JPS649362B2 - - Google Patents

Info

Publication number
JPS649362B2
JPS649362B2 JP56209884A JP20988481A JPS649362B2 JP S649362 B2 JPS649362 B2 JP S649362B2 JP 56209884 A JP56209884 A JP 56209884A JP 20988481 A JP20988481 A JP 20988481A JP S649362 B2 JPS649362 B2 JP S649362B2
Authority
JP
Japan
Prior art keywords
tank
ultrafine
oxygen
gas
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56209884A
Other languages
Japanese (ja)
Other versions
JPS58113301A (en
Inventor
Michio Nagase
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU YAKIN KK
Original Assignee
SHINKU YAKIN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU YAKIN KK filed Critical SHINKU YAKIN KK
Priority to JP56209884A priority Critical patent/JPS58113301A/en
Publication of JPS58113301A publication Critical patent/JPS58113301A/en
Publication of JPS649362B2 publication Critical patent/JPS649362B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material

Description

【発明の詳細な説明】 本発明は金属超微粒子或はこれの集合体である
金属超微粉の徐酸化装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gradual oxidation device for ultrafine metal particles or an aggregate of ultrafine metal particles.

従来1μm以下の粒径を有する金属超微粒子或は
その集合体の超微粉を、蒸発源を備えた密閉の減
圧室内にHe,Ar,N2ガス又はこれらの混合ガス
を注入して生成する方法即ちガス中蒸発法により
製造することは知られているが、かかる微粒子等
はそのままの状態で大気にさらすと酸化(燃焼)
するので予め安定化処理を施したのち大気中に取
出すことが必要である。この安定化処理は大気の
酸素分圧の100分の1乃至1000分の1程度の低い
酸素分圧の雰囲気中でゆつくりと超微粒子の表面
の数原子層に酸化膜を形成させてそれ以上の酸化
を防止するものであつてこの場合の酸化層の形成
は酸化を徐々に進行させて行なうことから徐酸化
処理と称される。
Conventional method of producing ultrafine metal particles or aggregates of ultrafine metal particles with a particle size of 1 μm or less by injecting He, Ar, N 2 gas, or a mixed gas thereof into a sealed vacuum chamber equipped with an evaporation source. In other words, it is known that they can be produced by evaporation in gas, but if such fine particles are exposed to the atmosphere as they are, they will oxidize (combust).
Therefore, it is necessary to carry out stabilization treatment beforehand and then take it out into the atmosphere. This stabilization treatment slowly forms an oxide film on several atomic layers on the surface of the ultrafine particles in an atmosphere with a low oxygen partial pressure of about 1/100 to 1/1000 of the atmospheric oxygen partial pressure. The oxidation process is called a slow oxidation process because the oxidation layer is formed in such a way that the oxidation progresses gradually.

こうした徐酸化処理は具体的には不活性ガス雰
囲気或は真空に保つた超微粒子の生成槽内に於
て、或は該生成槽と別個の独立した容器内に於
て、酸素もしくは空気等の酸素を含む混合ガスを
超微粒子等が急激な酸化(燃焼)をしない程度に
コントロールして少量ずつ10乃至100時間にわた
つて注入することにより行なうを一般とする。而
してこのような超微粒子等の生成と徐酸とが別工
程であると処理時間が長時間要すると共に密閉形
の容器が必要となり、経済的能率的でない欠点が
存し、超微粒子等はその多量を集積した状態、例
えばFe,Ni,Co等の磁性粉の場合は約0.01〜
0.5g/cm3の嵩密度、Cu,Ag等は約0.05〜1.0g/
cm3の嵩密度の状態で処理されるので表面の超微粒
子と内部の超微粒子とで酸化が均一に進行しな
い。また酸化反応によつて発生した反応熱の伝達
状態が異なるため温度分布が不均一となる。その
ため個々の超微粉に形成される酸化槽の厚さが処
理容器内の場所により異なり、均質な処理を行な
えない不都合があり、さらに処理容器の寸法、形
状、超微粒子の量に応じて酸素量と処理時間とを
変えねばならない不便がある。
Specifically, this gradual oxidation treatment is carried out in an ultrafine particle production tank kept in an inert gas atmosphere or vacuum, or in a container separate from the production tank, using oxygen, air, etc. This is generally done by injecting a mixed gas containing oxygen in small amounts over 10 to 100 hours in a controlled manner to prevent rapid oxidation (combustion) of ultrafine particles. However, if the generation of such ultrafine particles and slow acidification are separate processes, the processing time will be long and a closed container will be required, which has the disadvantage of not being economically efficient. When a large amount of magnetic powder is accumulated, for example, magnetic powder such as Fe, Ni, Co, etc., it is approximately 0.01~
Bulk density of 0.5g/ cm3 , Cu, Ag, etc. approximately 0.05~1.0g/
Since the treatment is carried out at a bulk density of cm 3 , oxidation does not proceed uniformly between the ultrafine particles on the surface and the ultrafine particles inside. Furthermore, since the transfer state of the reaction heat generated by the oxidation reaction is different, the temperature distribution becomes non-uniform. Therefore, the thickness of the oxidation tank formed for each ultrafine powder varies depending on the location in the processing container, making it impossible to perform homogeneous treatment.Furthermore, the amount of oxygen varies depending on the size, shape, and amount of ultrafine particles of the processing container. There is the inconvenience of having to change the time and processing time.

