JPS649582B2 - - Google Patents

Info

Publication number
JPS649582B2
JPS649582B2 JP55183415A JP18341580A JPS649582B2 JP S649582 B2 JPS649582 B2 JP S649582B2 JP 55183415 A JP55183415 A JP 55183415A JP 18341580 A JP18341580 A JP 18341580A JP S649582 B2 JPS649582 B2 JP S649582B2
Authority
JP
Japan
Prior art keywords
slab
ultrasonic
planar
flaw
flaws
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55183415A
Other languages
Japanese (ja)
Other versions
JPS57106855A (en
Inventor
Hiroyuki Kimura
Shoji Murase
Akihiko Kusano
Tomoharu Shimogasa
Makoto Murata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55183415A priority Critical patent/JPS57106855A/en
Publication of JPS57106855A publication Critical patent/JPS57106855A/en
Publication of JPS649582B2 publication Critical patent/JPS649582B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/11Analysing solids by measuring attenuation of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Continuous Casting (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は連続鋳造中鋳片の非平面疵を超音波探
傷法を用いて連続的に検出する方法に関する。 〔従来の技術〕 まず連続鋳造鋳片(以下単に鋳片と称する)に
発生する内部欠陥の主な種類について模式図を第
1図に示す。これは、鋳片の表裏面に対し平行に
発生する平面疵Aと垂直方向に発生する非平面疵
Bとに大別される。そこでこれらの疵をC−C′断
面(鋳片の幅方向)、L−L′断面(鋳片の長さ方
向)およびZ−Z′投影断面(鋳片の厚み方向)に
ついて見ると、平面疵Aは第2図のa,bおよび
cの如く、非平面疵Bは第3図のa,bおよびc
の如く現われる。このような疵の定義を次の表1
に示す。
[Industrial Application Field] The present invention relates to a method for continuously detecting non-planar flaws in a slab during continuous casting using an ultrasonic flaw detection method. [Prior Art] First, FIG. 1 shows a schematic diagram of the main types of internal defects that occur in continuously cast slabs (hereinafter simply referred to as slabs). These can be broadly classified into planar defects A, which occur parallel to the front and back surfaces of the slab, and non-planar defects B, which occur perpendicularly to the front and back surfaces of the slab. If we look at these flaws on the C-C' cross section (in the width direction of the slab), the L-L' cross section (in the length direction of the slab), and the Z-Z' projected cross section (in the thickness direction of the slab), we can see that Flaw A is shown in a, b, and c in Fig. 2, and non-planar flaw B is shown in a, b, and c in Fig. 3.
It appears like this. The definition of such defects is shown in Table 1 below.
Shown below.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

