JP3286549B2 - Surface flaw detection method for long steel materials - Google Patents

Surface flaw detection method for long steel materials

Info

Publication number
JP3286549B2
JP3286549B2 JP01884297A JP1884297A JP3286549B2 JP 3286549 B2 JP3286549 B2 JP 3286549B2 JP 01884297 A JP01884297 A JP 01884297A JP 1884297 A JP1884297 A JP 1884297A JP 3286549 B2 JP3286549 B2 JP 3286549B2
Authority
JP
Japan
Prior art keywords
difference
data
steel material
flaw
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01884297A
Other languages
Japanese (ja)
Other versions
JPH10221059A (en
Inventor
薫 田中
善己 福高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP01884297A priority Critical patent/JP3286549B2/en
Publication of JPH10221059A publication Critical patent/JPH10221059A/en
Application granted granted Critical
Publication of JP3286549B2 publication Critical patent/JP3286549B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、搬送中の帯状鋼板
やH型鋼材等の長尺鋼材について、圧延プロセスの精整
ライン等の最終製品の品質保証や圧延ラインにおける疵
による破断等のトラブルを防止するために、パスライン
に沿って搬送されている状態で長尺鋼材の表面疵を検出
する長尺鋼材の表面疵検出方法に関する。
BACKGROUND OF THE INVENTION The present invention relates to a method for assuring the quality of a final product such as a refinement line of a rolling process and a problem such as breakage due to a flaw in a rolling line for a long steel material such as a strip steel plate or an H-shaped steel material being conveyed. The present invention relates to a method for detecting surface flaws of a long steel material, which detects surface flaws of a long steel material while being conveyed along a pass line, in order to prevent the occurrence of the flaw.

【0002】[0002]

【従来の技術】搬送されている帯状鋼板等の長尺鋼材の
表面疵を測定する従来の方法としては、例えば、特開昭
53−122448号公報等に記載された方法がある。
2. Description of the Related Art As a conventional method for measuring the surface flaw of a long steel material such as a strip-shaped steel sheet being conveyed, for example, Japanese Unexamined Patent Publication No.
There is a method described in JP-A-53-122448.

【0003】この方法は、パスラインに直交する幅方向
に沿って鋼材表面に対向配置した距離計を使って基準位
置からの各距離を検出し、各観測点での距離変化量の大
きさから疵の有無を判定するものである。
[0003] In this method, each distance from a reference position is detected using a distance meter arranged opposite to the surface of a steel material along a width direction orthogonal to the pass line, and a distance change amount at each observation point is determined. This is to determine the presence or absence of a flaw.

【0004】即ち、幅方向に整列された複数個の距離検
出計について、それぞれ隣接する距離計との差分信号で
距離変動を検出すると共に、幅方向両端に位置する距離
計間の差分信号から鋼材表面と上記各距離計の整列面と
の平均的な傾きすなわち両端検出素子間の部分的な異形
状を無視した信号を検出して、上記距離変動信号と比較
することにより、搬送されている鋼材の振動に起因する
鋼材表面と検出器の傾きに関わらず、精度良く異形状の
みを検出できるようにしたものである。例えば、H形鋼
材表面と平行に対向する所定整列面に固定された各距離
計(n個)の距離信号から隣接する2 個の距離計間の差
分信号d1(n/2個)と両端に位置する距離計同士の
差分信号d2(1 個)を取り出すための差動増幅器、d
1とd2をそれぞれ比較する比較器、これらの値を検波
器を介して疵を検出するOR回路から構成される。
That is, with respect to a plurality of distance detectors arranged in the width direction, a distance variation is detected by a difference signal from an adjacent distance meter, and a steel material is detected from a difference signal between the distance meters located at both ends in the width direction. By detecting a signal ignoring the average inclination between the surface and the alignment surface of each of the rangefinders, that is, the partial irregularity between the two end detection elements, and comparing the detected signal with the distance variation signal, the steel material being conveyed. Irrespective of the inclination of the detector and the surface of the steel material caused by the vibration, only the irregular shape can be accurately detected. For example, a difference signal d1 (n / 2) between two adjacent distance meters from a distance signal of each distance meter (n) fixed to a predetermined alignment surface facing in parallel with the surface of the H-shaped steel material and both ends are provided. A differential amplifier for extracting a differential signal d2 (one signal) between the located distance meters, d
It comprises a comparator for comparing 1 and d2, respectively, and an OR circuit for detecting these values via a detector to detect flaws.

【0005】[0005]

【発明が解決しようとする課題】距離変化から疵を検出
する方法におけるノイズ原因としては、例えば、次のこ
とが挙げられる。
The causes of noise in the method of detecting a flaw from a change in distance include, for example, the following.