本発明はかかる欠点のない徐酸化装置を提供す
ることを目的としたもので、内部に蒸発源を備え
た密閉の金属超微粒子生成槽の壁部にHeガスそ
の他の不活性ガス注入口と搬送管とを設け、該搬
送管に、酸素ガス若しくは酸素を含むガスの注入
口と真空ポンプ等に連らなる真空排気口とを壁部
に備えた密閉の捕集槽を接続したことを特徴とす
る。
The purpose of the present invention is to provide a gradual oxidation device free from such drawbacks, and the present invention has an inlet for injecting He gas or other inert gas into the wall of a sealed ultrafine metal particle generation tank equipped with an evaporation source inside. The method is characterized in that a sealed collection tank is connected to the conveying pipe, the tank having an inlet for oxygen gas or a gas containing oxygen and a vacuum exhaust port connected to a vacuum pump or the like in the wall. do.

本発明装置の1例を図面につき説明する。 An example of the device of the present invention will be explained with reference to the drawings.

図面で1は密閉された金属超微粒子生成槽、2
は該生成槽1内に設けられた蒸発源、3は該生成
槽1の壁部に設けたHe,Ar,N2ガス等の不活性
ガスの注入口を示し、該生成槽1内が真空化され
ると共にその内部に不活性ガスが注入されると該
蒸発源2から金属超微粒子が蒸発する。
In the drawing, 1 is a sealed ultrafine metal particle generation tank, 2
3 indicates an evaporation source provided in the production tank 1, and 3 indicates an inlet for inert gas such as He, Ar, N2 gas, etc. provided on the wall of the production tank 1, and the production tank 1 is under vacuum. When the inert gas is injected into the evaporation source 2, the ultrafine metal particles evaporate from the evaporation source 2.

以上の構成は従来の超微粒子生成槽と特に変わ
りがないが、本発明のものでは該生成槽1の壁部
に搬送管4を設けてこれに酸素もしくは空気等の
酸素を含むガスの注入口5と真空ポンプ等に連ら
なる真空排気口6とを備えた捕集槽7を接続する
ようにした。尚、図示のものでは該排気口6を搬
送管4と対向する側の捕集槽7の壁部に設けると
共に該注入口5を該搬送管4の下方の壁部に設
け、さらに該捕集槽7に略水平の複数段の捕集板
8を設けるようにし、該搬送管4を介して該捕集
槽7内に送り込まれる超微粒子、超微粒粉は該捕
集板8に付着捕集されるようにした。
The above configuration is not particularly different from the conventional ultrafine particle generation tank, but in the one of the present invention, a conveyance pipe 4 is provided on the wall of the generation tank 1, and there is an injection port for oxygen or a gas containing oxygen such as air. 5 is connected to a collection tank 7 having a vacuum exhaust port 6 connected to a vacuum pump or the like. In the illustrated example, the exhaust port 6 is provided on the wall of the collecting tank 7 on the side opposite to the transport pipe 4, and the inlet 5 is provided on the wall below the transport pipe 4. The tank 7 is provided with a plurality of substantially horizontal collection plates 8, and the ultrafine particles and ultrafine powder sent into the collection tank 7 via the conveying pipe 4 are collected by adhering to the collection plates 8. I made it so that it would be done.