サルフアプリント法は、断面の研磨面を試薬に
より腐食させプリント判定する方法である為、加
工を要しオンラインでの判定が不可能でありオフ
ライン判定にせざるを得ない。そのため判明する
まで長時間を要するという欠点があつた。特に昨
今の連鋳機は、高能率、高生産化の傾向により操
業中のトラブル、例えばロール折損、ベアリング
破損及び2次冷却帯のスプレーノズル詰り等のマ
シントラブル、により瞬時に発生する非平面疵
(例えば内部割れ)を原因とする屑の発生量が激
増する。 従つて高速鋳造下におけるオンラインでの非平
面疵の早期検出の必要性が増々高くなつてきた。 本発明は、超音波探傷により非平面疵をオンラ
インで検出することを目的とする。 〔課題を解決するための手段〕 本発明では、溶鋼の連続鋳造において該連続鋳
造中の鋳片の内部非平面疵を超音波探傷法を用い
て検出するにあたり、前記鋳片と超音波探傷器の
少くとも一方が他方に対して相対的に移動してい
る状態で鋳片に対し周波数0.5〜2.0MHzの超音波
を繰返し投射し、該超音波の鋳片背面からの帰着
減衰波のうちの、減衰量が所定の値以上の帰着減
衰波と、この帰着減衰波の、鋳片移動方向の発生
密度を検出し、この発生密度が1/(2〜16)
箇/mm以上の超音波探傷部を鋳片内部の非平面疵
相当部と検出する。 〔作用〕 第4図の左欄に示すように、鋳片の非平面疵に
向けて超音波発信器Tから超音波Fiを投射する
と、非平面疵からの反射波の、超音波受信器Rに
よる受信レベルは極く低く、検出が困難である。
このときの受信信号を第4図の左欄に示す。投射
超音波Fiが非平面疵で散乱するので、鋳片の裏面
からの反射波B1の受信レベルも低い。すなわち、
反射波(帰着減衰波)の減衰量が大きい。 参考として第5図の左欄に、平面疵がある場合
の超音波探傷態様を示し、第5図の右欄に、受信
波を示す。平面疵の場合には、平面疵による反射
波のレベルが高く、しかも帰着減衰波も平面疵を
透過して受信されるので減衰量が小さい。 第4図と第5図とを対比すると、平面疵は疵に
よる減衰量より疵検出が可能であるが、非平面疵
は、疵による反射波によつては疵検出が不可能で
ある。しかし帰着減衰波の減衰量より疵検出が可
能であるかに見える。 ここで第1の特徴として前記各々の疵の検出に
必要な鋳片の最適周波数の選定について、第6図
を参照して説明する。第6図において、 (A) 直線Aは、オンラインでの疵検出で必要な
S/N(ノイズに対する疵信号レベルの比)を
示し、 (B) 曲線Bは、使用周波数とS/Nの相関を示
し、 (C) 曲線Cは、鋳造組成による超音波の減衰特性
を示す。 この第6図より、S/Nが高くかつ減衰の小さ
い域を考慮すると、0.5〜2.0MHzが、鋳片のオン
ライン超音波探傷の使用可周波数域である。 そこで本発明では、前記の通り、鋳片に対し周
波数0.5〜2.0MHzの超音波を投射し、該超音波の
鋳片背面からの帰着減衰波に基づいて非平面疵を
検出する。 つぎに第2の特徴を説明する。所要の品質が得
られないで、低品質級に降格となつた鋳片およ
び、降格も無理な屑となつた鋳片(すなわち、現
在の管理指標であるサルフアプリント評点が2.0
以上の不良鋳片)について、鋳片と超音波探傷器
の少くとも一方が他方に対して相対的に移動して
いる状態で鋳片に対し周波数0.5〜2.0MHzの超音
波を繰返し投射し、該超音波の鋳片背面からの帰
着減衰波のうちの、減衰量が所定の値以上の帰着
減衰波を検出したときの、測定データを第8図に
示す。横軸は非平面疵の、鋳片移動方向の幅
(mm)を、縦軸は減衰量が所定の値以上の帰着減
衰波の密度(個/m:距離は鋳片の移動方向)を
示す。 この種の鋳片では、非平面疵部位で、帰着減衰
波のレベルが第13図に示すような分布を示す。
なお、第13図において横軸は超音波探傷器に対
する鋳片の移動量を、縦軸は帰着減衰波の受信レ
ベルを示す。B0が非平面疵が無い部位での帰着
減衰波のレベルであり、B1〜B6が、非平面疵部
での帰着減衰波のレベルである。 なお、第8図の縦軸は、B0の25%以下のレベ
ルの帰着減衰波B1〜B6の密度を示すものである。 第13図および第8図は、降格若しくは屑とな
る鋳片では、帰着減衰波に基づいて非平面疵を検
出する探傷方法においては、非平面疵部に超音波
探傷器があると、鋳片が探傷器に対して2〜16mm
移動する間に、疵がない部位の帰着減衰波B0
25%以下に減衰した帰着減衰波B1〜B6が現われ
る、ということを意味する。換言すると、第8図
および第13図は、非平面疵部では、疵が無い部
位での帰着減衰波のレベルB0の25%以下のレベ
ルの帰着減衰波B1〜B6が、超音波探傷器に対す
る鋳片の2〜16mmの移動につき1箇以上現われ
る、ということを意味する。 そこで本発明では前記の通り、減衰量が所定の
値以上の帰着減衰信号波と、この帰着減衰信号波
の、鋳片移動方向の発生密度を検出し、この発生
密度が1/(2〜16)箇/mm以上の超音波探傷部
を鋳片内部の非平面疵相当部と検出する。 ここで更に詳細に検討する。第7図は、サルフ
アプリント法で検出される非平面疵の内、前述の
本発明の探傷方法により検出される非平面疵の比
率(%)を、本発明の探傷方法においてS/Nを
変えた態様で示すものである。本発明方法では、
低S/Nでは検出率が低い。しかし一般に、本発
明が対象とする如きのオンライン超音波探傷で
は、高S/Nである程好ましく、測定環境や測定
機器の関係からS/N≧3が要求され、通常は
S/N≧3である。しかしてS/N≧3では、第
7図に見られるように本発明の探傷方法でほぼサ
ルフアプリント法による非可面疵の検出精度と同
等の検出精度が達成されることが分かる。通常の
超音波探傷で要求されるS/N≧3以上では、第
7図に示されるように本発明の探傷方法はサルフ
アプリント法による検出精度と同等であるので、
本発明の探傷方法を用いた非平面疵の検出方法で
も、サルフアプリント法での選別評価と同等な評
価を行なうことができる。 また、通常我々は、鋳片のL−L′断面をサルフ
アプリントし、それによつて疵の有無を検出し、
疵の密度および大きさに基づいて、鋳片欠陥の程
度をサルフアプリント0(欠陥なし)〜3.0(重大
欠陥あり)にランク付けしこれを、欠陥有無の程
度を表わす指数と称し、更にこの指数0〜3.0の
範囲を5〜6段階で、良から不良といつた範囲に
区分している。指数2.0が鋳片製造上の、発生確
率が高い(通常の)欠陥があることを意味する。 本発明の探傷法によつて非平面疵を検出して、
検出結果より鋳片を、サルフアプリントに基づい
た5〜6段階の良から不良といつた範囲分けと同
様に範囲分けをした。そしてその鋳片をサルフア
プリント法で疵検出して、従来我々が行つている
前述の5〜6段階の範囲分けをして、本発明の探
傷法に基づいた範囲分けの、サルフアプリント法
に基づいて従来の範囲分けとの合致率を算出し
た。サルフアプリント法に基づいた従来の前記指
数が2.0となつた鋳片についての、前記合致率を
第9図に示す。第9図の横軸は、本発明の探傷方
法で検出した非平面疵の、鋳片移動方向の幅を示
す。この第9図に示す通り、非平面疵の幅(鋳片
移動方向)が短い域()と長い域()を除外
することにより、すなわち、鋳片移動方向の幅が
2〜16mmの非平面疵に本発明の疵検出を特定する
ことにより、鋳片の表面性状例えばオツシレーシ
ヨンマーク、大縦ワレ等によつて起こる誤検出や
検出ミス(検出予定のものを検出しないこと)は
回避され、サルフアプリント指数2.0以上との検
出判定の合致率が最大となる。 〔実施例〕 次に、本発明の実施に供される超音波探傷装置
系について述べる。第10図は、前記装置系のブ
ロツクダイヤグラムで1は電源ユニツトで、探傷
器ユニツト及びデータ処理ユニツトに直流電源を
供給するための電源である。2はデータ処理ユニ
ツトでマイクロコンピユータを駆使して欠陥の判
定出力処理を行ない、プロセスコンピユータ、記
録器及び探傷器のインターフエースを行なう。3
はFDユニツトであり探触子4への送信パルス発
生及び反射エコー信号の増幅と反射エコー信号の
各アナログ信号をA/D変換する部分から構成さ
れている。探触子4は探触子保持機構装置に複数
個組み込まれていて超音波反射エコーを検出する
センサーの機能をもつ。5はCRTモニターであ
り反射エコー信号及びゲート、マーカー信号を表
示する。6はUST(超音波探傷)盤制御部であ
り、制御中枢をなしシーケンサにより、UST機
構装置、UST給水・エア処理装置、運転監視盤、
プロセスコンピユータ、電気設備等からの信号を
受け論理演算処理を行なう。7は鋳片搬送系の電
気設備、8は運転監視盤であり装置の状態表示、
装置の異常警報、外部機器からの信号表示及び探
傷モードの選択を行なう。9は前面操作パネルで
ありデータ入力スイツチ類からなつている。10
は記録器でモニターデータをアナログ記録および
イベント記録するものでペンレコーダーを使用し
ている。11はプロセスコンピユータであり探傷
機の指示及びデータのデジタル値出力を行なう。