【0006】即ち、測定対象に起因する、鋼材の形状
変化(耳伸び、腹伸び、反り等)による距離変化分によ
るノイズ 設備に起因する、鋼板のパスライン変動を抑えるため
に、ロ−ルに鋼板が巻き付いた場所で測定する場合のロ
ールの偏芯成分等によるノイズである。
In other words, in order to suppress fluctuations in the pass line of the steel sheet due to noise equipment caused by a change in distance due to a change in the shape of the steel material (ear extension, belly extension, warpage, etc.) due to the measurement object, a roll is required. This is noise due to the eccentric component of the roll when measuring at the place where the steel sheet is wound.

【0007】そして、上述のような従来の表面疵検出方
法では、搬送に伴う振動や鋼板の形状が幅方向に均一で
あれば安定して測定できるが、幅方向の鋼材の反りや伸
び等がある場合、両端に位置する距離計間の差信号と、
隣接する2個の距離計間の差信号とに差が生じ、疵と誤
判定されるおそれがあるという問題がある。また疵の出
力はOR回路からであり、疵の大きさは測定できない。
In the conventional method for detecting surface flaws as described above, stable measurement can be performed if the vibration accompanying the conveyance or the shape of the steel sheet is uniform in the width direction. However, the warp and elongation of the steel material in the width direction can be measured. In some cases, the difference signal between the rangefinders located at both ends,
There is a problem that a difference is generated between a difference signal between two adjacent rangefinders and that the range signal may be erroneously determined as a flaw. The output of the flaw is from the OR circuit, and the size of the flaw cannot be measured.

【0008】また、長手方向に沿った距離変化(差分)
のみで疵を検出しようとすると、部分的な耳伸び等によ
る距離変化を疵と誤判定するおそれがある。本発明は、
このような問題点に鑑みてなされたもので、測定対象の
形状に起因するノイズ成分と設備に起因するノイズ成分
を軽減し、正確に長尺鋼材の表面疵を検出できる長尺鋼
材の表面疵検出方法を提供することを課題とする。
Further, a change in distance (difference) along the longitudinal direction.
If an attempt is made to detect a flaw only by using a flaw, there is a possibility that a change in distance due to partial ear extension or the like is erroneously determined as a flaw. The present invention
It has been made in view of such problems, and reduces a noise component caused by a shape of a measurement target and a noise component caused by equipment, and can accurately detect a surface flaw of a long steel material. It is an object to provide a detection method.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、本発明の長尺鋼材の表面疵検出方法は、所定パスラ
インに沿って搬送される長尺鋼材の表面疵を検出する方
法であって、上記パスラインに直交する幅方向及び該パ
スラインに沿った長手方向に沿って上記鋼材表面に対向
配置される複数の距離計を使用して、所定タイミング
で、鋼材幅方向に所定間隔あけて並ぶ複数の観測点での
基準位置からの各距離をそれぞれ鋼材長手方向へ所定間
隔毎に複数個求めて各観測点での各データ値とし、その
各データ値を、それぞれ幅方向に所定間隔離れて並ぶ他
の観測点でのデータ値との差分値に変換した後に、その
変換後のデータ値について、長手方向に沿って所定間隔
離れたデータ値との差分を求め、その複数の差分データ
に基づき、鋼材表面に許容以上の疵があるか判定するこ
とを特徴とするものである。
In order to solve the above-mentioned problems, a method for detecting surface flaws of a long steel material according to the present invention is a method for detecting surface flaws of a long steel material conveyed along a predetermined pass line. Using a plurality of distance meters arranged opposite to the surface of the steel material along the width direction orthogonal to the pass line and the longitudinal direction along the pass line, at a predetermined timing, at a predetermined interval in the width direction of the steel material. A plurality of distances from the reference position at a plurality of observation points arranged in a row are obtained at predetermined intervals in the longitudinal direction of the steel material, and each data value is obtained at each observation point, and each data value is determined in the width direction. After converting to a difference value with the data values at other observation points arranged at intervals, the difference between the converted data value and the data value separated by a predetermined interval along the longitudinal direction is obtained, and the plurality of differences are calculated. Based on data, steel surface It is characterized in that to determine whether there is allowed more defects.

【0010】長尺鋼材に発生している形状変化、つまり
長尺鋼材の反りや伸び等は疵が無ければ幅方向へなだら
かに距離が変化する。これに基づき、まず、幅方向に並
ぶ観測点での基準位置からの距離値からなるデータ値
を、幅方向に並ぶ他の観測点での距離値からなるデータ
値との差分値という相対的な値にデータ値を変換するこ
とで、鋼材に生じている反りや伸び等の形状変化に基づ
く変化分のノイズを抑制する。
[0010] In the shape change occurring in the long steel material, that is, in the warp or elongation of the long steel material, if there is no flaw, the distance changes smoothly in the width direction. Based on this, first, a data value consisting of a distance value from a reference position at an observation point arranged in the width direction is a relative value called a difference value from a data value consisting of a distance value at another observation point arranged in the width direction. By converting the data value into a value, noise corresponding to a change due to a shape change such as warpage or elongation occurring in the steel material is suppressed.

