JPS649647B2 - - Google Patents

Info

Publication number
JPS649647B2
JPS649647B2 JP10706881A JP10706881A JPS649647B2 JP S649647 B2 JPS649647 B2 JP S649647B2 JP 10706881 A JP10706881 A JP 10706881A JP 10706881 A JP10706881 A JP 10706881A JP S649647 B2 JPS649647 B2 JP S649647B2
Authority
JP
Japan
Prior art keywords
magnetic core
insulating film
film
magnetic
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10706881A
Other languages
Japanese (ja)
Other versions
JPS589209A (en
Inventor
Shinji Narushige
Tsuneo Yoshinari
Mitsuo Sato
Sadakuni Nagaike
Masayuki Takagi
Toshihiro Yoshida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI
Original Assignee
DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI filed Critical DENSHI KEISANKI KIPPON GIJUTSU KENKYU KUMIAI
Priority to JP10706881A priority Critical patent/JPS589209A/en
Publication of JPS589209A publication Critical patent/JPS589209A/en
Publication of JPS649647B2 publication Critical patent/JPS649647B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/31Structure or manufacture of heads, e.g. inductive using thin films
    • G11B5/3103Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing
    • G11B5/3106Structure or manufacture of integrated heads or heads mechanically assembled and electrically connected to a support or housing where the integrated or assembled structure comprises means for conditioning against physical detrimental influence, e.g. wear, contamination

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Magnetic Heads (AREA)

Description

【発明の詳細な説明】 本発明は薄膜磁気ヘツドに係り、特に上部磁気
コア側に保護用の無機絶縁膜を具備する薄膜磁気
ヘツドの改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a thin film magnetic head, and more particularly to an improvement in a thin film magnetic head having a protective inorganic insulating film on the upper magnetic core side.

薄膜磁気ヘツドは、例えば電子計算機の記憶装
置として使用される磁気デイスク装置或いは磁気
ドラム装置の如く高記録密度が要求される磁気記
録装置用の磁気ヘツドとして薄膜技術により製造
されるもので、その電磁変換動作に必要な最小構
成要素は、磁気ギヤツプを有し上部磁気コア及び
下部磁気コアから成る磁気コアと、上部磁気コア
と下部磁気コアとの間を通り磁気コアと交差する
コイル導体と、磁気コアとコイル導体間及びコイ
ル導体が複数個存在する場合にはコイル導体相互
間を電気的に絶縁する絶縁材である。これらの要
素から構成される薄膜磁気ヘツドは、基板上に形
成する必要があることから基板も薄膜磁気ヘツド
の構成要素となる。この基板としては、ガラス,
セラミツクス等の非磁性材料が使用される場合
と、例えばNi−Znフエライト,Mn−Znフエラ
イト等の軟質磁性材料が使用される場合とがあ
り、後者の場合には下部磁気コアと兼用すること
も行なわれている。
Thin film magnetic heads are manufactured using thin film technology as magnetic heads for magnetic recording devices that require high recording density, such as magnetic disk devices or magnetic drum devices used as storage devices in electronic computers. The minimum components required for the conversion operation are a magnetic core having a magnetic gap and consisting of an upper magnetic core and a lower magnetic core, a coil conductor that passes between the upper magnetic core and the lower magnetic core and intersects the magnetic core, and a magnetic It is an insulating material that electrically insulates between the core and the coil conductors, and between the coil conductors when there are a plurality of coil conductors. Since a thin film magnetic head composed of these elements must be formed on a substrate, the substrate also becomes a component of the thin film magnetic head. For this substrate, glass,
There are cases where non-magnetic materials such as ceramics are used, and cases where soft magnetic materials such as Ni-Zn ferrite and Mn-Zn ferrite are used, and in the latter case, it may also be used as the lower magnetic core. It is being done.