12はプロセスコンピユータ11のデータアウト
プツト端末器である。 さて上記の如く構成した装置系を用いて鋳造中
鋳片の内部検出に適用した場合について述べる。
第11図は、連続鋳造装置の全体概略図で、Aは
鋳片のガス切断装置、Bは本発明の実施に供され
る超音波探傷装置であり、Cはオフラインの品質
チエツクセクシヨンである。 第12図に本発明の実施態様図を示す。上記探
傷装置Bは、その使用前に校正用サンプル13に
より自動感度校正を行ない横行台車架橋14上を
移動し搬送ローラーテーブル15上に自動探傷モ
ードで待機する。矢印(右から左)方向に搬送ロ
ーラテーブル15上を搬送される鋳片Sが、レー
ザーマスター16aによる光を遮断することによ
り、プロセスコンピユータ11がデータ処理ユニ
ツト2およびUST(超音波探傷)盤制御部6に、
探傷指示を送信し、鋳片Sの先端がレーザーマス
ター16bをさえぎつた時点でパルスジエネレー
タ17の発生パルスのカウントを開始し、順序と
して鋳片上下面の冷却及びスケールパージのため
スプレー装置18が作動し次に探傷水が作動した
のち、探触子保持機構19から探触子の鋳片接板
タイミングを作動させる。尚疵の長さについては
このパルスカウンタ値でもつて認識される。 データ処理ユニツト2およびUST(超音波探
傷)盤制御部6の共働による探傷制御で、探触子
4から所定短時間間隔で繰返し超音波が発信され
かつ帰着減衰波が検出され、帰着減衰波の内の、
減衰量が所定値以上のものが摘出され、その密度
が検出される。すなわち減衰量が所定値以上の帰
着減衰波を検出すると、そのときの、ゼネレータ
17の発生パルスのカウンタ値読込む。 探傷完了后は探触子保持機構19に取り付けら
れた磁気センサーが鋳片Sの後端を検出すること
により一枚の鋳片Sの探傷を完了する。探傷を完
了すると、読込んだカウント値の、読込み順で隣
り合うものの差を演算し、誤差が2〜16mmの範囲
にあるときに非平面疵があると判定する。該非平
面疵の位置は前記読込んだカウント値で表わされ
る。 尚探触子の配置としては鋳片巾方向の中央部に
複数個設けられており、各探触子について上述の
処理を並行して行なわれる。 つぎにこの装置を使用した実施例の一覧表を表
2に示す。
The sulfur print method is a method for determining prints by corroding the polished surface of the cross section with a reagent, so processing is required and online determination is impossible, so offline determination has to be performed. This has the disadvantage that it takes a long time to find out. In particular, modern continuous casting machines are prone to non-planar defects that occur instantaneously due to machine troubles such as roll breakage, bearing damage, and clogged spray nozzles in the secondary cooling zone due to the trend towards high efficiency and high production. The amount of debris generated due to internal cracks (for example, internal cracks) increases dramatically. Therefore, there is an increasing need for early online detection of non-planar defects during high-speed casting. An object of the present invention is to detect non-planar flaws online using ultrasonic flaw detection. [Means for Solving the Problems] In the present invention, when detecting internal non-planar flaws in a slab during continuous casting of molten steel using an ultrasonic flaw detection method, the above-mentioned slab and an ultrasonic flaw detector are used. Ultrasonic waves with a frequency of 0.5 to 2.0 MHz are repeatedly projected onto the slab while at least one of them is moving relative to the other, and the attenuated waves of the ultrasonic waves returning from the back of the slab are , the return attenuation wave whose attenuation amount is more than a predetermined value and the generation density of this return attenuation wave in the direction of slab movement are detected, and this generation density is 1/(2 to 16).
Ultrasonic flaws with a diameter of 1/mm or more are detected as areas corresponding to non-planar flaws inside the slab. [Operation] As shown in the left column of Fig. 4, when an ultrasonic wave Fi is projected from an ultrasonic transmitter T toward a non-planar flaw in a slab, the reflected wave from the non-planar flaw is transmitted to an ultrasonic receiver R. The reception level is extremely low, making detection difficult.
The received signal at this time is shown in the left column of FIG. Since the projected ultrasonic wave Fi is scattered by the non-planar flaw, the reception level of the reflected wave B1 from the back surface of the slab is also low. That is,
The amount of attenuation of the reflected wave (return attenuated wave) is large. For reference, the left column of FIG. 5 shows an ultrasonic flaw detection mode when there is a plane flaw, and the right column of FIG. 5 shows received waves. In the case of a plane flaw, the level of the reflected wave due to the plane flaw is high, and since the return attenuated wave is also transmitted through the plane flaw and received, the amount of attenuation is small. Comparing FIG. 4 and FIG. 5, it is possible to detect a planar flaw based on the amount of attenuation caused by the flaw, but a non-planar flaw