【0011】また、設備によるノイズとは、例えばロー
ルの偏芯やロール形状の悪さによる、距離変化が挙げら
れる。これは、長手方向に沿ったうねりとして生じる
が、板形状(のび)と同じように比較的幅方向には滑ら
かに変化するので、事前に幅方向差分をとることで、う
ねり成分が抑制される。
The noise caused by the equipment includes a change in distance due to, for example, eccentricity of the roll and poor roll shape. Although this occurs as undulations along the longitudinal direction, it changes relatively smoothly in the width direction as in the case of the plate shape (spread), so the undulation component is suppressed by taking a difference in the width direction in advance. .

【0012】その後に、幅方向の差分値に変換した各観
測点でのデータ値の長手方向に沿った差分値を取ること
で、鋼材形状変化及びロール偏心等の設備に起因するノ
イズ成分が抑制された疵情報が得られる。
Thereafter, by taking the difference value along the longitudinal direction of the data value at each observation point converted into the difference value in the width direction, noise components caused by equipment such as a change in steel shape and roll eccentricity are suppressed. The obtained flaw information is obtained.

【0013】このように、本発明によれば、その鋼材形
状変化及び設備に起因する各ノイズ成分を抑制した上記
長手方向での差分データに基づき判定することで、鋼材
表面の疵が検出される。
As described above, according to the present invention, a flaw on the surface of a steel material is detected by making a determination based on the difference data in the longitudinal direction in which the noise component caused by the change in the shape of the steel material and the equipment is suppressed. .

【0014】更に、具体的に、観測点の例として隣合う
チャンネル5及び6に着目して説明する。耳伸び等があ
ると、チャンネル5及び6での各距離データの長手方向
のデータを通る波形は、例えば、図4に示すように表さ
れる。即ち、耳の伸び等の形状変化によってチャンネル
5及び6との間には幅方向に距離変化分を持っている。
また、長手方向のうねりはロールの偏芯やロール形状の
悪さなどの距離変化によって生じる。
Further, the following description will be made specifically focusing on adjacent channels 5 and 6 as examples of observation points. If there is an ear extension or the like, a waveform passing through the data in the longitudinal direction of each distance data in the channels 5 and 6 is represented, for example, as shown in FIG. That is, there is a distance change in the width direction between the channels 5 and 6 due to a shape change such as ear growth.
In addition, the undulation in the longitudinal direction is caused by a change in distance such as eccentricity of the roll and poor roll shape.

【0015】そして、各観測点で幅方向の他の観測点と
の差分、即ち鋼材の同一断面での差分を取るべくチャン
ネル6での各データ値から、下記式に基づき、チャンネ
ル5の幅方向で並ぶ各データ値との差分をとると、図5
に示すような波形となる。
Then, in order to obtain a difference between each observation point and another observation point in the width direction, that is, a difference in the same cross section of the steel material, each data value in the channel 6 is calculated based on the following equation. The difference from each data value lined up in FIG.
The waveform is as shown in FIG.

【0016】 幅方向差分値△1 (j)=s(j+y)−s(j) s(j):各距離計の鋼板同―断面の測定値 j=1〜n 、y=1〜k この図5の幅方向差分後の波形から分かるように、鋼板
の反りや伸び等で距離データ値が幅方向に徐々に変化す
る場合には、その変化分(うねり)を抑制でき比較的平
坦なデータとなる。
Width difference value △ 1 (j) = s (j + y) -s (j) s (j): Measurement value of the same steel plate cross section of each distance meter j = 1 to n, y = 1 to k As can be seen from the waveform after the difference in the width direction in FIG. 5, when the distance data value gradually changes in the width direction due to warpage or elongation of the steel sheet, the change (undulation) can be suppressed and the relatively flat data can be suppressed. Becomes

【0017】その後、各観測点、本例では、チャンネル
6における長手方向に並ぶ所定間隔離れたデータ値との
間の差分を、下記式に基づき求めると、図6に示すよう
な波形となる。
Thereafter, when the difference between each observation point, in this example, the data value at a predetermined interval in the channel 6 arranged in the longitudinal direction is obtained based on the following equation, a waveform as shown in FIG. 6 is obtained.

【0018】長手方向差分値△2 (i)=△1 (i+
X)−△1 (i) i=1〜P この最終的な差分値は全体的に小さく、安定している。
比較のため幅方向差分処理を行わない、つまり長手方向
差分のみを行った例を図7に示す。
The longitudinal difference value △ 2 (i) = △ 1 (i +
X)-△ 1 (i) i = 1 to P This final difference value is small and stable as a whole.
FIG. 7 shows an example in which the width direction difference processing is not performed for comparison, that is, only the longitudinal direction difference is performed.

【0019】このように、鋼板の形状による距離変化は
疵信号として検出せず、より正確な検出が可能である。
さらに、ロール偏芯等の設備によるノイズ成分も小さく
なり、疵弁別閾値が小さく設定可能となる。
As described above, a change in distance due to the shape of the steel sheet is not detected as a flaw signal, and more accurate detection is possible.
Further, noise components due to equipment such as roll eccentricity are also reduced, and the flaw discrimination threshold can be set small.