一方、薄膜磁気ヘツドはその製作過程で、例え
ばセラミツクの基板上へ下部磁気コア,絶縁層,
コイル導体,絶縁層及び上部磁気コアを順次積層
した後、上部磁気コア,下部磁気コア及びそれら
間に介在した絶縁層から成る磁気ギヤツプの深さ
を所定値にするために磁気ギヤツプ端は基板を含
め機械的切削加工が施される。また、使用時には
記録媒体と摺動し合う。このため、薄膜磁気ヘツ
ドを電磁変換動作に必要な最小構成要素のみから
構成したのでは、機械的切削加工時に磁気コアの
剥離を招いたり、記録媒体との摺動によつて磁気
ギヤツプ端の摩耗を招く等実用上解決しなければ
ならない問題を有する。
On the other hand, in the manufacturing process of a thin film magnetic head, for example, a lower magnetic core, an insulating layer, and an insulating layer are placed on a ceramic substrate.
After the coil conductor, insulating layer, and upper magnetic core are sequentially laminated, the end of the magnetic gap is layered with the substrate in order to maintain a predetermined depth of the magnetic gap consisting of the upper magnetic core, the lower magnetic core, and the insulating layer interposed between them. Mechanical cutting is applied, including. Also, during use, it slides against the recording medium. For this reason, if a thin-film magnetic head is constructed from only the minimum components necessary for electromagnetic conversion operation, the magnetic core may peel off during mechanical cutting, and the end of the magnetic gap may wear out due to sliding with the recording medium. There are problems that must be solved in practical terms, such as causing problems.

これらの問題を解決した実用的な薄膜磁気ヘツ
ドの一例として、第1図に示すように上部磁気コ
ア側を保護用の無機絶縁膜で被膜した構造が知ら
れている。図において、1は基板、2は基板1上
に形成された下部磁気コア、3は下部磁気コア2
上のコイル導体を形成すベき個所及び磁気ギヤツ
プGとなる個所に形成された第1の絶縁層、4は
第1の絶縁層3上に形成したコイル導体、5はコ
イル導体4相互間及びコイル導体4と下部磁気コ
ア間を電気的に絶縁する第2の絶縁層、6は大部
分が第2の絶縁層5上に位置し一端が第1の絶縁
層3を介して下部磁気コア2の一端に対向して磁
気ギヤツプGを形成し、他端が下部磁気コア2の
他端に接触する上部磁気コア、7は上部磁気コア
6上に形成された保護用の無機絶縁膜である。こ
の保護用の無機絶縁膜7としてはAl2O3,SiO2
ZrO2等の酸化物が用いられている。その形成法
としてはスパツタリング法が用いられているが、
反応性蒸着,反応性スパツタリング,気相反応法
あるいは溶射等を用いることも出来る。この無機
絶縁膜7の膜厚は5〜50μmとするのが一般的で
ある。この様な厚い無機絶縁膜は前記のいずれの
形成法を採用して形成する場合にも、無機絶縁膜
に大きな内部応力を発生する。例えば、発明者ら
の実験に依れば、スパツタリングで形成した膜厚
30μmのAl2O3は約30Kg/mm2の内部応力を有して
いた。この様に大きな内部応力は、薄膜磁気ヘツ
ドの電磁変換特性を左右する磁気コア(多くの場
合には80Ni−20Feの組成を有するパーマロイ膜
が用いられる)の磁気特性を大幅に低下させる原
因となる。すなわち内部応力の大きい無機絶縁膜
を上部磁気コア6上に直接形成したものは電磁変
換特性が大幅に低下する。薄膜磁気ヘツドの電磁
変換性特性を劣化させない程度に内部応力を減少
させた5〜50μmの保護用の無機絶縁膜7を形成
することは困難である。
As an example of a practical thin-film magnetic head that solves these problems, a structure is known in which the upper magnetic core side is coated with a protective inorganic insulating film, as shown in FIG. In the figure, 1 is a substrate, 2 is a lower magnetic core formed on the substrate 1, and 3 is a lower magnetic core 2.
The first insulating layer is formed at the location where the upper coil conductor is to be formed and the location where the magnetic gap G is to be formed; 4 is the coil conductor formed on the first insulating layer 3; 5 is the area between the coil conductors 4 and A second insulating layer 6 electrically insulating between the coil conductor 4 and the lower magnetic core is mostly located on the second insulating layer 5, and one end is connected to the lower magnetic core 2 via the first insulating layer 3. The upper magnetic core 7 is a protective inorganic insulating film formed on the upper magnetic core 6, with one end facing the upper magnetic core 7 forming a magnetic gap G and the other end contacting the other end of the lower magnetic core 2. This protective inorganic insulating film 7 is made of Al 2 O 3 , SiO 2 ,
Oxides such as ZrO 2 are used. The sputtering method is used as the formation method, but
Reactive vapor deposition, reactive sputtering, gas phase reaction methods, thermal spraying, etc. can also be used. The thickness of this inorganic insulating film 7 is generally 5 to 50 μm. When such a thick inorganic insulating film is formed using any of the above-mentioned forming methods, a large internal stress is generated in the inorganic insulating film. For example, according to the inventors' experiments, the thickness of the film formed by sputtering
The 30 μm Al 2 O 3 had an internal stress of about 30 Kg/mm 2 . Such a large internal stress causes a significant decrease in the magnetic properties of the magnetic core (permalloy film with a composition of 80Ni-20Fe is used in most cases), which determines the electromagnetic conversion properties of the thin-film magnetic head. . That is, if an inorganic insulating film with a large internal stress is directly formed on the upper magnetic core 6, the electromagnetic conversion characteristics will be significantly degraded. It is difficult to form a protective inorganic insulating film 7 with a thickness of 5 to 50 μm that reduces internal stress to an extent that does not deteriorate the electromagnetic transducing characteristics of the thin film magnetic head.