cannot be detected depending on the reflected wave from the flaw. However, it seems possible to detect flaws based on the amount of attenuation of the returned attenuated wave. Here, as a first feature, the selection of the optimum frequency of the slab necessary for detecting each of the flaws will be explained with reference to FIG. 6. In Figure 6, (A) Straight line A shows the S/N (ratio of flaw signal level to noise) required for online flaw detection, (B) Curve B shows the correlation between the frequency used and S/N. (C) Curve C shows the ultrasonic attenuation characteristics depending on the casting composition. From FIG. 6, considering the range of high S/N and low attenuation, 0.5 to 2.0 MHz is the usable frequency range for online ultrasonic flaw detection of slabs. Therefore, in the present invention, as described above, ultrasonic waves with a frequency of 0.5 to 2.0 MHz are projected onto the slab, and non-planar flaws are detected based on the return attenuated waves of the ultrasonic waves from the back surface of the slab. Next, the second feature will be explained. Slabs that were demoted to a low-quality grade because they could not achieve the required quality, and slabs that became scrap that could not be demoted (i.e., the Sulfur Aprint rating, which is the current management index, is 2.0)
Regarding the above defective slabs, ultrasonic waves with a frequency of 0.5 to 2.0 MHz are repeatedly projected onto the slab while at least one of the slab and the ultrasonic flaw detector is moving relative to the other, FIG. 8 shows measurement data when a return attenuated wave having an attenuation amount of a predetermined value or more is detected among the return attenuated waves from the back surface of the slab due to the ultrasonic waves. The horizontal axis shows the width (mm) of non-planar flaws in the direction of slab movement, and the vertical axis shows the density of returned attenuated waves with an attenuation amount of a predetermined value or more (pieces/m; distance is in the direction of slab movement). . In this type of slab, the level of the returned attenuated wave shows a distribution as shown in FIG. 13 at non-planar flaw sites.
In FIG. 13, the horizontal axis represents the amount of movement of the slab relative to the ultrasonic flaw detector, and the vertical axis represents the reception level of the returned attenuated wave. B 0 is the level of the returned attenuated wave at a portion without a non-planar flaw, and B 1 to B 6 are the levels of the returned attenuated wave at the non-planar flaw. Note that the vertical axis in FIG. 8 indicates the density of the returned attenuated waves B 1 to B 6 at a level of 25% or less of B 0 . Figures 13 and 8 show that in slabs that are demoted or scrapped, in the flaw detection method that detects non-plane flaws based on returned attenuated waves, if an ultrasonic flaw detector is placed on the non-plane flaws, is 2 to 16 mm against the flaw detector.
During the movement, the return attenuated wave B 0 of the part without flaws
This means that return attenuated waves B 1 to B 6 that are attenuated to 25% or less appear. In other words, FIGS. 8 and 13 show that in a non-planar flawed part, the attenuated waves B 1 to B 6 at a level that is 25% or less of the level B 0 of the attenuated return wave in a part without a flaw are ultrasonic waves. This means that one or more defects appear for every 2 to 16 mm of movement of the slab relative to the flaw detector. Therefore, in the present invention, as described above, a return attenuation signal wave whose attenuation amount is more than a predetermined value and the generation density of this return attenuation signal wave in the slab movement direction are detected, and this generation density is 1/(2 to 16 ) Detection of ultrasonic flaws of 1/mm or more as areas corresponding to non-planar flaws inside the slab. We will now consider this in more detail. Figure 7 shows the ratio (%) of non-planar defects detected by the above-mentioned flaw detection method of the present invention among the non-plane flaws detected by the sulfur print method, and the S/N ratio in the flaw detection method of the present invention. It is shown in a modified form. In the method of the present invention,