【0020】次に、請求項2に記載した発明は、請求項
1に記載の構成に対して、各観測点での長手方向に沿っ
た上記データ値の差分を所定閾値と比較して所定閾値以
上の差分データを抽出し、その抽出した差分データに基
づき疵の数や大きさを求めることを特徴とするものであ
る。
Next, according to a second aspect of the present invention, in the configuration according to the first aspect, a difference between the data values along the longitudinal direction at each observation point is compared with a predetermined threshold value. The above difference data is extracted, and the number and size of flaws are obtained based on the extracted difference data.

【0021】上記閾値以上の抽出した差分データの絶対
値は疵の深さに比例し、また、当該差分データが長手方
向又は幅方向に連続するものは、その連続するデータ数
が、その疵の長さ及び幅に比例している。
The absolute value of the extracted difference data equal to or greater than the threshold value is proportional to the depth of the flaw. If the difference data is continuous in the longitudinal direction or the width direction, the number of continuous data is It is proportional to length and width.

【0022】従って、抽出した差分データに基づき疵の
数や大きさが検出される。
Therefore, the number and size of flaws are detected based on the extracted difference data.

【0023】[0023]

【発明の実施の形態】次に、本発明の実施の形態を図面
を参照しつつ説明する。図1に示すように、疵の検査対
象、つまり長尺鋼材である帯状鋼板1が所定パスライン
Pに沿って搬送されて一対のロール2に順次,巻き付い
て方向転換した後に次工程に送られ、その一対のロール
2に巻き付いている状態で、帯状鋼板1の表面及び裏面
の疵検査が行われる。
Next, embodiments of the present invention will be described with reference to the drawings. As shown in FIG. 1, the inspection target of the flaw, that is, the strip-shaped steel plate 1 which is a long steel material is conveyed along a predetermined pass line P, sequentially wound around a pair of rolls 2, turned, and then sent to the next process. In the state of being wound around the pair of rolls 2, a flaw inspection of the front surface and the back surface of the strip-shaped steel sheet 1 is performed.

【0024】ここで、ロール2に巻き付いているときに
疵検出を行っているのは搬送時の振動等に起因する疵検
出時のノイズを抑えるためである。そして、鋼帯1の表
面及び裏面の疵検査は、同様なものであるため、表面の
疵検査について次に説明する。
Here, the reason why the flaw detection is performed when the sheet is wound around the roll 2 is to suppress noise at the time of flaw detection due to vibration or the like during conveyance. Since the inspection of the front and back surfaces of the steel strip 1 is the same, the inspection of the front surface will be described below.

【0025】ロール2表面に沿って当該ロール2表面と
所定間隔をもった、基準位置を形成する基準面(距離計
整列面)に沿って、距離計を構成する複数の渦流変位計
3が当該ロール2表面に対向して設置されている(図1
では、変位計3の一部を○で略図してある)。
A plurality of eddy current displacement meters 3 constituting a distance meter are provided along a reference surface (distance meter alignment surface) forming a reference position at a predetermined interval along the surface of the roll 2. It is installed facing the surface of the roll 2 (see FIG. 1).
In the figure, a part of the displacement meter 3 is schematically illustrated by ○).

【0026】その渦流変位計3は、パスラインPに直交
する幅方向に10mm間隔で且つ当該パスラインPに沿っ
た長手方向に75mm間隔で千鳥状に配置されている。各
渦流変位計3は、基準位置からの鋼帯1表面までの距離
を測定し、A/D変換器5を介してコントローラ6に供
給する。なお、各変位計3を千鳥状に配置するのは、各
変位計3の渦干渉を回避し且つできるだけ密に当該変位
計3を配置するためである。
The eddy current displacement gauges 3 are arranged in a zigzag pattern at intervals of 10 mm in the width direction orthogonal to the pass line P and at intervals of 75 mm in the longitudinal direction along the pass line P. Each eddy current displacement meter 3 measures the distance from the reference position to the surface of the steel strip 1 and supplies the measured value to the controller 6 via the A / D converter 5. Note that the displacement meters 3 are arranged in a staggered manner in order to avoid vortex interference of the displacement meters 3 and to dispose the displacement meters 3 as densely as possible.

【0027】また、上記ロール2の回転軸にはパルスジ
ェネレータ等の回転数検出器4が接続され、当該回転数
検出器4は、ロール2の回転、つまり鋼帯1の搬送速度
に応じた信号をコントローラ6に供給可能となってい
る。
A rotation speed detector 4 such as a pulse generator is connected to the rotation shaft of the roll 2, and the rotation speed detector 4 generates a signal corresponding to the rotation of the roll 2, that is, a signal corresponding to the conveying speed of the steel strip 1. Can be supplied to the controller 6.