本発明の目的は、電磁変換特性の優れた実用的
な薄膜磁気ヘツドを提供することにある。
An object of the present invention is to provide a practical thin film magnetic head with excellent electromagnetic conversion characteristics.

本発明の他の目的は、上部磁気コア上に内部応
力の大きな保護用の無機絶縁膜を形成しても、電
磁変換特性が低下しない薄膜磁気ヘツドを提供す
ることにある。
Another object of the present invention is to provide a thin film magnetic head in which the electromagnetic conversion characteristics do not deteriorate even when a protective inorganic insulating film having a large internal stress is formed on the upper magnetic core.

かゝる目的を奏する本発明薄膜磁気ヘツドの特
徴とするところは、上部磁気コアと保護用の無機
絶縁膜との間に有機絶縁膜の如き応力緩和膜を介
在させた点にある。この有機絶縁膜の如き応力緩
和膜は、その上の無機絶縁膜の内部応力を吸収し
て、無機絶縁膜の内部応力が磁気コアに加わらな
いように或いは加わつてもその大きさを軽減する
機能すなわち応力緩和機能を有する。従つて、薄
膜磁気ヘツドの無機絶縁膜に原因する電磁変換特
性の低下を防止することができる。無機絶縁膜の
内部応力が磁気コアに加わらない様にするに必要
な有機絶縁膜の厚さは、無機絶縁膜の内部応力の
大きさによつて異なる。無機絶縁膜の内部応力が
5〜50Kg/mm2の場合、有機絶縁膜の必要な厚さは
0.5〜5μmである。無機絶縁膜の形成時には基板
の温度上昇は避けられないことから、有機絶縁膜
としては耐熱温度の高いポリイミド系樹脂が適し
ている。また、有機絶縁膜は上部磁気コアの全面
を被う必要はなく、上部磁気コアの磁気ギヤツプ
近傍を除く個所上に形成すれば充分である。
The thin film magnetic head of the present invention which achieves the above purpose is characterized in that a stress relaxation film such as an organic insulating film is interposed between the upper magnetic core and the protective inorganic insulating film. This stress relaxation film, such as an organic insulating film, has the function of absorbing the internal stress of the inorganic insulating film above it, so that the internal stress of the inorganic insulating film is not applied to the magnetic core, or even if it is applied, it reduces its magnitude. In other words, it has a stress relieving function. Therefore, it is possible to prevent the electromagnetic conversion characteristics from deteriorating due to the inorganic insulating film of the thin film magnetic head. The thickness of the organic insulating film required to prevent the internal stress of the inorganic insulating film from being applied to the magnetic core varies depending on the magnitude of the internal stress of the inorganic insulating film. If the internal stress of the inorganic insulating film is 5 to 50 Kg/ mm2 , the required thickness of the organic insulating film is
It is 0.5-5 μm. Since an increase in the temperature of the substrate is unavoidable when forming an inorganic insulating film, a polyimide resin with a high heat resistance is suitable for the organic insulating film. Further, the organic insulating film does not need to cover the entire surface of the upper magnetic core, and it is sufficient to form it on the upper magnetic core except for the vicinity of the magnetic gap.