その作動を説明するに真空排気口6に連らなる
真空ポンプを作動させて生成槽1と捕集槽7内を
例えば0.05Torr以上に真空排気すると共に該生
成槽1のガス注入口3からHeその他の不活性ガ
スを注入し、該生成槽1内の蒸発源2から金属超
微粒子を蒸発させる。該超微粒子は該生成槽1か
ら搬送管4及び捕集槽7を介して排気口6へと流
れる不活性ガスにより捕集槽7へと運ばれ、該捕
集槽7内で浮遊する間及び捕集板8に付着してか
ら注入口5より注入される酸素ガスで徐々に酸化
される。この場合該酸素ガスの量は捕集槽7に流
入する超微粉の量に対応させて注入し得、しかも
超微粉は捕集槽7内で浮遊中に酸素ガスの雰囲気
に触れるので比較的短時間で確実に徐酸化され、
従前のものに比べ品質のばらつきを約4分の1に
向上させ得る。さらに浮遊中の超微粒子の嵩密度
は約1×10-5g/cm3〜1×10-7g/cm3と極めて小
さいため酸化によつて発生する反応熱による超微
粒子相互の響を無視でき、従来の処理容器内に超
微粒子を集めて行なう式のものに比べ酸化層を均
質に形成するに有利となる。その1例を述べれば
従来の如く処理容器内にFe超微粒子を集めて徐
酸化処理した場合の酸素の含有量は最大10.3%、
最小8.6%となつて比較的ばらつきが多いが、本
発明のものによれば酸素含有量が最大9.6%、最
小9.2%となり品質のばらつきが大幅に小さくな
つた。
To explain its operation, a vacuum pump connected to the vacuum exhaust port 6 is operated to evacuate the inside of the generation tank 1 and collection tank 7 to, for example, 0.05 Torr or more, and at the same time, the gas injection port 3 of the generation tank 1 is Another inert gas is injected to evaporate the ultrafine metal particles from the evaporation source 2 in the generation tank 1. The ultrafine particles are transported from the generation tank 1 to the collection tank 7 by the inert gas flowing to the exhaust port 6 via the transport pipe 4 and the collection tank 7, and while floating in the collection tank 7, After it adheres to the collection plate 8, it is gradually oxidized by oxygen gas injected from the injection port 5. In this case, the amount of oxygen gas can be injected in accordance with the amount of ultrafine powder flowing into the collection tank 7, and since the ultrafine powder comes into contact with the oxygen gas atmosphere while floating in the collection tank 7, the injection time is relatively short. Reliably slowly oxidizes over time,
The variation in quality can be improved to about one-fourth compared to the previous model. Furthermore, since the bulk density of suspended ultrafine particles is extremely small, approximately 1×10 -5 g/cm 3 to 1×10 -7 g/cm 3 , the mutual effects of ultrafine particles due to the reaction heat generated by oxidation are ignored. This is advantageous in forming an oxidized layer homogeneously compared to the conventional method in which ultrafine particles are collected in a processing container. To give one example, when ultrafine Fe particles are collected in a processing container and subjected to slow oxidation treatment as in the past, the oxygen content is at most 10.3%.
The minimum oxygen content is 8.6%, which is relatively variable, but according to the present invention, the oxygen content is maximum 9.6% and minimum 9.2%, which significantly reduces the variation in quality.

このように本発明によるときは金属超微粒子生
成槽に搬送管を介して酸素ガス注入口と真空排気
口とを備えた捕集槽を接続したので該超微粒子等
の製造とその徐酸化処理と捕集とを一連の工程に
於て行なえ処理能率が向上すると共に品質のばら
つきも少なくなり、徐酸化用の容器を別個に必要
としないので、装置も安価になる等の効果があ
る。
In this way, according to the present invention, a collection tank equipped with an oxygen gas inlet and a vacuum exhaust port is connected to the metal ultrafine particle generation tank via a conveyance pipe, so that the production of the ultrafine particles and their gradual oxidation treatment can be carried out. Collection and collection can be carried out in a series of steps, improving processing efficiency and reducing variations in quality, and since a separate container for gradual oxidation is not required, the cost of the equipment can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明装置の1例を示す説明線図であ
る。 1……金属超微粒子生成槽、2……蒸発源、3
……不活性ガス注入口、4……搬送管、5……酸
素ガス注入口、6……真空排気口、7……捕集
槽。
The drawing is an explanatory diagram showing one example of the device of the present invention. 1... Metal ultrafine particle generation tank, 2... Evaporation source, 3
...Inert gas inlet, 4...Transport pipe, 5...Oxygen gas inlet, 6...Vacuum exhaust port, 7...Collection tank.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に蒸発源を備えた密閉の金属超微粒子生
成層の壁部にHeガスその他の不活性ガス注入口
と搬送管とを設け、該搬送管に、酸素ガス若しく
は酸素を含むガスの注入口と真空ポンプ等に連ら
なる真空排気口とを壁部に備えた密閉の捕集槽を
接続したことを特徴とする金属超微粒子の徐酸化
装置。
1. A He gas or other inert gas injection port and a transport pipe are provided on the wall of a sealed ultrafine metal particle generation layer that is equipped with an evaporation source inside, and an oxygen gas or oxygen-containing gas injection port is provided in the transport pipe. A gradual oxidation device for ultrafine metal particles, characterized in that a closed collection tank having a wall connected to a vacuum exhaust port connected to a vacuum pump, etc. is connected to the tank.
JP56209884A 1981-12-28 1981-12-28 Slow oxidizing device for ultrafine metallic particles Granted JPS58113301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56209884A JPS58113301A (en) 1981-12-28 1981-12-28 Slow oxidizing device for ultrafine metallic particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56209884A JPS58113301A (en) 1981-12-28 1981-12-28 Slow oxidizing device for ultrafine metallic particles