【0028】コントローラ6は、図2に示すように、距
離データ入力手段7、幅方向差分処理手段8、長手方向
差分処理手段9、及び疵判定手段10を備える。距離デ
ータ入力手段7では、予め鋼帯1幅方向に沿って所定ピ
ッチで観測点を設定、例えば幅方向に10チャンネルの
観測点を予め決定しておき、回転数検出器4からの信号
に基づき、変位計3から距離信号を入力することで、鋼
帯1長手方向5mm間隔で各観測点での基準位置からの距
離データを求めてメモリに記憶する。これを鋼帯1長手
方向500mm単位に行う。なお、このとき変位計3の配
置による長手方向の位置ずれ補正を行う。
As shown in FIG. 2, the controller 6 includes a distance data input unit 7, a width direction difference processing unit 8, a longitudinal direction difference processing unit 9, and a flaw determination unit 10. In the distance data input means 7, observation points are set in advance at a predetermined pitch along the width direction of the steel strip 1, for example, observation points of 10 channels are determined in advance in the width direction, and based on a signal from the rotation speed detector 4. By inputting a distance signal from the displacement meter 3, distance data from a reference position at each observation point at intervals of 5 mm in the longitudinal direction of the steel strip 1 is obtained and stored in a memory. This is performed in units of 500 mm in the longitudinal direction of the steel strip 1. At this time, the displacement of the longitudinal direction due to the arrangement of the displacement meter 3 is corrected.

【0029】これによって、一回の疵検出に対して、幅
方向に10点、長さ方向に10点の計100点の距離デ
ータが記憶される。また、幅方向差分処理手段8では、
上記距離データ入力手段7で求められた各観測点での距
離データに基づき、鋼帯1幅方向端部に位置する観測点
の距離データから、順次、幅方向に並ぶ隣の観測点の距
離データとの差分をとって、各観測点のデータ値をその
差分値に変換してメモリに記憶する。
Thus, for one flaw detection, distance data of 10 points in the width direction and 10 points in the length direction, that is, 100 points in total, are stored. In the width direction difference processing means 8,
Based on the distance data at each observation point obtained by the distance data input means 7, the distance data of the observation points located at the end in the width direction of the steel strip 1 is sequentially read from the distance data of the adjacent observation points arranged in the width direction. , The data value of each observation point is converted to the difference value and stored in the memory.

【0030】また、長手方向差分処理手段9では、上記
幅方向差分処理手段8で変換された各観測点のデータ値
に基づき、各観測点毎に、長手方向に沿った2データ前
つまり10mm離れた位置でのデータ値との差分をとり、
各観測点における長手方向5mm単位の差分データを求め
てメモリに記憶する。なお、上記説明では2データ前の
データ値と差分で説明しているが、3データ以上前のデ
ータ値との差分であってもよいし、nデータ後(n≧
1)のデータ値との差分であってもよい。
In the longitudinal difference processing means 9, on the basis of the data value of each observation point converted by the width difference processing means 8, each observation point is separated by two data, that is, 10 mm apart in the longitudinal direction. Difference from the data value at the position
Difference data at each observation point in the longitudinal direction in units of 5 mm is obtained and stored in a memory. In the above description, the difference between the data value two data before and the difference is described. However, the difference between the data value three or more data before may be used, or n data after (n ≧ n)
The difference from the data value of 1) may be used.

【0031】これによって、長手方向に5mm間隔、幅方
向に10mm間隔毎のマトリックス状に差分データが求め
られる。また、疵判定手段10では、上記長手方向差分
処理手段9で求めた差分データに基づき、許容以上に疵
の有無の判定を行う。
Thus, difference data is obtained in a matrix at intervals of 5 mm in the longitudinal direction and at intervals of 10 mm in the width direction. In addition, the flaw determining means 10 determines the presence or absence of a flaw more than allowable based on the difference data obtained by the longitudinal difference processing means 9.

【0032】例えば、各差分データに対して予め決定し
た閾値αとの比較、つまり量子化を行い、その量子化し
た差分データに基づき所定大きさ以上の疵の数や製品不
良と判定されるような大きな疵の有無や数を判定する。
For example, each difference data is compared with a predetermined threshold value α, that is, quantization is performed, and the number of flaws of a predetermined size or more or a product defect is determined based on the quantized difference data. The presence or number of extremely large flaws is determined.

【0033】即ち、現在の検出対象範囲(500mm分)
における、閾値以上の差分データの数により疵の数が分
かる。また、その閾値以上の差分データが長さ方向に連
続していれば、その差分データ数×測定ピッチ5mmによ
って、その疵の長さが検出され、また、閾値以上の差分
データが幅方向に連続していれば、その差分データ数×
測定ピッチ10mmによって、その疵の幅が検出され、さ
らに、差分データの絶対値からその疵の深さが検出され
る。
That is, the current detection target range (for 500 mm)
, The number of flaws can be determined from the number of difference data equal to or larger than the threshold value. If the difference data equal to or more than the threshold value is continuous in the length direction, the length of the flaw is detected by the difference data number × the measurement pitch of 5 mm, and the difference data equal to or more than the threshold value is continuous in the width direction. If so, the number of difference data ×
The width of the flaw is detected based on the measurement pitch of 10 mm, and the depth of the flaw is detected from the absolute value of the difference data.