以下本発明薄膜磁気ヘツドを実施例として示し
た図面により詳細に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The thin film magnetic head of the present invention will be explained in detail below with reference to the drawings showing examples thereof.

第2図において、21は基板、22は基板21
上に形成された下部磁気コア、23は下部磁気コ
ア22上のコイル導体を形成すべき個所及び磁気
ギヤツプGとなる個所に形成された第1の絶縁
層、24は第1の絶縁層23上に形成したコイル
導体、25はコイル導体24相互間及びコイル導
体24と下部磁気コア22間を電気的に絶縁する
第2の絶縁層、26は大部分が第2の絶縁層25
上に位置し一端が第1の絶縁層23を介して下部
磁気コア22の一端に対向して磁気ギヤツプGを
形成し、他端が下部磁気コア22の他端に接触す
る上部磁気コア、27は上部磁気コア26上の磁
気ギヤツプGに対向する個所を除く全面に形成し
た有機絶縁膜、28は有機絶縁膜27上は勿論基
板上に形成された磁気コイル及びコイル導体をす
べて被覆するように形成された無機絶縁膜であ
る。
In FIG. 2, 21 is a substrate, and 22 is a substrate 21.
23 is a first insulating layer formed on the lower magnetic core 22 at a location where a coil conductor is to be formed and a location where a magnetic gap G is to be formed; 24 is a first insulating layer formed on the first insulating layer 23; 25 is a second insulating layer that electrically insulates between the coil conductors 24 and between the coil conductor 24 and the lower magnetic core 22; 26 is the second insulating layer 25 formed in most part;
an upper magnetic core 27 located above, one end facing one end of the lower magnetic core 22 via the first insulating layer 23 to form a magnetic gap G, and the other end contacting the other end of the lower magnetic core 22; 28 is an organic insulating film formed on the entire surface of the upper magnetic core 26 except for the part facing the magnetic gap G, and 28 is an organic insulating film that covers not only the organic insulating film 27 but also all the magnetic coils and coil conductors formed on the substrate. This is the formed inorganic insulating film.

かゝる構成の薄膜磁気ヘツドの製法を第3図に
説明する。
A method of manufacturing a thin film magnetic head having such a structure will be explained with reference to FIG.

まず第3図aに示す如く、公知の技術例えばめ
つき、蒸着、スパツタリングおよびホトエツチン
グ等の技術を用いて基板21上に下部磁気コア2
2,第1絶縁層23,コイル導体24,第2絶縁
層25,上部磁気コア26を形成する。次に第2
図bに示す如く、ポリイミド系樹脂(例えば日立
化成製PIQ樹脂)を3μm回転塗布する。次に所定
の温度でベーキングを行ない、第2図cに示す如
くホトエツチングして、磁気ヘツド先端部分を除
去し、有機絶縁膜27を形成する。次に第2図d
の如く、Al2O3を25μmスパツタして無機絶縁膜
28を形成する。次に図示されていないが、コイ
ル導体24と外部回路のリード線との接続部であ
る接続端子を公知の技術で形成し、一点鎖線に沿
つて機械加工して、第2図に示す薄膜磁気ヘツド
とする。
First, as shown in FIG. 3a, a lower magnetic core 2 is formed on a substrate 21 using known techniques such as plating, vapor deposition, sputtering, and photoetching.
2. A first insulating layer 23, a coil conductor 24, a second insulating layer 25, and an upper magnetic core 26 are formed. Then the second
As shown in Figure b, a polyimide resin (for example, PIQ resin manufactured by Hitachi Chemical Co., Ltd.) is spin-coated to a thickness of 3 μm. Next, baking is performed at a predetermined temperature and photoetching is performed as shown in FIG. 2c to remove the tip of the magnetic head and form an organic insulating film 27. Next, Figure 2 d
An inorganic insulating film 28 is formed by sputtering Al 2 O 3 to a thickness of 25 μm. Next, although not shown, a connection terminal, which is a connection between the coil conductor 24 and the lead wire of an external circuit, is formed using a known technique, and is machined along the dashed line. Head.