Publications (2)

Publication Number Publication Date
JPS58113301A JPS58113301A (en) 1983-07-06
JPS649362B2 true JPS649362B2 (en) 1989-02-17

Family

ID=16580236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56209884A Granted JPS58113301A (en) 1981-12-28 1981-12-28 Slow oxidizing device for ultrafine metallic particles

Country Status (1)

Country Link
JP (1) JPS58113301A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58171502A (en) * 1982-04-02 1983-10-08 Toyota Motor Corp Pulverized composite powder of ceramic and metal
JPS6067603A (en) * 1983-09-21 1985-04-18 Toho Aen Kk Treatment of ultrafine metal powder
JP4921806B2 (en) * 2006-02-13 2012-04-25 住友金属鉱山株式会社 Tungsten ultrafine powder and method for producing the same
JP4807581B2 (en) * 2007-03-12 2011-11-02 昭栄化学工業株式会社 Nickel powder, method for producing the same, conductor paste, and multilayer ceramic electronic component using the same
CN107344241A (en) * 2017-08-22 2017-11-14 西安交通大学 A kind of high purity magnesium powder preparation method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825662A (en) * 1971-08-06 1973-04-03
JPS5443469A (en) * 1977-09-12 1979-04-06 Hitachi Ltd Manufacture of semiconductor device
JPS5543043A (en) * 1978-09-22 1980-03-26 Sankyo Co Ltd Preparation of 3-substituted thiomethylcephalosporin derivative

Also Published As

Publication number Publication date
JPS58113301A (en) 1983-07-06

Similar Documents

Publication Publication Date Title
Uhlig Structure and growth of thin films on metals exposed to oxygen
CN110172668B (en) Preparation method of metal/oxide core-shell structure nanoparticles and nanoparticles thereof
JPS649362B2 (en)
US3570829A (en) High strength metal filaments and the process and apparatus for forming the same
KR0120925B1 (en) Uranium dioxide production
JPS5521146A (en) Manufacturing method of magnetic powder
US5114326A (en) Apparatus for manufacturing diaphragms
JP2003527958A (en) Ion conductive ceramic membrane and surface treatment
GB1275014A (en) A composite material and a method of making same
JP3093067B2 (en) Method and apparatus for removing zinc from galvanized steel sheet waste
KR900001141B1 (en) Mafnetic recording medium and its producing method there of
JPH083902B2 (en) Method for manufacturing thin film magnetic recording medium
JP2900474B2 (en) Operating method of vacuum sintering furnace
JPS5251108A (en) Pipe and its manufacturing method
JPS5521143A (en) Manufacturing method for granular metal magnetic particle powder containing iron mainly
Bochvar Gallium Diffusion in a V 3 Ga Layer Produced by Interaction Between Vanadium and Gallium Bronze
JPS6067603A (en) Treatment of ultrafine metal powder
JPS59162202A (en) Manufacture of sintered soft magnetic material
Zakhryapin Carbon Treatment in Molybdenum and Transition Metal Carbides During Glow-Discharge Treatment
JPS54140997A (en) Magnetic memory medium
FR2152141A5 (en) Tungsten carbide prodn - and mfr of mixed metal carbides from oxides
JPH02102194A (en) Vapor phase growth apparatus
JP2857565B2 (en) Structure of zinc recovery chamber
JPH01108122A (en) Production of superconducting thin film
JPH0270004A (en) Method for degreasing injection molded body