【0034】そして、検出した各疵の上記長さ、幅、深
さを総合的に判断して、疵の数及び大きさの疵情報を出
力する。そして、本疵検出装置では、鋼帯1長手方向5
00mm単位に疵判定情報を出力する。この疵検出が圧延
前の酸洗工程等であれば、求めた疵情報を圧延機のコン
トローラに供給し圧延制御のフィードフォワード情報と
して使用する。また、上記疵検出が精整ラインであれ
ば、最終製品の品質保証に使用される。
The length, width, and depth of each detected flaw are comprehensively determined, and flaw information on the number and size of flaws is output. And in this flaw detection device, steel strip 1 longitudinal direction 5
The flaw determination information is output in units of 00 mm. If this flaw detection is a pickling step or the like before rolling, the obtained flaw information is supplied to the controller of the rolling mill and used as feedforward information for rolling control. If the flaw detection is a refinement line, it is used for quality assurance of the final product.

【0035】なお、上記説明では、鋼帯1表面の疵検出
について説明しているが、裏面の疵検出についても同様
に行われる。上述のような疵検出装置を使用した疵検出
方法では、まず生データである距離データを、幅方向の
単位当たりの距離変化量である幅方向差分値に変換する
ことで、鋼帯1の耳伸びや腹伸び等の鋼帯1の形状変化
によるノイズ成分が抑制される。
In the above description, the detection of flaws on the front surface of the steel strip 1 has been described. In the flaw detection method using the flaw detection device as described above, first, the distance data, which is raw data, is converted into a width direction difference value, which is an amount of change in distance per unit in the width direction, so that the ear of the steel strip 1 is converted. Noise components due to changes in the shape of the steel strip 1 such as elongation and antinode elongation are suppressed.

【0036】さらに、各観測点毎の長手方向の差分デー
タに変換することで、ロール2偏心等の設備に基づくノ
イズ成分が除去されて、疵弁別のための閾値が小さくな
る。これによって、より正確に疵の検出が可能となると
共に小さな疵の検出が可能となる。
Further, by converting the data into longitudinal difference data for each observation point, noise components based on equipment such as the eccentricity of the roll 2 are removed, and the threshold value for flaw discrimination is reduced. This makes it possible to more accurately detect flaws and to detect small flaws.

【0037】なお、距離計は、上記渦流変位計3に限定
されるものではなく、距離が計測可能であればレーザ距
離計等、他の公知の距離計を使用してもよい。また、幅
方向及び長手方向の検出間隔も上記間隔に限定されるも
のではない。また、幅方向の各観測点間のピッチは必ず
しも同じとする必要はない。
The distance meter is not limited to the eddy current displacement meter 3, and other known distance meters such as a laser distance meter may be used as long as the distance can be measured. Further, the detection intervals in the width direction and the longitudinal direction are not limited to the above intervals. Further, the pitch between the observation points in the width direction does not necessarily need to be the same.

【0038】[0038]

【実施例】本発明に基づく疵検出方法の効果を確認すべ
く行ったシミユレーション結果を図3に示す。
FIG. 3 shows the result of a simulation performed to confirm the effect of the flaw detection method according to the present invention.

【0039】シミュレーションは千鳥状に配置された渦
流式変位計3の測定値をもとに実施した。ここでは鋼板
1のエッジの伸びが存在するデ−タについて行ったもの
である。結果はエッジの部分のみ示す。
The simulation was carried out based on the measured values of the eddy current displacement meter 3 arranged in a staggered manner. In this case, the processing is performed on data in which the edge of the steel sheet 1 has elongation. The result shows only the edge part.

【0040】シミュレーションの各諸元値 鋼板1の移動速度:1.0m/ s 測定点数:長手方向100点/ 5mm ピッチ センサ数:140個(幅方向10mmピッチ) 幅方向差分間隔:1 点(5mm間隔) 長手方向差分間隔:2点(10mm間隔) 疵弁別閾値:0.15mm そして比較のため、幅方向差分処理を実施せず、長手方
向差分処理のみを実施した比較例の結果を併記する(図
3中、D,E)。
Specifications of the simulation The moving speed of the steel sheet 1: 1.0 m / s Number of measuring points: 100 points in the longitudinal direction / 5 mm pitch Number of sensors: 140 (pitch in the width direction 10 mm) Width difference in the width direction: 1 point (5 mm) (Interval) Longitudinal difference interval: 2 points (10 mm interval) Flaw discrimination threshold: 0.15 mm For comparison, the result of a comparative example in which only the longitudinal difference processing was performed without performing the width difference processing is also described ( D, E in FIG. 3).