上部磁気コア26と無機絶縁膜28との界面に
有機絶縁膜27を具備した本発明に係る第2図の
薄膜磁気ヘツドは、従来の上部磁気コア26上に
直接無機絶縁膜28を形成した薄膜磁気ヘツドに
比べて、読出電圧は1.5倍、書込電流は0.7倍と良
好な電磁変換特性を有していた。
The thin film magnetic head shown in FIG. 2 according to the present invention, which is provided with an organic insulating film 27 at the interface between the upper magnetic core 26 and the inorganic insulating film 28, is a thin film magnetic head in which the inorganic insulating film 28 is directly formed on the conventional upper magnetic core 26. Compared to a magnetic head, the read voltage was 1.5 times higher and the write current was 0.7 times higher, so it had good electromagnetic conversion characteristics.

第4図に本発明の他の実施例を示す。図示され
る薄膜磁気ヘツドの特徴は、基板41が下部磁気
コアを兼用したものであり、基板材質としては軟
質磁性体であるNi−ZnフエライトあるいはMn−
Znフエライトを用いるのが良い。本実施例の場
合にも無機絶縁膜28と上部磁気コア26との界
面に有機絶縁膜27を具備せしめることにより、
上部磁気コア26の磁気特性の低下を防止するこ
とができる。
FIG. 4 shows another embodiment of the invention. The illustrated thin-film magnetic head is characterized in that the substrate 41 also serves as the lower magnetic core, and the substrate material is a soft magnetic material such as Ni-Zn ferrite or Mn-Zn ferrite.
It is better to use Zn ferrite. In the case of this embodiment as well, by providing the organic insulating film 27 at the interface between the inorganic insulating film 28 and the upper magnetic core 26,
Deterioration of the magnetic properties of the upper magnetic core 26 can be prevented.

以上の説明から明らかな如く、本発明によれば
保護無機絶縁膜の形成条件の範囲が広く、かつ良
好な電磁変換特性を有する薄膜磁気ヘツドを提供
することができる。
As is clear from the above description, according to the present invention, it is possible to provide a thin film magnetic head having a wide range of conditions for forming a protective inorganic insulating film and having good electromagnetic conversion characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の薄膜磁気ヘツドの概略断面図、
第2図は本発明薄膜磁気ヘツドの一実施例を示す
概略断面図、第3図は第2図に示す薄膜磁気ヘツ
ドの製造工程図、第4図は本発明の他の実施例を
示す概略断面図である。 22……下部磁気コア、24……コイル導体、
26……上部磁気コア、27……有機絶縁膜、2
8……無機絶縁膜。
Figure 1 is a schematic cross-sectional view of a conventional thin film magnetic head.
FIG. 2 is a schematic sectional view showing one embodiment of the thin film magnetic head of the present invention, FIG. 3 is a manufacturing process diagram of the thin film magnetic head shown in FIG. 2, and FIG. 4 is a schematic diagram showing another embodiment of the present invention. FIG. 22... Lower magnetic core, 24... Coil conductor,
26... Upper magnetic core, 27... Organic insulating film, 2
8...Inorganic insulating film.