The detection rate is low at low S/N. However, in general, in online ultrasonic flaw detection such as the one targeted by the present invention, the higher the S/N, the better, and S/N≧3 is required due to the measurement environment and measurement equipment, and usually S/N≧3. It is. Therefore, when S/N≧3, as shown in FIG. 7, it can be seen that the flaw detection method of the present invention achieves detection accuracy that is almost equivalent to the detection accuracy of non-surface flaws by the sulfur print method. At S/N≧3 or higher, which is required in normal ultrasonic flaw detection, the flaw detection method of the present invention has the same detection accuracy as the sulfa print method, as shown in Figure 7.
The method for detecting non-planar flaws using the flaw detection method of the present invention can also perform an evaluation equivalent to the screening evaluation using the sulfur print method. In addition, we usually sulfur print the L-L' cross section of the slab, thereby detecting the presence or absence of flaws.
Based on the density and size of defects, the degree of defects in slabs is ranked from 0 (no defects) to 3.0 (with serious defects), and this is called an index that expresses the degree of presence or absence of defects. The index range of 0 to 3.0 is divided into 5 to 6 levels, from good to poor. An index of 2.0 means that there is a (normal) defect with a high probability of occurrence in slab manufacturing. Detecting non-planar flaws by the flaw detection method of the present invention,
Based on the detection results, the cast slabs were classified into ranges in the same manner as the range classification from good to poor in 5 to 6 stages based on sulfur print. Then, we detect flaws in the cast slab using the sulfa print method, and divide it into ranges in the five to six stages that we have conventionally used. Based on this, we calculated the match rate with the conventional range classification. FIG. 9 shows the above-mentioned matching rate for the conventional slab with the above-mentioned index of 2.0 based on the sulfur print method. The horizontal axis in FIG. 9 indicates the width of the non-planar flaw detected by the flaw detection method of the present invention in the direction of slab movement. As shown in Figure 9, by excluding the areas () and long areas () where the width of the non-planar flaws (in the direction of slab movement) is short, we can find non-flat defects with a width of 2 to 16 mm in the direction of slab movement. By specifying the flaw detection of the present invention to flaws, false detections and detection errors (failure to detect what was supposed to be detected) caused by the surface properties of the slab, such as oscillation marks, large vertical cracks, etc., can be avoided. , the match rate of detection judgment with sulfur print index of 2.0 or higher is maximized. [Example] Next, an ultrasonic flaw detection system used for implementing the present invention will be described. FIG. 10 is a block diagram of the apparatus system, and 1 is a power supply unit, which is a power supply for supplying DC power to the flaw detector unit and the data processing unit. 2 is a data processing unit that makes full use of a microcomputer to perform defect judgment output processing and interfaces with a process computer, recorder, and flaw detector. 3