【0041】ここで、図3中、L方向とは長手方向を、
C方向とは幅方向を意味する。また、グラフの横軸がセ
ンサ番号、縦軸が差分値の大きさである。そして、A及
びBが、本発明に基づく検出値の差分値の最大値及び最
小値を結んだ線であり、D及びEが、比較例による差分
値の最大値及び最小値を結んだ線である。
Here, in FIG. 3, the L direction is a longitudinal direction,
The C direction means the width direction. The horizontal axis of the graph is the sensor number, and the vertical axis is the magnitude of the difference value. A and B are lines connecting the maximum value and the minimum value of the difference values of the detection values based on the present invention, and D and E are lines connecting the maximum values and the minimum values of the difference values according to the comparative example. is there.

【0042】この図3から、耳伸び部分において、比較
例D,Eでは差分値が大きくなり疵と判定されるため
に、これを回避するためには閾値を上げざるを得ないこ
とが分かる。逆に、本発明に基づく場合には、耳伸びに
基づく形状変化による差分値の増加が抑えられているの
で、耳伸びに基づく形状変化を疵の判定することない。
このことは、従来よりも小さな疵を検出できることがわ
かる。
From FIG. 3, it can be seen that, in the ear extension portion, in Comparative Examples D and E, the difference value is large, and it is determined as a flaw. Therefore, in order to avoid this, the threshold value must be increased. Conversely, in the case of the present invention, since the increase in the difference value due to the shape change based on the ear growth is suppressed, the shape change based on the ear growth is not determined as a flaw.
This indicates that smaller flaws can be detected than before.

【0043】[0043]

【発明の効果】以上説明してきたように、本発明の長尺
鋼材の表面疵検出方法では、耳伸び等の長尺鋼材の形状
による悪影響及び鋼材を搬送する設備による悪影響を抑
えて、疵の検出を安定且つ正確に行うことができるとい
う効果がある。
As described above, the method for detecting surface flaws of a long steel material according to the present invention suppresses the adverse effects of the shape of the long steel material such as the ear extension and the adverse effects of the equipment for transporting the steel material, thereby reducing the flaws. There is an effect that detection can be performed stably and accurately.

【0044】しかも上記鋼材の形状による影響が抑えら
れているので検出可能な疵の大きさを小さく設定可能と
なる。このとき、請求項2に記載の発明を採用すると、
具体的に疵の情報を得ることができるという効果があ
る。
In addition, since the influence of the shape of the steel material is suppressed, the size of the detectable flaw can be set small. At this time, if the invention described in claim 2 is adopted,
There is an effect that information on a flaw can be specifically obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る装置構成の概略を示
す図である。
FIG. 1 is a diagram showing an outline of a device configuration according to an embodiment of the present invention.

【図2】本発明の実施の形態に係るコントローラの構成
を示す図である。
FIG. 2 is a diagram showing a configuration of a controller according to the embodiment of the present invention.

【図3】実施例を示す図である。FIG. 3 is a diagram showing an embodiment.

【図4】チャンネル5及び6についての距離データ波形
を示す図である。
FIG. 4 is a diagram showing a distance data waveform for channels 5 and 6;

【図5】幅方向差分を取った後での波形を示す図であ
る。
FIG. 5 is a diagram showing a waveform after taking a difference in a width direction.

【図6】幅方向差分及び長手方向差分を取った後の波形
を示す図である。
FIG. 6 is a diagram showing waveforms after a width direction difference and a longitudinal direction difference are obtained.

【図7】比較例の波形を示す図である。FIG. 7 is a diagram showing a waveform of a comparative example.

【符号の説明】[Explanation of symbols]

P パスライン 1 鋼帯 2 ロール 3 距離計 4 回転数検出器 5 A/D変換器 6 コントローラ 7 データ入力手段 8 幅方向差分処理手段 9 長手方向差分処理手段 10 疵判定手段 P pass line 1 steel strip 2 roll 3 distance meter 4 rotation detector 5 A / D converter 6 controller 7 data input means 8 width direction difference processing means 9 longitudinal direction difference processing means 10 flaw determination means

フロントページの続き (56)参考文献 特開 昭53−122448(JP,A) 特開 平6−74755(JP,A) 特開 平4−50608(JP,A) 特開 平4−363045(JP,A) 特開 昭62−257006(JP,A) 特開 平5−346325(JP,A) 特開 平6−34362(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01B 21/30 G01N 27/90 Continuation of the front page (56) References JP-A-53-122448 (JP, A) JP-A-6-74755 (JP, A) JP-A-4-50608 (JP, A) JP-A-4-363045 (JP) JP-A-62-257006 (JP, A) JP-A-5-346325 (JP, A) JP-A-6-34362 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB G01B 21/30 G01N 27/90