Claims (1)

【特許請求の範囲】 1 基板上に、下部磁気コア、磁気ギヤツプを形
成する絶縁層、コイル導体、コイル導体相互間を
絶縁する絶縁層、上部磁気コアを順次積層し、そ
の上を無機絶縁膜で被覆してなるものにおいて、
前記上部磁気コアと前記無機絶縁膜との間で、上
部磁気コア上の磁気ギヤツプに対向する個所を除
く部分に応力緩和膜を介在したことを特徴とする
薄膜磁気ヘツド。 2 特許請求の範囲第1項において、前記応力緩
和膜が有機絶縁膜からなり、該有機絶縁膜は無機
絶縁膜の内部応力が上部磁気コアに及ぼす影響を
実質的に除去するに充分な厚さを有することを特
徴とする薄膜磁気ヘツド。 3 特許請求の範囲第1項或いは第2項におい
て、基板と下部磁気コアが一体に形成されている
ことを特徴とする薄膜磁気ヘツド。
[Scope of Claims] 1. A lower magnetic core, an insulating layer forming a magnetic gap, a coil conductor, an insulating layer insulating the coil conductors, and an upper magnetic core are sequentially laminated on a substrate, and an inorganic insulating film is formed on top of the lower magnetic core, an insulating layer forming a magnetic gap, a coil conductor, an insulating layer insulating the coil conductors, and an upper magnetic core. In those coated with
A thin film magnetic head characterized in that a stress relaxation film is interposed between the upper magnetic core and the inorganic insulating film except for a portion of the upper magnetic core that faces the magnetic gap. 2. In claim 1, the stress relaxation film is made of an organic insulating film, and the organic insulating film has a thickness sufficient to substantially eliminate the influence of internal stress of the inorganic insulating film on the upper magnetic core. A thin film magnetic head characterized by having: 3. A thin film magnetic head according to claim 1 or 2, characterized in that the substrate and the lower magnetic core are integrally formed.
JP10706881A 1981-07-10 1981-07-10 Thin-film magnetic head Granted JPS589209A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10706881A JPS589209A (en) 1981-07-10 1981-07-10 Thin-film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10706881A JPS589209A (en) 1981-07-10 1981-07-10 Thin-film magnetic head

Publications (2)

Publication Number Publication Date
JPS589209A JPS589209A (en) 1983-01-19
JPS649647B2 true JPS649647B2 (en) 1989-02-20

Family

ID=14449668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10706881A Granted JPS589209A (en) 1981-07-10 1981-07-10 Thin-film magnetic head

Country Status (1)

Country Link
JP (1) JPS589209A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5998316A (en) * 1982-11-26 1984-06-06 Sharp Corp Manufacture of magnetic thin film head
DE3564052D1 (en) * 1984-12-21 1988-09-01 Siemens Ag Thin-film magnetic head on a non-magnetic substrate for perpendicular magnetization

Also Published As

Publication number Publication date
JPS589209A (en) 1983-01-19

Similar Documents

Publication Publication Date Title
US6204999B1 (en) Method and system for providing a write head having a conforming pole structure
US6043959A (en) Inductive write head formed with flat yoke and merged with magnetoresistive read transducer
US5173826A (en) Thin film head with coils of varying thickness
US5949627A (en) Thin film magnetic head with stress relief layering
US4516180A (en) Thin film magnetic head
US4241367A (en) Thin film magnetic head
US7086138B2 (en) Method of forming a feature having a high aspect ratio
US4752850A (en) Multi-track magnetic thin film heads
US4318148A (en) Thin-film magnetic head
US6922311B2 (en) Thin film magnetic head including coil insulated by organic and inorganic insulating materials
JPH0154768B2 (en)
JPH073685B2 (en) Thin film magnetic head
JPS649647B2 (en)
US6775098B2 (en) Magnetic recording head with dielectric layer separating magnetic pole tips extensions from the zero throat coil insulator
US5253134A (en) Thin-film magnetic head
US5224003A (en) Thin-film magnetic head with lead isolated from upper magnetic block
JPH0652517A (en) Thin film magnetic head and its manufacture
JPS63108516A (en) Structure of protecting film for thin film magnetic head
JPS6353615B2 (en)
US5784228A (en) Thin film magnetic head with compound angled insulation layer
JP2646606B2 (en) Thin film magnetic head
JP3147443B2 (en) Thin film magnetic head
JPH0221414A (en) Thin film magnetic head
JPH07118056B2 (en) Thin film magnetic head
JPH0227509A (en) Thin film magnetic head