JPH01108122A - Production of superconducting thin film - Google Patents

Production of superconducting thin film

Info

Publication number
JPH01108122A
JPH01108122A JP62265685A JP26568587A JPH01108122A JP H01108122 A JPH01108122 A JP H01108122A JP 62265685 A JP62265685 A JP 62265685A JP 26568587 A JP26568587 A JP 26568587A JP H01108122 A JPH01108122 A JP H01108122A
Authority
JP
Japan
Prior art keywords
inert gas
thin film
ultrafine particles
superconducting
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62265685A
Other languages
Japanese (ja)
Inventor
Satoshi Tanda
聡 丹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP62265685A priority Critical patent/JPH01108122A/en
Publication of JPH01108122A publication Critical patent/JPH01108122A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To easily obtain a superconducting thin film having high critical temperature, without using high-temperature sintering process, by floating a supercouducting raw material in an inert gas atmosphere in the form of ultrafine particles, mixing with oxygen gas and blasting through a nozzle against a substrate at a high speed. CONSTITUTION:A ceramic superconducting raw material (e.g. sintered YBaCuO) is charged into a specimen chamber 1, an inert gas 9 is introduced into a chamber 2 for forming ultrafine particles, the specimen chamber 1 is heated with a heating coil and the superconducting raw material is suspended in the inert gas 9 in the form of ultrafine particles. Oxygen gas 10 is introduced through a line 3 and mixed with the inert gas 9 in the course of transferring the ultrafine particles through a transfer pipe 4 with the inert gas 9. The mixture is blasted through a nozzle 5 at a high speed against a substrate 8 placed in a vacuum thin-film forming chamber 7 to form a superconducting thin film on the substrate 8.

Description

【発明の詳細な説明】 発明の目的 (産業上の利用分野) 本発明は、セラミック系超電導体において超微粒子を積
層し、薄膜を製造する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention (Field of Industrial Application) The present invention relates to a method of laminating ultrafine particles in a ceramic superconductor to produce a thin film.

(従来技術) セラミック系超電導物質は、従来開発されてきた金属系
超電導物質と比較して、極めて高い温度で超電導状態に
なる物質として最近注目を集めている。高温での超電導
が実現されれば、電気伝導現象を利用したすべてのもの
に利用できるため、高温超電導材料の開発が各方面で行
なわれている。しかし、超電導材料を実用化するには、
該超電導材料を線材あるいは薄膜化することが重要な課
題となっている。エレクトロニクス関連では、ジゴセフ
ソン素子や超電導トランジスタへの応用が考えられてい
るが、材料の形態としては、薄膜構造あるいは単結晶組
織が必要である。
(Prior Art) Ceramic superconducting materials have recently attracted attention as materials that become superconducting at extremely high temperatures compared to conventionally developed metallic superconducting materials. If superconductivity at high temperatures is realized, it can be used in all kinds of things that utilize electrical conduction phenomena, so high-temperature superconducting materials are being developed in various fields. However, in order to put superconducting materials into practical use,
It is an important issue to make the superconducting material into wire rods or thin films. In the electronics field, application to digocefson devices and superconducting transistors is being considered, but the material needs to have a thin film structure or a single crystal structure.

薄膜の製造方法としては、スパッタリング法、スクリー
ン印刷法などが発表されているが、いずれも実用化に至
っていない。
Sputtering methods, screen printing methods, and the like have been announced as methods for producing thin films, but none of them have been put into practical use.

まず、スパッタリング法での製造方法を以下にのべる。First, the manufacturing method using sputtering method will be described below.

低圧ガス、例えば、アルゴンと酸素雰囲気中におかれた
電極間に、高周波電場をかけてガス分子を電離、イオン
化し1、電極間におかれたセラミック素材、例えばYB
aCu’Oの焼結体を、前記イオンでスパッタリングし
、原子状に分解する。そして、Y、Ba、Cu、0原子
を結晶基板上にならべることにより、その基板上に薄膜
をエピタキシャル成長させる。その後、基板と共に、高
温焼結して超電導薄膜を得る。前記基板は、S r T
 i Os、A l t 03等が利用されている。
A high-frequency electric field is applied between electrodes placed in a low-pressure gas atmosphere, such as argon and oxygen, to ionize the gas molecules.
A sintered body of aCu'O is sputtered with the ions and decomposed into atoms. Then, by arranging Y, Ba, Cu, and O atoms on a crystal substrate, a thin film is epitaxially grown on the substrate. Thereafter, a superconducting thin film is obtained by high-temperature sintering together with the substrate. The substrate is S r T
iOs, Alt03, etc. are used.

次にスクリーン印刷法での製造方法を以下にのべる。セ
ラミック素材例えば、YBaCuOの焼結体を粉末にし
て、プロピレングリコールなどの有機溶媒と混合し、ペ
ースト状にする。
Next, the manufacturing method using the screen printing method will be described below. A sintered body of a ceramic material such as YBaCuO is powdered and mixed with an organic solvent such as propylene glycol to form a paste.

このペースト状に調整した物質を、スクリーン印刷法で
、セラミック基板上に塗布し、真空乾燥させたあと、8
00〜1000度Cで焼結すると、基板上に厚さ10〜
15μmの超電導薄膜が形成される。
This paste-like material was applied onto a ceramic substrate using a screen printing method, dried under vacuum, and then
When sintered at 00 to 1000 degrees C, a thickness of 10 to
A 15 μm superconducting thin film is formed.

(発明が解決しようとする問題点) スパッタリング法で得られた薄膜は、アルゴンガスが膜
中にとりこまれる等に−より、良質な膜が形成されない
又、スクリーン印刷法で形成した薄膜も表面が粗く信頼
性に欠ける。
(Problems to be Solved by the Invention) Thin films obtained by sputtering do not form high-quality films due to argon gas being incorporated into the film, and thin films formed by screen printing also have a rough surface. Rough and unreliable.

また、いずれもバルクと比べて臨界温度は低くなってい
る。これは、高温超電導現象は、薄膜中の界面状態に起
因しており、薄膜中にいかに界面状態を多く形成するか
で決ってしまうために、前記方法では、また特に単相で
は界面状態を制御できないからである。
In addition, the critical temperature of both is lower than that of the bulk. This is because the high-temperature superconductivity phenomenon is caused by the interfacial state in a thin film, and is determined by how many interfacial states are formed in the thin film. Because you can't.

さらに、前記方法では高温で焼結する工程が必ず必要で
あり、そのため使用できる基板が限定されてしまうとい
う問題点があった。
Furthermore, the method always requires a step of sintering at a high temperature, which has the problem of limiting the types of substrates that can be used.

発明の構成 (問題点を解決するための手段) 本発明は、かかる従来の問題点に鑑みてなされたもので
あり、不活性ガス中に、超電導素材を超微粒子として浮
遊させ、これを不活性ガスにより搬送する過程中に酸素
ガスを混合し、次に咳混合ガスをノズルを介して基板に
高速噴射することにより、超電導薄膜を形成する手段か
らなる。
Structure of the Invention (Means for Solving the Problems) The present invention has been made in view of the above conventional problems, and consists of suspending a superconducting material as ultrafine particles in an inert gas, It consists of a means for forming a superconducting thin film by mixing oxygen gas during the gas transport process and then injecting the mixed gas at high speed onto the substrate through a nozzle.