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定パスラインに沿って搬送される長尺
鋼材の表面疵を検出する方法であって、上記パスライン
に直交する幅方向及び該パスラインに沿った長手方向に
沿って上記鋼材表面に対向配置される複数の距離計を使
用して、所定タイミングで、鋼材幅方向に所定間隔あけ
て並ぶ複数の観測点での基準位置からの各距離をそれぞ
れ鋼材長手方向へ所定間隔毎に複数個求めて各観測点で
の各データ値とし、その各データ値を、それぞれ幅方向
に所定間隔離れて並ぶ他の観測点でのデータ値との差分
値に変換した後に、その変換後のデータ値について、長
手方向に沿って所定間隔離れたデータ値との差分を求
め、その複数の差分データに基づき、鋼材表面に許容以
上の疵があるか判定することを特徴とする長尺鋼材の表
面疵検出方法。
1. A method for detecting a surface flaw of a long steel material conveyed along a predetermined pass line, wherein the steel material is disposed along a width direction orthogonal to the pass line and a longitudinal direction along the pass line. Using a plurality of distance meters arranged opposite to the surface, at predetermined timing, each distance from the reference position at a plurality of observation points arranged at predetermined intervals in the steel material width direction at predetermined intervals in the steel material longitudinal direction After obtaining a plurality of data values at each observation point, and converting each data value to a difference value from the data values at other observation points arranged at predetermined intervals in the width direction, Regarding the data value, a difference between the data value and a data value separated by a predetermined interval along the longitudinal direction is obtained, and based on the plurality of difference data, it is determined whether or not the steel material surface has an unacceptable flaw or more. Surface flaw detection method.
【請求項2】 各観測点での長手方向に沿った上記デー
タ値の差分を所定閾値と比較して所定閾値以上の差分デ
ータを抽出し、その抽出した差分データに基づき疵の数
や大きさを求めることを特徴とする請求項1に記載の長
尺鋼材の表面疵検出方法。
2. The method according to claim 1, wherein a difference between the data values along the longitudinal direction at each observation point is compared with a predetermined threshold to extract difference data equal to or larger than a predetermined threshold, and the number and size of flaws are determined based on the extracted difference data. 2. The method for detecting surface flaws of a long steel material according to claim 1, wherein
JP01884297A 1997-01-31 1997-01-31 Surface flaw detection method for long steel materials Expired - Fee Related JP3286549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01884297A JP3286549B2 (en) 1997-01-31 1997-01-31 Surface flaw detection method for long steel materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01884297A JP3286549B2 (en) 1997-01-31 1997-01-31 Surface flaw detection method for long steel materials

Publications (2)

Publication Number Publication Date
JPH10221059A JPH10221059A (en) 1998-08-21
JP3286549B2 true JP3286549B2 (en) 2002-05-27

Family

ID=11982823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01884297A Expired - Fee Related JP3286549B2 (en) 1997-01-31 1997-01-31 Surface flaw detection method for long steel materials

Country Status (1)

Country Link
JP (1) JP3286549B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5874348B2 (en) * 2011-11-25 2016-03-02 Jfeスチール株式会社 Eddy current flaw detection method for metal strip
JP2014112064A (en) * 2012-10-30 2014-06-19 Jfe Steel Corp Method and device for detecting surface flaw of long body

Also Published As

Publication number Publication date
JPH10221059A (en) 1998-08-21

Similar Documents

Publication Publication Date Title
US4982600A (en) Method of measuring the period of surface defects
EP0316961B1 (en) Roll mark inspection apparatus
KR101288734B1 (en) Periodic defect detecting device and method for the same
RU2302307C2 (en) Band planeness measuring method and apparatus
US4928257A (en) Method and apparatus for monitoring the thickness profile of a strip
JP3286549B2 (en) Surface flaw detection method for long steel materials
JP4507193B2 (en) Mandrel mill rolling control method
JP3747661B2 (en) Measuring device for bending amount of rod-shaped body
JP2536668B2 (en) Steel plate flatness measuring device
JPH04143608A (en) Device for measuring flatness of steel plate
JPS63298112A (en) Thickness measuring device
JP3573054B2 (en) On-line measurement accuracy inspection method for width and length meters
JPS5922894B2 (en) Surface quality identification method for moving objects
JP2988645B2 (en) Measurement method of sheet material distortion shape
JP3487463B2 (en) Detecting Roll Interval Abnormality in Continuous Casting Machine
JP3145296B2 (en) Defect detection method
JPH0634360A (en) Steel plate shape measuring method
JPH04155208A (en) Discrimination on acceptability of platelike work
KR100620763B1 (en) Trouble foreknowledge apparatus of wire guide roller and its foreknowledge method
JP3697578B2 (en) Method and apparatus for detecting cracks in strips
JP4251038B2 (en) Rolling meander control method, apparatus and manufacturing method
JPH08159728A (en) Shape measuring instrument
JP3189721B2 (en) Estimation method of thickness of tapered steel plate
JP4465857B2 (en) Coil end shape determination method
JPS6213208A (en) Detection of chattering of cold rolling mill

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080308

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees