (b) shows an equivalent circuit near the electron source. (C) shows a cross-sectional view taken along the line CC in (b), respectively.
  • FIG. 58 (a) shows a configuration of a display device in which an electron emission portion is provided for each pixel arranged in m rows and n columns.
  • the boxes labeled G, B, and R in Fig. 58 (a) indicate the electron emission parts (electron sources) provided for each surface element.
  • each of the m electron-emitting portions arranged in the y-axis direction passes through a video signal driving circuit (horizontal scanning circuit) H through a terminal 70 and a cathode 7 extending in the y-axis direction. A predetermined voltage is applied.
  • a video signal driving circuit horizontal scanning circuit
  • the control electrode 5 extending in the X-axis direction (the direction intersecting the y-axis) is provided with a plurality of the cathodes 7 (column number: X , X 2,..., X n) are provided with openings for exposing the cathode 7.
  • Each of the control electrodes 5 (line numbers: Yl, Y2,..., Ym) arranged in the y-axis direction receives a scanning signal from a vertical scanning circuit V at a terminal 50. Are sequentially supplied in the y-axis direction.
  • Fig. 58 (b) shows the pixel structure (electron emission part and its surroundings) when a spin-type electron source is used for the field emission display device having the equivalent circuit of Fig. 58 (a). A plan view is shown, and a cross-sectional view along the line CC is shown in FIG. 58 (c).
  • the cathode 7 is composed of Ni (nickel), Cr (chrome), Au (gold), Mo (molybdenum), W (tungsten), and Pt (platinum) formed on the glass substrate 6. , T i (Chita down), a 1 (aluminum), C u (copper), P d (palladium) or the like of a metal or an alloy containing these, ITO (I n 2 03 - S n 0 2, Lee indium - tin oxide), IZO (I n 2 0 3 - S n 0 2, Lee indium one zinc oxide), R u 0 2 (metal oxides of ruthenium oxide) or the like, or impurities doped in a semiconductor Material.
  • the control electrode 5 is a thin film made of the same kind of conductive material as the cathode 7 formed on the upper surface of the insulating film (insulating material for control electrode) 8 grown to cover the cathode 7. At the portion where the control electrode 5 straddles the cathode 7, an opening is provided through the control electrode 5 and the insulating film 8. On the upper surface of the cathode 7 exposed by the opening, an electron emitting portion having a conical shape or a shape close to the shape called an emitter cone 100 is formed. Since the emitter cone 100 and the cathode 7 are electrically connected, the potential difference between the cathode 7 and the control electrode 5 is equal to the potential difference AV between the tip of the emitter cone 100 and the control electrode 5. Generate.
  • the emitter cone may be formed of the same material as the cathode 7, but if a material having a smaller work function is used, the electron emission efficiency is increased and the surface image is brightened. Easy to display.
  • the anode 10 may be formed of a conductive thin film having high light transmittance such as the above-mentioned IT0 or IZ0, or may be formed by vapor deposition of aluminum or silver.
  • the anode 10 is formed of such a metal thin film having a high reflectivity. Of the light generated by the phosphor 11, a component that propagates to the cathode 7 side can be reflected to the glass substrate 13 side. The displayed image also becomes brighter. Because of such an effect, the anode 10 formed of a metal thin film having high reflectivity is called a metal chuck.
  • this field emission display device has a light-emitting portion on the anode substrate 2 disposed on the user (observer) side, so that the phosphor 11 is moved from the cathode substrate 1 to the cathode substrate 1 side.
  • the light transmittance of the member located at the position is substantially irrelevant. Therefore, the glass substrate 6 can be replaced with an opaque ceramic or metal plate.
  • the above-mentioned cathode 7 is formed on the main surface on the anode substrate side.
  • the control electrode 5 is formed of a conductive plate member made of a metal or an alloy having an opening.
  • the control electrode insulating material 8 a plurality of insulator blocks are arranged so as to be spaced apart from each other so as to cross the plurality of cathodes 7 along the y-axis. Is filled with an insulating adhesive such as frit and glass, and the above-described conductive plate-like member is fixed on the block of the insulator by the insulating adhesive.
  • the function of the control electrode insulating material 8 is to be changed to the desired shape (for example, thin film or block shape, etc.).
  • Fig. 59 is a diagram explaining the outline of a field emission display device with a surface conduction electron source, and (a) is the figure.
  • Equivalent circuit (b) is a plan view near the electron source, (c) is a cross-sectional view taken along line C-C in (b), the same as Fig. 58 (a)-(c)
  • the electron emission source of the field emission display device shown in this figure is as follows.
  • a voltage is applied to each of G, B, and R from the cathode 7 on the Y j row and the control electrode 5 on the X i column corresponding to the address (X i, Y j) of the surface element where the electron source is located.
  • the driving mode for emitting electrons which is different from that in FIG. 58 (a), can be used because of the shape of the surface conduction type electron source.
  • the surface conduction electron source has an opening 9 'in a portion of the control electrode insulating material 8 covering the cathode 7 corresponding to the pixel.
  • the control electrode 5 and the cathode 7 provided on the control electrode insulating material 8 are connected through the opening 9 ′ with the conductive layer 57, and a part of the control electrode 5 is formed by a forming process (such as an energizing process). ) To make the resistance of this part (101) higher than the other parts of the conductive layer 57.
  • the high resistance portion 101 that divides the conductive layer 57 into the control electrode 5 side and the cathode 7 side becomes a surface conduction type electron source (electron emission portion). This electron source utilizes the tunnel effect that occurs when a predetermined voltage is applied between the control electrode 5 and the cathode 7 and the junction between the conductive layer 57 and the high-resistance portion 101-the conductive layer 57.
  • the conductive layer 57 is preferably formed of fine particles of a conductive material.
  • the conductive layer 57 is preferably formed of fine particles of a conductive material.
  • Irradiation of Focused Ion Beam to 7 can also be used.
  • a display device using a surface conduction electron source can operate with the equivalent circuit shown in Fig. 58 (a).
  • a pair of conductive layers having different voltages are provided for each of the cathodes 7 in the X1 to Xn columns, and the insulating material 8 covering the cathode 7 is provided at least at a position corresponding to each pixel.
  • the pair of conductive layers is electrically connected in a region not covered with the insulating material, and the above-described high-resistance portion is formed at the connection portion.
  • control electrode 5 is provided so as to sandwich or surround this high-resistance portion, and controls the passage and cutoff of electrons emitted from the high-resistance portion by its potential.
  • the control cathode 5 is set to a potential at which electrons emitted from the cathode 7 pass to the anode substrate side.
  • an image can be displayed by modulating the electron emission from the cathodes 7 in the X1 to Xn columns.
  • the functions of the cathode 7, the anode 10, and the control electrode 5 of the field emission display device described below in this specification may be different depending on the type of the electron emission unit provided therein. . Therefore, these elements include, in that order, a first electrode (a so-called emitter that emits electrons from the electron-emitting portion), a second electrode (a so-called collector that is irradiated with the emitted electrons), and It can also be called the third electrode (turns on / off the flow of electrons from the first electrode to the second electrode).
  • a first electrode a so-called emitter that emits electrons from the electron-emitting portion
  • a second electrode a so-called collector that is irradiated with the emitted electrons
  • the third electrode turns on / off the flow of electrons from the first electrode to the second electrode.
  • the phosphor 11 excited by the electrons emitted from these sources is It can be formed using the same fluorescent material as a cathode ray tube known as a tube.
  • a cathode ray tube known as a tube.
  • n S Ag respectively.
  • Each of the phosphor materials exemplified here is described as “phosphor crystal: activator” with a colon interposed therebetween.
  • the activator determines the concentration and type of the phosphor 11, the afterglow characteristics of the phosphor 11, and the like, depending on the firing (synthesis) conditions with the phosphor crystal.
  • a pigment is coated on the surface of the phosphor 11 so that the phosphor 11 exhibits a black color or a color close to this when not emitting light (reflected color). 1 reflects a color close to gray, which causes the display screen to shimmer.
  • the space surrounded by the respective main surfaces of the cathode substrate 1 and the anode substrate 2 and the support frame 30 is the glass substrate 6 shown in FIG.
  • the air is exhausted from the exhaust port 61 provided on the back surface of the, and the pressure is reduced until the pressure reaches the above value (degree of vacuum).
  • the cathode substrate 1 and the anode substrate 2 are separated from the space between them by the atmosphere.
  • the member called the partition wall material 3 is appropriately placed in the vacuum space of the display device. ing. This technique is discussed in, for example, JP-A-2000-213335.
  • FIG. 60 schematically illustrates an example of the structure of the above-described conventional field emission display device.
  • the periphery of the surface element (electron emission portion) is shown in an enlarged manner, and the above-described support frame (side wall) 30 is omitted.
  • the partition material 3 is an insulating material disposed between the cathode substrate 1 and the anode substrate 2. Although the insulation resistance is kept high enough, the surface may be slightly conductive to prevent electrons from colliding and becoming charged.
  • it is positioned as thin as possible and accurately positioned at an appropriate interval between the pixels so as not to hinder electrons traveling in a vacuum from the cathode substrate 1 to the anode substrate 2. Need to be placed.
  • a positive potential is applied to the anode substrate 2 (the above-described anode 10... Not shown) with respect to the cathode substrate 1 (the above-described cathode 0.7... Not shown).
  • a potential of several hundred volts or more, and sometimes several thousand volts or more is used.
  • a thickness of, for example, 100 m is selected so that the presence of the partition wall material 3 does not affect the display screen. Disclosure of the invention
  • a thickness in a range of 30 to 150 m for example, 100 // m
  • a height of 1 mm or more for example, It is necessary to accurately and efficiently arrange and incorporate the partition wall material 3 having a value in the range of 2 to 3 mm).
  • the number of the partition walls 3 It is necessary to arrange at least as many as possible to withstand the stress due to atmospheric pressure (eg, bending of the glass substrate 13). This number varies greatly depending on the strength of the cathode substrate 1, the anode substrate 2, and the partition wall material 3.
  • a large field emission display device having a diagonal dimension of 40 inches (class) is used. At least several hundreds are required, and depending on the design, tens of thousands are required.
  • the partition wall material 3 when electrons collide with the partition wall material 3, secondary electrons are generated from the surface or the surface is charged (charge-up). is there. Due to these phenomena, the traveling of electrons near the partition wall material 3 is hindered, and the uniformity of the display performance of the pixels in the display screen of the field emission display device may be impaired. To deal with this problem, it is important to appropriately control the electron traveling space and to arrange the partition members 3 as uniformly as possible. For this purpose, for example, by sufficiently increasing the number of partition members 3 arranged between the cathode substrate 1 and the anode substrate 2, the pressure difference between the space surrounded by these members and the atmospheric pressure can be reduced. The strength of the display device is ensured, and the uniformity of the display performance within the display surface is maintained. .
  • the bulkhead material 3 is bonded to the cathode substrate 1 and the anode substrate 2 at a time with an inorganic adhesive or the like.
  • a manufacturing method has also been adopted in which, after bonding 3, the other side is bonded to the other side.
  • the following problem is added in addition to the above-mentioned problem that the collective arrangement is difficult.
  • the partition member 3 is fixed with an inorganic adhesive or the like so that its position does not change at least during the manufacturing process.
  • Heat treatment in which the effect on the electron-emitting portion provided on the cathode substrate 1 cannot be ignored in this fixing process (Example For example, a heat treatment of about -500 ° C.) is applied, so that there is a high probability that the electron emission performance of the electron emission portion provided in advance on the cathode substrate 1 is deteriorated. In addition, the deterioration of the electron emission performance becomes remarkable in the vicinity of the partition wall material 3, and as a result, the in-plane uniformity is deteriorated in the display characteristics of the field emission display device.
  • Some materials have a lower temperature as the processing temperature of the inorganic adhesive, but when bonding the cathode substrate 1 and the partition material 3 first, the adhesive softens and deforms at the temperature used in the subsequent assembly process. Cannot be used. For this reason, the processing temperature of the adhesive used in the first assembly must be set so as to process at the highest temperature. It is practically difficult to provide an electron-emitting portion on the cathode substrate 1 to which the partition wall material 3 is bonded, because of the structure of the electron-emitting portion described above.
  • the anode substrate 2 is subjected to a non-negligible heat treatment, for example, a heat treatment of about 500 ° C., so that the anode substrate 2 is formed on the anode substrate 2 in advance.
  • a non-negligible heat treatment for example, a heat treatment of about 500 ° C.
  • the deterioration of the luminous efficiency becomes remarkable in the vicinity of the partition wall member 3, and as a result, the in-plane uniformity of the display characteristics of the field emission display device may be impaired. It is also difficult to provide the phosphor 11 on the anode base plate 2 to which the partition wall material 3 is bonded, due to the structure of the anode substrate 2.
  • the present invention solves the above-mentioned problems, and provides a structure capable of efficiently and accurately arranging the partition member 3 without impairing the display performance, and a method of manufacturing the same. It is intended for.
  • the present invention provides the following display device.
  • One of the display devices according to the present invention includes a cathode substrate provided with an electron emitting portion and an anode provided with a light emitting portion (for example, a fluorescent portion) that emits light by irradiation of electrons emitted from the electron emitting portion.
  • a plurality of partition members that separate the board from the substrate with a predetermined gap (distance) are bundled (connected to individual partition members and the positional relationship between them is maintained). It is characterized by:
  • this display device is also referred to as a first display device according to the present invention.
  • Another one of the display devices according to the present invention is provided with a cathode substrate provided with an electron-emitting portion and a light-emitting portion (for example, a fluorescent portion) which emits light by irradiation of electrons emitted from the electron-emitting portion.
  • a plurality of partition members for separating the anode substrate with a predetermined gap (distance) with a predetermined gap (distance), and electrodes (control electrodes) for controlling the flow of electrons from the electron emission section to the anode substrate. is connected to the partition wall material and the electrode to maintain the positional relationship between them.) It is characterized in that it has a “partition wall material / control electrode connection holding plate”.
  • this display device is referred to as a second display device according to the present invention.
  • These display devices are, for example, field emission display devices in which two substrates (plate-like members) constituting the display device are separated from each other more widely than a liquid crystal display device or a plasma display panel. Applicable, especially when maintaining pressure between two substrates ; below atmospheric pressure. In addition, many advantages are provided for a field emission display device that performs surface image display by causing charged particles to travel between two substrates.
  • FIG. 1 is a schematic diagram (perspective view of a display device disassembled into main components) for briefly explaining the structural features of a first display device according to the present invention.
  • FIG. 3 is a schematic view (perspective view of a display device disassembled into main components) for briefly explaining the structural features of a second display device according to the present invention.
  • FIG. 1 is a perspective view illustrating an embodiment. (An exploded perspective view showing the display device disassembled into main components, and is abbreviated as “perspective view” unless otherwise noted.)
  • FIG. 4 is a CD cross-sectional view of the cathode substrate 1 in FIG.
  • FIG. 5 is an example of an A-B cross section of the cathode substrate 1 in FIG.
  • FIG. 6 is a view showing a second embodiment having another AB section of the cathode substrate 1 in FIG.
  • FIG. 7 is a view showing a third embodiment having another AB cross section of the cathode substrate 1 in FIG.
  • FIG. 8 is a plan view of the partition wall member connection holding plate 4 shown in FIG.
  • FIG. 9 is an enlarged view of the partition wall material insertion hole 21 in the plan view of the partition wall member connection holding plate 4 shown in FIG.
  • FIG. 10 is a view showing a fourth embodiment having another AB cross section of the cathode substrate 1 in FIG.
  • FIG. 11 is a diagram showing a fifth embodiment having another section A-B of the cathode substrate 1 in FIG.
  • FIG. 12 is a diagram showing a sixth embodiment having another AB cross section of the cathode substrate 1 in FIG.
  • FIG. 13 is a perspective view for explaining a seventh embodiment of the display device according to the present invention.
  • FIG. 14 is a CD sectional view of the cathode substrate 1 in FIG.
  • FIG. 15 is a perspective view for explaining an eighth embodiment of the present invention.
  • FIG. 16 is a perspective view for explaining a ninth embodiment of the display device according to the present invention.
  • FIG. 17 is a perspective view for explaining a tenth embodiment of the display device according to the present invention.
  • FIG. 18 is a perspective view for explaining a first embodiment of the display device according to the present invention.
  • FIG. 19 is a CD sectional view of the cathode substrate 1 in FIG.
  • FIG. 20 is a perspective view for explaining a 12th embodiment of the display device according to the present invention.
  • FIG. 21 is a cross-sectional view taken along a line AB of the cathode substrate 1 in FIG.
  • FIG. 22 is a diagram showing a thirteenth embodiment having another AB cross section of the cathode substrate 1 in FIG.
  • FIG. 23 is a view showing a 14th embodiment having another AB cross section of the cathode substrate 1 in FIG.
  • FIG. 24 is a perspective view for explaining a fifteenth embodiment of the display device according to the present invention.
  • FIG. 25 is a perspective view for explaining a sixteenth embodiment of the display device according to the present invention.
  • FIG. 26 is a perspective view for explaining a seventeenth embodiment of the display device according to the present invention. '
  • FIG. 27 is a perspective view for explaining the eighteenth embodiment of the display device according to the present invention.
  • FIG. 28 is a perspective view for explaining a nineteenth embodiment of the display device according to the present invention.
  • FIG. 29 is a perspective view for explaining a 20th embodiment of the display device according to the present invention.
  • FIG. 30 is a perspective view for explaining a twenty-first embodiment of the display device according to the present invention.
  • FIG. 31 is a perspective view for explaining a second embodiment of the display device according to the present invention.
  • FIG. 32 is a perspective view for explaining a 23rd embodiment of the display device according to the present invention.
  • FIG. 33 is a perspective view illustrating a twenty-fourth embodiment of the display device according to the present invention.
  • FIG. 34 is a perspective view for explaining a twenty-fifth embodiment of the display device according to the present invention.
  • FIG. 35 is a CD sectional view of the cathode substrate 1 in FIG.
  • FIG. 36 is a perspective view for explaining a 26th embodiment of the display device according to the present invention.
  • FIG. 37 is a perspective view for explaining a twenty-seventh embodiment of the display device according to the present invention.
  • FIG. 38 is a perspective view for explaining a twenty-eighth embodiment of the display device according to the present invention.
  • FIG. 39 is a perspective view for explaining a ninth embodiment of the display device according to the present invention.
  • FIG. 40 is a perspective view for explaining a 30th embodiment of the display device according to the present invention.
  • FIG. 41 is a perspective view illustrating a thirty-first embodiment of the display device according to the present invention.
  • FIG. 42 is a perspective view showing an example of a combination structure of the partition wall members 3 in FIG.
  • FIG. 43 is a perspective view for explaining a 32nd embodiment of the display device according to the present invention.
  • FIG. 44 is a perspective view for explaining a third embodiment of the display device according to the present invention.
  • FIG. 45 is a perspective view for explaining a 34th embodiment of the display device according to the present invention.
  • FIG. 46 is a perspective view for explaining a thirty-fifth embodiment of the display device according to the present invention.
  • FIG. 47 is a perspective view illustrating a 36th embodiment of the display device according to the present invention.
  • FIG. 48 is a perspective view for explaining a 37th embodiment of the display device according to the present invention.
  • FIG. 49 is a perspective view for explaining a 38th embodiment of the display device according to the present invention.
  • FIG. 50 is a perspective view for explaining a thirty-ninth embodiment of the display device according to the present invention.
  • FIG. 51 is a perspective view for explaining a 40th embodiment of the display device according to the present invention.
  • FIG. 52 is a perspective view for explaining a 41st embodiment of the display device according to the present invention.
  • FIG. 53 is a perspective view for explaining a 42nd embodiment of the display device according to the present invention.
  • '-• FIG. 54 is a perspective view for explaining a fourth embodiment of the display device according to the present invention.
  • FIG. 55 is a perspective view for explaining a fourth embodiment of the display device according to the present invention.
  • FIG. 56 is a diagram showing an example of an electron-emitting portion provided on a cathode substrate of a display device according to the present invention, wherein (a) is a plan view thereof, and (b) is a C—C of (a). It is sectional drawing drawn along the line.
  • FIG. 57 is an explanatory view showing an example of the electron emission type display device.
  • (A) is a perspective view showing a state in which the display device is disassembled, and (b) is a view before disassembling the display device shown in (a). The cross-sectional views are shown along the X-z plane in each state.
  • FIG. 58 is a diagram illustrating a field emission display device using a Spindt-type electron source.
  • (A) is an equivalent circuit diagram
  • (b) is a plan view of the electron emission portion,
  • FIG. 59 is a diagram for explaining a field emission display device using a surface conduction electron source.
  • A) is an equivalent circuit diagram
  • (b) is a plan view of the electron emission portion
  • (c) is a cross-sectional view when the electron emission portion of (b) is cut along the line CC.
  • FIG. 60 is a perspective view schematically showing a periphery of a pixel (electron emitting portion) of a conventional field emission display device.
  • FIG. 1 is an explanatory diagram for conceptually explaining a first display device according to the present invention, and schematically shows an arrangement near a pixel (electron emission portion) of the display device.
  • FIG. 1 omits the following parts which are not directly related to the first display device according to the present invention in order to emphasize the structural characteristics thereof.
  • a mechanism for example, an exhaust port provided in the housing for vacuum-sealing the inside of the field emission display device (the inside of the housing where electrons travel).
  • a getter material for maintaining a high vacuum inside the field emission display is a getter material for maintaining a high vacuum inside the field emission display.
  • the field emission display device having the structure shown in FIG. 1 has a space (housing) surrounded by a cathode substrate 1, an anode substrate 2, and a support frame (side wall) not shown. It has airtightness and strength to keep the space in a vacuum.
  • the cathode substrate 1 shown as a glass substrate 6
  • the anode substrate 2 are caused by the pressure difference between the above-mentioned space and the atmospheric pressure applied to each. It is strong enough not to be damaged by stress (bending) in the z-axis direction.
  • a bulkhead material aggregate 17 composed of a plurality of bulkhead materials 3 and a bulkhead material connecting / holding plate 4 in which these are mechanically connected is arranged.
  • the partition wall material 3 has a surface along the traveling direction of the electrons, and the lower side of this surface is brought into contact with the cathode substrate 1 and the upper side of this surface is brought into contact with the gap electrode substrate 2, whereby
  • the shape and arrangement of the partition wall member 3 and the partition wall connection holding plate 4 may have various forms. Representative embodiments of these combinations will be described in the following embodiments, but only the embodiments described here do not realize the features of the present invention.
  • FIG. 2 is an explanatory diagram for conceptually explaining a second display device according to the present invention, and the arrangement of the display device in the vicinity of a pixel (electron emission portion) is simply shown as in FIG.
  • the field emission display having the structure shown in FIG. 2 has a space (housing) surrounded by a cathode substrate 1, an anode substrate 2, and a support frame (side wall) (not shown). It has airtightness and strength to keep the space in a vacuum.
  • the cathode substrate 1 has a means for emitting electrons into the space (vacuum), and has airtightness and strength capable of keeping this space vacuum.
  • the anode substrate 2 has a phosphor 11 applied with a positive (positive) potential with respect to the cathode substrate 1 and emitting light upon receiving electrons flying from the cathode substrate 2.
  • the anode substrate 2 has airtightness and strength capable of maintaining the above-mentioned space in a vacuum.
  • a plurality of partition members 3 Between the cathode substrate 1 and the anode substrate 2, there are a plurality of partition members 3, a partition wall connecting and holding plate 4 in which these are mechanically connected, and a partition member composed of control electrodes 5 and a control electrode assembly 1. 8 are located.
  • the partition wall material 3 has a surface along the traveling direction of electrons, and the control electrode 5 fixed to the lower side of this surface is brought into contact with the cathode substrate 1 and the upper side of this surface is brought into contact with the anode substrate 2. A desired gap is provided between the cathode substrate 1 and the anode substrate 2.
  • connection form between the partition wall material 3 and the partition wall connection holding plate 4 There are various examples of the connection form between the partition wall material 3 and the partition wall connection holding plate 4. There are many forms in the shape and arrangement of the partition wall material 3, the partition wall connection holding plate 4, and the control electrode 5. Representative embodiments of these combinations will be described in the following embodiments, but only the embodiments described here do not realize the features of the present invention.
  • the partition member 3 provided in each of the above-described first and second display devices according to the present invention is provided in the above-described space (for example, in the housing) maintained in a vacuum (for example, a pressure of 10 to 5 to 10 to 7 Torr). ) Does not need to be completely partitioned along the X-axis direction or the Y-axis direction shown in Fig. 57, and the vacuum exhaust conductor in the housing is interposed between this and the cathode substrate 1 or anode substrate 2. Even if the shape is such that an opening suitable for increasing the impedance is formed, it does not hinder the implementation of the present invention.
  • the partition wall material 3 does not hinder the traveling of electrons in the above-mentioned housing, its traveling direction (extending direction of a virtual line drawn from the anode substrate 1 raw surface to the anode substrate 2 main surface, FIG. It is desirable to use a plate-shaped member having a surface (for example, the y-z plane or the X-z plane in FIG. 2) extending along the z-axis direction in FIG.
  • the surface along the traveling direction of the electrons may show an inclination with respect to the traveling direction of the electrons within a range that does not hinder the traveling of the electrons.
  • along the traveling direction of electrons of the partition wall material 3 By making the area of the surface (the y-z surface in the example of Fig.
  • the display screen (the second The area ratio of the electron traveling area (in other words, the electron irradiation area on the anode substrate 2) on the X-y plane in the figure can be increased.
  • the surface (wider than the other surface) of the partition wall material 3 formed in this way along the traveling direction of electrons is also referred to as “principal surface of the partition wall material”. Increasing the area ratio of the electron traveling region on the display screen is desirable for increasing the number of surface elements of the display device, and has the advantage of increasing the brightness of each pixel.
  • the partition wall member 3 may be provided with an opening as long as its strength is not impaired.
  • the member called the partition wall material 3 is specified by this name in the specification of the present application based on its visual characteristics. However, depending on the embodiment of the display device, a wall member, a plate-like member, a plate (plate) is used. ).
  • the partition connection holding plate 4 provided in each of the first and second display devices according to the present invention described above does not fix the plurality of partition members 3 to the cathode substrate 1 or the anode substrate 2. In order to arrange between these substrates, it is formed so as to be mechanically fixed to each partition material 3.
  • the mechanical fixing of the partition wall connection holding plate 4 and the partition wall member 3 is performed, for example, by providing an opening in the partition wall connection holding plate 4 and fitting the protrusion provided on the partition wall member 3 into the opening.
  • the deflection of the cathode substrate 1 or the anode substrate 2 due to the atmospheric pressure generated when exhausting the space where electrons travel in the display device is absorbed by the partition material 3, but the partition material 3 is not fixed to these substrates.
  • the position of each of the partition wall members 3 may be changed in order to reduce the stress applied from the substrate.
  • Such a variation is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-213335 in which two types of partition members 3 whose respective surfaces along the traveling direction of electrons cross each other are combined. It occurs even in one example.
  • the partition connection holding plate 4 provided in the display device according to the present invention has a surface (for example, as shown in FIG. 2) that extends so as to intersect with the electron traveling direction (the z-axis direction in FIG. 2) in the housing. (The X_y plane) is joined to each of the plurality of partition members 3.
  • the above-described opening is provided on a surface of the partition connection holding plate 4 that intersects with the electron traveling direction, and the above-described projection provided on each of the partition wall members 3 and protruding along the traveling direction of the electron is fitted into the opening. Confuse.
  • a surface of the partition connection holding plate 4 that intersects with the electron traveling direction has a plurality of openings corresponding to each of the electron emission portions provided on the cathode substrate 2 (separate from the opening in which the above-described protrusion is fitted). ) Is established.
  • the opening provided in the partition wall connecting support plate 4 acts as a so-called electron lens (or the like) that shapes the electron trajectory, rather than restricting the electrons reaching the anode substrate 2. Good. Therefore, by providing the openings corresponding to the electron emitting portions in the partition wall connecting support plate 4 in the same shape, the electron traveling conditions for each electron emitting portion (in other words, for each surface element) are uniform.
  • the partition wall connecting and holding plate 4 having a surface intersecting with the electron traveling direction (the z-axis direction in FIG. 2) in such a housing is formed in a plate shape.
  • the partition connection holding plate 4 formed as a plate-like member has an area of a plane (X-y plane in the example of FIG. 2) intersecting the traveling direction of the electrons.
  • the area is larger (wider) than the area of the other surface (X-z plane or y-z plane in the example in Fig. 2) that touches each side.
  • the surface (wider than the other surfaces) of the partition connection holding plate 4 formed in this way, which intersects the traveling direction of electrons, is also referred to as a “raw surface of the partition connection holding plate”.
  • the partition connection holding plate 4 formed in a plate shape does not impair the performance of connecting and holding the plurality of partition members 3 due to its raw surface, and the electron traveling area (the z-axis in FIG. 2) in the housing. Direction) can be spread sufficiently.
  • the trajectories of the electrons largely depend on the lens effect provided by the opening provided on the main surface of the partition connection holding plate 4 described above. For this reason, as long as the shape of the opening provided in the main surface of the partition connection holding plate 4 is designed to be uniform in correspondence with each of the electron emission portions of the cathode substrate 2, any of the electron emission portions (pixels) can be used. Electrons can travel in a similar trajectory from the cathode substrate 1 to the anode substrate 2, and as a result, variations in luminance between pixels are eliminated.
  • the base material of the partition wall connection holding plate 4 is formed of an insulating material, and a film of a conductive material is formed so as to surround the opening of the main surface.
  • a control electrode can be formed.
  • the member called the partition connection holding plate 4 is specified in this specification by this name on the basis of its visual characteristics, but according to the embodiment, a connection member, a connection plate, and a It can also be called Joiner.
  • the functions of the cathode, anode (metal back), and control electrode in the above and below descriptions depend on the form of the electron emission section (electron source) provided in the display device and the driving method thereof, as already described. It can change more. Therefore, the cathode, the anode, and the control electrode are, in this order, the first electrode (for emitting electrons from the electron emitting portion), the second electrode (for receiving the emitted electrons), and the third electrode (from the first electrode). Adjusting the flow of electrons to the second electrode).
  • FIG. 3 to FIG. 5 are diagrams illustrating a first embodiment of the present invention.