is an FD unit, which is composed of parts that generate transmission pulses to the probe 4, amplify reflected echo signals, and A/D convert each analog signal of the reflected echo signals. A plurality of probes 4 are incorporated in the probe holding mechanism and have a sensor function for detecting reflected ultrasonic echoes. 5 is a CRT monitor that displays reflected echo signals, gate signals, and marker signals. 6 is the UST (ultrasonic flaw detection) panel control section, which is the control center and controls the UST mechanical device, UST water supply/air treatment device, operation monitoring panel,
It receives signals from process computers, electrical equipment, etc. and performs logical calculation processing. 7 is electrical equipment for the slab conveyance system, 8 is an operation monitoring panel that displays the status of the equipment,
Performs equipment abnormality alarms, displays signals from external equipment, and selects flaw detection mode. 9 is a front operation panel consisting of data input switches. 10
This is a recorder that records monitor data in analog and events, and uses a pen recorder. A process computer 11 provides instructions to the flaw detector and outputs digital values of data.
12 is a data output terminal of the process computer 11; Now, a case will be described in which the apparatus system configured as described above is applied to internal detection of a slab during casting.
FIG. 11 is an overall schematic diagram of the continuous casting apparatus, where A is a gas cutting device for slabs, B is an ultrasonic flaw detection device used for carrying out the present invention, and C is an offline quality check section. . FIG. 12 shows an embodiment of the present invention. Before use, the flaw detection device B performs automatic sensitivity calibration using the calibration sample 13, moves on the traversing carriage bridge 14, and waits on the conveyance roller table 15 in an automatic flaw detection mode. The slab S being transported on the transport roller table 15 in the direction of the arrow (from right to left) blocks the light from the laser master 16a, so that the process computer 11 controls the data processing unit 2 and the UST (ultrasonic flaw detection) panel. In part 6,
When the flaw detection instruction is transmitted and the tip of the slab S blocks the laser master 16b, the pulse generator 17 starts counting the pulses generated, and the spray device 18 is activated in order to cool the upper and lower surfaces of the slab and to purge scale. Then, after the flaw detection water is activated, the probe holding mechanism 19 activates the slab contact plate timing of the probe. The length of the flaw can also be recognized from this pulse counter value. Through the flaw detection control by the data processing unit 2 and the UST (ultrasonic flaw detection) panel control unit 6 working together, ultrasonic waves are repeatedly emitted from the probe 4 at predetermined short time intervals, and the returned attenuated waves are detected. Of the
Those whose attenuation amount is greater than a predetermined value are extracted, and their density is detected. That is, when a return attenuated wave having an amount of attenuation equal to or greater than a predetermined value is detected, the counter value of the pulse generated by the generator 17 at that time is read. After the flaw detection is completed, the magnetic sensor attached to the probe holding mechanism 19 detects the rear end of the slab S, thereby completing the flaw detection of the single slab S. When the flaw detection is completed, the difference between the read count values of adjacent ones in the reading order is calculated, and if the error is within the range of 2 to 16 mm, it is determined that there is a non-planar flaw. The position of the non-planar flaw is represented by the read count value. A plurality of probes are arranged at the center in the widthwise direction of the slab, and the above-mentioned processing is performed in parallel for each probe. Next, Table 2 shows a list of examples using this device.

【表】【table】

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、オンラインで
非平面疵の検出が可能となる。
As described above, according to the present invention, non-planar flaws can be detected online.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、鋳片の外観を示す斜視図である。第
2図は鋳片の断面を示す図であり、aは、第1図
に示す鋳片のC−C′断面を示す断面図、bはL−
L′断面を示す断面図、cはZ−Z′投影図である。
第3図は鋳片内の非平面疵を示す図であり、a
は、第1図に示す鋳片のC−C′断面を示す断面
図、bはL−L′断面を示す断面図、cはZ−Z′投
影図である。第4図は、鋳片内部の非平面疵に対
する鋳片背面から帰着減衰波を検出する探触子配
置を示す断面図と受信波を示す平面図を示す。第
5図は、鋳片内部の平面疵に対する鋳片内部から
の反射信号を検出する探触子配置を示す断面図と
受信波を示す平面図を示す。第6図は、鋳片内部
の非平面疵を検出許容する周波数の選定範囲を示
すグラフである。第7図は、非平面疵の超音波探
傷法におけるS/Nとサルフアプリント法との疵
対応による超音波法の検出精度を示すグラフであ
る。第8図は、鋳片の長手方向(L−L′断面)に
おける非平面疵の長さと、所定値以上の減衰量の
帰着減衰波の発生密度との間係を示すグラフであ
る。第9図は、本発明の検出に基づいた鋳片の評
価の、サルフアプリントに基づいた評価に対する
合致率を、サルフアプリント指数2.0以上の鋳片
について、非平面疵の長さ対応で示すグラフであ
る。第10図は、本発明の実施に供される1つの
超音波探傷装置系のブロツク図である。第11図
は本発明を実施する連続鋳造装置系の全体概要側
面図、第12図は平面図である。第13図は本発
明の非平面疵の検出法による検出データを示すグ
ラフである。 1:電源ユニツト、2:データ処理ユニツト、
3:FDユニツト、4:探触子、5:CRTモニタ
ー、6:UST盤制御部、7:電気設備、8:運
転監視盤、9:前面操作パネル、10:記録器、
11:プロセスコンピユータ、12:データアウ
トプツト端末器、A:ガス切断装置、B:超音波
探傷装置、C:品質チエツクセクシヨン、S:鋳
片、13:校正用、14:架橋、15:搬送ロー
ラテーブル、16a,16b:レーザーマスタ
ー、17:パルスジエネレータ、18:スプレー
装置、19:探触子保持機構。
FIG. 1 is a perspective view showing the appearance of the slab. Fig. 2 is a cross-sectional view of the slab, a is a sectional view showing the C-C' section of the slab shown in Fig. 1, and b is a cross-sectional view showing the L-
A cross-sectional view showing the L' cross section, and c is a Z-Z' projection view.
Figure 3 is a diagram showing non-planar flaws in the slab, a
1 is a cross-sectional view taken along the line C-C' of the slab shown in FIG. 1, b is a cross-sectional view taken along the line L-L', and c is a projected view taken along the line Z-Z'. FIG. 4 shows a cross-sectional view showing the arrangement of a probe for detecting return attenuated waves from the back surface of the slab due to non-planar flaws inside the slab, and a plan view showing the received waves. FIG. 5 shows a cross-sectional view showing a probe arrangement for detecting a reflected signal from inside the slab with respect to a plane flaw inside the slab, and a plan view showing received waves. FIG. 6 is a graph showing a selection range of frequencies that allow detection of non-planar flaws inside the slab. FIG. 7 is a graph showing the detection accuracy of the ultrasonic method based on the S/N in the ultrasonic flaw detection method for non-planar flaws and the flaw correspondence of the sulfur print method. FIG. 8 is a graph showing the relationship between the length of non-planar flaws in the longitudinal direction (L-L' cross section) of the slab and the generation density of return attenuated waves having an attenuation amount of a predetermined value or more. Figure 9 shows the concordance rate of slab evaluation based on the detection of the present invention with evaluation based on sulfa print, as a function of the length of non-planar flaws for slabs with a sulfa print index of 2.0 or more. It is a graph. FIG. 10 is a block diagram of one ultrasonic flaw detection system used for implementing the present invention. FIG. 11 is an overall schematic side view of a continuous casting apparatus system for implementing the present invention, and FIG. 12 is a plan view. FIG. 13 is a graph showing detection data by the non-planar flaw detection method of the present invention. 1: power supply unit, 2: data processing unit,
3: FD unit, 4: Probe, 5: CRT monitor, 6: UST panel control section, 7: Electrical equipment, 8: Operation monitoring panel, 9: Front operation panel, 10: Recorder,
11: Process computer, 12: Data output terminal, A: Gas cutting device, B: Ultrasonic flaw detection device, C: Quality check section, S: Slab, 13: For calibration, 14: Crosslinking, 15: Transport Roller table, 16a, 16b: laser master, 17: pulse generator, 18: spray device, 19: probe holding mechanism.

Claims (1)

【特許請求の範囲】[Claims] 1 溶鋼の連続鋳造において該連続鋳造中の鋳片
の内部非平面疵を超音波探傷法を用いて検出する
にあたり、前記鋳片と超音波探傷器の少くとも一
方が他方に対して相対的に移動している状態で鋳
片に対し周波数0.5〜2.0MHzの超音波を繰返し投
射し、該超音波の鋳片背面からの帰着減衰波のう
ちの、減衰量が所定の値以上の帰着減衰波と、こ
の帰着減衰波の、鋳片移動方向の発生密度を検出
し、この発生密度が1/(2〜16)箇/mm以上の
超音波探傷部を鋳片内部の非平面疵相当部と検出
することを特徴とする連続鋳造中鋳片の超音波疵
検出方法。
1. In continuous casting of molten steel, when detecting internal non-planar flaws in a slab during continuous casting using an ultrasonic flaw detection method, at least one of the slab and an ultrasonic flaw detector is used relative to the other. Ultrasonic waves with a frequency of 0.5 to 2.0 MHz are repeatedly projected onto the slab while it is moving, and among the return attenuated waves of the ultrasonic waves from the back surface of the slab, the return attenuation wave whose attenuation amount is more than a predetermined value is generated. Then, the generation density of this returned attenuated wave in the direction of slab movement is detected, and the ultrasonic flaw detection area where the generation density is 1/(2 to 16) parts/mm or more is identified as a part corresponding to a non-planar flaw inside the slab. A method for detecting ultrasonic flaws in slabs during continuous casting.
JP55183415A 1980-12-24 1980-12-24 Ultrasonic detection of flaw in ingot during continuous casting Granted JPS57106855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55183415A JPS57106855A (en) 1980-12-24 1980-12-24 Ultrasonic detection of flaw in ingot during continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55183415A JPS57106855A (en) 1980-12-24 1980-12-24 Ultrasonic detection of flaw in ingot during continuous casting

Publications (2)

Publication Number Publication Date
JPS57106855A JPS57106855A (en) 1982-07-02
JPS649582B2 true JPS649582B2 (en) 1989-02-17

Family

ID=16135373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55183415A Granted JPS57106855A (en) 1980-12-24 1980-12-24 Ultrasonic detection of flaw in ingot during continuous casting

Country Status (1)

Country Link
JP (1) JPS57106855A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100594858B1 (en) 2001-04-25 2006-07-03 제이에프이 스틸 가부시키가이샤 Method of producing continuously cast pieces of steel and device for measuring solidified state thereof
JP4816130B2 (en) * 2006-02-22 2011-11-16 Jfeスチール株式会社 A method for producing a continuous cast slab of steel and a surface defect repair system for the slab.
DE102013217101A1 (en) * 2012-12-27 2014-07-17 Sms Siemag Ag Continuous casting apparatus and method for the production and / or inspection of metallurgical cast products
DE102013223083A1 (en) 2013-11-13 2015-05-13 Sms Siemag Ag Method and device for contactless checking of the condition of a metallurgical cast product
CN109254081A (en) * 2018-10-24 2019-01-22 贵州省分析测试研究院 The method and apparatus for measuring graphite attribute inside gray cast iron

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6048699B2 (en) * 1977-11-16 1985-10-29 住友電気工業株式会社 Internal defect detection method for continuous casting materials

Also Published As

Publication number Publication date
JPS57106855A (en) 1982-07-02

Similar Documents

Publication Publication Date Title
US4088028A (en) Method and apparatus for adjusting defect signal gate in ultrasonic test circuit
CN101467035B (en) Ultrasonic flaw detecting method, manufacturing method for welded steel pipe, and ultrasonic flaw detecting apparatus
US4144766A (en) Apparatus for the in-situ detection and location of flaws in welds
US3942358A (en) Method and apparatus for adjusting defect gate in ultrasonic pulse-echo testing
US9217728B2 (en) Device for inspecting a moving metal strip
WO1982003920A1 (en) An ultrasonic rail testing method and system
US4487070A (en) Automatic production control of extended work pieces
JPS649582B2 (en)
JP2006030218A (en) Quality inspection method of welded steel pipe welded section
EP0624794B1 (en) Probe and apparatus for detecting defects of cylindrical member with surface ultrasonic wave
KR870001259B1 (en) Steel piece inspection using electronic beam
US5974890A (en) Composite probe apparatus
JP4380384B2 (en) Automatic ultrasonic flaw detection method for uneven plate thickness
JPH11326290A (en) Method and apparatus for ultrasonic flaw detection of cylindrical body
JPS6078345A (en) Method and device for on-line detection of inclusion of thin steel band
JPS6140940B2 (en)
JPH0617898B2 (en) Judgment method of defect type in ultrasonic flaw detection
JP2006275945A (en) Ultrasonic flaw detector
RU2783753C1 (en) Ultrasonic method for detecting defects in the rail head
JPH0155414B2 (en)
JP2004012369A (en) Ultrasonic flaw detection equipment and ultrasonic flaw detection method
JPS58216950A (en) Ultrasonic flaw detection
JPH02227662A (en) Ultrasonic automatic test equipment for steel plate
JP3286549B2 (en) Surface flaw detection method for long steel materials
JP2001074703A (en) Ultrasonic flaw detecting apparatus