  • a cathode substrate 1 is composed of a cathode glass substrate 6, a cathode 7, a control electrode insulating material (hereinafter, insulating material) 8 and a control electrode 5.
  • the anode substrate 2 includes an anode glass substrate 13, a phosphor 11, a black matrix 12, and a metal back 10.
  • FIG. 4 shows a cross section taken along line CD of FIG.
  • the cathode 7 and the control electrode 5 are arranged so as to cross each other, and a material having conductivity is selected for each.
  • An insulating material 8 is provided for the purpose of insulating the two types of electrodes.
  • the cathode 7 has a function of emitting electrons into a vacuum space when a positive potential is applied to the control electrode 5, and is a diamond using carbon atoms; a film, a graphite film, or a carbon nanotube.
  • CNT Carbon Nano Tube
  • a so-called Spindt structure that emits electrons from the conical tip and a material that uses the quantum tunnel effect are used.
  • the control electrode 5 is provided with a control electrode hole 9 as shown in FIG. In this embodiment, the control electrode hole 9 is formed in a circular shape. As a means to install the control electrode 5.
  • the metal plate is machined, laser-processed, or photo-etched (a pattern is drawn on the workpiece by photolithography, and this is used as a mask.
  • the control electrode holes 9 are formed and arranged by etching the workpiece.
  • phosphors 11 that emit red (R), green (G), and blue (B) due to the incidence of electrons are spatially painted on the anode glass substrate 13.
  • a black matrix 12 is arranged between the three color phosphors 11 to prevent color mixing.
  • these phosphors 11 and On the matrix 12 there is conductivity, and electrons that travel from the cathode substrate 1 are transmitted and collide with the phosphor 11, and the emitted light is used as the anode glass.
  • a metal back (anode) 10 having a function of reflecting light to the substrate 13 side is formed on the front surface.
  • connection plate partition material connection holding plate
  • FIG. 5 shows a structure in which the partition wall material 3 partially penetrates the partition wall connection holding plate (connecting plate) 4 and is fixed to the cathode 7 side with an adhesive 15.
  • the connection plate 4 has an electron beam passage hole (opening) 14, and most of the electrons reach the anode substrate 2 through this opening.
  • the partition wall material 3 is provided to separate the cathode substrate 1 ′ and the anode substrate 2 from each other, its electrical characteristics are an insulator. However, if necessary, the surface may be appropriately made conductive to prevent the surface from being charged by electrons. The appropriate conductivity may be given only to the surface of the partition wall material 3 instead of the entire volume. Ceramics, inorganic glass, crystallized glass, and the like are used as the material of the partition wall material 3. Pre-sintered / solidified or semi-sintered / solidified ceramics, inorganic glass, crystallized glass partition material 3 is fixed to connecting plate 4 by adhesive 15. The connecting plate 4 can use an insulator, a semiconductor, and a metal material.
  • the electron In the case where the electron is attached and the whole or local charge is caused and the electric field distribution of the surface element becomes unstable, it is connected to an electrical device that has appropriate conductivity and controls the potential. It is desirable that In this first embodiment, the potential is maintained at the potential of the anode substrate 2 in FIG. 3, specifically, the potential of the metal back 10 as shown in FIG. It is easiest to set the same as the anode potential, but a potential different from the anode potential may be selected in order to maintain the electron focusing state more appropriately.
  • the connecting plate 4 is preferably made of an insulator having a conductive film formed on the surface, or a member made of a metal material. In any case, it is desirable that the linear thermal expansion coefficients of the cathode glass substrate 6 and the anode glass substrate 13 substantially coincide with each other.
  • an electron beam: passage hole 14 and a partition wall material insertion hole 21 ′ are formed in the plate. These holes can be formed by existing processing methods such as laser processing, mechanical processing, or photo-etching.
  • the mica plate has excellent heat resistance, insulation resistance, elasticity, and can be formed in a vacuum. This is one of the materials suitable for manufacturing the connecting plate 4 because the generation of gas is small. In order to impart electrical conductivity to the insulating member, for example, sogel metal
  • the connecting plate 4 When one of the main surfaces of the connecting plate 4 is made conductive, it is preferable to provide a metal layer on the side of the cathode substrate 1 where electrons easily collide.
  • a conductive material suitable for manufacturing the connecting plate 4 for example, iron (Fe), iron / Nigel alloy (FeNi), iron / Nigel / chrome alloy (FeNiCr), or iron / nickel / cobalt Alloy
  • FIG. 6 shows a second embodiment in which the bulkhead assembly 17 shown in FIG. 3 is fixed to the bulkhead material connecting and holding plate 4 on the anode substrate side with an adhesive agent 15, and FIG. This is shown as a C-D section in Fig. 3. Supply adhesive 15 to the anode substrate side Thus, this can be prevented from being directly exposed to the flow of electrons.
  • FIG. 8 is a plan view showing a main surface of an example of the connecting plate 4 used in the present embodiment, and a partition material insertion hole (hereinafter referred to as an opening) for inserting the partition material 3 into the main surface. 2 1 is provided. This opening 21 is shown in an enlarged manner in each of FIGS. FIG.
  • FIG. 9 (a) shows an example in which the opening 21 has a bent shape rather than a rectangle within the length la of the partition wall insertion hole 21.
  • 'ta is not zero (0).
  • FIG. 9 ('b) shows an example in which a part lb (a part of length lb) of the opening 21 is bent. This example is also characterized in that tb is not zero.
  • An example of an elastic material is mica plate.
  • the present embodiment has an advantage that the partition wall assembly 17 can be manufactured only by mechanical processing and assembly without using an adhesive. Further, both the connecting plate 4 and the partition wall material 3 may be formed of mica plates.
  • FIG. 10 shows a fourth embodiment in which the partition wall assembly 17 of FIG. 3 is assembled in another connection mode.
  • the partition wall material 3 is inserted into the partition wall connection holding plate 4 and fixed by mechanical frictional force, but the end thereof substantially coincides with one surface of the partition wall connection holding plate 4.
  • the partition wall insertion hole 21 may be formed into the shape shown in FIGS. In this structure, since there is no unevenness on one main surface of the partition wall connecting support plate 4, the partition wall member 3 is supported on a flat work table. Can be inserted into the partition material insertion hole 21.
  • FIG. 11 shows a fifth embodiment in which the partition wall assembly 17 of FIG. 3 is assembled by another bonding method.
  • the partition material 3 is inserted into the partition material insertion hole (opening) 21 provided in the partition material holding plate 4 and substantially matches the rear surface of the partition material holding plate 4 (the main surface on the anode substrate 2 side).
  • the insertion end (upper part) of 3 is fixed to the partition wall holding plate 4 with an adhesive 15.
  • the application area of the adhesive 15 is substantially flat, so that assembling workability and application accuracy are improved.
  • Fig. 12 shows the partition wall aggregate 17 of Fig. 3 provided with ceramics before sintering, and the partition wall material 3 consisting of sintered ceramics is called green sheets.
  • connection plate 4 connection holding plate 4
  • the ceramics are sintered at a predetermined temperature to assemble them.
  • a metal, ceramics, powder, glass, or the like that can withstand the above sintering temperature is used.
  • the ceramics before sintering are connected.
  • On the main surface of the plate 4 as a method of arranging the ceramics material by the 'screen printing' method on the raw surface of the connection plate 4.
  • FIG. 13 shows a display device of a seventh embodiment having a cathode substrate structure different from that of the above-described embodiment.
  • FIG. 14 shows a C-D cross section of FIG.
  • the control electrode 5 has a control electrode hole 9, but does not cover the corresponding opening 8 9 of the insulating material 8. In other words, the contour of the control electrode hole 9 does not enter the opening 8 9 of the insulating material 8.
  • a control electrode hole 9 is formed on a metal plate by machining, laser processing, or a photo-etching method. Electrode 5 is prepared.
  • control electrode 5 can be manufactured by applying a conductive paste-like material on the insulating material 8 and forming a pattern directly on the paste-like material by a screen printing method.
  • FIG. 15 shows an eighth embodiment having a partition structure different from that of the above-described embodiment, which is characterized in that the partition material 3 is divided in the longitudinal direction.
  • the partition wall member 3 does not need to be continuous over the entire field emission display device, and is divided so as to reduce the difference in thermal expansion coefficient between the partition wall member 3 and the partition wall member connection holding plate 4. Since the resulting stress can be alleviated, the selection range of the material used for the partition wall material 3 is expanded. '
  • FIG. 16 shows a ninth embodiment in which the partition wall material 3 is arranged so as to intersect (orthogonally) the direction in which the control electrode 5 extends. With such an arrangement, the control electrode 5 is pressed by the partition wall aggregate 17 to enhance the structural stability of the display device.
  • FIG. 17 shows a tenth embodiment in which the partition wall member 3 of the ninth embodiment is divided in the longitudinal direction and is divided in the longitudinal direction.
  • the stress generated between the partition wall member 3 and the partition wall member holding plate 4 due to the difference in thermal expansion coefficient therebetween can be reduced, so that the selection range of the material used for the partition wall member 3 is expanded.
  • FIG. 18 shows an eleventh embodiment in which the control electrode 5 of the ninth embodiment is formed in a rod shape.
  • FIG. 19 shows a C-D section of FIG.
  • the control electrode 5 of the present embodiment has a pair of a first control electrode 19 and a second control electrode 20 to emit electrons from each of the cathodes 7. Control.
  • the first control electrode 19 and the second control electrode 20 are set to the same potential, In order to increase the mechanical strength of the first control electrode 19 and the second control electrode 20 at positions other than the opening 89 of the insulating film 8 (where the electron emission portion is disposed), May be connected.
  • the number of rod-shaped electrodes constituting the control electrode 5 may be increased to three or more according to the area of the cathode 7.
  • control electrode 5 shown in FIG. 19 has a rectangular cross section, this cross section may be circular or elliptical.
  • the advantage of the structure of the present embodiment is that not only the above-mentioned rod-shaped control electrode is machined, laser-processed, or photo-etched, but also a plurality of wires are connected to each other by using a component connected at each end. Can also be formed.
  • the control electrode 5 is pressed from above by the partition wall 3, the structural stability of the field emission display is increased.
  • FIG. 20 shows a 12th embodiment using a partition assembly having a shape different from that of the above-described embodiment
  • FIG. 21 shows a cross section taken along a line AB in FIG.
  • the partition wall member 3 is not fitted to the partition wall insertion hole (opening) 21 of the connecting plate 4 but is fixed to the main surface of the cathode substrate 1 side with an adhesive 15.
  • one main surface (the upper surface in FIG. 21) of the connecting plate 4 is kept flat, so that the work of connecting the partition wall material 3 thereto can be performed on a flat work table. Since the opening 21 is not provided, the connection plate 4 can be easily processed.
  • FIG. 22 shows a partition wall aggregate 17 similar to that of the first embodiment applied between the main surface of the connecting member 4 and the end surface of the partition wall member 3 mainly with the adhesive '15.
  • Example 13 is shown below.
  • the structure of this embodiment has the same advantages as the first and second embodiments because one main surface (the upper surface shown) of the connecting member 4 is kept flat and the formation of the opening 21 is unnecessary.
  • the adhesive 15 is applied to the flat surface, so that the efficiency of the assembling work is increased.
  • FIG. 23 shows that the partition wall material 3 is formed of sintered ceramics, and these are greased.
  • the ceramics before sintering is placed on the main surface of the partition wall connecting and holding plate (connecting plate) 4 coated with the ceramic before sintering called the sheet etc. at a predetermined temperature.
  • the 14th embodiment of sintering and fixing the partition wall material 3 to the main surface of the connecting plate 4 to assemble the partition wall material assembly will be described.
  • As the material of the connecting plate 4 any one of a metal, a ceramic, and a glass resistant to the sintering temperature is selected.
  • the screen printing method is repeated and green sheets are filled.
  • FIG. 24 shows a fifteenth embodiment in which the partition wall assembly 17 has a different structure from the first and the second embodiments.
  • the partition wall material 3 is not disposed for each of the electron beam passing holes 14, but is thinned out for each of the plurality (three in the illustrated example) of the electron beam passing holes 14. Placed.
  • the structure of the present embodiment is possible as long as the partition wall material 3 has sufficient strength so as not to be deformed or broken by the atmospheric pressure applied through the cathode substrate 1 or the anode substrate 2.
  • the structure of this embodiment also has the advantages of reducing the materials used and simplifying the assembly process.
  • FIG. 25 shows a 16th embodiment in which the partition wall material 3 is arranged so as to intersect the direction in which the control electrode 5 extends. This embodiment has the same advantages as the ninth embodiment because the control electrode 5 is pressed by the aggregate 17 of the partition walls.
  • Figure 26 shows two types of raw surfaces (for example, X — Combining the z-plane and the y-z-plane), the cross section (opposed to the main surface of the cathode substrate 1 or the anode substrate 2, for example, the X-y plane) shows a cross shape (spreads in two dimensions)
  • the 17th embodiment configured as described above is shown.
  • the strength of the partition wall member 3 against the force applied from the normal direction of the main surface of the cathode substrate 1 or the anode substrate 2 is increased, and the partition wall member 3 falls down on the main surface of the partition wall connection holding plate 4. Since it is difficult, the efficiency of the assembling work of the partition wall assembly 17 is also increased.
  • FIG. 27 shows the 18th embodiment in which the insulating material 8 is formed without covering the entire surface of the cathode 7.
  • the insulating material 8 is formed by direct patterning by thick film printing. A known method combining photolithography with this method, the formation of an insulating film by CVD and photo, etching, or an insulating member processed into a rod shape is applied to a glass substrate 6. It can be formed either by juxtaposition on the upper part of the frame.
  • the control electrode 5 is formed in a rod shape extending in the direction in which the insulating material 8 extends.
  • the rod-like control electrodes 5 are paired with each other, shown in parentheses, and constitute one pixel together with each of the cathodes 7 intersecting the pair.
  • each pair of control electrodes 5 When the same potential is applied to each pair of rod-shaped control electrodes 5, each pair of control electrodes 5 is mechanically connected at a position other than on the cathode 7 to reinforce them mechanically. May be. Further, as in the first embodiment, the number of the pair of control electrodes 5 constituting one pixel for each intersecting cathode 7 may be increased to three or more according to the area of the cathode 7. Further, the cross section of the control electrode 5 is not limited to the illustrated rectangle, and a circular or elliptical shape does not impair the function as the control electrode 5.
  • One of the advantages of the structure shown in this embodiment is that, after arranging a plurality of wires connected to each other at the ends on the insulating material 8 and then cutting these ends, a plurality of rods are formed. The point is that the control electrode 5 can be efficiently formed at once.
  • One of the other advantages of the present embodiment is that the capacitance between the cathode 7 and the control electrode 5 can be kept small, so that a high-frequency signal can be input to the cathode 7 and the control electrode 5. And the display characteristics of the field emission display device are further improved. Is done.
  • FIG. 28 shows a nineteenth embodiment in which the partition wall member 3 is arranged so as to intersect the extending direction of the control electrode 5 in the structure of the eighteenth embodiment. Therefore, in addition to the advantages of the eighteenth embodiment, the structural stability of the field emission display device is enhanced by pressing the control electrode 5 with the partition wall aggregate 17.
  • FIG. 29 shows a 20th embodiment in which the insulating material 8 is formed in a sheet shape extending over a plurality of control electrode holes 8 in the structure of the 18th embodiment.
  • the insulating material 8 can be provided as one sheet in the entire emission type display device.
  • One of the advantages of this embodiment is that the insulating material 8 is previously processed and formed as a separate member from the cathode substrate 1 and then accurately and appropriately arranged on the cathode 7 to form the cathode substrate 1.
  • the manufacturing process of the cathode substrate 1 is simplified, and the range of selection of the insulating material that can be used as the base material of the insulating material 8 of the present embodiment is expanded.
  • As one of the base materials that can be used in the present embodiment there is mica that can be easily made thin and can form an opening corresponding to the control electrode hole 9 and has good insulating properties.
  • FIG. 30 shows that the insulating material 8 was formed in a sheet shape over a plurality of control electrode holes8 in the same manner as in the 20th embodiment, and the control electrode 5 was directly formed on the insulating material 8.
  • the control electrode 5 is processed and formed together with the insulating material 8, and a laminate of the insulating material 8 having the control electrode hole 9 and the control electrode 5 (a member different from the main body of the cathode substrate 1).
  • the cathode substrate 1 can be completed by accurately and appropriately arranging it on the cathode 7, so that the production efficiency of the cathode substrate 1 (throughput) can be obtained in addition to the advantages of the 20th embodiment. This has the advantage of improving
  • FIG. 31 shows a second embodiment in which the partition wall material 3 is in contact with the anode 10 of the anode substrate 2.
  • the partition wall connecting and holding plate 4 is in contact with the control electrode 5 and is formed of an insulating material, or a metal plate is used and an insulating film or an insulating layer is formed on the main surface of the control electrode 5 side.
  • the partition wall assembly 17 can be easily arranged without obstructing the traveling of electrons.
  • the anode substrate 2 The amount of electrons jumping into the surface can be increased.
  • Fig. 31 shows the cathode substrate 1 of the 21st embodiment as an example, but the structure is not limited to this. Any of the cathode substrates 1 shown in the embodiments can be used.
  • FIG. 32 shows a 23rd embodiment characterized by the shape of the partition wall assembly 17 having the second partition wall 16 in addition to the partition wall 3.
  • the shape of the partition wall aggregate 17 is as follows.
  • FIG. 33 shows the second bulkhead material 16 on the main surface of the bulkhead material connecting plate 4 on the side opposite to the main surface to which the bulkhead material 3 is joined (shown as the y-z plane).
  • a second embodiment is shown in which the crossing is made so as to intersect the main surface (shown as the X-z plane) of the partition wall material 3.
  • the structure of the present embodiment in addition to the advantages of the second and third embodiments, structurally stabilizes the display device against stress caused by atmospheric pressure, and facilitates the assembly of the partition wall assembly 17. Bring the advantage.
  • FIG. 34 shows a twenty-fifth embodiment in which the control electrode 5 is fixed to the partition wall member 3 fixed to the partition wall member connecting plate 4 to form an assembly called a partition wall member / control electrode assembly 18. Is shown.
  • Fig. 35 shows a cross section C-D of Fig. 34.
  • FIG. 36 shows a partition wall material / control electrode assembly 18 in which the control electrode 5 is fixed to the second partition wall material 16 coupled to the partition wall material connecting plate 4 together with the partition wall material 3.
  • the following shows an example.
  • the flexibility of the partition wall member / control electrode assembly 18 was increased by making the height of the second partition wall member 16 (the dimension in the z-axis direction smaller than that of the partition wall member 3).
  • FIG. 37 shows a twenty-seventh embodiment in which the twenty-sixth embodiment and the seventeenth embodiment are combined.
  • FIG. 37 shows the strength and the cross-section (x_ (in the y-plane) (they are hard to fall), the efficiency of the joining work of these ;
  • FIG. 38 shows a thirty-eighth embodiment using a plate-like control electrode 5 in which a plurality of control electrode holes 9 are formed in a partition wall material / control electrode assembly 18 of the twenty-sixth embodiment. .
  • Fig. 39 shows a second embodiment in which an insulating connecting material 22 is provided on the main surface of the partition material connecting and holding plate (connecting plate) 4 on the side of the cathode substrate 1 and the control electrode 5 is fixed thereto.
  • the insulating connecting material 22 connects the connecting plate 4 and the control electrode 5 so as not to be electrically short-circuited.
  • the connecting plate 4 itself may be made of an insulating material and the insulating connecting member 22 and the connecting plate 4 may be integrated.
  • FIG. 40 shows a 30th embodiment in which the control electrode 5 of the 29th embodiment is formed on the insulating connecting member 22 by using a method of growing a thick film or a thin film. Also in this embodiment, instead of forming the insulating connecting member 22 on the main surface of the partition wall connecting and holding plate 4, the partition wall connecting and holding plate 4 is made of an insulating material and is insulated from the partition wall connecting and holding plate 4. The function of the sexual connection material 22 may be added.
  • FIG. 41 shows a grid-type partition member 3 in which a grid-like partition member 3 is fixed to a partition member connection holding plate (connection plate) 4 made of an insulating material, and a control electrode 5 is directly formed on the connection plate 4.
  • Example 3 is shown.
  • the structure of the grid-like partition wall material 3 is illustrated in detail in FIG. Grooves 23 are formed in each of the partition walls 3 orthogonal to each other, and these are fitted as shown in the figure, so that the partition walls 3 are hard to fall down and hard to be crushed.
  • the partition member 3 having this structure can be used not only in this embodiment but also in all other embodiments according to the present invention.
  • FIG. 43 shows a 32nd embodiment in which the 20th embodiment is combined with the 30th embodiment.
  • the insulating material 8 extends over the plurality of control electrode holes 9.
  • the sheet-like insulating material 8 is preferably made of mica, for example.
  • a single sheet can be formed for the entire field emission display device.
  • the partition wall connecting and holding plate 4 itself is made of such a sheet-like insulating base material (preferably, having a film thickness larger than that of the insulating material 8). It may have 22 functions.
  • FIG. 44 shows a 33rd embodiment in which the partition wall connecting and holding plate 4 of the 32nd embodiment is formed of an insulator, and the control electrode 5 is formed on the raw surface of the cathode substrate 1 side.
  • the partition wall connecting and holding plate (connecting plate) 4 of the embodiment of FIG. 31 is formed of an insulating material, and the control electrode 5 is formed on the raw surface of the connecting plate 4 on the anode substrate 2 side.
  • the connecting plate 4 of this embodiment also has the function of the above-mentioned insulating material 8 (hence, it is indicated by reference numerals 4 and 8), and a part of the partition wall material 3 is provided on the connecting plate 4 via the control electrode 5. Is fixed.
  • the structure of the present embodiment has the advantages of reducing the number of materials and parts required for assembling the display device and completing the display device easily (with a small number of steps).
  • FIG. 4 6 shows that the partition wall connecting and holding plate 4 is formed of an insulating material, which also has the function of the insulating material '.8, and the control electrode 5 is formed on the main surface of the anode substrate 2 side. Further, a third embodiment in which the partition wall material 3 is fixed to the anode substrate 2 side of the control electrode 5 is shown.
  • the structure of this embodiment is required for assembling the display device as in the 34th embodiment. It is suitable for reducing the number of materials, parts, and the number of assembling processes, and thus has the advantage of increasing the production efficiency of the display device. It can be manufactured separately from the partition wall material and the partition wall connection holding plate 4 by a processing method such as etching.
  • FIG. 47 shows a structure in which a pair of first and second control electrodes 19 and 20 each having a surface covered with an insulating material 8 and having a control electrode 5 fixed to a partition wall connecting and holding plate 4.
  • the following shows an example.
  • the first control electrode 19 and the second control electrode 20 can be prepared or prepared in advance as a wire coated with an insulating film, so that the production efficiency of the display device can be improved. It is desirable for improvement.
  • FIG. 48 shows a pair of a first control electrode 19 and a second control electrode 20 forming a control electrode 5, each of which is coated with an insulating material 8 on a glass substrate 6 (cathode substrate 1).
  • a fixed 37th embodiment is shown. Also in the structure of the present embodiment, since the first control electrode 19 and the second control electrode 20 can be prepared or prepared in advance as a wire covered with an insulating film, the production efficiency of the display device is improved. Is brought.
  • FIG. 49 shows a third embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side, and the insulating material 8 is formed on the control electrode 5.
  • Example 8 is shown.
  • the structure of the present embodiment simplifies the structure of the cathode substrate 1 to increase its production efficiency, and allows the partition wall material and the control electrode assembly 18 to be freely processed separately from the cathode substrate 1 and the anode substrate 2. It has the advantage of being manufactured.
  • the control electrode hole 9 is not limited to an example in which a plurality of rectangular openings are regularly arranged as shown in the figure, and may have a different shape and arrangement according to another embodiment according to the present invention. .
  • FIG. 50 shows a thirty-ninth embodiment in which the partition wall connecting and holding plate 4 is made of an insulator, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side.
  • the structure of the present embodiment is such that the partition wall material 3, the partition wall material connecting / holding plate 4, and the control electrode 5 are fixed to each other, and the partition wall material and the control electrode assembly 18 are different from the cathode substrate 1 and the anode substrate 2.
  • the advantage is that it can be processed or assembled separately.
  • a plurality of openings having a substantially circular shape are regularly arranged as the control electrode holes 9, the shape may be changed to a rectangular or elliptical shape, and the arrangement of the array may be changed. It is possible.
  • FIG. 51 shows a 40th embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the control electrode 5 and the insulating material 8 are formed in this order on the main surface of the cathode substrate 1 side.
  • the structure of this embodiment allows the cathode substrate 1 to have an extremely simple structure, and allows the partition wall material and the control electrode assembly 18 to be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2.
  • the advantage is that Although an example in which a plurality of openings having a substantially rectangular shape are regularly arranged as the control electrode holes 9 is illustrated, even if these shapes are changed to circular or elliptical shapes, etc. Modifications may be made in accordance with other embodiments of the present invention.
  • FIG. 52 shows a 41st embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the rod-shaped control electrode 5 is fixed to the main surface on the cathode substrate side.
  • the structure of the present embodiment has an advantage that the partition wall material / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2.
  • a notable advantage of the structure of this embodiment is that the partition wall material ⁇ the control electrode assembly 18 can be manufactured without using a so-called thin film technique or thick film technique.
  • control electrode 5 has a rectangular cross section orthogonal to its long axis direction (X-axis direction in the figure), this cross section can be changed to a circular, elliptical, or polygonal shape. It does not prevent implementation of the present invention.
  • Fig. 53 shows that the partition wall connecting and holding plate 4 is made of an insulating material, the control electrode 5 is provided on the main surface on the cathode substrate 1 side, and the insulating material is insulated so as to fill the gap between the control electrodes on this main surface.
  • a fourth embodiment in which the material 8 is partially formed is shown.
  • the structure of this embodiment has an advantage that the structure of the cathode substrate 1 is extremely simplified, and the partition wall material and the control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Bring.
  • the relative permittivity of the insulating material 8 is usually larger than 1, the area where the insulating material 8 is arranged on the main surface of the partition wall connecting and holding plate 4 is limited to the gap between the control electrode 5 and the periphery thereof.
  • the capacitance between the cathode 7 and the control electrode 5 was reduced. Since the capacitance between the cathode 7 and the control electrode 5 becomes smaller, The frequency of the signal (control signal) supplied to these electrodes (conductors) can be increased. Therefore, the display device having the structure of the present embodiment can easily display a high-definition image (the change in peripheral devices of the display device required for high-definition image display can be reduced).
  • a plurality of openings having a substantially rectangular shape are regularly arranged as the control electrode holes 9 is illustrated, even if these shapes are changed to a circular or elliptical shape, or an arrangement of these shapes, The mode may be changed.
  • FIG. 54 shows a fourth embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material and the control electrode 5 is formed on the main surface of the cathode substrate 1 side.
  • the structure of the present embodiment has an advantage that the partition wall material / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2.
  • the insulating material 8 is partially formed so as to fill the gap between the cathodes 7 on the main surface of the glass substrate 6. Therefore, the shape of the cathode substrate 1 is similar to that of the eighteenth embodiment (FIG. 27).
  • the insulating material 8 Since the relative permittivity of the insulating material 8 is usually larger than 1, the insulating material 8 is limited so that the area where the insulating material 8 is arranged or formed on the main surface of the glass substrate 6 is limited.
  • the capacitance between the cathode 7 and the control electrode 5 is reduced.
  • a high-frequency control signal can be supplied by them. As a result, the definition of a display image on the display device is improved, or high-definition image display is easily realized.
  • FIG. 55 shows a fourth embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material and a plurality of sets of a pair of rod-shaped control electrodes 5 are fixed to the main surface of the cathode substrate 1 side. Show.
  • the structure of the present embodiment provides an advantage that the partition wall material * control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Further, by providing the insulating material 8 partially on the raw surface of the cathode substrate 1 as in the fourth embodiment, even if the relative permittivity of the insulating material 8 is larger than 1, The capacitance between the cathode 7 and the control electrode 5 can be made as small as possible to supply a high-frequency control signal to at least one of them.
  • a higher-frequency control signal can be used for the image display operation of the display device, and as a result, a high-definition image display by this display device can be easily realized.
  • a notable advantage of the structure of this embodiment is that the partition wall material and the control electrode assembly 18 can be manufactured without using a so-called thin film technology or a thick film technology (growth method).
  • the cross section orthogonal to the extending direction of the control electrode 5 is square
  • the implementation of the present invention is prevented even if the cross section is changed to a circle, an ellipse, or a polygon.
  • FIG. 56 shows an electron source using a carbon nanotube 'nano' tube suitable as an electron emission part of the above-mentioned display device according to the present invention. Fig. 56.
  • FIG. 56 (b) is a cross-sectional view of the electron source taken along line BB of FIG. 56 (a).
  • the structure and operation of this electron source is similar to the Spindt type electron source already described with reference to FIGS. 58 (b) and (c), but the emitter cone 10 Instead of 0, it uses rod-shaped carbon molecules called carbon nanotubes 102 '.
  • the illustrated electron source disperses a plurality of carbon nanotubes 102 into a conductive paste such as silver, and disperses the carbon nanotubes 102 in an insulating material 8. Then, the conductive paste is hardened to form a conductive film 103 by dripping onto the upper surface of the cathode 7 exposed from the opening or the gap of the cathode 7. This As a result, the carbon nano tube 102 is fixed to the surface of the conductive film 103. In this way, the portion of the carbon nanotube 102 fixed to the conductive film 103, particularly the portion protruding from the conductive film 103, is affected by the potential difference ⁇ V generated between this and the control electrode 5.
  • an electron source using a carbon nanotube 102 can be formed by a simpler process than a Spindt-type electron source, as shown in Figs. 58 (c) and 56. As is clear from comparison with (b), many electron-emitting portions can be formed. Therefore, the field emission display device using the carbon nanotube 102 is suitable for mass production and has an advantage that an image can be displayed brighter.
  • the above-described display device (field emission display device) according to the present invention is a “partition material connection holding plate” that collectively connects and holds partition materials 3 in which the anode substrate 1 and the anode substrate 2 are arranged at a fixed distance from each other. Is provided, so that the partition wall member 3 can be efficiently and accurately arranged and placed without impairing the image display performance of the display device.
  • the second display device and the like control the flow of electrons emitted from the cathode substrate, and the partition member 3 that arranges the cathode substrate 1 and the anode substrate 2 at a fixed distance from each other. Since the “partition material / control electrode connection holding plate” for connecting and holding the electrode (control electrode) 5 at a time is provided, the partition material 3 and the control electrode can be maintained without impairing the image display performance of this display device. 5 and can be arranged efficiently and accurately.

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

A display device of good performance using electron emission is provided that has a structure suited to mass production, i.e., easy to assemble. The main surfaces of cathode and anode substrates that compose a field-emission display device are separated with a predetermined gap by a plurality of partitions, which are integrally supported on a surface along one of the main surfaces by a partition holder. The partitions, fixed mechanically to the partition holder, are arranged on the cathode substrate and the cathode substrate. The assembly consisting of the partitions and the partition holder can be provided fixedly with an electrode for controlling the flow of electrons from the cathode substrate to the anode substrate.

Description

明 細 書 表示装置 技術分野  Description Display device Technical field
本発明は真空中への電子放出を利用 した表示装置に関し、 特に表示特 性が良く 、 かつ組み立てやすい表示装置の構造とその製造方法に関する ものである。  The present invention relates to a display device utilizing electron emission into a vacuum, and more particularly to a structure of a display device having excellent display characteristics and being easy to assemble, and a method of manufacturing the same.
背景技術 Background art
真空中への電子放出を利用 した表示装置 (以下、 電子放出型表示装置 又は電界放出型表示装置と呼ばれる) には、 A. Spindtらによ り発案 されたス ピン ト型と称する電子放出構造を持つ種類 (例えば、 米国特許 第 3 4 5 3 4 7 8号公報、 特開 2 0 0 0 _ 2 1 3 0 5号公報参照) 、 量 子論的 ト ンネル効果による電子放出現象を利用する種類 (表面伝導型電 子源と も呼ばれる、 特開 2 0 0 0 - 2 1 3 0 5号公報参照) 、 固体物質 内で電子を加速して放出する もの、 さ らにはダイヤモン ド膜ゃグラフ ァ ィ ト膜、 力一ボンナノ チューブの持つ電子放出現象を利用 した群 ( 「真 空」 … J ourna l of Vacuum Soci ety of J apanの 曰本語版, Vol. 42, No. 8. ( 1999 ) , pages 722 - 726参照) 等が知られている。  A display device utilizing electron emission into a vacuum (hereinafter, referred to as an electron emission display device or a field emission display device) includes a spin-type electron emission structure proposed by A. Spindt et al. (For example, refer to US Pat. No. 3,435,478, Japanese Patent Application Laid-Open No. 2000-213505), utilizing the electron emission phenomenon due to the quantum tunnel effect. The type (also referred to as a surface conduction electron source, see Japanese Patent Application Laid-Open No. 2000-213505), one that accelerates and emits electrons in a solid material, and one that has a diamond film. A group that uses the electron emission phenomena of graphite membranes and carbon nanotubes (“vacuum”… Journal of Vacuum Society of Japan's original version, Vol. 42, No. 8. 1999), pages 722-726).
電界放出型表示装置の一例を第 5 7 図に模式的に示す。 第 5 7 図の ( a ) は、 この表示装置を分解して示す斜視図、 ( b ) は組み立てられ た表示装置の断面図を夫々示す。 第 5 7 図 ( a ) に示すよ う に、 電界放 出型表示装置はガラス、 アルミ ナ等からなる基板を含めた陰極基板 1 と ガラス又はこれと同等又はこれ以上の光透過率を有する材料からなる基 板を含めた陽極基板 2 とを、 夫々の主面の周縁部に 持枠 3 0 (側板と も呼ばれる) の上面又は下面を合わせて組み立て られる。 陽極基板 2 は 電子源が設けられた陰極基板 1 に対向 して配置されるため、 対向基板と も呼ばれる。 図示された例では、 陰極基板 1 はガラス基板 6上に電子源 (電子放出部) と この電子放出を制御する為の電気的配線とが形成され ている。 これらの詳細に関しては後述するが、 電子放出部を動作される ための 2種類の配線群は、 図示された絶縁膜 8 によ り分離されている。 ガラス基板 6 の面積 ( x y平面) 支持枠 3 0 よ り広く 、 その周縁には上 記配線群の一方 (制御電極又はゲー ト電極と呼ばれる) に電流を供給す る端子 5 0 (制御電極端子) 及び他方 (陰極と呼ばれる) に電流を供給 する端子 7 0 (陰極端子) が設けられている。 上記ガラス基板 6 は、 ガ ラスやアルミ ナ等のセラ ミ ッ クスに限定されず、 例えば表面を絶縁膜で コー ト したステン レス等の金属膜で形成してもよい。 一方、 この陰極基 板に対向した陽極基板 2 はガラス又はこれと同等又はそれ以上の光透過 性を有する材料からなる基板上に電極、 蛍光体等が形成される。 陰極基 板 1 と陽極基板 2 との間には、 ガラス等からなる支持枠 3 0 が挿入され、 これと陰極基板 1 及び陽極基板 2の夫々の主面に囲まれた空間は: 1 0 - 5 - 1 0 - 7 Torrの真空に排気される。 この空間の真空を保っため、 支持枠 3 0 は陰極基板 1 及び陽極基板 2 の夫々 にフ リ ッ トガラス等によ り密着 される。 支持枠 3 0 には、 この空間を大気から遮断し真空に保つ機能が 要請されるため、 しばしば密封枠と も呼ばれる。 上記ガラス基板 6 の上 面に示した点線は、 これに支持枠 3 0 の外周が当たる位置を示し、 上記 絶縁膜 8 はこの真空に維持される空間の内部に収まるよ う に形成される。 従って、 電界放出型表示装置は陰極基板 1 から真空に保たれた上記空間 に電子を放出 し、 電子放出部と陽極基板 2 に設けられた電極との電位差 によ り電子を加速して、 陽極基板 2 に設けられた電極に当てて上記蛍光 体を光らせる。 蛍光体を光らせるために要する電子のエネルギーは 6 0 0 0 e V ( e V =電子ボル ト) 程度に至るため、 陰極基板 1 と陽極基板 2 との間には 6 k V程度の高い電位差が設けられる。 このため、 陰極基 板 1 と陽極基板 2 との対向しあう生面間に 1 c m又はそれ以上の隙間を 設け、 これらの基板間における絶縁破壊を防止する。 なお、 第 5 7 図 ( a ) の直交座標は、 これ以外の斜視図、 平面図、 断面図、 及び等価回 路図に示される直交座標と と もに、 夫々 の図に示される構造物又は回路 の配置を関連付ける。 An example of a field emission display device is schematically shown in FIG. 57A is an exploded perspective view showing the display device, and FIG. 57B is a sectional view of the assembled display device. As shown in Fig. 57 (a), the field emission display is composed of a cathode substrate 1 including a substrate made of glass, alumina, etc., and glass or a material having a light transmittance equal to or higher than glass. The anode substrate 2 including the base plate made of is assembled with the upper surface or the lower surface of the holding frame 30 (also called a side plate) on the periphery of each main surface. Anode substrate 2 Since it is arranged to face the cathode substrate 1 provided with the electron source, it is also called a counter substrate. In the illustrated example, the cathode substrate 1 has a glass substrate 6 on which an electron source (electron emitting portion) and an electric wiring for controlling the electron emission are formed. Although these details will be described later, the two types of wiring groups for operating the electron emission section are separated by the illustrated insulating film 8. The area of the glass substrate 6 (xy plane) is wider than the support frame 30, and its periphery is a terminal 50 (control electrode terminal) for supplying a current to one of the above wiring groups (called a control electrode or a gate electrode). ) And the other (called the cathode) are provided with a terminal 70 (cathode terminal) for supplying current. The glass substrate 6 is not limited to ceramics such as glass or alumina, but may be formed of a metal film such as stainless steel coated on the surface with an insulating film. On the other hand, for the anode substrate 2 facing the cathode substrate, electrodes, phosphors and the like are formed on a substrate made of glass or a material having light transmittance equal to or higher than glass. A support frame 30 made of glass or the like is inserted between the cathode substrate 1 and the anode substrate 2, and the space surrounded by the respective main surfaces of the cathode substrate 1 and the anode substrate 2 is: 10 − 5 - 1 0 - is evacuated to 7 Torr vacuum. In order to maintain a vacuum in this space, the support frame 30 is adhered to each of the cathode substrate 1 and the anode substrate 2 by means of a flat glass or the like. Since the support frame 30 is required to have a function of isolating this space from the atmosphere and keeping it in a vacuum, it is often called a sealed frame. The dotted line shown on the upper surface of the glass substrate 6 indicates a position where the outer periphery of the support frame 30 comes into contact with the dotted line, and the insulating film 8 is formed so as to fit inside the space maintained in the vacuum. Accordingly, the field emission display emits electrons from the cathode substrate 1 into the above-mentioned space kept in a vacuum, and accelerates the electrons by a potential difference between the electron emission portion and the electrode provided on the anode substrate 2, thereby increasing the anode. The phosphor is illuminated by hitting an electrode provided on the substrate 2. The energy of electrons required to illuminate the phosphor reaches about 600 eV (eV = electron volt), so a high potential difference of about 6 kV exists between the cathode substrate 1 and the anode substrate 2. Provided. Therefore, the cathode base A gap of 1 cm or more is provided between the opposing raw surfaces of the plate 1 and the anode substrate 2 to prevent dielectric breakdown between these substrates. Note that the rectangular coordinates in FIG. 57 (a) are the same as those in the perspective view, plan view, cross-sectional view, and equivalent circuit diagram, as well as the structure or structure shown in each figure. Relate circuit layout.
第 5 8 図は、 上述のス ピン ト型電子源を備えた電界放出型表示装置の 一例を説明する図であ り、 ( a ) はその等価回路を、 ( b ) は電子源の 近傍の平面図を、 ( c ) は ( b ) における C _ C線に沿った断面図を 夫々示す。 第 5 8 図 ( a ) は、 m行 n列に配列された画素毎に電子放出 部を設けた表示装置の構成を示す。 第 5 8 図 ( a ) における G , B , R と付された箱は、 面素毎に設けられた電子放出部 (電子源) を示す。 電 子放出部の各々 から放出される電子は、 陽極基板 2 に設けられた夫々の 蛍光体にエネルギーを与え、 電子放出部 Gは緑の、 電子放出部 B は青の、 電子放出部 Rは'赤の光を蛍光体から放出させる。 第 5 8 図 ( a ) にて y. 軸方向に並ぶ m個の電子放出部の各々 には、 映像信号駆動回路 (水平走 査回路) Hから端子 7 0及び y軸方向に延びる陰極 7 を通して、 所定の 電圧が印加される。 一方、 第 5 8 図 ( a ) にて X軸方向 ( y軸に交差す る方向) に延びる制御電極 5 には、 X軸方向に並設された複数の上記陰 極 7 (列番号 : X 1 , X 2 , …, X nが付されている) の夫々 との交差 部分に陰極 7を露出する開口が設けられる。 y軸方向に並設された制御 電極 5 (行番号 : Y l , Y 2 , ··· , Y mが付されている) の各々 には垂 直走査回路 Vから走査信号が端子 5 0 を介して y軸方向に逐次供給され る。 各々の陰極 7 に印加される電圧は、 走査信号が印加される制御電極 5 の行番号に応じて (制御電極 5が変わる毎に) 、 適宜変調され、 ( X i , Y j ) のア ド レス (Address) で特定される各画素に設けられた電子 放出部からの電子の放出を制御 し、 所望のァ ド レスの画素に対応する蛍 光体を発光させる。 第 5 8図 ( b ) は、 第 5 8図 ( a ) の等価回路を有する電界放出型表 示装置にス ピン ト型電子源を用いた場合の画素構造 (電子放出部とその 周囲) の平面図を示し、 その C— C線に沿った断面図を第 5 8図 ( c ) に示す。 陰極 7 は、 ガラス基板 6上に形成された N i (ニッケル) 、 C r (ク ロム) 、 A u (金) 、 M o (モ リ ブデン) 、 W (タ ングステン) 、 P t (白金) 、 T i (チタ ン) 、 A 1 (アルミ ニウム) 、 C u (銅) 、 P d (パラ ジウム) 等の金属又はこれらを含む合金、 I T O ( I n 203 — S n 02、 イ ンジウム—錫酸化物) 、 I Z O ( I n 203— S n 02、 イ ンジウム一亜鉛酸化物) 、 R u 02 (ルテニウム酸化物) 等の金属酸 化物、 又は不純物を ドープした半導体等の材料である。 FIG. 58 is a view for explaining an example of a field emission display device having the above-mentioned spin-type electron source, where (a) shows an equivalent circuit thereof, and (b) shows an equivalent circuit near the electron source. (C) shows a cross-sectional view taken along the line CC in (b), respectively. FIG. 58 (a) shows a configuration of a display device in which an electron emission portion is provided for each pixel arranged in m rows and n columns. The boxes labeled G, B, and R in Fig. 58 (a) indicate the electron emission parts (electron sources) provided for each surface element. The electrons emitted from each of the electron-emitting portions give energy to the respective phosphors provided on the anode substrate 2, and the electron-emitting portion G is green, the electron-emitting portion B is blue, and the electron-emitting portion R is 'Emit red light from the phosphor. In Fig. 58 (a), each of the m electron-emitting portions arranged in the y-axis direction passes through a video signal driving circuit (horizontal scanning circuit) H through a terminal 70 and a cathode 7 extending in the y-axis direction. A predetermined voltage is applied. On the other hand, in FIG. 58 (a), the control electrode 5 extending in the X-axis direction (the direction intersecting the y-axis) is provided with a plurality of the cathodes 7 (column number: X , X 2,..., X n) are provided with openings for exposing the cathode 7. Each of the control electrodes 5 (line numbers: Yl, Y2,..., Ym) arranged in the y-axis direction receives a scanning signal from a vertical scanning circuit V at a terminal 50. Are sequentially supplied in the y-axis direction. The voltage applied to each cathode 7 is appropriately modulated according to the row number of the control electrode 5 to which the scanning signal is applied (every time the control electrode 5 changes), and the address of (X i, Y j) It controls the emission of electrons from the electron emission unit provided for each pixel specified by the address, and causes the phosphor corresponding to the pixel of the desired address to emit light. Fig. 58 (b) shows the pixel structure (electron emission part and its surroundings) when a spin-type electron source is used for the field emission display device having the equivalent circuit of Fig. 58 (a). A plan view is shown, and a cross-sectional view along the line CC is shown in FIG. 58 (c). The cathode 7 is composed of Ni (nickel), Cr (chrome), Au (gold), Mo (molybdenum), W (tungsten), and Pt (platinum) formed on the glass substrate 6. , T i (Chita down), a 1 (aluminum), C u (copper), P d (palladium) or the like of a metal or an alloy containing these, ITO (I n 2 03 - S n 0 2, Lee indium - tin oxide), IZO (I n 2 0 3 - S n 0 2, Lee indium one zinc oxide), R u 0 2 (metal oxides of ruthenium oxide) or the like, or impurities doped in a semiconductor Material.
制御電極 5 は、 陰極 7を覆う よ う に成長された絶縁膜 (制御電極用絶 縁材) 8の上面に形成された陰極 7 と同様な種類の導電性材料からなる 薄膜である。 制御電極 5が陰極 7を跨ぐ部分では、 制御電極 5及び絶縁 膜 8を貫く 開口が設けられる。 この開口によ り露出された陰極 7の上面 には、 ェミ ッ タ ' コーン (Emitter Cone) 1 0 0 と呼ばれる円錐状又は 'これに近い形状の電子放出部が形成される。 エミ ッ タ · コーン 1 0 0 と 陰極 7 とは導通されるため、 陰極 7 と制御電極 5 との電位差は、 ェミ ツ 夕 · コーン 1 0 0の先端と制御電極 5 との間に電位差 A Vを発生させる。 電位差 A Vが数十 e Vを越える と、 第 5 8.図 ( c ) に示すよう にェミ ツ タ · コーン 1 0 0の先端から電子が z軸に沿って放出される。 この電子 は、 陽極基板を構成するガラス基板 1 3 に設けられた陽極 1 0に当た り、 これによ り蛍光体 1 1 を発光させる。 蛍光体 1 1 は、 画素毎に遮光膜 (ブラ ッ ク · マ ト リ クス) 1 2によ り分離されているため、 画素の周縁 に放出された電子がこの画素に隣接する画素の蛍光体を発光させる こ と はない。  The control electrode 5 is a thin film made of the same kind of conductive material as the cathode 7 formed on the upper surface of the insulating film (insulating material for control electrode) 8 grown to cover the cathode 7. At the portion where the control electrode 5 straddles the cathode 7, an opening is provided through the control electrode 5 and the insulating film 8. On the upper surface of the cathode 7 exposed by the opening, an electron emitting portion having a conical shape or a shape close to the shape called an emitter cone 100 is formed. Since the emitter cone 100 and the cathode 7 are electrically connected, the potential difference between the cathode 7 and the control electrode 5 is equal to the potential difference AV between the tip of the emitter cone 100 and the control electrode 5. Generate. When the potential difference A V exceeds several tens of eV, electrons are emitted from the tip of the emitter cone 100 along the z-axis as shown in Fig. 58 (c). The electrons impinge on the anode 10 provided on the glass substrate 13 constituting the anode substrate, thereby causing the phosphor 11 to emit light. Since the phosphor 11 is separated by a light-shielding film (black matrix) 12 for each pixel, the electrons emitted to the periphery of the pixel emit the phosphor of the pixel adjacent to this pixel. Does not emit light.
エミ ッタ · コーンは陰極 7 と同 じ材料で形成してもよいが、 これよ り 仕事関数の小さい材料を用いる と電子の放出効率も上がり、 面像を明る く 表示し易い。 一方、 陽極 1 0は上述の I T 0や I Z 0等の光透過性の 高い導電性薄膜で形成してもよいが、 アルミ ニウムや銀を蒸着して形成 して もよい。 このよ うな反射率の高い金属薄膜で陽極 1 0を形成する と . 蛍光体 1 1で生じた光のう ち、 陰極 7側に伝播する成分をガラス基板 1 3側に反射できるため、 その分、 表示画像も明る く なる。 このよ うな効 果を示すこ とから、 反射率の高い金属薄膜で形成された陽極 1 0をメ タ ルノくッ ク と呼ぶ。 The emitter cone may be formed of the same material as the cathode 7, but if a material having a smaller work function is used, the electron emission efficiency is increased and the surface image is brightened. Easy to display. On the other hand, the anode 10 may be formed of a conductive thin film having high light transmittance such as the above-mentioned IT0 or IZ0, or may be formed by vapor deposition of aluminum or silver. When the anode 10 is formed of such a metal thin film having a high reflectivity. Of the light generated by the phosphor 11, a component that propagates to the cathode 7 side can be reflected to the glass substrate 13 side. The displayed image also becomes brighter. Because of such an effect, the anode 10 formed of a metal thin film having high reflectivity is called a metal chuck.
以上の説明から明らかなよ う に、 この電界放出型表示装置は、 そのュ —ザ (観測者) 側に配置された陽極基板 2 に発光部を有するため、 蛍光 体 1 1 から陰極基板 1側に位置する部材の光の透過性は実質上不問とな る。 従って、 ガラス基板 6は不透明なセラ ミ ッ ク スや金属の板に置換え る こ と もできる。 但し、 ガラス基板に代え'て金属等の導電性基板を用い る場合、 その陽極基板側の主面に上述の陰"極 7を形成するため、 この主 面に絶縁膜を形成するか、 または主面の抵钪値を酸化ゃ窒化によ り高め る こ とが必要となる。 また、 制御電極 5 は..開口を有する金属又は合金等 からなる導電性の板状部材で形成する こ と 'もできる。 この場合、 制御電 極用絶縁材 8 と して上記複数の陰極 7を y軸に沿って横切るよう に複数 の絶縁体のプロ ッ クを互いに離間させて配置し、 これらの間隙をフ リ ッ ト · ガラスのよ.うな絶縁性の接着剤で埋める。 上述の導電性の板状部材 は、 この絶縁性接着剤によ り絶縁体のブロ ッ ク上に固定される。 なお、 ' 制御電極用絶縁材 8は、 以降、 その機能がぞの形状 (例えば、 薄膜かブ ロ ッ ク状等のバルクか) に特化されない限り、 単に絶縁材 8 と も記す。 第 5 9図は、 表面伝導型電子源を備えた電界放出型表示装置の概要を 説明する図であり、 ( a ) はその等価回路を、 ( b ) は電子源の近傍の 平面図を、 ( c ) は ( b ) における C一 C線に沿った断面図を夫々、 第 5 8図 ( a ) 〜 ( c ) と同じ要領で示す。 第 5 9図 ( a ) に示す等価回 路から明 らかなよ う に、 この図に示す電界放出型表示装置では、 電子源 G , B , Rの各々 に、 その電子源の位置する面素のア ドレス ( X i , Y j ) に対応した Y j 行の陰極 7 と X i 列の制御電極 5 から電圧を印加 し て電子を放出させる駆動態様において、 第 5 8 図 ( a ) のそれと異なる , このよ うな駆動形態が利用でき る理由は、 表面伝導型の電子源の形状 に起因する。 第 5 9 図 ( b ) 及び第 5 9 図 ( c ) に示すよ う に、 表面伝 導型電子源は、 陰極 7 を覆う制御電極用絶縁材 8 の画素に対応する部分 に開口 9 ' を設け、 この開口 9 ' を介して制御電極用絶縁材 8上に設け られた制御電極 5 と陰極 7 とを導電層 5 7 にて接続し、 その一部分にフ ォー ミ ング処理 (通電処理等) を施して、 この部分 ( 1 0 1 ) の抵抗を 導電層 5 7 の他の部分よ り高く する。 導電層 5 7 を制御電極 5側と陰極 7側に分割する高抵抗部分 1 0 1 が、 表面伝導型の電子源 (電子放出 部) となる。 この電子源は、 制御電極 5 と陰極 7 との間に所定の電圧を 印加 したときに導電層 5 7 —高抵抗部分 1 0 1 —導電層 5 7 の接合に生 じる ト ンネル効果を利用 して、 電子を放出させる。 導電層 5 7 は導電材 料の微粒子等で形成するのが好ま しく 、 高抵抗部分 1 0 1 の形成には上 述の導電層 5 7 のフ ォー ミ ング処理のみならず、 導電層 5 7への集束ィ オンビーム (Focused I on Beam) の照射等も利用できる。 As is clear from the above description, this field emission display device has a light-emitting portion on the anode substrate 2 disposed on the user (observer) side, so that the phosphor 11 is moved from the cathode substrate 1 to the cathode substrate 1 side. The light transmittance of the member located at the position is substantially irrelevant. Therefore, the glass substrate 6 can be replaced with an opaque ceramic or metal plate. However, when a conductive substrate made of metal or the like is used instead of the glass substrate, the above-mentioned cathode 7 is formed on the main surface on the anode substrate side. It is necessary to increase the resistance value of the main surface by oxynitriding, and the control electrode 5 is formed of a conductive plate member made of a metal or an alloy having an opening. In this case, as the control electrode insulating material 8, a plurality of insulator blocks are arranged so as to be spaced apart from each other so as to cross the plurality of cathodes 7 along the y-axis. Is filled with an insulating adhesive such as frit and glass, and the above-described conductive plate-like member is fixed on the block of the insulator by the insulating adhesive. The function of the control electrode insulating material 8 is to be changed to the desired shape (for example, thin film or block shape, etc.). Unless it is specialized in bulk, it is also simply referred to as insulating material 8. Fig. 59 is a diagram explaining the outline of a field emission display device with a surface conduction electron source, and (a) is the figure. Equivalent circuit, (b) is a plan view near the electron source, (c) is a cross-sectional view taken along line C-C in (b), the same as Fig. 58 (a)-(c) As is clear from the equivalent circuit shown in Fig. 59 (a), the electron emission source of the field emission display device shown in this figure is as follows. A voltage is applied to each of G, B, and R from the cathode 7 on the Y j row and the control electrode 5 on the X i column corresponding to the address (X i, Y j) of the surface element where the electron source is located. The driving mode for emitting electrons, which is different from that in FIG. 58 (a), can be used because of the shape of the surface conduction type electron source. As shown in FIGS. 59 (b) and 59 (c), the surface conduction electron source has an opening 9 'in a portion of the control electrode insulating material 8 covering the cathode 7 corresponding to the pixel. The control electrode 5 and the cathode 7 provided on the control electrode insulating material 8 are connected through the opening 9 ′ with the conductive layer 57, and a part of the control electrode 5 is formed by a forming process (such as an energizing process). ) To make the resistance of this part (101) higher than the other parts of the conductive layer 57. The high resistance portion 101 that divides the conductive layer 57 into the control electrode 5 side and the cathode 7 side becomes a surface conduction type electron source (electron emission portion). This electron source utilizes the tunnel effect that occurs when a predetermined voltage is applied between the control electrode 5 and the cathode 7 and the junction between the conductive layer 57 and the high-resistance portion 101-the conductive layer 57. And emit electrons. The conductive layer 57 is preferably formed of fine particles of a conductive material. For forming the high-resistance portion 101, not only the above-described forming process of the conductive layer 57 but also the conductive layer 5 is used. Irradiation of Focused Ion Beam to 7 can also be used.
表面伝導型の電子源を用いた表示装置は、 第 5 8 図 ( a ) に示す等価 回路でも.動作できる。 この場合、 X 1 列〜 X n列の陰極 7 の各々 と して 異なる電圧を有する一対の導電層を設け、 少な く と も個々の画素に対応 する位置において、 陰極 7を覆う絶縁材 8 に開口を設け、 または絶緣材 8 を設けないよう にする。 この絶縁材に覆われない領域において一対の 導電層を電気的に g続し、 その接続部に上述の高抵抗部分を形成する。 一方、 制御電極 5 はこの高抵抗部分を挟み又は囲むよ う に設け、 その電 位によ り高抵抗部分から放出される電子の通過と遮断を制御する。 この よ う に陰極 7 と制御電極 5 とを構成する こ とによ り、 陰極 7 から放出さ れる電子を陽極基板側に通過させる電位に設定された制御陰極 5 に応じ て、 X 1 列〜 X n列の陰極 7 からの電子放出を変調して画像を表示する こ とができる。 A display device using a surface conduction electron source can operate with the equivalent circuit shown in Fig. 58 (a). In this case, a pair of conductive layers having different voltages are provided for each of the cathodes 7 in the X1 to Xn columns, and the insulating material 8 covering the cathode 7 is provided at least at a position corresponding to each pixel. Provide openings or do not provide insulation 8. The pair of conductive layers is electrically connected in a region not covered with the insulating material, and the above-described high-resistance portion is formed at the connection portion. On the other hand, the control electrode 5 is provided so as to sandwich or surround this high-resistance portion, and controls the passage and cutoff of electrons emitted from the high-resistance portion by its potential. By configuring the cathode 7 and the control electrode 5 in this manner, the control cathode 5 is set to a potential at which electrons emitted from the cathode 7 pass to the anode substrate side. Thus, an image can be displayed by modulating the electron emission from the cathodes 7 in the X1 to Xn columns.
従って、 本明細書にて以下に記す電界放出型表示装置の陰極 7 、 陽極 1 0、 及び制御電極 5 は、 これに設けられる電子放出部の種類によ り 夫々の機能が相違する場合がある。 このため、 これらの要素は、 その順 に第 1 電極 (電子放出部から電子を放出させる、 所謂エ ミ ッ タ) 、 第 2 電極 (放出された電子が照射される、 所謂コ レクタ) 、 及び第 3 電極 (第 1 電極から第 2電極への電子の流れをオン · オフする) と も呼ぶこ とができる。  Therefore, the functions of the cathode 7, the anode 10, and the control electrode 5 of the field emission display device described below in this specification may be different depending on the type of the electron emission unit provided therein. . Therefore, these elements include, in that order, a first electrode (a so-called emitter that emits electrons from the electron-emitting portion), a second electrode (a so-called collector that is irradiated with the emitted electrons), and It can also be called the third electrode (turns on / off the flow of electrons from the first electrode to the second electrode).
上述のスピン ト型電子源や表面伝導型電子源、 その他の種類の電子源 の電子放出作用の相違に問わず、 これらから放出される電子によ り励起 される蛍光体 1 1 は、 ブラウ ン管と して知られる陰極線管と同じ蛍光材 料を用いて形成できる。 例えば、 赤を表示する画素には Y 2 0 2 S : E u S mを、 緑を表示する画素には Z n S : C u , A u , A 1 を、 青を表示 する画素には Z n S : A gを夫々用いて蛍光体 1 1 が形成される。 こ こ で例示した各蛍光体材料は、 コロ ンを挟んで 「蛍光体結晶 : 付活剤」 と して表記される。 付活剤は、 蛍光体 1 1 におけるその濃度やその種類、 蛍光体結晶との焼成 (合成) 条件で蛍光体 1 1 の残光特性等を決める。 また、 蛍光体 1 1 が非発光時に黒又はこれ.に近い色 (反射色) を呈する よ う に、 その表面には顔料がコー ト される (この顔料コーティ ングが無 い場合、 蛍光体 1 1 は灰色に近い色を反射し、 表示画面をぎらぎらさせ る) 。 Irrespective of the electron emission effect of the above-mentioned Spindt electron source, surface conduction electron source, and other types of electron sources, the phosphor 11 excited by the electrons emitted from these sources is It can be formed using the same fluorescent material as a cathode ray tube known as a tube. For example, the pixels displaying red Y 2 0 2 S: E u to S m, the pixel displaying green Z n S: C u, A u, the A 1, the pixel displaying blue Z Phosphor 11 is formed using n S: Ag respectively. Each of the phosphor materials exemplified here is described as “phosphor crystal: activator” with a colon interposed therebetween. The activator determines the concentration and type of the phosphor 11, the afterglow characteristics of the phosphor 11, and the like, depending on the firing (synthesis) conditions with the phosphor crystal. In addition, a pigment is coated on the surface of the phosphor 11 so that the phosphor 11 exhibits a black color or a color close to this when not emitting light (reflected color). 1 reflects a color close to gray, which causes the display screen to shimmer.)
以上に説明 した電界放出型表示装置において、 陰極基板 1 及び陽極基 板 2 の夫々の主面と支持枠 3 0 とで囲まれた空間は、 第 5 7 図 ( b ) に 示されるガラス基板 6 の裏面に設けられた排気口 6 1 から排気され、 そ の圧力が上述の値 (真空度) に至るまで減圧される。 この排気工程にお いて、 陰極基板 1 と陽極基板 2 とが、 これらによ り挟まれた空間と大気 との圧力差によ り橈み、 最終的にはこの空間が大気圧によ り押 し潰され るのを防ぐ為に隔壁材 3 と称する部材を表示装置の真空空間に適切に配 置している。 この技術に関しては、 例えば特開 2 0 0 0 - 2 1 3 3 5号 公報にて論じ られている。 In the above-described field emission display device, the space surrounded by the respective main surfaces of the cathode substrate 1 and the anode substrate 2 and the support frame 30 is the glass substrate 6 shown in FIG. The air is exhausted from the exhaust port 61 provided on the back surface of the, and the pressure is reduced until the pressure reaches the above value (degree of vacuum). In the evacuation process, the cathode substrate 1 and the anode substrate 2 are separated from the space between them by the atmosphere. In order to prevent the space from being crushed by the atmospheric pressure due to the pressure difference from the pressure, the member called the partition wall material 3 is appropriately placed in the vacuum space of the display device. ing. This technique is discussed in, for example, JP-A-2000-213335.
第 6 0 図は上述した従来の電界放出型表示装置の構造の一例を模式的 に描いたものである。 この図は、 面素 (電子放出部) の周囲を拡大して 示すものであ り、 上述の支持枠 (側壁) 3 0 は省略してある。 隔壁材 3 は陰極基板 1 と陽極基板 2 の間に配置される絶縁性の材料である。 絶縁 抵抗は十分高 く 保たれるが、 電子が衝突して帯電するのを防ぐ為に表面 にわずかに導電性を付与する場合もある。 上述の電界放出型表示装置の 動作上、 陰極基板 1 から陽極基板 2へ真空中を走行する電子を妨げない よ う に、 出来るだけ薄く 、 かつ各画素間に適当な間隔で正確に-位置決め して配置する必要がある。 電界放出型表示装置の駆動においでは陽極基 板 2 (上述の陽極 1 0 …図示せず) は陰極基板 1 (上述の陰極.7 …図示 せず) に対してプラスの電位が印加される。 電子を十分に加速.して発光 効率を確保する為に電位と して数百ボル ト以上、 時には数千ボル ト以上 が使われる。 高い電圧を使う場合には陰極基板 1 .と陽極基板 2 間で電圧 破壊が起きないよ う に十分に間隔を確保する必要がある。 例えば、 陰極 基板 1 と陽極基板 2 との間に数千ボル 卜の電位差を設定する場合、 これ らを少な く と も 1 m m以上隔てる こ とが必要とな'る。 一方隔壁材 3 の存 在が表示画面に影響が出ないよう に例えば 1 0 0 mの厚さが選ばれる。 発明の開示  FIG. 60 schematically illustrates an example of the structure of the above-described conventional field emission display device. In this figure, the periphery of the surface element (electron emission portion) is shown in an enlarged manner, and the above-described support frame (side wall) 30 is omitted. The partition material 3 is an insulating material disposed between the cathode substrate 1 and the anode substrate 2. Although the insulation resistance is kept high enough, the surface may be slightly conductive to prevent electrons from colliding and becoming charged. In the operation of the above-mentioned field emission display device, it is positioned as thin as possible and accurately positioned at an appropriate interval between the pixels so as not to hinder electrons traveling in a vacuum from the cathode substrate 1 to the anode substrate 2. Need to be placed. In driving the field emission display, a positive potential is applied to the anode substrate 2 (the above-described anode 10... Not shown) with respect to the cathode substrate 1 (the above-described cathode 0.7... Not shown). In order to sufficiently accelerate the electrons and secure the luminous efficiency, a potential of several hundred volts or more, and sometimes several thousand volts or more, is used. When a high voltage is used, it is necessary to secure a sufficient space between the cathode substrate 1 and the anode substrate 2 so that voltage breakdown does not occur. For example, when setting a potential difference of several thousand volts between the cathode substrate 1 and the anode substrate 2, it is necessary to separate them by at least 1 mm. On the other hand, a thickness of, for example, 100 m is selected so that the presence of the partition wall material 3 does not affect the display screen. Disclosure of the invention
上述のよう に、 電界放出型表示装置を製造する上で、 これに 3 0 〜 1 5 0 mの範囲の厚さ (例えば、 1 0 0 // m ) と l m m以上の高さ (例 えば、 2 〜 3 m mの範囲のいずれかの値) を有する隔壁材 3 を正確かつ 効率よ く 配置し、 組み込む必要がある。 また、 この隔壁材 3 の数と して は少な く とも大気圧による応力 (例えば、 ガラス基板 1 3 の撓み) に耐 えられるだけの数を配置する必要がある。 この数は陰極基板 1 と陽極基 板 2、 及び隔壁材 3 の強度によ って大き く 変わるが、 例えば対角寸法が 4 0 イ ンチ ( i n c h ) · ク ラスの大型の電界放出型表示装置では少な く と も数百個以上、 設計によっては数万個以上必要とする。 As described above, in manufacturing a field emission display, a thickness in a range of 30 to 150 m (for example, 100 // m) and a height of 1 mm or more (for example, It is necessary to accurately and efficiently arrange and incorporate the partition wall material 3 having a value in the range of 2 to 3 mm). Also, as the number of the partition walls 3 It is necessary to arrange at least as many as possible to withstand the stress due to atmospheric pressure (eg, bending of the glass substrate 13). This number varies greatly depending on the strength of the cathode substrate 1, the anode substrate 2, and the partition wall material 3. For example, a large field emission display device having a diagonal dimension of 40 inches (class) is used. At least several hundreds are required, and depending on the design, tens of thousands are required.
一方、 この隔壁材 3 は、 これに電子が衝突する こ とによ り、 この表面 から 2次電子が発生した り、 この表面が帯電する (チヤ一ジ · ア ップす る) こ とがある。 これらの現象に因り、 隔壁材 3近く における電子の走 行が妨げられ、 電界放出型表示装置の表示画面内におけるの画素の表示 性能の一様性を損なう こ とがある。 この問題に対 して、 電子の走行空間 を適切に制御すると共に隔壁材 3 を出来るだけ均一に配置する こ とが重 要になる。 この 目的に対し、 例えば、 陰極基板 1 と陽極基板 2 との間に 配置される隔壁材 3 を十分に多 く する こ とで、 これらに囲まれた空間と 大気圧との圧力差に.対する表示装置の強度を確保する と共にその表示面 面内の表示性能の一様性を維持する。 .  On the other hand, in the partition wall material 3, when electrons collide with the partition wall material 3, secondary electrons are generated from the surface or the surface is charged (charge-up). is there. Due to these phenomena, the traveling of electrons near the partition wall material 3 is hindered, and the uniformity of the display performance of the pixels in the display screen of the field emission display device may be impaired. To deal with this problem, it is important to appropriately control the electron traveling space and to arrange the partition members 3 as uniformly as possible. For this purpose, for example, by sufficiently increasing the number of partition members 3 arranged between the cathode substrate 1 and the anode substrate 2, the pressure difference between the space surrounded by these members and the atmospheric pressure can be reduced. The strength of the display device is ensured, and the uniformity of the display performance within the display surface is maintained. .
しかしながら、 従来提案された隔壁材 3 の配置形態は、 これを必ずし も効率的に且つ正確に適切な場所に配置するに十分でな く 、 これを用い て上述の電界放出型表示装置を大量に生産しょう とする と生産性に著し い支障をきたす恐れがあった。 .  However, the arrangement of the partition wall material 3 proposed in the past is not always enough to efficiently and accurately arrange it at an appropriate place. If it were to be produced at a later date, there was a risk that productivity would suffer significantly. .
また、 隔壁材 3を陰極基板 1 と陽極基板 2 を一度に無機接着剤等で結 合する所謂隔壁材 3 の一括配置を採用せず、 陽極基板 2及び陰極基板 1 のいずれか一方に隔壁材 3 を結合した後にこの一方に対向する他方を結 合する製造方法も取られている。 この方法においては、 上記一括配置が 困難な問題に加えて更に以下の問題が加わる。 例えば、 最初に陰極基板 1 と隔壁材 3 を結合させる場合、 隔壁材 3が少な く と も製造工程中にそ の位置が変わ らないよ う に無機接着剤などで固着する。 この固着工程で 陰極基板 1 に設けられた電子放出部への影響が無視できない熱処理 (例 えば、 - 500 °C前後の熱処理) が加わるため、 陰極基板 1 に予め設けられた 電子放出部の電子放出性能を劣化させる確率が大きい。 しかもこの電子 放出性能の劣化は隔壁材 3付近で著し く な り、 結果的にこの電界放出型 表示装置の表示特性で面内の一様性が損なう。 無機接着剤の処理温度と してよ り低温度の材料も存在するが、 最初に陰極基板 1 と隔壁材 3 を結 合させる場合、 その後の組立工程で使われる温度で軟化、 変形する接着 剤は使えない。 このため最初の組み立てで使用する接着剤の処理温度は 最も高い温度で処理するよ う に設定しなければな らない。 なお、 隔壁材 3 が結合された陰極基板 1 に電子放出部を設ける こ とは、 既に例示した 電子放出部の構造から して事実上困難である。 In addition, the bulkhead material 3 is bonded to the cathode substrate 1 and the anode substrate 2 at a time with an inorganic adhesive or the like. A manufacturing method has also been adopted in which, after bonding 3, the other side is bonded to the other side. In this method, the following problem is added in addition to the above-mentioned problem that the collective arrangement is difficult. For example, when the cathode substrate 1 and the partition member 3 are first bonded, the partition member 3 is fixed with an inorganic adhesive or the like so that its position does not change at least during the manufacturing process. Heat treatment in which the effect on the electron-emitting portion provided on the cathode substrate 1 cannot be ignored in this fixing process (Example For example, a heat treatment of about -500 ° C.) is applied, so that there is a high probability that the electron emission performance of the electron emission portion provided in advance on the cathode substrate 1 is deteriorated. In addition, the deterioration of the electron emission performance becomes remarkable in the vicinity of the partition wall material 3, and as a result, the in-plane uniformity is deteriorated in the display characteristics of the field emission display device. Some materials have a lower temperature as the processing temperature of the inorganic adhesive, but when bonding the cathode substrate 1 and the partition material 3 first, the adhesive softens and deforms at the temperature used in the subsequent assembly process. Cannot be used. For this reason, the processing temperature of the adhesive used in the first assembly must be set so as to process at the highest temperature. It is practically difficult to provide an electron-emitting portion on the cathode substrate 1 to which the partition wall material 3 is bonded, because of the structure of the electron-emitting portion described above.
また、 最初に陽極基板 2 と隔壁材 3 を結合させる場合も同 じ く 陽極基 板 2 に.無視できない熱処理、 例えば 500 °C前後の'熱処理が加わり、 陽極基 板 2 に'予め形成された蛍光体 1 1 の発光効率を劣化させる危険性がある。 しかも この発光効率の劣化は隔壁材 3付近で著し く な り、 結果的にこの 電界放出型表示装置の表示特性で面内の一様性が損なわれる危険性があ る。 なお、 隔壁材 3 が結合された陽極基.板 2 に蛍光体 1 1 を設ける こ と も、 この陽極基板 2 の構造上困難である。  Similarly, when the anode substrate 2 and the partition wall material 3 are first bonded, the anode substrate 2 is subjected to a non-negligible heat treatment, for example, a heat treatment of about 500 ° C., so that the anode substrate 2 is formed on the anode substrate 2 in advance. There is a risk of deteriorating the luminous efficiency of the phosphor 11. In addition, the deterioration of the luminous efficiency becomes remarkable in the vicinity of the partition wall member 3, and as a result, the in-plane uniformity of the display characteristics of the field emission display device may be impaired. It is also difficult to provide the phosphor 11 on the anode base plate 2 to which the partition wall material 3 is bonded, due to the structure of the anode substrate 2.
本発明は上記の問題点を解決する ものであ り、 隔壁材 3 を表示性能を 損なう こ と無く 、 効率的かつ正確に配置する こ との出来る構造.と、 その 製造手段とを提供する こ とを目的と している。  The present invention solves the above-mentioned problems, and provides a structure capable of efficiently and accurately arranging the partition member 3 without impairing the display performance, and a method of manufacturing the same. It is intended for.
この目的に対し、 本発明は次の表示装置を提供する。  To this end, the present invention provides the following display device.
本発明による表示装置の一つは、 電子放出部が設けられた陰極基板と この電子放出部から放出された電子の照射によ り発光する発光部 (例え ば、 蛍光部) が設けられた陽極基板とを所定の間隙 (距離) を以つて離 間させる複数の隔壁材を一括する (個々の隔壁材に連結し、 これらの位 置関係を保持する) 「隔壁材連結保持板」 を有するこ とに特徴付けられ る。 以降、 この表示装置を本発明による第 1 の表示装置と も呼ぶ。 本発明による表示装置の他の一つは、 電子放出部が設けられた陰極基 板とこの電子放出部から放出された電子の照射によ り発光する発光部 (例えば、 蛍光部) が設けられた陽極基板とを所定の間隙 (距離) を以 つて離間させる複数の隔壁材と、 上記電子放出部から陽極基板への電子 の流れを制御する電極 (制御電極) とを、 一括する (個々 の隔壁材及び 電極に連結し、 これらの位置関係を保持する) 「隔壁材 · 制御電極連結 保持板」 を有する こ とに特徵付けられる。 以降、 この表示装置を本発明 による第 2 の表示装置と呼ぶ。 One of the display devices according to the present invention includes a cathode substrate provided with an electron emitting portion and an anode provided with a light emitting portion (for example, a fluorescent portion) that emits light by irradiation of electrons emitted from the electron emitting portion. A plurality of partition members that separate the board from the substrate with a predetermined gap (distance) are bundled (connected to individual partition members and the positional relationship between them is maintained). It is characterized by: Hereinafter, this display device is also referred to as a first display device according to the present invention. Another one of the display devices according to the present invention is provided with a cathode substrate provided with an electron-emitting portion and a light-emitting portion (for example, a fluorescent portion) which emits light by irradiation of electrons emitted from the electron-emitting portion. A plurality of partition members for separating the anode substrate with a predetermined gap (distance) with a predetermined gap (distance), and electrodes (control electrodes) for controlling the flow of electrons from the electron emission section to the anode substrate. (It is connected to the partition wall material and the electrode to maintain the positional relationship between them.) It is characterized in that it has a “partition wall material / control electrode connection holding plate”. Hereinafter, this display device is referred to as a second display device according to the present invention.
これらの表示装置は、 例えば電界放出型表示装置のよ う に、 これを構 成する 2つの基板 (板状部材) を液晶表示装置やプラズマ · ディ スプレ ィ · パネルよ り も広く 離間させる装置に適用され、 特に 2つの基板間を ;大気圧よ り低い圧力に保つ場合に有効である。 また、 2つの基板間で荷 '電粒子を走行させる こ とによ り面像表示を行なう電界放出型表示装置に .多 く の利点をもたらす。 These display devices are, for example, field emission display devices in which two substrates (plate-like members) constituting the display device are separated from each other more widely than a liquid crystal display device or a plasma display panel. Applicable, especially when maintaining pressure between two substrates ; below atmospheric pressure. In addition, many advantages are provided for a field emission display device that performs surface image display by causing charged particles to travel between two substrates.
本発明によれば、 上述の第 1 及び第 2 の表示装置に問わず、 これらの 構成要件を組合せ、 上記表示装置の構成要件をその代替物に置換え、 又 は上記表示装置に更に新たな構成要件を加える こ とで、 新たな表示装置 を提供する こ と もできる。 本発明に係る上述の及びその他の目的、 特徴 及び効果は以降の記載とこれに付された図面とを関連させる こ とによ り 更に明確にされよう。 図面の簡単な説明  According to the present invention, irrespective of the first and second display devices described above, these components are combined, the components of the display device are replaced with substitutes, or the display device has a new configuration. By adding requirements, a new display device can be provided. The above and other objects, features, and advantages of the present invention will be further clarified by associating the following description with the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 本発明による第 1 の表示装置の構造的な特徴を簡単に説明 する為の模式図 (主な構成要素に分解された表示装置を斜視図) である 第 2 図は、 本発明による第 2 の表示装置の構造的な特徴を簡単に説明 する為の模式図 (主な構成要素に分解された表示装置を斜視図) である 第 3 図は、 本発明による表示装置の第 1 の実施例を説明する斜視図 (表示装置を主な構成要素に分解して示す分解斜視図、 以下、 断りの無 い限り、 「斜視図」 と略す) である。 FIG. 1 is a schematic diagram (perspective view of a display device disassembled into main components) for briefly explaining the structural features of a first display device according to the present invention. FIG. 3 is a schematic view (perspective view of a display device disassembled into main components) for briefly explaining the structural features of a second display device according to the present invention. FIG. 1 is a perspective view illustrating an embodiment. (An exploded perspective view showing the display device disassembled into main components, and is abbreviated as “perspective view” unless otherwise noted.)
第 4図は、 第 3図における陰極基板 1 の C - D断面図である。  FIG. 4 is a CD cross-sectional view of the cathode substrate 1 in FIG.
第 5図は、 第 3図における陰極基板 1 の A -B断面の一例である。  FIG. 5 is an example of an A-B cross section of the cathode substrate 1 in FIG.
第 6図は、 第 3図において陰極基板 1 の他の A -B断面を持つ第 2の実施 例を示す図である。  FIG. 6 is a view showing a second embodiment having another AB section of the cathode substrate 1 in FIG.
第 7図は、 第 3図において陰極基板 1 の他の A -B断面を持つ第 3の実施 例を示す図である。  FIG. 7 is a view showing a third embodiment having another AB cross section of the cathode substrate 1 in FIG.
第 8図は、 第 7図に示す隔壁材連結保持板 4の平面図である。  FIG. 8 is a plan view of the partition wall member connection holding plate 4 shown in FIG.
第 9図は、 第 7図に示す隔壁材連結保持板 4の平面図における隔壁材 揷入孔 2 1 の拡大図である。  FIG. 9 is an enlarged view of the partition wall material insertion hole 21 in the plan view of the partition wall member connection holding plate 4 shown in FIG.
第 1 0図は、 第 3図において陰極基板 1 の他の A -B断面を持つ第 4の実 施例を示す図である。  FIG. 10 is a view showing a fourth embodiment having another AB cross section of the cathode substrate 1 in FIG.
第 1 1 図は、 第 3図において陰極基板 1 の他の A-B断面を持つ第 5の実 施例を示す図である。 · 第 1 2図は、 第 3図において陰極基板 1 の他の A -B断面を持つ第 6の実 施例を示す図である。  FIG. 11 is a diagram showing a fifth embodiment having another section A-B of the cathode substrate 1 in FIG. · FIG. 12 is a diagram showing a sixth embodiment having another AB cross section of the cathode substrate 1 in FIG.
第 1 3図は、 本発明による表示装置の第 7の実施例を説明する斜視図 である。  FIG. 13 is a perspective view for explaining a seventh embodiment of the display device according to the present invention.
第 1 4図は、 第 1 3図における陰極基板 1 の C -D断面図である。  FIG. 14 is a CD sectional view of the cathode substrate 1 in FIG.
第 1 5図は、 本発明の第 8の実施例を説明する斜視図である。  FIG. 15 is a perspective view for explaining an eighth embodiment of the present invention.
第 1 6図は、 本発明による表示装置の第 9の実施例を説明する斜視図 である。  FIG. 16 is a perspective view for explaining a ninth embodiment of the display device according to the present invention.
第 1 7図は、 本発明による表示装置の第 1 0の実施例を説明する斜視 図である。  FIG. 17 is a perspective view for explaining a tenth embodiment of the display device according to the present invention.
第 1 8図は、 本発明による表示装置の第 1 1の実施例を説明する斜視 図である。 第 1 9 図は、 第 1 8 図における陰極基板 1 の C-D断面図である。 FIG. 18 is a perspective view for explaining a first embodiment of the display device according to the present invention. FIG. 19 is a CD sectional view of the cathode substrate 1 in FIG.
第 2 0 図は、 本発明による表示装置の第 1 2 の実施例を説明する斜視 図である。  FIG. 20 is a perspective view for explaining a 12th embodiment of the display device according to the present invention.
第 2 1 図は、 第 2 0 図における陰極基板 1 の A -B断面図である。  FIG. 21 is a cross-sectional view taken along a line AB of the cathode substrate 1 in FIG.
第 2 2 図は、 第 2 0 図において陰極基板 1 の他の A-B断面を持つ第 1 3 の実施例を示す図である。  FIG. 22 is a diagram showing a thirteenth embodiment having another AB cross section of the cathode substrate 1 in FIG.
第 2 3 図は、 第 2 0 図において陰極基板 1 の他の A -B断面を持つ第 1 4 の実施例を示す図である。  FIG. 23 is a view showing a 14th embodiment having another AB cross section of the cathode substrate 1 in FIG.
第 2 4 図は、 本発明による表示装置の第 1 5 の実施例を説明する斜視 図である。  FIG. 24 is a perspective view for explaining a fifteenth embodiment of the display device according to the present invention.
第 2 5 図は、 本発明による表示装置の第 1 6 の実施例を説明する斜視 図である。  FIG. 25 is a perspective view for explaining a sixteenth embodiment of the display device according to the present invention.
第 2 6 図は、 本発明による表示装置の第 1 7 の実施例を説明する斜視 図である。 '  FIG. 26 is a perspective view for explaining a seventeenth embodiment of the display device according to the present invention. '
第 2 7 図は、 本発明による表示装置の第 1 8 の実施例を説明する斜視 図である。  FIG. 27 is a perspective view for explaining the eighteenth embodiment of the display device according to the present invention.
第 2 8 図は、 本発明による表示装置の第 1 9 の実施例を説明する斜視 図である。  FIG. 28 is a perspective view for explaining a nineteenth embodiment of the display device according to the present invention.
第 2 9 図は、 本発明による表示装置の第 2 0 の.実施例を説明する斜視 図である。  FIG. 29 is a perspective view for explaining a 20th embodiment of the display device according to the present invention.
第 3 0 図は、 本発明による表示装置の第 2 1 の実施例を説明する斜視 図である。  FIG. 30 is a perspective view for explaining a twenty-first embodiment of the display device according to the present invention.
第 3 1 図は、 本発明による表示装置の第 2 2 の実施例を説明する斜視 図である。  FIG. 31 is a perspective view for explaining a second embodiment of the display device according to the present invention.
第 3 2 図は、 本発明による表示装置の第 2 3の実施例を説明する斜視 図である。  FIG. 32 is a perspective view for explaining a 23rd embodiment of the display device according to the present invention.
第 3 3 図は、 本発明による表示装置の第 2 4の実施例を説明する斜視 図である。 FIG. 33 is a perspective view illustrating a twenty-fourth embodiment of the display device according to the present invention. FIG.
第 3 4 図は、 本発明による表示装置の第 2 5 の実施例を説明する斜視 図である。  FIG. 34 is a perspective view for explaining a twenty-fifth embodiment of the display device according to the present invention.
第 3 5 図は、 第 3 4 図における陰極基板 1 の C -D断面図である。  FIG. 35 is a CD sectional view of the cathode substrate 1 in FIG.
第 3 6 図は、 本発明による表示装置の第 2 6 の実施例を説明する斜視 図である。  FIG. 36 is a perspective view for explaining a 26th embodiment of the display device according to the present invention.
第 3 7 図は、 本発明による表示装置の第 2 7 の実施例を説明する斜視 図である。  FIG. 37 is a perspective view for explaining a twenty-seventh embodiment of the display device according to the present invention.
第 3 8 図は、 本発明による表示装置の第 2 8の実施例を説明する斜視 図である。  FIG. 38 is a perspective view for explaining a twenty-eighth embodiment of the display device according to the present invention.
第 3 9 図は、 本発明による表示装置の第 2 9 の実施例を説明する斜視 図である。  FIG. 39 is a perspective view for explaining a ninth embodiment of the display device according to the present invention.
第 4 0 図は、 本発明による表示装置の第 3 0 の実施例を説明する斜視 図である。  FIG. 40 is a perspective view for explaining a 30th embodiment of the display device according to the present invention.
第, 4 1 図は、 本発明による表示装置の第 3 1 の実施例を説朋する斜視 図である。  FIG. 41 is a perspective view illustrating a thirty-first embodiment of the display device according to the present invention.
第 4 2 図は、 第 4 1 図において隔壁材 3 の組み合わせ構造例を示す斜 視図である。 - 第 4 3 図は、 本発明による表示装置の第 3 2 の実施例を説明する斜視 図である。  FIG. 42 is a perspective view showing an example of a combination structure of the partition wall members 3 in FIG. FIG. 43 is a perspective view for explaining a 32nd embodiment of the display device according to the present invention.
第 4 4 図は、 本発明による表示装置の第 3 3 の実施例を説明する斜視 図である。  FIG. 44 is a perspective view for explaining a third embodiment of the display device according to the present invention.
第 4 5 図は、 本発明による表示装置の第 3 4 の実施例を説明する斜視 図である。  FIG. 45 is a perspective view for explaining a 34th embodiment of the display device according to the present invention.
第 4 6図は、 本発明による表示装置の第 3 5 の実施例を説明する斜視 図である。  FIG. 46 is a perspective view for explaining a thirty-fifth embodiment of the display device according to the present invention.
第 4 7 図は、 本発明による表示装置の第 3 6 の実施例を説明する斜視 図である。 FIG. 47 is a perspective view illustrating a 36th embodiment of the display device according to the present invention. FIG.
第 4 8 図は、 本発明による表示装置の第 3 7 の実施例を説明する斜視 図である。  FIG. 48 is a perspective view for explaining a 37th embodiment of the display device according to the present invention.
第 4 9 図は、 本発明による表示装置の第 3 8 の実施例を説明する斜視 図である。  FIG. 49 is a perspective view for explaining a 38th embodiment of the display device according to the present invention.
第 5 0 図は、 本発明による表示装置の第 3 9 の実施例を説明する斜視 図である。  FIG. 50 is a perspective view for explaining a thirty-ninth embodiment of the display device according to the present invention.
第 5 1 図は、 本発明による表示装置の第 4 0 の実施例を説明する斜視 図である。  FIG. 51 is a perspective view for explaining a 40th embodiment of the display device according to the present invention.
第 5 2 図は、 本発明による表示装置の第 4 1 の実施例を説明する斜視 図である。  FIG. 52 is a perspective view for explaining a 41st embodiment of the display device according to the present invention.
第 5 3 図は、 本発明による表示装置の第 4 2 の実施例を説明する斜視 図である。 ' - • 第 5 4 図は、 本発明による表示装置の第 4 3の実施例を説明する斜視 図である。  FIG. 53 is a perspective view for explaining a 42nd embodiment of the display device according to the present invention. '-• FIG. 54 is a perspective view for explaining a fourth embodiment of the display device according to the present invention.
第 5 5 図は、 本発明による表示装置の第 4 4の実施例を説明する斜視 図である。  FIG. 55 is a perspective view for explaining a fourth embodiment of the display device according to the present invention.
第 5 6 図は、 本発明による表示装置の陰極基板に設けられる電子放出 部の一例を示す図であ り、 ( a ) はその平面図を、 ( b ) は ( a ).の C — C線に沿って描かれた断面図である。  FIG. 56 is a diagram showing an example of an electron-emitting portion provided on a cathode substrate of a display device according to the present invention, wherein (a) is a plan view thereof, and (b) is a C—C of (a). It is sectional drawing drawn along the line.
第 5 7 図は、 電子放出型表示装置の一例を示す説明図で、 ( a ) はこ れを分解した状態を示す斜視図、 ( b ) は ( a ) に示す表示装置を分解 する前の状態で X — z 面に沿って切断したときの断面図を夫々示す。 第 5 8 図は、 Spindt型電子源を用いた電界放出型表示装置を説明する 図で、 ( a ) はその等価回路図、 ( b ) はその電子放出部の平面図、 FIG. 57 is an explanatory view showing an example of the electron emission type display device. (A) is a perspective view showing a state in which the display device is disassembled, and (b) is a view before disassembling the display device shown in (a). The cross-sectional views are shown along the X-z plane in each state. FIG. 58 is a diagram illustrating a field emission display device using a Spindt-type electron source. (A) is an equivalent circuit diagram, (b) is a plan view of the electron emission portion,
( c ) は ( b ) の電子放出部を C 一 C線で切断したときの断面図を夫々 示す。 第 5 9図は、 表面伝導型電子源を用いた電界放出型表示装置を説明す る図で、 ( a ) はその等価回路図、 ( b ) はその電子放出部の平面図、 ( c ) は ( b ) の電子放出部を C _ C線で切断したときの断面図を夫々 示す。 (c) is a cross-sectional view of the electron emission portion of (b) taken along the line C-C. FIG. 59 is a diagram for explaining a field emission display device using a surface conduction electron source. (A) is an equivalent circuit diagram, (b) is a plan view of the electron emission portion, (c) (B) is a cross-sectional view when the electron emission portion of (b) is cut along the line CC.
第 6 0図は、 従来の電界放出型表示装置の画素 (電子放出部) 周辺を 模式的に示す斜視図である。 発明を実施するための最良の形態  FIG. 60 is a perspective view schematically showing a periphery of a pixel (electron emitting portion) of a conventional field emission display device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら本発明を説明する。  Hereinafter, the present invention will be described with reference to the drawings.
第 1 図は本発明による第 1 の表示装置を概念的に説明するための説明 図で、 その表示装置の画素 (電子放出部) 付近の配置を簡略に示す。 第 1 図は、 本発明による第 1 の表示装置の構造的な特徴を強調するために この特徴に直接関与しない以下の部分が省略きれている。  FIG. 1 is an explanatory diagram for conceptually explaining a first display device according to the present invention, and schematically shows an arrangement near a pixel (electron emission portion) of the display device. FIG. 1 omits the following parts which are not directly related to the first display device according to the present invention in order to emphasize the structural characteristics thereof.
( 1 ) 隔壁'材 (壁部材) 3 と隔壁材連結保持板 (連結部材) 4、 または 隔壁材 3 と隔壁材 · 制御電極連結保持板 (連結部材、 後述) 4を結合す る手段 (例えば、 接着剤) 。 ''  (1) Partition wall material (wall member) 3 and partition wall connection holding plate (connection member) 4, or partition wall member 3 and partition wall / control electrode connection holding plate (connection member, described later) , adhesive) . ''
( 2 ) 電界放出型表示装置内を真空に保つ為の支持枠 (側壁) 3 と、 陰 極基板 1 と、 陽極基板 2 とを気密に封止する手段。  (2) A means for hermetically sealing the support frame (sidewall) 3, the negative electrode substrate 1, and the positive electrode substrate 2 for keeping the inside of the field emission display device at a vacuum.
( 3 ) 隔壁材 3 と陰極基板 1、 又は隔壁材 3 と陽極基板 2を固定する手 段。  (3) A method for fixing the partition wall member 3 and the cathode substrate 1 or the partition wall member 3 and the anode substrate 2.
( 4 ) 電界放出型表示装置内 (電子を走行させる筐体内) を真空封じす る為の機構 (例えば、 筐体に設けられた排気口) 。  (4) A mechanism (for example, an exhaust port provided in the housing) for vacuum-sealing the inside of the field emission display device (the inside of the housing where electrons travel).
( 5 ) 電界放出型表示装置内を高真空に維持する為のゲッタ材。  (5) A getter material for maintaining a high vacuum inside the field emission display.
( 6 ) 陰極基板 1 、 陽極基板 2、 隔壁材連結保持板 4または隔壁材 · 制 御電極連結保持板 4を電気的に接続する手段。  (6) Means for electrically connecting the cathode substrate 1, the anode substrate 2, the partition wall connecting and holding plate 4, or the partition wall and control electrode connecting and holding plate 4.
( 7 ) 陰極基板 1 に設けられた電子を真空中 (上記筐体内) へ放出する 手段 (上述の電子放出部) 。 これらの構成要素は、 後述する本発明の実施例 (以下、 実施例と呼 ぶ) にて参照する他の図面においても省略されるが、 いずれかの構成要 素、 またはその組合わせに特徴のある実施例に参照する図面においては 適宜示される。 (7) Means (the above-described electron emitting portion) for emitting electrons provided on the cathode substrate 1 into a vacuum (in the above housing). These components are omitted in other drawings referred to in the embodiments of the present invention (hereinafter, referred to as embodiments), which will be described later, but any one of the components or a combination thereof has a feature. It is shown as appropriate in the drawings that refer to an embodiment.
第 1 図に示された構造を有する電界放出型表示装置は、 陰極基板 1、 陽極基板 2、 及び図示されない支持枠 (側壁) によ り 囲まれた空間 (筐 体) を有し、 且つこの空間内を真空に保つ気密性と強度を持っている。 第 5 7 図 ( b ) を参照して説明すれば、 陰極基板 1 (ガラス基板 6 と し て示される) 及び陽極基板 2 は、 夫々 に加わる上記空間内と大気圧との 圧力差に因る z 軸方向の応力 (撓み) で破壊されない程度の強度を有す る。 陽極基板 2 は陰極基板 1 に対してプラス (正) の電位が印加され、 ■ 且つ陰極基板 1 から飛来した電子を受けて発光する蛍光体 1 1 を有する , ' この陰極基板 1 と陽極基板 2 の間には、 複数の隔壁材 3 とこれらが機 • 械的に結合された隔壁材連結保持板 4 とによ り構成される隔壁材集合体. 1 7 が配置されている。 隔壁材 3 は電子の走行方向に沿つ た面を有し、 この面の下辺を陰極基板 1 に、 この面の上辺を隙極基板 2 に夫々接触さ せる こ とによ り 陰極基板 1 と陽極基板 2 との間に所望の間隙を形成する 隔壁材 3 と隔壁材連結保持板 4 との連結形態には種々 の例がある'。 また 隔壁材 3及び隔壁材連結保持板 4 の形状と配置にも種.々の形態があ り得 る。 これらの組み合わせのう ち代表的な形態を以下の実施例で説明する が、 こ こに述べる実施例だけが本発明の特徴を実現する ものではない。 第 2 図は本発明による第 2 の表示装置を概念的に説明するための説明 図で、 その表示装置の画素 (電子放出部) 付近の配置を第 1 図と同様に 簡略に示す。  The field emission display device having the structure shown in FIG. 1 has a space (housing) surrounded by a cathode substrate 1, an anode substrate 2, and a support frame (side wall) not shown. It has airtightness and strength to keep the space in a vacuum. Referring to FIG. 57 (b), the cathode substrate 1 (shown as a glass substrate 6) and the anode substrate 2 are caused by the pressure difference between the above-mentioned space and the atmospheric pressure applied to each. It is strong enough not to be damaged by stress (bending) in the z-axis direction. Positive (positive) potential is applied to the anode substrate 2 with respect to the cathode substrate 1, and the anode substrate 2 has a phosphor 11 that emits light by receiving electrons flying from the cathode substrate 1. Between them, a bulkhead material aggregate 17 composed of a plurality of bulkhead materials 3 and a bulkhead material connecting / holding plate 4 in which these are mechanically connected is arranged. The partition wall material 3 has a surface along the traveling direction of the electrons, and the lower side of this surface is brought into contact with the cathode substrate 1 and the upper side of this surface is brought into contact with the gap electrode substrate 2, whereby There are various examples of the form of connection between the partition wall member 3 and the partition wall connection holding plate 4 that form a desired gap between the anode substrate 2 and the partition wall member 3. Also, the shape and arrangement of the partition wall member 3 and the partition wall connection holding plate 4 may have various forms. Representative embodiments of these combinations will be described in the following embodiments, but only the embodiments described here do not realize the features of the present invention. FIG. 2 is an explanatory diagram for conceptually explaining a second display device according to the present invention, and the arrangement of the display device in the vicinity of a pixel (electron emission portion) is simply shown as in FIG.
第 2 図に示された構造を有する電界放出型表示装置は、 陰極基板 1、 陽極基板 2 、 及び図示されない支持枠 (側壁) によ り 囲まれた空間 (筐 体) を有し、 且つこの空間内を真空に保つ気密性と強度を持っている。 陰極基板 1 は電子を上記空間 (真空) 中へ放出する手段を有し、 且つ この空間を真空に保ち得る気密性と強度を持っている。 陽極基板 2 は陰 極基板 1 に対してプラス (正) の電位が印加され、 且つ陰極基板 2 から 飛来した電子を受けて発光する蛍光体 1 1 を有する。 陽極基板 2 も陰極 基板 1 と同様に、 上記空間内を真空に保ち得る気密性と強度を持ってい る。 陰極基板 1 と陽極基板 2 の間には、 複数の隔壁材 3、 これらが機械 的に結合された隔壁材連結保持板 4 、 及び制御電極 5 から構成された隔 壁材 · 制御電極集合体 1 8が配置されている。 隔壁材 3 は電子の走行方 向に沿った面を有し、 この面の下辺に固定された制御電極 5 を陰極基板 1 に、 この面の上辺を陽極基板 2 に夫々接触させる こ とによ り陰極基板 1 と陽極基板 2 との間に所望の間隙を与える。 隔壁材 3 と隔壁材連結保 持板 4 との連結形態には種々の例がある。 また隔壁材 3、 隔壁材連結保 持板 4及び制御電極 5 の形状と配置にも多 く の形態がある。 これらの組 み合わせのう ち代表的な形態を以下の実施例で説明するが、 こ こに述べ る実施例だけが本発明の特徴を実現する ものではない。 The field emission display having the structure shown in FIG. 2 has a space (housing) surrounded by a cathode substrate 1, an anode substrate 2, and a support frame (side wall) (not shown). It has airtightness and strength to keep the space in a vacuum. The cathode substrate 1 has a means for emitting electrons into the space (vacuum), and has airtightness and strength capable of keeping this space vacuum. The anode substrate 2 has a phosphor 11 applied with a positive (positive) potential with respect to the cathode substrate 1 and emitting light upon receiving electrons flying from the cathode substrate 2. Like the cathode substrate 1, the anode substrate 2 has airtightness and strength capable of maintaining the above-mentioned space in a vacuum. Between the cathode substrate 1 and the anode substrate 2, there are a plurality of partition members 3, a partition wall connecting and holding plate 4 in which these are mechanically connected, and a partition member composed of control electrodes 5 and a control electrode assembly 1. 8 are located. The partition wall material 3 has a surface along the traveling direction of electrons, and the control electrode 5 fixed to the lower side of this surface is brought into contact with the cathode substrate 1 and the upper side of this surface is brought into contact with the anode substrate 2. A desired gap is provided between the cathode substrate 1 and the anode substrate 2. There are various examples of the connection form between the partition wall material 3 and the partition wall connection holding plate 4. There are many forms in the shape and arrangement of the partition wall material 3, the partition wall connection holding plate 4, and the control electrode 5. Representative embodiments of these combinations will be described in the following embodiments, but only the embodiments described here do not realize the features of the present invention.
上述の本発明による第 1 及び第 2 の表示装置の夫々 に設けられる隔壁 材 3 は、 真空 (例えば、 1 0 — 5〜 1 0 — 7 Torrの圧力) に保たれた上記 空間 (上記筐体内) を第 5 7 図に示す X軸方向又は y軸方向に沿って完 全に仕切る必要はな く 、 これと陰極基板 1 又は陽極基板 2 との間に筐体 内の真空排気のコ ンダク タ ンスを上げるに好ま しい開口が形成されるよ うな形状に しても本発明の実施に支障を来たすものでない。 また、 隔壁 材 3 は上記筐体内での電子の走行を妨げないために、 その走行方向 (陰 極基板 1 生面から陽極基板 2主面に引かれる仮想的な線の延伸方向、 第 2 図における z軸方向) に沿って広がる面 (例えば、 第 2 図における y 一 z 面や X — z面) を有する板状部材とする こ とが望ま しい。 電子の走 行方向に沿っ た面は、 電子の走行を妨げない範囲において電子の走行方 向に対し傾斜を示してもよい。 また、 隔壁材 3 の電子の走行方向に沿つ た面 (第 2 図の例では y — z 面) の面積を、 この面の各辺にて接する他 の面の面積よ り大き く (広く ) する こ とによ り、 表示画面 (第 2 図の X 一 y面) における電子の走行領域 (換言すれば陽極基板 2 における電子 の照射領域) の面積比を大き く でき る。 このよ う に形成された隔壁材 3 の電子の走行方向に沿っ た面 (他の面に比べて広い) は、 「隔壁材の主 面」 と も呼ばれる。 表示画面における電子の走行領域の面積比を大き く する こ とは、 表示装置の面素数の増加に望ま し く 、 また個々の画素の輝 度を上げる利点をもたらす。 隔壁材 3 には、 その強度を損なわない限 り において、 開口を設けてもよい。 隔壁材 3 と呼ばれる部材は、 その視覚 的な特徴に基づき、 本願明細書において、 この名称にて特定されるが、 表示装置における実施態様に応じて壁部材や、 板状部材、 プレー ト ( Plate ) と して呼ばれ得る。 · 上述の本発明による第 Ί 及び第 2 の表示装置の夫々 に設けられる隔壁 連結保持板 4 は、 上記複数の隔壁材 3 を上記陰極基板 1 や上記陽極基板 2 に固定する こ とな く 、 これらの基板間に配置するために各々の隔壁材 3 と機械的に固定されるよ う に形成される。 隔壁連結保持板 4 と隔壁材 3 との機械的な固定は、 例えば、 隔壁連結保持板 4 に開口部を設け、 こ の開口部に隔壁材 3 に設けた突起部を嵌め込むこ とによ り、 また隔壁連 結保持板 4 の面に隔壁材 3 の面を接着剤やソルダによ り固定する こ とに よ り達成できる。 表示装置における電子が走行する空間を排気する際に 生じる大気圧による陰極基板 1 又は陽極基板 2 の撓みは隔壁材 3 によ り 吸収されるが、 隔壁材 3 をこれらの基板に固定していない場合、 隔壁材 3 の各々 は基板から加わる応力を緩和するために、 夫々の位置が変動 し 得る。 このよ うな変動は、 電子の走行方向に沿った夫々の面が互いに交 差する 2種類の隔壁材 3 を組合わせた上記特開 2 0 0 0 - 2 1 3 3 5号 公報に開示される一例でも生じる。 この変動は、 面素毎に電子の走行領 域の形状や容積を変え、 陽極基板への電子照射条件を画素毎に異ならせ 得る。 しかしながら、 本発明による表示装置に設けられる隔壁連結保持 板 4 は、 その上記筐体内における電子の走行方向 (第 2 図における z軸 方向) に交差するよ う に広がる面 (例えば、 第 2 図における X _ y面) で上記複数の隔壁材 3 の各々 に接合する。 例えば、 隔壁連結保持板 4 の 電子の走行方向に交差する面に上述の開口部を設け、 この開口部に隔壁 材 3 の各々 に設けた電子の走行方向に沿って突き出る上述の突起部を嵌 める。 このよ うな接合によ り、 特定の隔壁材 3 に大き く 加わる応力 (第 2 図では z 軸方向) を、 隔壁連結保持板 4 の電子の走行方向に交差する 面内 (第 2 図では X — y面) を通して他の隔壁材 3 に分散し、 画素間に おける電子の走行条件の相違を抑える。 また、 隔壁連結保持板 4 の電子 の走行方向に交差する面には陰極基板 2 に設けられた電子放出部の各々 に対応して複数の開口 (上述の突起部が嵌められる開口部とは別) が設 けられる。 電子放出部から放出される電子 (荷電粒子) は、 電荷を有す るため、 陰極基板 : 1 から陽極基板 2 に向けて空間電荷効果を受けながら . 第 5 8 図 ( c ) 及,び第 5 9 図 ( c ) に示すよ う に所定の軌道に沿って走 行する。 このため、 隔壁連結支持板 4 に設けられた開口は、 陽極基板 2 に到.達する電子を制限するよ り、 むしろ、 この電子軌道を成形する所謂 電子レンズ (又はその類似物) と して働 く 。 従って、 電子放出部に対応 する開口をその形状を揃えて隔壁連結支持板 4 に設ける こ とによ り、 電 子放出部毎 (換言すれば、 面素毎) の電子走行条件が揃う。 これによ り . 陽極基板への電子照射が画素毎に相違する問題が解消され、 表示装置の 画面に亘り各画素の蛍光体をばらつきな く 発光させる こ とができる。 こ の効果は、 表示装置に 「ムラ」 のない面像を表示させる という大きな利 点をもたらす。 このよ う な筐体内での電子の走行方向 (第 2 図における z軸方向) に交差する面を有する隔壁連結保持板 4 は、 板状に形成する こ とが望ま しい。 板状部材と して形成される隔壁連結保持板 4 は、 その 電子の走行方向に交差する面 (第 2 図の例では、 X — y面) の面積を、 その各辺にて接する他の面 (第 2 図の例では、 X — z 面や y - z面) の 面積よ り大き く (広く ) する。 このよ う に形成された隔壁連結保持板 4 の電子の走行方向に交差する面 (他の面に比べて広い) は、 「隔壁連結 保持板の生面」 と も呼ばれる。 板状に形成された隔壁連結保持板 4 は、 その生面による複数の隔壁材 3 を連結し且つ保持する性能を損なう こ と な く 、 筐体内における電子の走行領域 (第 2 図の z 軸方向) を十分に広 げる こ とができる。 筐体内における電子の走行領域が広がると、 この電 子の軌道は上述の隔壁連結保持板 4 の主面に設けられた開口による レン ズ効果に大き く 依存する。 このため、 陰極基板 2 の電子放出部の各々 に 対応させて隔壁連結保持板 4 の主面に設けた開口の形状を一様に設計す る限り において、 いずれの電子放出部 (画素) においても電子は陰極基 板 1 から陽極基板 2 に同様な軌道で走行でき、 その結果、 画素間におけ るの輝度のバラツキも解消される。 さ らに、 上記本発明による第 2 の表 示装置では、 隔壁連結保持板 4の基材を絶縁材料で形成し,、 その主面の 開口を囲むよ う に導電材料の膜を形成する こ とで、 制御電極を形成でき る。 なお、 隔壁連結保持板 4 と呼ばれる部材は、 その視覚的な特徴に基 づいて、 この名称にて本願明細書では特定されるが、 その実施態様に応 じて連結部材や、 連結板、 ジ ョ イ ナ (J o iner ) と も呼ばれ得る。 The partition member 3 provided in each of the above-described first and second display devices according to the present invention is provided in the above-described space (for example, in the housing) maintained in a vacuum (for example, a pressure of 10 to 5 to 10 to 7 Torr). ) Does not need to be completely partitioned along the X-axis direction or the Y-axis direction shown in Fig. 57, and the vacuum exhaust conductor in the housing is interposed between this and the cathode substrate 1 or anode substrate 2. Even if the shape is such that an opening suitable for increasing the impedance is formed, it does not hinder the implementation of the present invention. In addition, in order that the partition wall material 3 does not hinder the traveling of electrons in the above-mentioned housing, its traveling direction (extending direction of a virtual line drawn from the anode substrate 1 raw surface to the anode substrate 2 main surface, FIG. It is desirable to use a plate-shaped member having a surface (for example, the y-z plane or the X-z plane in FIG. 2) extending along the z-axis direction in FIG. The surface along the traveling direction of the electrons may show an inclination with respect to the traveling direction of the electrons within a range that does not hinder the traveling of the electrons. In addition, along the traveling direction of electrons of the partition wall material 3, By making the area of the surface (the y-z surface in the example of Fig. 2) larger (wider) than the area of the other surface that touches each side of this surface, the display screen (the second The area ratio of the electron traveling area (in other words, the electron irradiation area on the anode substrate 2) on the X-y plane in the figure can be increased. The surface (wider than the other surface) of the partition wall material 3 formed in this way along the traveling direction of electrons is also referred to as “principal surface of the partition wall material”. Increasing the area ratio of the electron traveling region on the display screen is desirable for increasing the number of surface elements of the display device, and has the advantage of increasing the brightness of each pixel. The partition wall member 3 may be provided with an opening as long as its strength is not impaired. The member called the partition wall material 3 is specified by this name in the specification of the present application based on its visual characteristics. However, depending on the embodiment of the display device, a wall member, a plate-like member, a plate (plate) is used. ). The partition connection holding plate 4 provided in each of the first and second display devices according to the present invention described above does not fix the plurality of partition members 3 to the cathode substrate 1 or the anode substrate 2. In order to arrange between these substrates, it is formed so as to be mechanically fixed to each partition material 3. The mechanical fixing of the partition wall connection holding plate 4 and the partition wall member 3 is performed, for example, by providing an opening in the partition wall connection holding plate 4 and fitting the protrusion provided on the partition wall member 3 into the opening. This can be achieved by fixing the surface of the partition wall material 3 to the surface of the partition wall connection holding plate 4 with an adhesive or solder. The deflection of the cathode substrate 1 or the anode substrate 2 due to the atmospheric pressure generated when exhausting the space where electrons travel in the display device is absorbed by the partition material 3, but the partition material 3 is not fixed to these substrates. In this case, the position of each of the partition wall members 3 may be changed in order to reduce the stress applied from the substrate. Such a variation is disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2000-213335 in which two types of partition members 3 whose respective surfaces along the traveling direction of electrons cross each other are combined. It occurs even in one example. This fluctuation changes the shape and volume of the electron traveling area for each surface element, and changes the electron irradiation conditions on the anode substrate for each pixel. obtain. However, the partition connection holding plate 4 provided in the display device according to the present invention has a surface (for example, as shown in FIG. 2) that extends so as to intersect with the electron traveling direction (the z-axis direction in FIG. 2) in the housing. (The X_y plane) is joined to each of the plurality of partition members 3. For example, the above-described opening is provided on a surface of the partition connection holding plate 4 that intersects with the electron traveling direction, and the above-described projection provided on each of the partition wall members 3 and protruding along the traveling direction of the electron is fitted into the opening. Confuse. By such bonding, the stress (in the z-axis direction in FIG. 2) that is greatly applied to the specific partition wall material 3 is transferred to the partition wall 4 in a plane intersecting the electron traveling direction (in FIG. 2, X — Dispersed into other partition material 3 through the (y-plane) to suppress the difference in electron traveling conditions between pixels. In addition, a surface of the partition connection holding plate 4 that intersects with the electron traveling direction has a plurality of openings corresponding to each of the electron emission portions provided on the cathode substrate 2 (separate from the opening in which the above-described protrusion is fitted). ) Is established. Since the electrons (charged particles) emitted from the electron-emitting portion have a charge, they undergo a space charge effect from the cathode substrate: 1 to the anode substrate 2. Fig. 58 (c) and Fig. 58 5 9 Run along the prescribed trajectory as shown in Fig. (C). For this reason, the opening provided in the partition wall connecting support plate 4 acts as a so-called electron lens (or the like) that shapes the electron trajectory, rather than restricting the electrons reaching the anode substrate 2. Good. Therefore, by providing the openings corresponding to the electron emitting portions in the partition wall connecting support plate 4 in the same shape, the electron traveling conditions for each electron emitting portion (in other words, for each surface element) are uniform. This solves the problem that the electron irradiation on the anode substrate is different for each pixel, and the phosphor of each pixel can emit light without variation over the screen of the display device. This effect has a great advantage of displaying a surface image without “unevenness” on the display device. It is desirable that the partition wall connecting and holding plate 4 having a surface intersecting with the electron traveling direction (the z-axis direction in FIG. 2) in such a housing is formed in a plate shape. The partition connection holding plate 4 formed as a plate-like member has an area of a plane (X-y plane in the example of FIG. 2) intersecting the traveling direction of the electrons. The area is larger (wider) than the area of the other surface (X-z plane or y-z plane in the example in Fig. 2) that touches each side. The surface (wider than the other surfaces) of the partition connection holding plate 4 formed in this way, which intersects the traveling direction of electrons, is also referred to as a “raw surface of the partition connection holding plate”. The partition connection holding plate 4 formed in a plate shape does not impair the performance of connecting and holding the plurality of partition members 3 due to its raw surface, and the electron traveling area (the z-axis in FIG. 2) in the housing. Direction) can be spread sufficiently. When the traveling area of the electrons in the housing is widened, the trajectories of the electrons largely depend on the lens effect provided by the opening provided on the main surface of the partition connection holding plate 4 described above. For this reason, as long as the shape of the opening provided in the main surface of the partition connection holding plate 4 is designed to be uniform in correspondence with each of the electron emission portions of the cathode substrate 2, any of the electron emission portions (pixels) can be used. Electrons can travel in a similar trajectory from the cathode substrate 1 to the anode substrate 2, and as a result, variations in luminance between pixels are eliminated. Further, in the second display device according to the present invention, the base material of the partition wall connection holding plate 4 is formed of an insulating material, and a film of a conductive material is formed so as to surround the opening of the main surface. Thus, a control electrode can be formed. The member called the partition connection holding plate 4 is specified in this specification by this name on the basis of its visual characteristics, but according to the embodiment, a connection member, a connection plate, and a It can also be called Joiner.
さ らに、 上述及び後述の説明における陰極、 陽極 (メ 夕ルバッ ク) 、 制御電極の機能は、 既に説明 した通り、 表示装置に設けられる電子放出 部 (電子源) の形態やその駆動方法によ り変わり得る。 従って、 陰極、 陽極、 制御電極は、 この順に、 第 1 電極 (電子放出部から電子を放出さ せる) 、 第 2電極 (放出された電子を受ける) 、 及び第 3 電極 (第 1 電 極から第 2電極への電子の流れを調整する) と も呼ぶこ とができる。 但し、 以下の各実施例においては、 夫々の参照番号に対して、 3 : 「隔壁材」 、 4 : 「隔壁材連結保持板」 、 又は単に 「連結板」 、 5 : 「制御電極」 、 7 : 「陰極」 、 8 : 「制御電極用絶縁材」 又は単に 「絶 縁部材」 、 1 0 : 「メ タルバッ ク」 又は 「陽極」 と便宜的に呼ぶ。 また、 表示装置において電子の走行する空間 (上記筐体) は、 この内部を真空 に保つ機能を有する こ とから、 真空槽、 気密手段と も呼ばれる。 Further, the functions of the cathode, anode (metal back), and control electrode in the above and below descriptions depend on the form of the electron emission section (electron source) provided in the display device and the driving method thereof, as already described. It can change more. Therefore, the cathode, the anode, and the control electrode are, in this order, the first electrode (for emitting electrons from the electron emitting portion), the second electrode (for receiving the emitted electrons), and the third electrode (from the first electrode). Adjusting the flow of electrons to the second electrode). However, in each of the following examples, 3: “partition material”, 4: “partition material connection holding plate”, or simply “connection plate”, 5: “control electrode”, 7 : "Cathode", 8: "insulating material for control electrode" or simply " Edge member ”, 10: For convenience, it is called“ metal back ”or“ anode ”. Further, the space in which electrons travel in the display device (the above-described housing) has a function of keeping the inside thereof vacuum, and thus is also referred to as a vacuum chamber or airtight means.
<第 1 の実施例 >  <First embodiment>
第 3 図乃至第 5 図は本発明の第 1 の実施例を説明する図である。 第 1 図において、 陰極基板 1 は陰極用ガラス基板 6、 陰極 7 、 制御電極用絶 縁材 (以下、 絶縁材) 8及び制御電極 5 から構成される。 陽極基板 2 は 陽極用ガラス基板 1 3 、 蛍光体 1 1 、 ブラ ッ クマ ト リ クス 1 2及びメ タ ルバッ ク 1 0 から構成されている。 また第 4 図は第 3 図の C-D断面を示し ている。 陰極基板 1 において、 陰極 7 と制御電極 5 は互いに交差するよ う に配置されてお り、 それぞれ導電性を持つ材料が選ばれている。 この 2 種類の電極間を絶縁する 目的で絶縁材 8 が配'置されている。 陰極 7 は制 御電極 5 にプラスの電位が印加された時に電子を真空空間に放出する機 能を有し、 炭素原子を利用 したダイヤモン ド;膜、 グラフ アイ ト膜あるい は力一ボンナノ チューブ (Carbon Nano Tube; CNT) に加え、 円錐状の先 端から電子を放出するいわゆる Spindt構造、 量子的 ト ンネル効果を利用 する材料などが使われる。 制御電極 5 には第, 4 図のよ う に制御電極孔 9 が設けられている。 この実施例では制御電極孔 9 は円形に形成されてい るが正方形または 巨形でも同じ機能を有する。 制御電極 5.を図のよ う に 設置する手段と しては金属板を機械加工、 レーザ加工あるいはフ ォ ト ' エッチング (被加工物上に Photol ithographyでパターンを描き、 これを マスク と して被加工物を Etchingする手法) する こ とによ って制御電極孔 9 を形成して配置する。  FIG. 3 to FIG. 5 are diagrams illustrating a first embodiment of the present invention. In FIG. 1, a cathode substrate 1 is composed of a cathode glass substrate 6, a cathode 7, a control electrode insulating material (hereinafter, insulating material) 8 and a control electrode 5. The anode substrate 2 includes an anode glass substrate 13, a phosphor 11, a black matrix 12, and a metal back 10. FIG. 4 shows a cross section taken along line CD of FIG. In the cathode substrate 1, the cathode 7 and the control electrode 5 are arranged so as to cross each other, and a material having conductivity is selected for each. An insulating material 8 is provided for the purpose of insulating the two types of electrodes. The cathode 7 has a function of emitting electrons into a vacuum space when a positive potential is applied to the control electrode 5, and is a diamond using carbon atoms; a film, a graphite film, or a carbon nanotube. In addition to (Carbon Nano Tube; CNT), a so-called Spindt structure that emits electrons from the conical tip and a material that uses the quantum tunnel effect are used. The control electrode 5 is provided with a control electrode hole 9 as shown in FIG. In this embodiment, the control electrode hole 9 is formed in a circular shape. As a means to install the control electrode 5. as shown in the figure, the metal plate is machined, laser-processed, or photo-etched (a pattern is drawn on the workpiece by photolithography, and this is used as a mask. The control electrode holes 9 are formed and arranged by etching the workpiece.
一方、 陽極基板 2 においては、 陽極用ガラス基板 1 3上に電子の入射 によって赤 (R ) 、 緑 (G ) 及び青 (B ) を発光する蛍光体 1 1 が空間的に 塗り分けられている。 この 3色の蛍光体 1 1 の間には混色を防ぐ為にブラ ッ クマ ト リ ッ クス 1 2 が配置されている。 また、 これら蛍光体 1 1 とブ ラ ッ クマ ト リ ク ス 1 2 の上には導電性を有し、 かつ陰極基板 1 から走行 して来た電子を透過して蛍光体 1 1 と衝突させ、 発光した光を陽極用ガ ラス基板 1 3側に反射させる機能を持つメ タルバッ ク (陽極) 1 0 を前 面に形成されている。 On the other hand, in the anode substrate 2, phosphors 11 that emit red (R), green (G), and blue (B) due to the incidence of electrons are spatially painted on the anode glass substrate 13. . A black matrix 12 is arranged between the three color phosphors 11 to prevent color mixing. In addition, these phosphors 11 and On the matrix 12, there is conductivity, and electrons that travel from the cathode substrate 1 are transmitted and collide with the phosphor 11, and the emitted light is used as the anode glass. A metal back (anode) 10 having a function of reflecting light to the substrate 13 side is formed on the front surface.
以上の構成を持つ陰極基板 1 と陽極基板 2の間に、 隔壁材 3 と これに連 結する隔壁材連結保持板 (以下、 連結板) 4 から構成される隔壁材の集 合体 17がある。 実際に電界放出型表示装置を組み立てるにはこれら 3つの 構成部品に加え、 大気を遮断する為の側壁と、 これら 4つの部品を気密を 保ちながら連結する手段、 真空封止の手段、 ゲッ タ リ ング手段、 及び陰 極 7 、 制御電極 5、 隔壁材の集合体 1 7 ( As s emb lage ) な らびにメ タル バッ ク 1 0へ電気的に接続する手段を付加するがこれらは図面及び詳細 説明から省かれている。 このよ う に隔壁材 3 と これに連結する連結板 4 とを隔壁材の集合材 1 7 という一つの部品に機械的 (物理的) にま とめ るこ とによ って電界放出型表示装置の:組み立てが極めて容易になる。 第 3 図において、 隔壁材集合体 1 7 の A-;B断面を第 5 図に示す。 Between the cathode substrate 1 and the anode substrate 2 having the above-described configuration, there is a partition material assembly 17 composed of the partition material 3 and the partition material connection holding plate (hereinafter, connection plate) 4 connected thereto. In order to actually assemble a field emission display, in addition to these three components, a side wall for shielding the atmosphere, means for connecting these four parts while maintaining airtightness, means for vacuum sealing, gettery And means for electrically connecting the cathode 7, the control electrode 5, the partition wall assembly 17 (Assemblage), and the metal back 10 will be described. Omitted from the description. In this way, the partition wall member 3 and the connecting plate 4 connected to the partition wall member 3 are mechanically (physically) combined into a single component called the aggregate member 17 of the partition wall member. A: Assembly is extremely easy. In FIG. 3, the section A- ; B of the partition wall assembly 17 is shown in FIG.
第 5 図は隔壁材 3 が隔壁材連結保持板 (連結板) 4 を一部貫いてお り 、 陰極 7側で接着剤 1 5 によって固着 れている構造を示している。 連結 板 4 には電子線通過孔 (開口) 1 4 があ り、 電子の大部分はこの開口を 通って陽極基板 2 に到達する。  FIG. 5 shows a structure in which the partition wall material 3 partially penetrates the partition wall connection holding plate (connecting plate) 4 and is fixed to the cathode 7 side with an adhesive 15. The connection plate 4 has an electron beam passage hole (opening) 14, and most of the electrons reach the anode substrate 2 through this opening.
隔壁材 3 は陰極基板 1 'と陽極基板 2 の間を隔てる為に設置されるので、 その電気的特性は絶縁物である。 しかし必要に応じて適切に導電性を持 たせて表面の電子による帯電を防止する こ とがある。 この適切な導電性 は隔壁材 3 の体積全体ではな く 表面にのみに付与する こ と もある。 隔壁 材 3 の材料と して、 セラ ミ ッ ク ス、 無機ガラス、 結晶化ガラスなどが使 われる。 あ らかじめ焼結 · 固化、 または半焼結 · 固化したセラ ミ ッ クス、 無機ガラス、 結晶化ガラス製の隔壁材 3 を接着剤 15によ り連結板 4 に固 着される。 連結板 4 は絶縁物、 半導体、 および金属材料が使用できる。 電子が付 着する こ とによ り全体又は局所的に帯電して面素の電界分布が不安定に なる場合には適切な導電性を持ち、 かつその電位を制御する電気的装置 に接続されている こ とが望ま しい。 この第 1 の実施例では電位と して第 3 図の陽極基板 2 の電位、 具体的にはのメ タルバッ ク 1 0 の電位にほぼ 等しい電位に保持されている。 陽極電位と同 じに設定するのがも っ と も 簡単であるが、 電子の集束状態をよ り適正に維持する為に陽極電位と異 なっ た電位を選択してもよい。 Since the partition wall material 3 is provided to separate the cathode substrate 1 ′ and the anode substrate 2 from each other, its electrical characteristics are an insulator. However, if necessary, the surface may be appropriately made conductive to prevent the surface from being charged by electrons. The appropriate conductivity may be given only to the surface of the partition wall material 3 instead of the entire volume. Ceramics, inorganic glass, crystallized glass, and the like are used as the material of the partition wall material 3. Pre-sintered / solidified or semi-sintered / solidified ceramics, inorganic glass, crystallized glass partition material 3 is fixed to connecting plate 4 by adhesive 15. The connecting plate 4 can use an insulator, a semiconductor, and a metal material. In the case where the electron is attached and the whole or local charge is caused and the electric field distribution of the surface element becomes unstable, it is connected to an electrical device that has appropriate conductivity and controls the potential. It is desirable that In this first embodiment, the potential is maintained at the potential of the anode substrate 2 in FIG. 3, specifically, the potential of the metal back 10 as shown in FIG. It is easiest to set the same as the anode potential, but a potential different from the anode potential may be selected in order to maintain the electron focusing state more appropriately.
連結板 4 は、 表面に導電性の膜を形成した絶縁物、 又は金属製材料の 部材を使用する とよい。 いずれの場合でも陰極用ガラス基板 6及び陽極 用ガラス基板 1 3 に線熱膨張係数を略一致させる こ とが望ま しい。 絶縁 物と して、 セラ ミ ッ クス、 又はガラスの板を用いる場合、 これに電子線: 通過孔 1 4 と隔壁材揷入孔 2 1' とを開ける。 これらの孔は レーザ加工や 機械加工、 又はフ ォ ト · エッチング法等の既存の加工方法で形成できる , また、 雲母板は優れた耐熱性、 耐絶縁性、 弾力性を有し、 真空中でのガ スの発生も少ないため、 連結板 4 の作製に好適な材料の一つである。 絶 縁物の部材に導電性を付与するには、 その表面に例えば二 .、ソゲル金属 The connecting plate 4 is preferably made of an insulator having a conductive film formed on the surface, or a member made of a metal material. In any case, it is desirable that the linear thermal expansion coefficients of the cathode glass substrate 6 and the anode glass substrate 13 substantially coincide with each other. When a ceramic or glass plate is used as an insulator, an electron beam: passage hole 14 and a partition wall material insertion hole 21 ′ are formed in the plate. These holes can be formed by existing processing methods such as laser processing, mechanical processing, or photo-etching.The mica plate has excellent heat resistance, insulation resistance, elasticity, and can be formed in a vacuum. This is one of the materials suitable for manufacturing the connecting plate 4 because the generation of gas is small. In order to impart electrical conductivity to the insulating member, for example, sogel metal
( Ni ) 、 タ ンタル金属 ( Ta ) の膜をスパッ タ リ ング法で形成する。 連結 板 4 の一方の主面に導電性を持たせる場合は,.、 電子が衝突しやすい陰極 基板 1 側に金属層を設ける とよい。 一方、 連結板 4 の作製に適した導電 性材料と して、 例えば鉄 (Fe ) 、 鉄 · ニッゲル合金 (FeNi ) 、 鉄 · ニッ ゲル · ク ロム合金 (FeNiCr) 、 又は鉄 . ニッケル . コバル ト合金 (Ni) and tantalum metal (Ta) films are formed by sputtering. When one of the main surfaces of the connecting plate 4 is made conductive, it is preferable to provide a metal layer on the side of the cathode substrate 1 where electrons easily collide. On the other hand, as a conductive material suitable for manufacturing the connecting plate 4, for example, iron (Fe), iron / Nigel alloy (FeNi), iron / Nigel / chrome alloy (FeNiCr), or iron / nickel / cobalt Alloy
( FeNiCo) やア ンバー材がある。  (FeNiCo) and Invar.
<第 2 の実施例 >  <Second embodiment>
第 6 図は、 第 3 図に示す隔壁材の集合体 1 7 を隔壁材連結保持板 4の 陽極基板側で接着剤 1 5 によ り隔壁材 3 を固定した第 2 の実施例を、 第 3 図の C 一 D断面と して示す。 接着剤 1 5 を陽極基板側に供給する こ と で、 これが電子の流れに直接曝されるのを防止できる。 FIG. 6 shows a second embodiment in which the bulkhead assembly 17 shown in FIG. 3 is fixed to the bulkhead material connecting and holding plate 4 on the anode substrate side with an adhesive agent 15, and FIG. This is shown as a C-D section in Fig. 3. Supply adhesive 15 to the anode substrate side Thus, this can be prevented from being directly exposed to the flow of electrons.
<第 3の実施例 >  <Third embodiment>
第 7 図、 第 3 図に示す隔壁材の集合体 1 7を接着剤を用いずに、 隔壁 材 3 と隔壁材連結保持板 4 との機械的摩擦と弾性変形とを利用 して組み 立てた第 3 の実施例を、 第 3 図の C _ D断面と して示す。 本実施例では、 隔壁材 3又は隔壁材連結保持板 (連結板) 4 の少な く と も一方を弾力性 のある素材で形成する こ とで、 実施できる。 第 8 図は本実施例に使用す る連結板 4 の一例の主面を示す平面図で、 この主面に隔壁材 3を揷入す るための隔壁材揷入孔 (以下、 開口部) 2 1 が設けられている。 この開 口部 2 1 は、 第 9 図の各々 に拡大して示される。 第 9 図 (a) は隔壁材揷 入孔 2 1 の長さ laの範囲で開口部 2 1 が矩形でな く 折れ曲がった形状を 持つ例を示す。 こ こで、' taがゼロ ( 0 ) でない。 また、 第 9 図 ('b ) は開 口部 2 1 の一部 l b (長さ l bの部分) を折り 曲げた例を示す。 この例でも tbがゼロでない点に特徴を有する。  7 and 3 were assembled by using mechanical friction and elastic deformation between the partition wall material 3 and the partition wall connection holding plate 4 without using an adhesive. A third embodiment is shown as a cross section taken along line CD of FIG. In this embodiment, it can be implemented by forming at least one of the partition wall members 3 or the partition wall connection holding plate (connection plate) 4 from a resilient material. FIG. 8 is a plan view showing a main surface of an example of the connecting plate 4 used in the present embodiment, and a partition material insertion hole (hereinafter referred to as an opening) for inserting the partition material 3 into the main surface. 2 1 is provided. This opening 21 is shown in an enlarged manner in each of FIGS. FIG. 9 (a) shows an example in which the opening 21 has a bent shape rather than a rectangle within the length la of the partition wall insertion hole 21. Here, 'ta is not zero (0). FIG. 9 ('b) shows an example in which a part lb (a part of length lb) of the opening 21 is bent. This example is also characterized in that tb is not zero.
弾力性のある素材と して、 例えば雲母板がある。 連結板 4 を鉄,系合金 で、 隔壁材 3 を雲母で夫々形成する と、 隔壁材 3 の開口部 2 1 に ;嵌めら れた部分が弾性変形し、 その弾性摩擦力で連結板 4 に結合する。 .本実施 例は、 接着剤を使用せず、 機械的な加工と組み立てだけで隔壁材集合体 1 7 が作製できる利点を有する。 また、 連結板 4 と隔壁材 3 の両方を雲 母板で形成してもよい。 An example of an elastic material is mica plate. Iron connecting plate 4, a system alloy, a barrier rib material 3 when respectively formed by mica, the opening 2 the first barrier rib material 3; fitted et portion is elastically deformed, the connecting plate 4 by its elastic frictional force Join. The present embodiment has an advantage that the partition wall assembly 17 can be manufactured only by mechanical processing and assembly without using an adhesive. Further, both the connecting plate 4 and the partition wall material 3 may be formed of mica plates.
<第 4 の実施例〉  <Fourth embodiment>
第 1 0 図は、 第 3 図の隔壁材集合体 1 7 を別の連結態様で組み立てた 第 4の実施例を示す。 本実施例では、 隔壁材 3が隔壁材連結保持板 4 に 揷入されて機械的な摩擦力で固定されるが、 その端部が隔壁材連結保持 板 4 の一方の表面と略一致している。 隔壁材掸入孔 2 1 は第 8図乃至第 9 図に示す形状に成形する こ と もできる。 この構造では、 隔壁材連結支 持板 4 の一方の主面に凹凸が生じないため、 平面の作業台上で隔壁材 3 を隔壁材揷入孔 2 1 に挿入できる。 FIG. 10 shows a fourth embodiment in which the partition wall assembly 17 of FIG. 3 is assembled in another connection mode. In this embodiment, the partition wall material 3 is inserted into the partition wall connection holding plate 4 and fixed by mechanical frictional force, but the end thereof substantially coincides with one surface of the partition wall connection holding plate 4. I have. The partition wall insertion hole 21 may be formed into the shape shown in FIGS. In this structure, since there is no unevenness on one main surface of the partition wall connecting support plate 4, the partition wall member 3 is supported on a flat work table. Can be inserted into the partition material insertion hole 21.
<第 5の実施例 >  <Fifth embodiment>
第 1 1 図は、 第 3 図の隔壁材集合体 1 7 を別の接着方法で組み立てた 第 5 の実施例を示す。 隔壁材 3 は隔壁材保持板 4 に設けられた隔壁材揷 入孔 (開口部) 2 1 に挿入され、 隔壁材保持板 4 の裏面 (陽極基板 2側 の主面) に略 致する隔壁材 3 の揷入端部 (上部) は接着剤 1 5で隔壁 材保持板 4 に固定される。 この構造では、 接着剤 1 5 の塗布領域が略平 坦なため、 組立作業性及び塗布精度を向上させる。  FIG. 11 shows a fifth embodiment in which the partition wall assembly 17 of FIG. 3 is assembled by another bonding method. The partition material 3 is inserted into the partition material insertion hole (opening) 21 provided in the partition material holding plate 4 and substantially matches the rear surface of the partition material holding plate 4 (the main surface on the anode substrate 2 side). The insertion end (upper part) of 3 is fixed to the partition wall holding plate 4 with an adhesive 15. In this structure, the application area of the adhesive 15 is substantially flat, so that assembling workability and application accuracy are improved.
<第 6 の実施例 >  <Sixth embodiment>
第 1 2 図は、 第 3 図の隔壁材集合体 1 7 を、 焼結セラ ミ ッ クスからな る隔壁材 3 をグ リ ー ンシ一 ト等と称する焼結前のセラ ミ ッ クスを設けた した隔壁材連結保持板 (連結板) 4 の主面に配置し、 このセラ ミ ッ クス を所定の温度で焼結して組み立てる第 6 の実施例を示す。 本実施例の連 結板 4 の作製には、 上記焼結温度に耐える金属、 セラ ミ ツ,クス、 及びガ ラス等が用いられる。 また、 焼結前のセラ ミ ッ クスを連結.板 4 の主面に. 配置する方法と して、 連結板 4 の生面へのスク リ ーン印刷'法によるセラ ミ ッ ク ス材料の供給を複数回繰り返す方法、 グリ ーンシ トを埋め込ん だロール型を連結板 4 の主面に押し付けて転写する方法等がある。 いず れの方法を採用 しても、 複数の隔壁材 3 を連結板 .4 に同時に形成でき る ので、 表示装置の生産効率向上に好適である ·。  Fig. 12 shows the partition wall aggregate 17 of Fig. 3 provided with ceramics before sintering, and the partition wall material 3 consisting of sintered ceramics is called green sheets. A sixth embodiment in which the partition walls are arranged on the main surface of the connection holding plate (connection plate) 4 and the ceramics are sintered at a predetermined temperature to assemble them will be described. For the production of the connecting plate 4 of the present embodiment, a metal, ceramics, powder, glass, or the like that can withstand the above sintering temperature is used. In addition, the ceramics before sintering are connected. On the main surface of the plate 4, as a method of arranging the ceramics material by the 'screen printing' method on the raw surface of the connection plate 4. There are a method in which the supply is repeated a plurality of times, and a method in which a roll type in which the green sheet is embedded is pressed against the main surface of the connecting plate 4 to transfer. Whichever method is adopted, a plurality of partition members 3 can be simultaneously formed on the connecting plate 4. This is suitable for improving the production efficiency of the display device.
<第 7の実施例 >  <Seventh embodiment>
第 1 3 図は、 上述の実施例とは異なる陰極基板構造を有する第 7 の実 施例の表示装置を示す。 第 1 3 図の C 一 D断面を第 1 4 図に示す。 制御 電極 5 には制御電極孔 9 があるが、 これに対応する絶縁材 8 の開口 8 9 を覆う こ とはない。 換言すれば、 制御電極孔 9 の輪郭が絶縁材 8 の開口 8 9 内に入らない。 本実施例では、 金属板に機械加工、 レーザ加工、 又 はフ ォ ト · エ ッ チング法で制御電極孔 9 を形成し、 第 1 3 図に示す制御 電極 5 を作製する。 また、 絶縁材 8上に金属材料を蒸着、 スパッタ、 ィ オン · プレーティ ング等で供給して金属膜を形成し、 これにフォ ト · ェ ツチングで制御電極孔のパターンを形成しても、 また、 絶縁材 8上に導 電性のペース ト状材料を塗布し、 これにスク リ ー ン印刷法で直接パター ンを形成しても、 制御電極 5 を作製できる。 FIG. 13 shows a display device of a seventh embodiment having a cathode substrate structure different from that of the above-described embodiment. FIG. 14 shows a C-D cross section of FIG. The control electrode 5 has a control electrode hole 9, but does not cover the corresponding opening 8 9 of the insulating material 8. In other words, the contour of the control electrode hole 9 does not enter the opening 8 9 of the insulating material 8. In this embodiment, a control electrode hole 9 is formed on a metal plate by machining, laser processing, or a photo-etching method. Electrode 5 is prepared. Further, even if a metal material is supplied on the insulating material 8 by vapor deposition, sputtering, ion plating, or the like to form a metal film, and a control electrode hole pattern is formed thereon by photoetching, Alternatively, the control electrode 5 can be manufactured by applying a conductive paste-like material on the insulating material 8 and forming a pattern directly on the paste-like material by a screen printing method.
<第 8の実施例 >  <Eighth embodiment>
第 1 5 図は上述の実施例とは異なる隔壁構造を持つ第 8 の実施例を示 し、 隔壁材 3 がその長手方向に分断されている構造に特徴を有する。 隔 壁材 3 は電界放出型表示装置の全体に亘り連繞している必要はな く 、 分 断される こ とで、 隔壁材 3 と隔壁材連結保持板 4 との熱膨張係数の差に 因る起こる応力が緩和できるため、 隔壁材 3 に用いる材料の選択範囲も 広がる。 '  FIG. 15 shows an eighth embodiment having a partition structure different from that of the above-described embodiment, which is characterized in that the partition material 3 is divided in the longitudinal direction. The partition wall member 3 does not need to be continuous over the entire field emission display device, and is divided so as to reduce the difference in thermal expansion coefficient between the partition wall member 3 and the partition wall member connection holding plate 4. Since the resulting stress can be alleviated, the selection range of the material used for the partition wall material 3 is expanded. '
<第 9 'の実施例 >  <Ninth Embodiment>
第 1 6 .図は、 隔壁材 3 を制御電極 5 の延伸方向に交差 (直交) するよ う に配置した第 9 の実施例を示す。 このよ うな配置によ り、 制御電極 5 を隔壁材集合材 1 7 で押さえて、 表示装置の構造的安定性を高める。  FIG. 16 shows a ninth embodiment in which the partition wall material 3 is arranged so as to intersect (orthogonally) the direction in which the control electrode 5 extends. With such an arrangement, the control electrode 5 is pressed by the partition wall aggregate 17 to enhance the structural stability of the display device.
<第 1 . 0 の実施例 >  <First Embodiment>
第 1 7 図は、 第 9 の実施例の隔壁材 3 をその長手方向に分断したその 長手方向に分断した第 1 0の実施例を示す。 実施例 8 と同様、 隔壁材 3 と隔壁材連結保持板 4 との熱膨張係数差に因ってこれらの間に生じる応 力が緩和できるため、 隔壁材 3 に用いる材料の選択範囲も広がる。  FIG. 17 shows a tenth embodiment in which the partition wall member 3 of the ninth embodiment is divided in the longitudinal direction and is divided in the longitudinal direction. As in the case of the eighth embodiment, the stress generated between the partition wall member 3 and the partition wall member holding plate 4 due to the difference in thermal expansion coefficient therebetween can be reduced, so that the selection range of the material used for the partition wall member 3 is expanded.
<第 1 1 の実施例 >  <First Example>
第 1 8図は、 第 9 の実施例の制御電極 5 を棒状に形成した第 1 1 の実 施例を示す。 第 1 9 図は第 1 8 図の C 一 D断面を示す。 第 1 8図に示さ れるよ う に、 本実施例の制御電極 5 は、 第 1 制御電極 1 9 と第 2制御電 極 2 0 の 2本が一対となって陰極 7 の各々 の電子放出を制御する。 第 1 制御電極 1 9 と第 2制御電極 2 0 とを同 じ電位に設定する場合、 これら の機械的強度を上げるために、 絶縁膜 8 の開口 8 9 (この中に電子放出 部が配置される) 以外の位置で、 第 1 制御電極 1 9 と第 2制御電極 2 0 とを機械的に連結させてもよい。 なお、 陰極 7 の面積に応じ、 制御電極 5 を構成する棒状電極を 3本以上に増やしてもよい。 第 1 9 図に示す制 御電極 5 は矩形の断面を有するが、 この断面を円形や楕円形と してもよ い。 本実施例の構造の利点は、 上述の棒状の制御電極を機械加工、 レ一 ザ加工、 又はフ ォ ト ' エッチング法のみならず、 複数の線材を各々の端 部を連結した部品を用いても形成できる点にある。 また、 制御電極 5 は その上部から隔壁 3 で押さえられているため、 電界放出型表示装置の構 造的な安定性も増す。 FIG. 18 shows an eleventh embodiment in which the control electrode 5 of the ninth embodiment is formed in a rod shape. FIG. 19 shows a C-D section of FIG. As shown in FIG. 18, the control electrode 5 of the present embodiment has a pair of a first control electrode 19 and a second control electrode 20 to emit electrons from each of the cathodes 7. Control. When the first control electrode 19 and the second control electrode 20 are set to the same potential, In order to increase the mechanical strength of the first control electrode 19 and the second control electrode 20 at positions other than the opening 89 of the insulating film 8 (where the electron emission portion is disposed), May be connected. The number of rod-shaped electrodes constituting the control electrode 5 may be increased to three or more according to the area of the cathode 7. Although the control electrode 5 shown in FIG. 19 has a rectangular cross section, this cross section may be circular or elliptical. The advantage of the structure of the present embodiment is that not only the above-mentioned rod-shaped control electrode is machined, laser-processed, or photo-etched, but also a plurality of wires are connected to each other by using a component connected at each end. Can also be formed. In addition, since the control electrode 5 is pressed from above by the partition wall 3, the structural stability of the field emission display is increased.
<第 1 2 の実施例 >  <First and Second Embodiments>
'第 2 0 図は、 上述の実施例とは異なる形状の隔壁集合体を用いた第 1 2 の実施例を示し、 第 2 0 図の A— B断面を第 2 1 図に示す。 この実施 例では、 隔壁材 3 を連結板 4 の隔壁材揷入孔 (開口部) 2 1 に嵌め合せ ず その陰極基板 1 側の主面に接着剤 15で固定する。 本実施例の構造で は、 連結板 4 の一方の主面 (第 2 1 図の上面) が平坦に保たれるので、 これに隔壁材 3 を連結する作業が平面の作業台上で可能になり、 開口部 2 1 を設けない分、 連結板 4 の加工も容易となる。  FIG. 20 shows a 12th embodiment using a partition assembly having a shape different from that of the above-described embodiment, and FIG. 21 shows a cross section taken along a line AB in FIG. In this embodiment, the partition wall member 3 is not fitted to the partition wall insertion hole (opening) 21 of the connecting plate 4 but is fixed to the main surface of the cathode substrate 1 side with an adhesive 15. In the structure of the present embodiment, one main surface (the upper surface in FIG. 21) of the connecting plate 4 is kept flat, so that the work of connecting the partition wall material 3 thereto can be performed on a flat work table. Since the opening 21 is not provided, the connection plate 4 can be easily processed.
く第 1 3 の実.施例〉  Example 13
第 2 2 図は、 第 1 2 の実施例に類似する隔壁材集合体 1 7を、 接着剤' 1 5 を主と して連結材 4 の主面と隔壁材 3 の端面との間に塗布して組み 立てた第 1 3 の実施例を示す。 この実施例の構造は、 連結材 4 の一方の 主面 (図示される上面) に平坦に保たれ、 且つ開口部 2 1 の形成も不要 なため、 第 1 2 の実施例と同様な利点をもたら し、 更に接着剤 1 5が平 坦な面に塗布されるので組立て作業の効率も上げる。  FIG. 22 shows a partition wall aggregate 17 similar to that of the first embodiment applied between the main surface of the connecting member 4 and the end surface of the partition wall member 3 mainly with the adhesive '15. Example 13 is shown below. The structure of this embodiment has the same advantages as the first and second embodiments because one main surface (the upper surface shown) of the connecting member 4 is kept flat and the formation of the opening 21 is unnecessary. In addition, the adhesive 15 is applied to the flat surface, so that the efficiency of the assembling work is increased.
<第 1 4の実施例 >  <Example 14>
第 2 3 図は、 隔壁材 3 を焼結セラ ミ ッ ク スで形成し、 これらをグリ 一 ンシ一 ト等と称する焼結前のセラ ミ ッ タスが塗布された隔壁材連結保持 板 (連結板) 4 の主面に配置し、 この焼結前のセラ ミ ッ クスを所定の温 度で焼結して連結板 4 の主面に隔壁材 3 を固定して隔壁材集合体を組み 立てる第 1 4 の実施例を示す。 連結板 4 の材料には、 この焼結温度に耐 える金属、 セラ ミ ッ クス、 及びガラスのいずれかが選ばれる。 また、 焼 結前のセラ ミ ッ クスを連結板 4 の生面に配置する方法と して、 第 6 の実 施例と同様に、 スク リ ーン印刷法の繰り返しや、 グリ ーンシー トが埋め 込まれたロールを連結板 4 の生面に押 し付けて転写する方法等がある。 本実施例の構造は、 連結板 4 の一方の生面が平坦に保たれ、 且つ開口部 (隔壁材揷入孔) 2 1 の形成も不要なため、 第 1 2 の実施例と同様な利 点の他、 複数の隔壁材 3 を隔壁材連結保持板 4 に同時に固定する こ とで 表示装置の生産効率 (スループッ ト) を向上させる という利点も もたら す。 FIG. 23 shows that the partition wall material 3 is formed of sintered ceramics, and these are greased. The ceramics before sintering is placed on the main surface of the partition wall connecting and holding plate (connecting plate) 4 coated with the ceramic before sintering called the sheet etc. at a predetermined temperature. The 14th embodiment of sintering and fixing the partition wall material 3 to the main surface of the connecting plate 4 to assemble the partition wall material assembly will be described. As the material of the connecting plate 4, any one of a metal, a ceramic, and a glass resistant to the sintering temperature is selected. As a method of arranging the ceramics before sintering on the raw surface of the connecting plate 4, as in the sixth embodiment, the screen printing method is repeated and green sheets are filled. There is a method of pressing the inserted roll against the raw surface of the connecting plate 4 and transferring the roll. In the structure of this embodiment, one of the raw surfaces of the connecting plate 4 is kept flat, and it is not necessary to form the opening (partition material insertion hole) 21. In addition to this, by simultaneously fixing a plurality of partition members 3 to the partition member connection holding plate 4, there is an advantage that the display device production efficiency (throughput) is improved.
<第 1 5 の実施例 >  <The 15th embodiment>
第 2 4 図は、 隔壁集合体 1 7 が第 1 2 の実施例等とは異なる構造を有 する第 1 5 の実施例を示す。 第 2 4 図に示されるよう に、 隔壁材 3 は電 子線通過孔 1 4毎に配置されず、 複数の (図示された例では 3個の) 電 子線通過孔 1 4 毎に間引かれて配置される。 陰極基板 1 又は陽極基板 2 を介して加わる大気の圧力によ り隔壁材 3が変形、 破壊しない十分な強 度を持つ限り、 本実施例の構造は可能である。 また、 本実施例の構造は 使用する材料の低減と、 組立工程の簡素化という利点も もたらす。  FIG. 24 shows a fifteenth embodiment in which the partition wall assembly 17 has a different structure from the first and the second embodiments. As shown in FIG. 24, the partition wall material 3 is not disposed for each of the electron beam passing holes 14, but is thinned out for each of the plurality (three in the illustrated example) of the electron beam passing holes 14. Placed. The structure of the present embodiment is possible as long as the partition wall material 3 has sufficient strength so as not to be deformed or broken by the atmospheric pressure applied through the cathode substrate 1 or the anode substrate 2. In addition, the structure of this embodiment also has the advantages of reducing the materials used and simplifying the assembly process.
<第 1 6 の実施例 >  <First Embodiment>
第 2 5 図は、 隔壁材 3を制御電極 5 の延伸方向に交差するよう に配置 した第 1 6 の実施例を示す。 本実施例は、 制御電極 5 を隔壁材の集合材 1 7 で押さえるため、 第 9 の実施例と同 じ利点をもたらす。  FIG. 25 shows a 16th embodiment in which the partition wall material 3 is arranged so as to intersect the direction in which the control electrode 5 extends. This embodiment has the same advantages as the ninth embodiment because the control electrode 5 is pressed by the aggregate 17 of the partition walls.
<第 1 7 の実施例 >  <Embodiment 17>
第 2 6 図は、 隔壁材 3 を互いに交差する 2種類の生面 (例えば、 X — z 面と y — z 面) を組合わせて、 その断面 (陰極基板 1 又は陽極基板 2 の主面に対向する、 例えば、 X — y面) が十字型を示す ( 2次元的に広 がる) よう に構成した第 1 7 の実施例を示す。 本実施例では、 陰極基板 1 又は陽極基板 2 の主面の法線方向から加わる力に対する隔壁材 3 の強 度が高められ、 また隔壁材連結保持板 4 の主面上で隔壁材 3 が倒れ難い ため、 隔壁材集合体 1 7 の組立て作業の効率も上がる。 Figure 26 shows two types of raw surfaces (for example, X — Combining the z-plane and the y-z-plane), the cross section (opposed to the main surface of the cathode substrate 1 or the anode substrate 2, for example, the X-y plane) shows a cross shape (spreads in two dimensions) The 17th embodiment configured as described above is shown. In the present embodiment, the strength of the partition wall member 3 against the force applied from the normal direction of the main surface of the cathode substrate 1 or the anode substrate 2 is increased, and the partition wall member 3 falls down on the main surface of the partition wall connection holding plate 4. Since it is difficult, the efficiency of the assembling work of the partition wall assembly 17 is also increased.
<第 1 8 の実施例 >  <Eighteenth Embodiment>
第 2 7 図は、 絶縁材 8 を陰極 7 の表面全体を覆う こ とな く 形成した第 1 8 の実施例を示す。 絶縁材 8 は、 厚膜印刷による直接パターニングゃ これにフォ ト · エッチングを組み合わせた既知の方法、 CVD法による絶縁 膜形成とフ ォ ト , エッチング、 又は棒状に加工した絶縁性部材をガラス 基板 6 の上部に並設する こ とのいずれでも形成できる。 制御電極 5 は、 この絶縁材 8 の延伸方向に交差して延びた棒状に形成される。 棒状の制 御電極 5 は、 括弧で括られて図示される 2本が一対となって、 この一対 と交差する陰極 7 .の各々 とと もに 1 つの画素を構成する。 各対をなす棒 状の制御電極 5 の各々 に同一の電位を印加する場合、 一対の制御電極 5 毎にこれらを陰極 7上以外の位置で機械的に連結して、 これらを機械的 に補強してもよい。 また、 第 1 1 の実施例と同様に、 交差する陰極 7毎 に 1 つの画素を構成する一対の制御電極 5 を陰極 7 の面積に応じて 3本 以上に増やしてもよ' 'い。 さ らに、 制御電極 5 の断面は図示された矩形に 限らず、 これを円形や楕円形と して も制御電極 5 と しての機能を損なう ものでない。 本実施例に示された構造の利点の一つは、 端部にて互いに 結合された複数の線材を絶縁材 8上に配置した後、 これらの端部を切断 する こ とで、 複数の棒状制御電極 5 を一度に効率よ く 形成できる こ とに ある。 本実施例の他の利点の一つは、 陰極 7 と制御電極 5 との間の静電 容量を小さ く 保てる こ とで、 これによ り陰極 7 や制御電極 5への高周波 の信号の入力が可能にな り、 電界放出型表示装置の表示特性が更に向上 される。 FIG. 27 shows the 18th embodiment in which the insulating material 8 is formed without covering the entire surface of the cathode 7. The insulating material 8 is formed by direct patterning by thick film printing. A known method combining photolithography with this method, the formation of an insulating film by CVD and photo, etching, or an insulating member processed into a rod shape is applied to a glass substrate 6. It can be formed either by juxtaposition on the upper part of the frame. The control electrode 5 is formed in a rod shape extending in the direction in which the insulating material 8 extends. The rod-like control electrodes 5 are paired with each other, shown in parentheses, and constitute one pixel together with each of the cathodes 7 intersecting the pair. When the same potential is applied to each pair of rod-shaped control electrodes 5, each pair of control electrodes 5 is mechanically connected at a position other than on the cathode 7 to reinforce them mechanically. May be. Further, as in the first embodiment, the number of the pair of control electrodes 5 constituting one pixel for each intersecting cathode 7 may be increased to three or more according to the area of the cathode 7. Further, the cross section of the control electrode 5 is not limited to the illustrated rectangle, and a circular or elliptical shape does not impair the function as the control electrode 5. One of the advantages of the structure shown in this embodiment is that, after arranging a plurality of wires connected to each other at the ends on the insulating material 8 and then cutting these ends, a plurality of rods are formed. The point is that the control electrode 5 can be efficiently formed at once. One of the other advantages of the present embodiment is that the capacitance between the cathode 7 and the control electrode 5 can be kept small, so that a high-frequency signal can be input to the cathode 7 and the control electrode 5. And the display characteristics of the field emission display device are further improved. Is done.
<第 1 9 の実施例 >  <Ninth Embodiment>
第 2 8 図は、 第 1 8 の実施例の構造において隔壁材 3 を制御電極 5 の 延伸方向に交差するよ う に配置した第 1 9 の実施例を示す。 このため、 第 1 8 の実施例の利点に加えて、 制御電極 5 を隔壁材集合材 1 7 で押さ える こ とによ り、 電界放出型表示装置の構造的な安定性が高められる。  FIG. 28 shows a nineteenth embodiment in which the partition wall member 3 is arranged so as to intersect the extending direction of the control electrode 5 in the structure of the eighteenth embodiment. Therefore, in addition to the advantages of the eighteenth embodiment, the structural stability of the field emission display device is enhanced by pressing the control electrode 5 with the partition wall aggregate 17.
<第 2 0 の実施例 >  <20th embodiment>
第 2 9 図は、 第 1 8 の実施例の構造において絶縁材 8 を複数の制御電 極孔 8 に跨る シー ト状に形成した第 2 0 の実施例を示 し、 これによ り電 界放出型表示装置全体にて絶縁材 8 を一枚のシ一 ト と して設ける こ とが できる。 この実施例の利点の一つは、 絶縁材 8 を予め陰極基板 1 とは別 の部材と して加工、 成形した後に、 陰極 7 の上に精度良く 適切に配置す る こ とで陰極基板 1 が完成されるので、 陰極基板 1 の作製工程が簡素に なり、 また、 本実施例の絶縁材 8 の基材と して利用できる絶縁材料の選 , 択範囲が広がる。 本実施例で利用でき る基材の一つと して、 薄板化が容 易で且つ制御電極孔 9 に対応する開口形成も可能であ り、 良好な絶縁特 性を示す雲母がある。  FIG. 29 shows a 20th embodiment in which the insulating material 8 is formed in a sheet shape extending over a plurality of control electrode holes 8 in the structure of the 18th embodiment. The insulating material 8 can be provided as one sheet in the entire emission type display device. One of the advantages of this embodiment is that the insulating material 8 is previously processed and formed as a separate member from the cathode substrate 1 and then accurately and appropriately arranged on the cathode 7 to form the cathode substrate 1. As a result, the manufacturing process of the cathode substrate 1 is simplified, and the range of selection of the insulating material that can be used as the base material of the insulating material 8 of the present embodiment is expanded. As one of the base materials that can be used in the present embodiment, there is mica that can be easily made thin and can form an opening corresponding to the control electrode hole 9 and has good insulating properties.
<第 2 1 の実施例 >  <Example 21>
, 第 3 0 図は、 絶縁材 8 を第 2 0 の実施例と同様に複数の制御電極孔 · 8 に跨る シー ト状に形成し、 更にこの絶縁材 8上に制御電極 5 を直接形成 した第 2 1 の実施例を示す。 本実施例の構造では、 制御電極 5を絶縁材 8 とと もに加工、 成形して制御電極孔 9 を有する絶縁材 8 と制御電極 5 との積層体 (陰極基板 1 本体とは別の部材) を作製し、 これを陰極 7 の 上に精度良く 適切に配置する こ とで陰極基板 1 が完成できるので、 第 2 0 の実施例の利点に加えて陰極基板 1 の生産効率 (スループッ ト) が向 上する という利点がもたらされる。 FIG. 30 shows that the insulating material 8 was formed in a sheet shape over a plurality of control electrode holes8 in the same manner as in the 20th embodiment, and the control electrode 5 was directly formed on the insulating material 8. A second embodiment will be described. In the structure of this embodiment, the control electrode 5 is processed and formed together with the insulating material 8, and a laminate of the insulating material 8 having the control electrode hole 9 and the control electrode 5 (a member different from the main body of the cathode substrate 1). The cathode substrate 1 can be completed by accurately and appropriately arranging it on the cathode 7, so that the production efficiency of the cathode substrate 1 (throughput) can be obtained in addition to the advantages of the 20th embodiment. This has the advantage of improving
<第 2 2 の実施例 > 第 3 1 図は、 隔壁材 3が陽極基板 2 の陽極 1 0 に接触している第 2 2 の実施例を示す。 図示されるよ う に、 隔壁材連結保持板 4 は制御電極 5 と接触するため、 絶縁物で形成されるか、 又は金属板を用い且つ制御電 極 5側の主面に絶縁膜又は絶縁層を形成する。 本実施例では、 電子線通 過孔 1 4 が制御電極 5 の近く に位置されるので電子の走行を妨げる こ と な く 隔壁材集合体 1 7 を配置し易 く 、 その結果、 陽極基板 2 に照射され る飛び込む電子の量を増大できる。 第 3 1 図には、 第 2 1 の実施例の陰 極基板 1 を一例と して示したが、 その構造はこれに限られる こ とはな く . 第 1 の実施例乃至第 2 0 の実施例で図示したいずれの陰極基板 1 も使用 できる。 <Second Embodiment> FIG. 31 shows a second embodiment in which the partition wall material 3 is in contact with the anode 10 of the anode substrate 2. As shown in the figure, the partition wall connecting and holding plate 4 is in contact with the control electrode 5 and is formed of an insulating material, or a metal plate is used and an insulating film or an insulating layer is formed on the main surface of the control electrode 5 side. To form In this embodiment, since the electron beam passage hole 14 is located near the control electrode 5, the partition wall assembly 17 can be easily arranged without obstructing the traveling of electrons. As a result, the anode substrate 2 The amount of electrons jumping into the surface can be increased. Fig. 31 shows the cathode substrate 1 of the 21st embodiment as an example, but the structure is not limited to this. Any of the cathode substrates 1 shown in the embodiments can be used.
<第 2 3の実施例 >  <Third embodiment>
第 3 2 図は、 隔壁材 3 に加えて第 2 隔壁材 1 6 を有する隔壁材集合体 1 7の形状に特徴付けられる第 2 3 の実施例を示す。 この実施例におい て、 隔壁材集合体形状 1 7 は。 これら 2種類の隔壁材 3 , 6 の高さ と 隔壁材連結保持板 4への印加電位を適切に設定する こ とで陰極 7 から放 射された電子の集束条件を最適化し、 電界放出型表示装置の'表示特性を 上げる こ とができる。 隔壁材 3 の高さ (第 3 2 図における z軸方向の寸 法) を第 2 隔壁材 1 6 のそれよ り低く して隔壁材連結保持板 4 を制御電 極に近づけてもよい。  FIG. 32 shows a 23rd embodiment characterized by the shape of the partition wall assembly 17 having the second partition wall 16 in addition to the partition wall 3. In this example, the shape of the partition wall aggregate 17 is as follows. By appropriately setting the heights of these two kinds of partition walls 3 and 6 and the potential applied to the partition wall connection holding plate 4, the focusing condition of the electrons emitted from the cathode 7 is optimized, and the field emission display is performed. The display characteristics of the device can be improved. The height of the partition wall member 3 (the dimension in the z-axis direction in FIG. 32) may be lower than that of the second partition wall member 16 to bring the partition wall connection holding plate 4 closer to the control electrode.
<第 2 4 の実施例 >  <Example 24>
第 3 3 図は、 隔壁材連結板 4 の隔壁材 3 が結合される主面とは反対側 の主面に、 第 2隔壁材 1 6 をその主面 ( y — z面と して図示) が隔壁材 3 の主面 ( X — z 面と して図示) と交差するよ う に結合した第 2 4 の実 施例を示す。 本実施例の構造は、 第 2 3 の実施例の利点に加えて、 大気 圧に因る応力に対して表示装置を構造的に安定化し、 隔壁材集合体 1 7 の構造を組み立て易 く する という利点をもたらす。  FIG. 33 shows the second bulkhead material 16 on the main surface of the bulkhead material connecting plate 4 on the side opposite to the main surface to which the bulkhead material 3 is joined (shown as the y-z plane). A second embodiment is shown in which the crossing is made so as to intersect the main surface (shown as the X-z plane) of the partition wall material 3. The structure of the present embodiment, in addition to the advantages of the second and third embodiments, structurally stabilizes the display device against stress caused by atmospheric pressure, and facilitates the assembly of the partition wall assembly 17. Bring the advantage.
<第 2 5 の実施例 > 第 3 4 図は、 隔壁材連結板 4 に固定された隔壁材 3 に制御電極 5 を固 定して、 隔壁材 · 制御電極集合体 1 8 と称する集合体を構成した第 2 5 の実施例を示す。 第 3 4 図の C — D断面を第 3 5 図に示す。 制御電極 5 を陰極基板 1 に設けず、 隔壁材 · 制御電極集合体 1 8 に設けるこ とによ り、 陰極基板 1 の構造が簡素化され、 作り易 く なる。 制御電極 5 の形状 は図示された棒状に限らず、 上述の実施例で使われた他の形状に変えて もよい。 また、 陰極基板 1 の形状も、 上述の実施例のいずれかに倣って 変えてもよい。 <Example 25> FIG. 34 shows a twenty-fifth embodiment in which the control electrode 5 is fixed to the partition wall member 3 fixed to the partition wall member connecting plate 4 to form an assembly called a partition wall member / control electrode assembly 18. Is shown. Fig. 35 shows a cross section C-D of Fig. 34. By providing the control electrode 5 on the partition wall material / control electrode assembly 18 without providing the control electrode 5 on the cathode substrate 1, the structure of the cathode substrate 1 is simplified and easy to manufacture. The shape of the control electrode 5 is not limited to the illustrated bar shape, and may be changed to another shape used in the above-described embodiment. Further, the shape of the cathode substrate 1 may be changed according to any of the above-described embodiments.
<第 2 6 の実施例〉  <Example 26>
第 3 6 図は、 隔壁材 3 とと もに隔壁材連結板 4 に結合された第 2 隔壁 材 1 6 に制御電極 5 を固定した隔壁材 · 制御電極集合体 1 8 を構成した 第 2 6 の実施例を示す。 には隔壁材 3 に加えてがあり、 この第 2隔壁材 1 6 を介してされている。 本実施例では、 第 2 隔壁材 1 6 の高さ ( z軸 方向の寸法う を隔壁材 3 よ り低く する こ とで、 隔壁材 · 制御電極集合体 1 8 の可撓性を上げた。  FIG. 36 shows a partition wall material / control electrode assembly 18 in which the control electrode 5 is fixed to the second partition wall material 16 coupled to the partition wall material connecting plate 4 together with the partition wall material 3. The following shows an example. In addition, in addition to the partition wall member 3, there is a through hole of the second partition wall member 16. In the present embodiment, the flexibility of the partition wall member / control electrode assembly 18 was increased by making the height of the second partition wall member 16 (the dimension in the z-axis direction smaller than that of the partition wall member 3).
<第 2 7 の実施例 >  <Example 27>
第 3 7 図は、 第 2 6 の実施例と第 1 7 の実施例とを組合わせた第 2 7 の実施例を示し、 十字状の断面を持つ隔壁材 3 の強度と断面内 ( x _ y 面内) での安定性 (倒れ難さ) によ り、 これ,らの隔壁材連結保持板.4へ :; の結合作業の効率が向上する。 FIG. 37 shows a twenty-seventh embodiment in which the twenty-sixth embodiment and the seventeenth embodiment are combined. FIG. 37 shows the strength and the cross-section (x_ (in the y-plane) (they are hard to fall), the efficiency of the joining work of these ;
<第 2 8 の実施例 >  <Eighth Embodiment>
第 3 8 図は、 第 2 6の実施例の隔壁材 · 制御電極集合体 1 8 に複数の 制御電極孔 9 が形成された板状の制御電極 5 を用いた第 2 8 の実施例を 示す。  FIG. 38 shows a thirty-eighth embodiment using a plate-like control electrode 5 in which a plurality of control electrode holes 9 are formed in a partition wall material / control electrode assembly 18 of the twenty-sixth embodiment. .
<第 2 9 の実施例 >  <Twenty-ninth embodiment>
第 3 9図は、 隔壁材連結保持板 (連結板) 4 の陰極基板 1 側の主面に 絶縁性の連結材 2 2 を設け、 これに制御電極 5 を固定した第 2 9 の実施 例を示す。 絶縁性連結材 2 2 は、 連結板 4 と制御電極 5 とを電気的に短 絡しないよ う に連結している。 絶縁性連結材 2 2 を連結板 4 の主面に形 成する代わり に、 連結板 4 自体を絶縁物で作製して絶縁性連結材 2 2 と 連結板 4 を一体化してもよい。 ' Fig. 39 shows a second embodiment in which an insulating connecting material 22 is provided on the main surface of the partition material connecting and holding plate (connecting plate) 4 on the side of the cathode substrate 1 and the control electrode 5 is fixed thereto. Here is an example. The insulating connecting material 22 connects the connecting plate 4 and the control electrode 5 so as not to be electrically short-circuited. Instead of forming the insulating connecting member 22 on the main surface of the connecting plate 4, the connecting plate 4 itself may be made of an insulating material and the insulating connecting member 22 and the connecting plate 4 may be integrated. '
<第 3 0 の実施例 >  <Embodiment 30>
第 4 0 図は、 第 2 9 の実施例の制御電極 5 を絶縁性連結材 2 2上に厚 膜又は薄膜の成長手法を用いて形成した第 3 0 の実施例を示す。 本実施 例でも、 絶縁性連結材 2 2を隔壁材連結保持板 4 の主面に形成する代わ り に隔壁材連結保持板 4 を絶縁物で作製して、 隔壁材連結保持板 4 に絶 縁性連結材 2 2 の機能を付与してもよい。  FIG. 40 shows a 30th embodiment in which the control electrode 5 of the 29th embodiment is formed on the insulating connecting member 22 by using a method of growing a thick film or a thin film. Also in this embodiment, instead of forming the insulating connecting member 22 on the main surface of the partition wall connecting and holding plate 4, the partition wall connecting and holding plate 4 is made of an insulating material and is insulated from the partition wall connecting and holding plate 4. The function of the sexual connection material 22 may be added.
<第 3 1 の実施例 >  <Example 31>
第 4 1 図は、 グリ ッ ド (G r i d ) 状の隔壁材 3 を絶縁材料からなる隔壁 材連結保持板 (連結板) 4 に固定し、 この連結板 4 に制御電極 5 を直接 形成した第 3 1 の実施例を示す。 グリ ツ ド状の隔壁材 3 の構造は、 第 4 2 図によ り詳し く 図解される。 互いに直交する隔壁材 3 の夫々 に溝 2 3 を形成し、 これらを図のよ う に嵌め合せる こ とで、 隔壁材 3 を倒れ難く 且つ潰れ難く する。 この構造の隔壁材 3 は、 本実施例に限らず、 本発明 による他の実施例の全てに利用できる。  FIG. 41 shows a grid-type partition member 3 in which a grid-like partition member 3 is fixed to a partition member connection holding plate (connection plate) 4 made of an insulating material, and a control electrode 5 is directly formed on the connection plate 4. Example 3 is shown. The structure of the grid-like partition wall material 3 is illustrated in detail in FIG. Grooves 23 are formed in each of the partition walls 3 orthogonal to each other, and these are fitted as shown in the figure, so that the partition walls 3 are hard to fall down and hard to be crushed. The partition member 3 having this structure can be used not only in this embodiment but also in all other embodiments according to the present invention.
<第 3 2の実施例 > .  <Example 32>
第 4 3 図は、 第 3 0 の実施例に第 2 0 の実施例を組合わせた第 3 2 の 実施例を示す。 本実施例では、 絶縁材 8 を複数の制御電極孔 9 に跨る FIG. 43 shows a 32nd embodiment in which the 20th embodiment is combined with the 30th embodiment. In this embodiment, the insulating material 8 extends over the plurality of control electrode holes 9.
(これらに対応する複数の開口 8 9が設けられた) シー ト と して形成さ れるため、 第 2 0 の実施例と同様な利点をもたらす。 シー ト状の絶縁材 8 は、 例えば雲母で形成する とよい。 且つ電界放出型表示装置全体で一 枚のシー ト とする こ と も出来る。 また、 隔壁材連結保持板 4 自体をこの よ う なシー ト状の絶縁基材 (望ま し く は、 絶縁材 8 よ り厚い膜厚を有す る) で構成し、 これに絶縁性連結材 2 2 の機能を持たせてもよい。 <第 3 3の実施例 > Since it is formed as a sheet (provided with a plurality of openings 89 corresponding to these), the same advantages as those of the 20th embodiment are obtained. The sheet-like insulating material 8 is preferably made of mica, for example. In addition, a single sheet can be formed for the entire field emission display device. Further, the partition wall connecting and holding plate 4 itself is made of such a sheet-like insulating base material (preferably, having a film thickness larger than that of the insulating material 8). It may have 22 functions. <Third embodiment>
第 4 4 図は、 第 3 2の実施例の隔壁材連結保持板 4 を絶縁物で形成し その陰極基板 1 側の生面に制御電極 5 を形成した第 3 3 の実施例を示す <第 3 4 の実施例 >  FIG. 44 shows a 33rd embodiment in which the partition wall connecting and holding plate 4 of the 32nd embodiment is formed of an insulator, and the control electrode 5 is formed on the raw surface of the cathode substrate 1 side. 3 4 Example>
第 4 5 図は、 第 3 1 .の実施例の隔壁材連結保持板 (連結板) 4 を絶縁 物で形成し、 この連結板 4 の陽極基板 2側の生面に制御電極 5を形成し た第 3 4 の実施例を示す。 本実施例の連結板 4 は上述の絶縁材 8 の機能 も兼ね備え (これ故、 参照番号 4 , 8 で表示される) 、 この連結板 4 に は隔壁材 3 の一部が制御電極 5 を介して固定されている。 本実施例の構 造は、 表示装置の組立てに要する材料及び部品数を削減し、 且つ簡単に (少ない工程数で) 表示装置を完成させる という利点をもたらす。  In FIG. 45, the partition wall connecting and holding plate (connecting plate) 4 of the embodiment of FIG. 31 is formed of an insulating material, and the control electrode 5 is formed on the raw surface of the connecting plate 4 on the anode substrate 2 side. A thirty-fourth embodiment will now be described. The connecting plate 4 of this embodiment also has the function of the above-mentioned insulating material 8 (hence, it is indicated by reference numerals 4 and 8), and a part of the partition wall material 3 is provided on the connecting plate 4 via the control electrode 5. Is fixed. The structure of the present embodiment has the advantages of reducing the number of materials and parts required for assembling the display device and completing the display device easily (with a small number of steps).
<第 3 5 の実施例〉 .  <Third Fifth Embodiment>
" 第 4 6 図は、 隔壁材連結保持板 4 を絶縁物で形成して、 これに絶縁材 '. 8 の機能も,与え、 その陽極基板 2側の主面に.制御電極 5 を形成し、 更に ' 制御電極 5 の陽極基板 2側に隔壁材 3 を固定した第 3 5の実施例を示す ^ 本実施例の構造は、 第 3 4 の実施例と同様、 表示装置の組立てに要する . 材料数、 部品数、 組立工程数を削減するに好適なため、 表示装置の生産 効率を高める という利点をもたらす。 また、 板状の,制御電極 5 は、 機械 加工、 レーザ加工、 又はフォ ト · エッチングなどの加工方法で、 隔壁材 や隔壁材連結保持板 4 とは別に製造できる。 FIG. 4 6 shows that the partition wall connecting and holding plate 4 is formed of an insulating material, which also has the function of the insulating material '.8, and the control electrode 5 is formed on the main surface of the anode substrate 2 side. Further, a third embodiment in which the partition wall material 3 is fixed to the anode substrate 2 side of the control electrode 5 is shown. ^ The structure of this embodiment is required for assembling the display device as in the 34th embodiment. It is suitable for reducing the number of materials, parts, and the number of assembling processes, and thus has the advantage of increasing the production efficiency of the display device. It can be manufactured separately from the partition wall material and the partition wall connection holding plate 4 by a processing method such as etching.
く第 3 6 の実施例 >  Third Embodiment>
第 4 7 図は、 制御電極 5を絶縁材 8 で被覆された表面を有する一対の 第 1 制御電極 1 9 と第 2制御電極 2 0 とを隔壁材連結保持板 4 に固定し た第 3 6 の実施例を示す。 本実施例の構造は、 第 1 制御電極 1 9及び第 2制御電極 2 0 を絶縁膜を被覆した線材と して予め作製し、 又は準備す る こ とができ るため、 表示装置の生産効率の向上に望ま しい。  FIG. 47 shows a structure in which a pair of first and second control electrodes 19 and 20 each having a surface covered with an insulating material 8 and having a control electrode 5 fixed to a partition wall connecting and holding plate 4. The following shows an example. In the structure of this embodiment, the first control electrode 19 and the second control electrode 20 can be prepared or prepared in advance as a wire coated with an insulating film, so that the production efficiency of the display device can be improved. It is desirable for improvement.
<第 3 7 の実施例 > 第 4 8 図は、 制御電極 5をなす一対の第 1 制御電極 1 9及び第 2制御 電極 2 0を、 夫々の表面に絶縁材 8 を被覆して、 ガラス基板 6 (陰極基 板 1 ) に固定した第 3 7 の実施例を示す。 本実施例の構造でも、 絶縁膜 を被覆した線材と して第 1 制御電極 1 9及び第 2制御電極 2 0を予め作 製し、 又は準備できるため、 表示装置の生産効率が向上するという利点 がもたらされる。 <Embodiment 37> FIG. 48 shows a pair of a first control electrode 19 and a second control electrode 20 forming a control electrode 5, each of which is coated with an insulating material 8 on a glass substrate 6 (cathode substrate 1). A fixed 37th embodiment is shown. Also in the structure of the present embodiment, since the first control electrode 19 and the second control electrode 20 can be prepared or prepared in advance as a wire covered with an insulating film, the production efficiency of the display device is improved. Is brought.
<第 3 8 の実施例 >  <Eighth Embodiment>
第 4 9 図は、 隔壁材連結保持板 4 を絶縁物で作製し、 その陰極基板 1 側の主面上に制御電極 5 を、 この制御電極 5 の上に絶縁材 8 を夫々形成 した第 3 8 の実施例を示す。 本実施例の構造は、 陰極基板 1 の構造を簡 素化 して、 その生産効率を高め、 隔壁材 · 制御電極集合体 1 8を陰極基 板 1 並びに陽極基板 2 とは別に自由に加工、 製作させる という利点をも たらす。 制御電極孔 9 は、 図示されるよ う に複数個の矩形の開口を規則 的に並べる例に限らず、 本発明:による他の実施例に倣い、 その形状及び 配置を変えてもよい。 .  FIG. 49 shows a third embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side, and the insulating material 8 is formed on the control electrode 5. Example 8 is shown. The structure of the present embodiment simplifies the structure of the cathode substrate 1 to increase its production efficiency, and allows the partition wall material and the control electrode assembly 18 to be freely processed separately from the cathode substrate 1 and the anode substrate 2. It has the advantage of being manufactured. The control electrode hole 9 is not limited to an example in which a plurality of rectangular openings are regularly arranged as shown in the figure, and may have a different shape and arrangement according to another embodiment according to the present invention. .
<第 3 9 の実施例 >  <Thirty-ninth embodiment>
第 5 0 図は、 隔壁材連結保持板 4 を絶縁物で作製し、 その陰極基板 1 側の主面に制御電極 5 を形成した第 3 9 の実施例を示す。 本実施例の構 造は、 隔壁材 3、 隔壁材連結保持板 4、 及び制御電極 5を相互に固定し てなる隔壁材 · 制御電極集合体 1 8 が、 陰極基板 1 及び陽極基板 2 とは 別に自由に加工し又は組み立てられる という利点をもたらす。 制御電極 孔 9 と して、 略円形の形状を有する複数の開口を規則的に並べた例を図 示したが、 その形状を矩形又は楕円形に変えてもよ く 、 その配列態様の 変更も可能である。  FIG. 50 shows a thirty-ninth embodiment in which the partition wall connecting and holding plate 4 is made of an insulator, and the control electrode 5 is formed on the main surface of the cathode substrate 1 side. The structure of the present embodiment is such that the partition wall material 3, the partition wall material connecting / holding plate 4, and the control electrode 5 are fixed to each other, and the partition wall material and the control electrode assembly 18 are different from the cathode substrate 1 and the anode substrate 2. The advantage is that it can be processed or assembled separately. Although an example is shown in which a plurality of openings having a substantially circular shape are regularly arranged as the control electrode holes 9, the shape may be changed to a rectangular or elliptical shape, and the arrangement of the array may be changed. It is possible.
く第 4 0 の実施例 >  The 40th embodiment>
第 5 1 図は、 隔壁材連結保持板 4 を絶縁物で作製し、 その陰極基板 1 側の主面上に制御電極 5 と絶縁材 8 とをこの順に形成した第 4 0 の実施 例を示す。 本実施例の構造は、 陰極基板 1 を極めて簡単な構造にな ら し め、 且つ隔壁材 · 制御電極集合体 1 8 を陰極基板 1 及び陽極基板 2 とは 別に、 自由に加工、 製作できるよ う にする という利点をもたらす。 制御 電極孔 9 と して、 略矩形の形状を有する複数の開口を規則的に並べた例 を図示したが、 これらの形状を円形又は楕円形等に変更しても、 また、 これらの配列を本発明による他の実施例に倣い変更してもよい。 FIG. 51 shows a 40th embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the control electrode 5 and the insulating material 8 are formed in this order on the main surface of the cathode substrate 1 side. Here is an example. The structure of this embodiment allows the cathode substrate 1 to have an extremely simple structure, and allows the partition wall material and the control electrode assembly 18 to be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. The advantage is that Although an example in which a plurality of openings having a substantially rectangular shape are regularly arranged as the control electrode holes 9 is illustrated, even if these shapes are changed to circular or elliptical shapes, etc. Modifications may be made in accordance with other embodiments of the present invention.
<第 4 1 の実施例 >  <Embodiment 41>
第 5 2 図は、 隔壁材連結保持板 4 を絶縁物で作製し、 その陰極基板側 の主面に棒状の制御電極 5 を固定した第 4 1 の実施例を示す。 本実施例 の構造は、 隔壁材 · 制御電極集合体 1 8 を陰極基板 1 及び陽極基板 2 と は別に、 自由に加工し、 製作できるよ う にする という利点をもたらす。 また、 本実施例の構造の特筆すべき利点は、 隔壁材 《 制御電極集合体 1 8を所謂薄膜技術又は厚膜技術を使用する こ とな く 製作し得る こ とであ る。 制御電極 5 と して、 その長軸方向,(図における X軸方向) に直交す る断面を角型に した例を図示したが、 この断面を円形、 楕円形、 又は多 角形に変えても本発明の実施を妨げる ものでない。  FIG. 52 shows a 41st embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material, and the rod-shaped control electrode 5 is fixed to the main surface on the cathode substrate side. The structure of the present embodiment has an advantage that the partition wall material / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. A notable advantage of the structure of this embodiment is that the partition wall material << the control electrode assembly 18 can be manufactured without using a so-called thin film technique or thick film technique. Although an example is shown in which the control electrode 5 has a rectangular cross section orthogonal to its long axis direction (X-axis direction in the figure), this cross section can be changed to a circular, elliptical, or polygonal shape. It does not prevent implementation of the present invention.
<第 4 2 の実施例 >  <Second Embodiment>
第 5 3 図は、 隔壁材連結保持板 4 は絶縁物で作製し、 その陰極基板 1 側の主面に制御電極 5を設け、 この主面における制御電極間の間隙を埋 めるよう に絶縁材 8 を部分的に形成した第 4 2 の実施例を示す。 本実施 例の構造は、 陰極基板 1 の構造を極めて簡素化し、 隔壁材 · 制御電極集 合体 1 8 を陰極基板 1 並びに陽極基板 2 とは別に、 自由に加工、 製作で きるよう にする という利点をもたらす。 また、 絶縁材 8 の比誘電率は通 常 1 よ り大きいので、 隔壁材連結保持板 4 の主面において、 絶縁材 8 が 配置される領域を制御電極 5 の間隙及びその周縁に制限するよ う に、 絶 縁材 8 を部分的形成した結果、 陰極 7 と制御電極 5 との間の静電容量が 低減した。 陰極 7 と制御電極 5 との間の静電容量が小さ く なる分、 これ らの電極 (導体) に供給される信号 (制御信号) の周波数を高める こ と ができる。 従って、 本実施例の構造を有する表示装置は、 高精細の画像 を表示し易 く なる (高精細の画像表示に要する表示装置の周辺機器の変 更を軽減でき る) 。 なお、 制御電極孔 9 と して、 略矩形の形状を有する 複数の開口を規則的に並べた例を図示 したが、 これらの形状を円形又は 楕円形等に変更して も、 又はこれらの配列態様を変更してもよい。 Fig. 53 shows that the partition wall connecting and holding plate 4 is made of an insulating material, the control electrode 5 is provided on the main surface on the cathode substrate 1 side, and the insulating material is insulated so as to fill the gap between the control electrodes on this main surface. A fourth embodiment in which the material 8 is partially formed is shown. The structure of this embodiment has an advantage that the structure of the cathode substrate 1 is extremely simplified, and the partition wall material and the control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Bring. In addition, since the relative permittivity of the insulating material 8 is usually larger than 1, the area where the insulating material 8 is arranged on the main surface of the partition wall connecting and holding plate 4 is limited to the gap between the control electrode 5 and the periphery thereof. Thus, as a result of the partial formation of the insulating material 8, the capacitance between the cathode 7 and the control electrode 5 was reduced. Since the capacitance between the cathode 7 and the control electrode 5 becomes smaller, The frequency of the signal (control signal) supplied to these electrodes (conductors) can be increased. Therefore, the display device having the structure of the present embodiment can easily display a high-definition image (the change in peripheral devices of the display device required for high-definition image display can be reduced). Although an example in which a plurality of openings having a substantially rectangular shape are regularly arranged as the control electrode holes 9 is illustrated, even if these shapes are changed to a circular or elliptical shape, or an arrangement of these shapes, The mode may be changed.
く第 4 3 の実施例 >  Example 43>
第 5 4 図は、 隔壁材連結保持板 4 を絶縁物で作製し、 その陰極基板 1 側の主面に制御電極 5 を形成した第 4 3 の実施例を示す。 本実施例の構 造は、 隔壁材 · 制御電極集合体 1 8を陰極基板 1 及び陽極基板 2 とは別 に、 自由に加工、 製作できるよ う になるという利点をもた らす。 また、 本実施例では、 絶縁材 8 をガラス基板 6 の主面における陰極 7 の間隙を 埋めるよ う に部分的に形成する。 従って、 陰極基板 1 の形状は第 1 8 の 実施例 (第 2 7 図) に類似する。 絶縁材 8 の比誘電率は通常 1 より大き いため、 これらの陰極基板 1 のよ う に、 ガラス基板 6 の主面において絶 縁材 8 が配置又は形成される領域を制限するよ う に、 この絶縁材 8 を陰 極 7 に対して部分的に形成する と、 陰極 7 と制御電極 5 との間の静電容 量が低減する。 第 4 2 の実施例で述べたよ う に、 陰極 7 と制御電極 5 と の間の静電容量が小さ く なる分、 これらによ り高周波の制御信号を供給 する こ とが可能にな り、 その結果、 表示装置における表示画像の精細度 が向上し、 又は高精細の画像表示が実現し易 く なる。 なお、 制御電極孔 9 と して、 略円形の形状を有する複数の開口を規則的に並べた例を示し たが、 これらの形状を矩形又は楕円形等に変更し、 その配列態様を本発 明による他の実施例に倣い変更しても本発明の実施を妨げる ものでない, <第 4 4 の実施例 >  FIG. 54 shows a fourth embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material and the control electrode 5 is formed on the main surface of the cathode substrate 1 side. The structure of the present embodiment has an advantage that the partition wall material / control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. In this embodiment, the insulating material 8 is partially formed so as to fill the gap between the cathodes 7 on the main surface of the glass substrate 6. Therefore, the shape of the cathode substrate 1 is similar to that of the eighteenth embodiment (FIG. 27). Since the relative permittivity of the insulating material 8 is usually larger than 1, the insulating material 8 is limited so that the area where the insulating material 8 is arranged or formed on the main surface of the glass substrate 6 is limited. When the insulating material 8 is partially formed on the cathode 7, the capacitance between the cathode 7 and the control electrode 5 is reduced. As described in the 42nd embodiment, since the capacitance between the cathode 7 and the control electrode 5 is reduced, a high-frequency control signal can be supplied by them. As a result, the definition of a display image on the display device is improved, or high-definition image display is easily realized. Although an example in which a plurality of openings having a substantially circular shape are regularly arranged as the control electrode holes 9 is shown, these shapes are changed to rectangular or elliptical shapes, and the arrangement of the present invention is changed. <Fourth and Fourth Embodiment>
第 5 5 図は、 隔壁材連結保持板 4 を絶縁物で作製し、 その陰極基板 1 側の主面に一対の棒状の制御電極 5 を複数組固定した第 4 4 の実施例を 示す。 本実施例の構造は、 隔壁材 * 制御電極集合体 1 8を陰極基板 1 並 びに陽極基板 2 とは別に、 自由に加工、 製作できるよ う にするという利 点をもたらす。 また、 第 4 3 の実施例と同様に陰極基板 1 の生面におい て絶縁材 8 を部分的に設ける こ とによ り、 この絶縁材 8 の比誘電率が 1 よ り大き く と も、 陰極 7 と制御電極 5 との間の静電容量をこれらの少な く と も一方に高周波の制御信号を供給できるだけ小さ く できる。 従って、 よ り高周波の制御信号を表示装置の画像表示動作に使用できるよ う にな り、 その結果、 この表示装置による高精細の画像表示が実現し易 く なる。 さ らに、 本実施例の構造の特筆すべき利点は、 隔壁材 · 制御電極集合体 1 8が所謂薄膜技術、 又は厚膜技術 (成長手法) を使用する こ とな く 製 作し得るこ とである。 制御電極 5 の延伸方向 (図における X軸方向) に 直交する断面を角型に した例を図示したが、 この断面を円形、 楕円形、 又は多角形に変えても本発明の実施を妨げる ものでない。 FIG. 55 shows a fourth embodiment in which the partition wall connecting and holding plate 4 is made of an insulating material and a plurality of sets of a pair of rod-shaped control electrodes 5 are fixed to the main surface of the cathode substrate 1 side. Show. The structure of the present embodiment provides an advantage that the partition wall material * control electrode assembly 18 can be freely processed and manufactured separately from the cathode substrate 1 and the anode substrate 2. Further, by providing the insulating material 8 partially on the raw surface of the cathode substrate 1 as in the fourth embodiment, even if the relative permittivity of the insulating material 8 is larger than 1, The capacitance between the cathode 7 and the control electrode 5 can be made as small as possible to supply a high-frequency control signal to at least one of them. Therefore, a higher-frequency control signal can be used for the image display operation of the display device, and as a result, a high-definition image display by this display device can be easily realized. Furthermore, a notable advantage of the structure of this embodiment is that the partition wall material and the control electrode assembly 18 can be manufactured without using a so-called thin film technology or a thick film technology (growth method). And Although an example is shown in which the cross section orthogonal to the extending direction of the control electrode 5 (the X-axis direction in the figure) is square, the implementation of the present invention is prevented even if the cross section is changed to a circle, an ellipse, or a polygon. Not.
最後に、 本発明による上述の表示装置の電子放出:部と して好適な力一 ボン ' ナノ ' チューブを用いた電子源を第 5 6 図に.示す。 第 5 6 図 . Finally, FIG. 56 shows an electron source using a carbon nanotube 'nano' tube suitable as an electron emission part of the above-mentioned display device according to the present invention. Fig. 56.
( a ) はこの電子源の平面図、 第 5 6 図 ( b ) はこの電子源を第 5 6 図 ( a ) の B— B線に沿って切断した断面図を夫々示す。 この電子源の構 造及び動作は、 第 5 8 図 ( b ) 及び ( c ) を用いて既に説明 した Spindt 型電子源に類似するが、 電子放出部と してエ ミ ッ タ · コーン 1 0 0 に代 えて力一ボン · ナノ · チューブ 1 0 2 'と呼ばれる棒状の炭素分子をもち いる。 カーボン ' ナノ ' チューブ 1 0 2 は、 その名の通り、 長手方向の 寸法を含めて数 n m (ナノ · メ ー トル = 1 0 - 9 m ) から数十 n mの非常 に微細な物質であるが、 第 5 6 図 ( a ) 及び ( b ) にはこれを拡大して 示す。 このよ う に微細な物質を陰極 7 に固定するに際し、 図示された電 子源は、 複数のカーボン · ナノ · チューブ 1 0 2 を銀等の導電性ペース 卜に分散させ、 これを絶縁材 8 の開口又は隙間から露出 した陰極 7 の上 面に滴下し、 導電性ペース トを硬化させて導電膜 1 0 3 を形成する。 こ れによ り、 力一ボン · ナノ · チューブ 1 0 2 は導電膜 1 0 3 の表面に固 定される。 このよ う に導電膜 1 0 3 に固定されたカーボン · ナノ · チュ ーブ 1 0 2 の特に導電膜 1 0 3から突出 した部分は、 これと制御電極 5 との間に生じる電位差△ Vに応じて、 電子を放出する。 上述のよ う に Sp indt型電子源に比べて力一ボン · ナノ · チューブ 1 0 2 を用いた電子 源は、 簡易なプロセスで形成でき、 また第 5 8 図 ( c ) と第 5 6 図 ( b ) とを比較しても明 らかなよ う に、 電子放出部も多 く 形成できる。 従って、 カーボン · ナノ · チューブ 1 0 2 を用いた電界放出型表示装置 は、 量産に好適であ り且つ画像をよ り 明る く 表示でき る利点を有する。 以上に説明 した本発明による表示装置 (電界放出型表示装置) は、 陰 極基板 1 と陽極基板 2を一定距離だけ離して配置する隔壁材 3を一括し て連結保持する 「隔壁材連結保持板」 が設けられているため、 この表示 装置による画像表示性能を損なう こ と無く 隔壁材 3 を効率的かつ正確に 配:置できる。 (a) is a plan view of the electron source, and FIG. 56 (b) is a cross-sectional view of the electron source taken along line BB of FIG. 56 (a). The structure and operation of this electron source is similar to the Spindt type electron source already described with reference to FIGS. 58 (b) and (c), but the emitter cone 10 Instead of 0, it uses rod-shaped carbon molecules called carbon nanotubes 102 '. Carbon 'nano' tube 1 0 2, as its name, longitudinally several nm including the size of the - is a (nano meter = 1 0 9 m) very fine material a few tens nm from Figure 56 (a) and (b) show this in an enlarged manner. When fixing such a fine substance to the cathode 7, the illustrated electron source disperses a plurality of carbon nanotubes 102 into a conductive paste such as silver, and disperses the carbon nanotubes 102 in an insulating material 8. Then, the conductive paste is hardened to form a conductive film 103 by dripping onto the upper surface of the cathode 7 exposed from the opening or the gap of the cathode 7. This As a result, the carbon nano tube 102 is fixed to the surface of the conductive film 103. In this way, the portion of the carbon nanotube 102 fixed to the conductive film 103, particularly the portion protruding from the conductive film 103, is affected by the potential difference ΔV generated between this and the control electrode 5. In response, it emits electrons. As described above, an electron source using a carbon nanotube 102 can be formed by a simpler process than a Spindt-type electron source, as shown in Figs. 58 (c) and 56. As is clear from comparison with (b), many electron-emitting portions can be formed. Therefore, the field emission display device using the carbon nanotube 102 is suitable for mass production and has an advantage that an image can be displayed brighter. The above-described display device (field emission display device) according to the present invention is a “partition material connection holding plate” that collectively connects and holds partition materials 3 in which the anode substrate 1 and the anode substrate 2 are arranged at a fixed distance from each other. Is provided, so that the partition wall member 3 can be efficiently and accurately arranged and placed without impairing the image display performance of the display device.
また、 本発明による第 2の表示装置及びその類似物は、 陰極基板 1 と 陽極基板 2 とを一定距離だけ離して配置する隔壁材 3 と、 陰極基板から 放.出される電子の流れを制御する電極 (制御電極) 5 とを一括して連結 保持する 「隔壁材 · 制御電極連結保持板」 が設けられているため、 この 表示装置による画像表示性能を損なう こ と無く 、 隔壁材 3 と制御電極 5 とを効率的かつ正確に配置できる。  In addition, the second display device and the like according to the present invention control the flow of electrons emitted from the cathode substrate, and the partition member 3 that arranges the cathode substrate 1 and the anode substrate 2 at a fixed distance from each other. Since the “partition material / control electrode connection holding plate” for connecting and holding the electrode (control electrode) 5 at a time is provided, the partition material 3 and the control electrode can be maintained without impairing the image display performance of this display device. 5 and can be arranged efficiently and accurately.
本発明に係るい く つかの実施例を示し、 これらについて述べたが、 同 発明はこれらに限定される こ とな く 当業者の知り得る範囲においてこれ らになされる種々の変形並びに改善をも許容する ものと理解される もの である。 従って本願明細書に付された請求項の範囲はこれに示され且つ 記載される詳細に拘束される こ とな く 、 かよ うな変形及び改善をも全て 包含する こ とを意図する ものである。  Although some embodiments according to the present invention have been shown and described, the present invention is not limited to these embodiments, and various modifications and improvements can be made within a range known to those skilled in the art. It is understood to be acceptable. It is therefore intended that the scope of the claims appended hereto be limited to the details shown and described, and that it include all such modifications and improvements.

Claims

請 求 の 範 囲 The scope of the claims
1 . 一方の主面に電界によ り電子を放出する制御手段を有する陰極基板 と、 陰極基板に対向して且つ離間 して配置され且つ一方の主面に上記電 5 子を吸収して発光する手段を有する陽極基板と、 上記陰極基板と上記陽 極基板との間の空間を真空に維持する気密手段と、 上記陰極基板と上記 陽極基板との間隙を維持する複数の隔壁材と、 上記陰極基板又は上記陽 極基板のいずれかの主面に沿う面において上記複数の隔壁材を連結し且 つ保持する連結保持手段を有する こ とを特徴とする表示装置。 1. A cathode substrate having a control means for emitting electrons by an electric field on one main surface, and a cathode substrate disposed at a distance from the cathode substrate so as to face the cathode substrate, and having one main surface absorbing the electrons to emit light. An anode substrate having a means for performing the above, airtight means for maintaining a space between the cathode substrate and the anode substrate in a vacuum, a plurality of partition members for maintaining a gap between the cathode substrate and the anode substrate, A display device comprising a connection holding means for connecting and holding the plurality of partition members on a surface along any one of the cathode substrate and the cathode substrate.
10 2 . 請求の範囲第 1 項において、 上記連結保持手段は導電性材料で形成 されている こ とを特徴とする表示装置。  10 2. The display device according to claim 1, wherein the connection holding means is formed of a conductive material.
·· ···
3 . 請求の範囲第 1 項において、 上記連結保持手段は絶縁性材料で形成3. In Claim 1, the connection holding means is formed of an insulating material.
' されている表示装置。 'Display device.
4 . 請求項の範囲第 3項において、 上記絶縁性材料からなる連結保持手 15 段導電性材料には導電性材料からなる領域が形成ざれている こ とを特徴 とする表示装置。  4. The display device according to claim 3, wherein a region made of a conductive material is formed in the fifteen-step conductive material made of the insulating material.
5 . 請求の範囲第 1 項において、 上記連結保持手段は上記陰極基板又は 上記陽極基板のいずれかの主面に沿う主面を有する こ とを特徴とする表 示装置。  5. The display device according to claim 1, wherein the connection holding means has a main surface along a main surface of either the cathode substrate or the anode substrate.
20 6 . 請求の範囲第 5項において、 上記複数の隔壁材の各々 は上記連結保 持手段の上記主面に接着される こ とによ り連結保持手段に保持されてい る こ とを特徴とする表示装置。  20 6. In Claim 5, each of the plurality of partition members is held by the connection holding means by being bonded to the main surface of the connection holding means. Display device.
7 . 請求の範囲第 5項において、 上記連結保持手段の上記主面には複数 の開口が設けられ、 上記複数の隔壁材の各々 には突起が設けられ、 上記 25 複数の隔壁材の各々 は上記突起を上記連結保持手段の複数の開口のいず れかに挿入されて該連結保持手段に保持されている こ とを特徴とする表 示装置。 7. In Claim 5, the main surface of the connection holding means is provided with a plurality of openings, each of the plurality of partition members is provided with a projection, and each of the 25 plurality of partition members is A display device wherein the projection is inserted into any one of the plurality of openings of the connection holding means and held by the connection holding means.
8 . —方の主面に電界により電子を放出する手段を有する陰極基板と、 上記陰極基板に対向し且つ離間して配置され且つ一方の生面に上記電子 を吸収して発光する手段を有する陽極基板と、 上記陰極基板と上記陽極 基板との間の空間を真空に維持する気密手段と、 上記陰極基板と上記陽 極基板との間隙を維持する複数の隔壁材と、 上記陰極基板又は上記陽極 基板のいずれかの主面に沿う面において上記複数の隔壁材を連結し且つ 保持する連結保持手段と、 上記陰極基板からの電子放出を制御する制御 手段とを備え、 上記制御手段は上記複数の隔壁材に固定されて上記陰極 基板と上記陽極基板との間に配置されていることを特徴とする表示装置, 9 . 一方の主面に電界によ り電子を放出する手段を有する陰極基板と、 上記陰極基板に対向し且つ離間して配置され且つ一方の生面に上記電子 を吸収して発光する手段を有する陽極基板と、 上記陰極基板と上記陽極 基板との間の空間を真空に維持する気密手段と、 上記陰極基板と上記陽 極基板との間隙を維持する複数の隔壁材と、 上記陰極基板又は上記陽極 基板のいずれかの主面に沿う面において上記複数の隔壁材を連結し且つ, 保持する連結保持手段とを備え、 上記連結保持手段には上記陰極基板か らの電子放出を制御する制御手段が設けられていることを特徴とする表 示装置。 8. A cathode substrate having a means for emitting electrons by an electric field on one of the main surfaces, and a means for absorbing and emitting light by absorbing the electrons on one of the raw surfaces, the cathode substrate being opposed to and separated from the cathode substrate. An anode substrate; airtight means for maintaining a vacuum between the cathode substrate and the anode substrate in a vacuum; a plurality of partition members for maintaining a gap between the cathode substrate and the anode substrate; A connection holding unit that connects and holds the plurality of partition members on a surface along any one of the main surfaces of the anode substrate; and a control unit that controls electron emission from the cathode substrate. A display device fixed to the partition wall material and disposed between the cathode substrate and the anode substrate, 9. a cathode substrate having a means for emitting electrons by an electric field on one main surface. And facing the cathode substrate An anode substrate having a means for absorbing the electrons and emitting light on one of the raw surfaces, an airtight means for maintaining a vacuum between the cathode substrate and the anode substrate, A plurality of partition members for maintaining a gap between the cathode substrate and the anode substrate; and a connection holding for connecting and holding the plurality of partition members on a surface along one of the main surfaces of the cathode substrate or the anode substrate. Means for controlling electron emission from the cathode substrate, wherein the connection holding means is provided with control means for controlling electron emission from the cathode substrate.
1 0 . 第 1主面を有する第 1 の基板及び該第 1 の主面に対向する第 2の 主面を有する第 2の基板と、 上記第 1 の基板と上記第 2 の '基板とを連結 し且つ上記第 1 の主面及び第 2の主面との間に挟まれた空間を囲む支持 部材と、 上記空間に配置され且つ上記第 1 の主面から上記第 2のま面に 至る仮想的な線に沿って広がる面を有する複数の壁部材と、 上記第 1主 面に形成された陰極と、 上記第 2生面に形成された蛍光体と該蛍光体を 被うように形成された陽極とを備え、 上記複数の壁部材の各々は上記第 1 の主面又は上記第 2の主面に沿って広がる面を有する連結部材に結合 されていることを特徴とする表示装置。 10. A first substrate having a first main surface, a second substrate having a second main surface opposed to the first main surface, the first substrate and the second substrate A support member connected to and surrounding a space sandwiched between the first main surface and the second main surface; and a support member disposed in the space and extending from the first main surface to the second front surface. A plurality of wall members having a surface extending along a virtual line; a cathode formed on the first main surface; a phosphor formed on the second raw surface; and formed to cover the phosphor. A display device comprising: a plurality of wall members, each of the plurality of wall members being connected to a connecting member having a surface extending along the first main surface or the second main surface.
1 1 . 上記壁部材は、 上記第 1 の生面から上記第 2の主面に至る仮想的 な線に沿って広がる面を主面とする板状に形成されていることを特徴と する請求の範囲第 1 0項に記載の表示装置。 11. The wall member is characterized in that the wall member is formed in a plate shape having a main surface extending along a virtual line from the first raw surface to the second main surface. Item 10. The display device according to Item 10.
1 2 . 上記連結部材は、 上記第 1 の主面又は上記第 2の主面に沿つて広 がる面を主面とする板状に形成されていることを特徴とする請求の範囲 第 1 0項に記載の表示装置。  12. The connection member according to claim 1, wherein the connection member is formed in a plate shape having a main surface extending along the first main surface or the second main surface. The display device according to item 0.
1 3 . 上記第 1 の主面には、 上記陰極からの電子放出を制御する電極が 設けられ、 該電子放出を制御する電極は該陰極の上部に設けられた絶縁 部材の上面に配置されていることを特徴とする請求の範囲第 1 0項に記 載の表示装置。  13. An electrode for controlling electron emission from the cathode is provided on the first main surface, and the electrode for controlling electron emission is disposed on an upper surface of an insulating member provided above the cathode. 10. The display device according to claim 10, wherein:
1 4 . 上記連結部材の上記第 1 の主面又は上記第 2の主面に沿って広が る面には、 上記陰'極に対向して開口が設けられていることを特徴とする 請求の範囲第 1 0 '項に記載の表示装置。  14. A surface of the connecting member extending along the first main surface or the second main surface is provided with an opening facing the negative electrode. The display device according to item 10 ′.
1 5 . 上記連結部材の開口の周囲には上記陰極の電子放出を制御する電 極が設けられたことを特徵とする請求の範囲第 1 0項に記載の表示装置, 15. The display device according to claim 10, wherein an electrode for controlling electron emission of the cathode is provided around the opening of the connecting member.
1 6 . 第 1主面を有する第 1 の基板と第 2主面を有し且つ該第 2主面が 該第 1主面と対向するように該第 1 の基板と離間して配置された第 2の 基板と、 上記第 1 の基板と上記第 2の基板とを連結し且つ上記第 1 のま 面と第 2の主面との間隙を囲む支持部材と、 上記第 1主面と上記第 2主 面との間に配置され且つこれらのま面を隔てる上記間隙に沿う主面を有 する複数の壁部材と、 上記第 1主面に形成された陰極と、 上記第 2主面 に形成された蛍光体及び該蛍光体を被うように形成された陽極とを備え. 上記複数の壁部材の各々は上記第 1 の生面又は上記第 2の主面に沿う主 面を有する連結部材に結合されていることを特徴とする表示装置。 1 6. A first substrate having a first main surface and a second substrate having a second main surface, the second main surface being spaced from the first substrate such that the second main surface faces the first main surface. A second substrate, a support member connecting the first substrate and the second substrate, and surrounding a gap between the first surface and the second main surface; A plurality of wall members arranged between the second main surface and having a main surface along the gap separating the front surfaces, a cathode formed on the first main surface, and a second main surface. A phosphor formed and an anode formed so as to cover the phosphor. Each of the plurality of wall members has a connection having a main surface along the first raw surface or the second main surface. A display device, which is connected to a member.
1 7 . 上記連結部材の主面には、 上記第 1 の基板に設けられた陰極に対 向する開口が設けられていることを特徴とする請求の範囲第 1 6項に記 載の表示装置。 17. The display device according to claim 16, wherein an opening facing a cathode provided on the first substrate is provided on a main surface of the connecting member. .
1 8 . 上記複数の壁部材は、 上記連結部材の上記第 1 基板側の主面及び 上記第 2基板側の主面の各々 に設けられている こ とを特徴とする請求の 範囲第 1 6項に記載の表示装置。 18. The plurality of wall members, wherein the plurality of wall members are provided on each of the first substrate-side main surface and the second substrate-side main surface of the connection member. The display device according to item.
1 9 . 上記連結部材の第 1 基板側の主面に設けられた上記複数の壁部材 のう ちの一群と上記第 2基板側の主面に設けられた該複数の壁部材のう ちの他の群とは、 夫々の主面が交差するよ う に配置されたこ とを特徴と する請求の範囲第 1 8項に記載の表示装置。  19. A group of the plurality of wall members provided on the first substrate-side main surface of the connecting member and another of the plurality of wall members provided on the second substrate-side main surface of the second substrate. 19. The display device according to claim 18, wherein the groups are arranged such that their main surfaces intersect.
2 0 . 上記連結部材の第 1 基板側の主面に設けられた上記複数の壁部材 のう ちの一群と上記第 2基板側の主面に設けられた該複数の壁部材のう ちの他の群とは、 上記間隙に沿う夫々の高さが異なる こ とを特徴とする 請求の範囲第 1 8項に記載の表示装置。  20. A group of the plurality of wall members provided on the first substrate side main surface of the connection member and another of the plurality of wall members provided on the second substrate side main surface. 19. The display device according to claim 18, wherein a height of each of the groups along the gap is different from that of the group.
PCT/JP2000/006349 2000-09-18 2000-09-18 Display device WO2002023578A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002527533A JPWO2002023578A1 (en) 2000-09-18 2000-09-18 Display device
PCT/JP2000/006349 WO2002023578A1 (en) 2000-09-18 2000-09-18 Display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/006349 WO2002023578A1 (en) 2000-09-18 2000-09-18 Display device

Publications (1)

Publication Number Publication Date
WO2002023578A1 true WO2002023578A1 (en) 2002-03-21

Family

ID=11736462

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006349 WO2002023578A1 (en) 2000-09-18 2000-09-18 Display device

Country Status (2)

Country Link
JP (1) JPWO2002023578A1 (en)
WO (1) WO2002023578A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105076A1 (en) * 2003-05-20 2004-12-02 Kabushiki Kaisha Toshiba Image display device
WO2005076310A1 (en) * 2004-02-03 2005-08-18 Kabushiki Kaisha Toshiba Image display device
WO2005093778A1 (en) * 2004-03-29 2005-10-06 Kabushiki Kaisha Toshiba Image display and method for manufacturing same
WO2006006470A1 (en) * 2004-07-09 2006-01-19 Kabushiki Kaisha Toshiba Image display device
JP2008269870A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Field emission type light-emitting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371433A (en) * 1991-01-25 1994-12-06 U.S. Philips Corporation Flat electron display device with spacer and method of making
JPH1196944A (en) * 1989-05-15 1999-04-09 Canon Inc Display device
US5899350A (en) * 1997-01-29 1999-05-04 Futaba Denshi Kogyo K.K. Hermetic container and a supporting member for the same
JP2000208072A (en) * 1999-01-11 2000-07-28 Canon Inc Image forming device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1196944A (en) * 1989-05-15 1999-04-09 Canon Inc Display device
US5371433A (en) * 1991-01-25 1994-12-06 U.S. Philips Corporation Flat electron display device with spacer and method of making
US5899350A (en) * 1997-01-29 1999-05-04 Futaba Denshi Kogyo K.K. Hermetic container and a supporting member for the same
JP2000208072A (en) * 1999-01-11 2000-07-28 Canon Inc Image forming device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004105076A1 (en) * 2003-05-20 2004-12-02 Kabushiki Kaisha Toshiba Image display device
WO2005076310A1 (en) * 2004-02-03 2005-08-18 Kabushiki Kaisha Toshiba Image display device
WO2005093778A1 (en) * 2004-03-29 2005-10-06 Kabushiki Kaisha Toshiba Image display and method for manufacturing same
WO2006006470A1 (en) * 2004-07-09 2006-01-19 Kabushiki Kaisha Toshiba Image display device
JP2008269870A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Field emission type light-emitting device

Also Published As

Publication number Publication date
JPWO2002023578A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
JP3548533B2 (en) Electron beam equipment
US7473154B2 (en) Method for manufacturing carbon nanotube field emission display
US6713947B2 (en) Display device and method of manufacturing the same
JP2003263951A (en) Field emission type electron source and driving method
US6998769B2 (en) Image displaying apparatus having a potential regulating electrode, an anode, and a spacing member, for suppressing undesired discharge
JP2003092075A (en) Electron beam device and image display device
JP2000260359A (en) Image forming substrate, electron source substrate, and image forming device
JP2003178703A (en) Flat display and its manufacturing method
WO2002023578A1 (en) Display device
WO2006102796A1 (en) A field emission display having multi-layer structure
US7285901B2 (en) Display device having a connecting portion between cathode line and electron source
WO2004090930A1 (en) Image disply unit and production method for spacer assembly used in image display unit
US6635984B1 (en) Image-forming apparatus
JP2006202553A (en) Image display device and its manufacturing method
US6215242B1 (en) Field emission display device having a photon-generated electron emitter
JP2003308798A (en) Image display device and manufacturing method of image display device
JP3478774B2 (en) Image display device
JP2002367542A (en) Field emission display and method of manufacturing the same
US20070126338A1 (en) Display device
JP2004227822A (en) Image display apparatus
JP2002289088A (en) Electron emitting element, electron source, driving method for electron source, image forming device, driving method for image forming device and electron emitting device
JP2003217479A (en) Electron beam device
JP2002245939A (en) Manufacturing method of display device and display device
JP2007048468A (en) Display apparatus
WO2006006470A1 (en) Image display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002527533

Country of ref document: JP

122 Ep: pct application non-entry in european phase