(作用) 上記、手段により不活性ガス雰囲気中で加熱されたセラ
ミック系超電導素材は、超微粒子として前記不活性ガス
中に浮遊する。浮遊する粒子の粒径が0.1μm以下の
超微粒子は一度ガス中に浮遊するとエアロゾル状とな、
す、重力による自由落下速度が極めて小さいためガスの
流れに乗り、運搬自由となる。そして、かかる超微粒子
を含むガスを酸素ガスと共にノズルより、基板に対し高
速噴射させると、この超微粒子は活性状態にあるため前
記基板上に超電導薄膜を形成することになる。この現象
は粒子の材質が異なっても何ら影響がないため、超電導
素材が化合物であり粒子の材質が多種であっても一様に
運搬され、薄膜を形成できる。
(Function) The ceramic superconducting material heated in the inert gas atmosphere by the above means floats in the inert gas as ultrafine particles. Once suspended in a gas, ultrafine particles with a diameter of 0.1 μm or less form an aerosol.
Since the free fall speed due to gravity is extremely small, it rides on the gas flow and can be transported freely. Then, when a gas containing such ultrafine particles is injected together with oxygen gas from a nozzle at a high speed onto a substrate, the ultrafine particles are in an active state, so that a superconducting thin film is formed on the substrate. This phenomenon has no effect even if the particles are made of different materials, so even if the superconducting material is a compound and the particles are made of various materials, they are uniformly transported and a thin film can be formed.

上記の手段により生成された薄膜中には、超電導状態を
担う界面状態を多数存在させることができるため、それ
に抜けやすいといわれている酸素を多くとりいれること
ができるため高い臨界温度を得ることが可能となる−0 また、高温焼結工程がな(薄膜が形成されるため、その
基板は限定されることなく、何でも用いることができる
In the thin film produced by the above method, a large number of interface states that are responsible for the superconducting state can exist, and a high critical temperature can be obtained because a large amount of oxygen, which is said to easily escape, can be incorporated into the thin film. In addition, since the high-temperature sintering process forms a thin film, the substrate is not limited and any substrate can be used.

(実施例) 第1図は、本発明の超電導薄膜を形成する装置の一実施
例である。
(Example) FIG. 1 shows an example of an apparatus for forming a superconducting thin film of the present invention.

まず本装置の構成についてのべる。加熱により超微粒子
を生成する試料室1に不活性ガス9を配管3より導入し
、前記超微粒子を浮遊させる。超微粒子生成室2は、不
活性ガスにより前記超微粒子を搬送し、途中で酸素ガス
10を配管3より導入する搬送管4内を真空ポンプ6で
真空にし、搬送管4の一端にある先端のノズル5から前
記超微粒子を基板8に高速噴射させる薄膜形成室7から
構成されている。
First, we will discuss the configuration of this device. Inert gas 9 is introduced from pipe 3 into sample chamber 1 where ultrafine particles are generated by heating, and the ultrafine particles are suspended. The ultrafine particle generation chamber 2 transports the ultrafine particles using an inert gas, evacuates the inside of the transport pipe 4 through which oxygen gas 10 is introduced from the pipe 3 along the way using a vacuum pump 6, and removes the ultrafine particles from the tip at one end of the transport pipe 4. It consists of a thin film forming chamber 7 in which the ultrafine particles are jetted onto a substrate 8 from a nozzle 5 at high speed.

次に、YBaCuO系超電導体を例にとり製造方法につ
いてのべる。
Next, a manufacturing method will be described using a YBaCuO superconductor as an example.

(1)試料室1内にY B ’a Cu Oの焼結体あ
るいは超電導材の原料であるY2O,の粉末、BaOの
粉末、CuOの粉末を投入し、次に不活性ガス9を配管
3より超微粒子生成室2内に導入し、該生成室2内を不
活性ガス雰囲気にする。
(1) A sintered body of YB'a CuO or a powder of Y2O, which is a raw material for superconducting material, a powder of BaO, and a powder of CuO are introduced into the sample chamber 1, and then an inert gas 9 is introduced into the pipe 3. The particles are introduced into the ultrafine particle generation chamber 2, and the inside of the generation chamber 2 is made into an inert gas atmosphere.

(2)試料室1を不図示の抵抗加熱あるいは高周波誘導
加熱コイルにより加熱し、原料を超微粒子にする。この
微粒子は生成されると超微粒子生成室2内の不活性ガス
中に浮遊する。該粒子は0.1μm以下の粒径となるの
で一度ガス中に浮遊するとエアロゾル状となり、ガス中
に均一に浮遊している。
(2) The sample chamber 1 is heated by resistance heating or a high-frequency induction heating coil (not shown) to turn the raw material into ultrafine particles. When these fine particles are generated, they float in the inert gas within the ultrafine particle generation chamber 2. Since the particles have a particle size of 0.1 μm or less, once suspended in the gas, they become aerosol-like and are uniformly suspended in the gas.

(3)同粒子を含む不活性ガスを、搬送管4に送り搬送
する過程で、酸素ガス10を配管3より導入し、不活性
ガスに混合付加する。
(3) During the process of transporting the inert gas containing the same particles to the transport pipe 4, oxygen gas 10 is introduced from the pipe 3 and mixed and added to the inert gas.

(4)膜形成室7内を真空にし、膜形成室7内に配置し
ておいた基板8に向けて、ノズル5を介して酸素ガスが
混合付加された前記超微粒子を含む不活性ガスを高速噴
射する。同粒子は極めて活性状態となっているため、酸
素ガスと反応し、基板8上で、YBaCuO超電導薄膜
を形成する。この薄膜は、超電導状−態を担う界面状態
が多(存在しているため、臨界温度が大変に高い。
(4) The inside of the film forming chamber 7 is evacuated, and the inert gas containing the ultrafine particles to which oxygen gas is mixed and added is directed toward the substrate 8 placed in the film forming chamber 7 through the nozzle 5. Inject at high speed. Since the particles are in an extremely active state, they react with oxygen gas and form a YBaCuO superconducting thin film on the substrate 8. This thin film has many interfacial states responsible for the superconducting state, so its critical temperature is extremely high.

上記で説明した方法で、高い臨界温度をもつ超電i薄膜
が、高温焼結工程を経ることな(容易に形成できる。
With the method described above, a superelectric i thin film with a high critical temperature can be easily formed without going through a high-temperature sintering process.

尚、基板8はガラス・金属・プラスチック・セラミック
など、どのような材質でもよいため、薄膜形成後コイル
を作製したり、素子を形成することが可能である。
Note that since the substrate 8 may be made of any material such as glass, metal, plastic, ceramic, etc., it is possible to manufacture a coil or form an element after forming a thin film.

本実施例では、YBaCuOを例にとったが、他のセラ
ミック系超電導材料でもよい。
In this embodiment, YBaCuO is used as an example, but other ceramic superconducting materials may be used.

また、本実施例では酸素ガスを、粒子搬送中に混合付加
したが、ノズル5より超微粒子を含む不活性ガスを高速
噴射する時同時に、別のノズルより酸素ガスを噴射して
もよい。
Further, in this embodiment, oxygen gas was mixed and added during particle transportation, but at the same time when inert gas containing ultrafine particles is injected from nozzle 5 at high speed, oxygen gas may be injected from another nozzle.

(発明の効果) 本発明によれば、様々な基板に、超電導薄膜が、高温焼
結工程を経ることをしないで、容易に形成できるため、
エレクトロニクス関連のジッセフソン素子や、超電導ト
ランージスタへの応用が促進される。
(Effects of the Invention) According to the present invention, superconducting thin films can be easily formed on various substrates without going through a high-temperature sintering process.
Applications to electronics-related Gisefson devices and superconducting transistors will be promoted.

また、超電導状態の担い手である界面状態を多く存在さ
せることができるため、臨界温度が極めて向上する。
Furthermore, since many interface states that are responsible for the superconducting state can be present, the critical temperature can be greatly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の薄膜製造装置の概略図である。 1・・・試料室       3・・・配管2・・・超
微粒子生成室   4・・・搬送管5・・・ノズル  
     6・・・真空ポンプ7・・・薄膜形成室  
   8・・・基板9・・・不活性ガス     10
・・・酸素ガス出願人     株式会社小松製作所 代理人  (弁理士)岡 1)和 喜 第1図
FIG. 1 is a schematic diagram of a thin film manufacturing apparatus of the present invention. 1...Sample chamber 3...Piping 2...Ultrafine particle generation chamber 4...Transport pipe 5...Nozzle
6...Vacuum pump 7...Thin film formation chamber
8...Substrate 9...Inert gas 10
...Oxygen gas applicant Komatsu Manufacturing Co., Ltd. Agent (patent attorney) Oka 1) Kazuki Figure 1

Claims (1)

【特許請求の範囲】[Claims]  不活性ガス雰囲気中に於て超電導素材を超微粒子とし
て浮遊させる第1工程と、前記超微粒子を不活性ガスに
より搬送する過程に酸素ガスを混合付加する第2工程と
、酸素ガスが混合付加された前記超微粒子を含む不活性
ガスをノズルを介して基板に高速噴射する第3工程とか
ら成る、超電導薄膜の製造方法。
A first step in which the superconducting material is suspended as ultrafine particles in an inert gas atmosphere, a second step in which oxygen gas is mixed and added to the process in which the ultrafine particles are transported by an inert gas, and oxygen gas is mixed and added. and a third step of injecting an inert gas containing the ultrafine particles onto the substrate at high speed through a nozzle.
JP62265685A 1987-10-21 1987-10-21 Production of superconducting thin film Pending JPH01108122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62265685A JPH01108122A (en) 1987-10-21 1987-10-21 Production of superconducting thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62265685A JPH01108122A (en) 1987-10-21 1987-10-21 Production of superconducting thin film

Publications (1)

Publication Number Publication Date
JPH01108122A true JPH01108122A (en) 1989-04-25

Family

ID=17420579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62265685A Pending JPH01108122A (en) 1987-10-21 1987-10-21 Production of superconducting thin film

Country Status (1)

Country Link
JP (1) JPH01108122A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201007A (en) * 1988-02-04 1989-08-14 Fujitsu Ltd Production of superconductor layer
JPH0222102A (en) * 1988-07-08 1990-01-25 Res Dev Corp Of Japan Formation of oxide superconductor thick film and unit therefor
JPH0393606A (en) * 1989-09-04 1991-04-18 Shinku Yakin Kk Method and device for forming thick film of high temperature superconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201007A (en) * 1988-02-04 1989-08-14 Fujitsu Ltd Production of superconductor layer
JPH0222102A (en) * 1988-07-08 1990-01-25 Res Dev Corp Of Japan Formation of oxide superconductor thick film and unit therefor
JPH0393606A (en) * 1989-09-04 1991-04-18 Shinku Yakin Kk Method and device for forming thick film of high temperature superconductor

Similar Documents

Publication Publication Date Title
DE68918489T2 (en) Production of superconducting oxide films by pre-oxygen nitrogen annealing treatment.
US4925829A (en) Method for preparing thin film of compound oxide superconductor by ion beam techniques
Liao et al. Self-assembly of length-tunable gold nanoparticle chains in organic solvents
JPH01108122A (en) Production of superconducting thin film
CN113005405A (en) Giant spin Hall angle alloy material and preparation method and application thereof
DK9289A (en) PROCEDURE FOR THE MANUFACTURING OF AN ARTICLE CONTAINING A SUPER CONDUCTIVE OXIDE MATERIAL
US5225396A (en) Method for forming an oxide superconducting film
JP2794294B2 (en) Method and apparatus for forming oxide superconductor thick film
JPH01115014A (en) Manufacture of superconducting thin film
JP2955939B2 (en) Method of forming high-temperature superconductor thick film
JPH0244057A (en) Ductile superconductive material
JPH0261910A (en) Superconducting material wire and its manufacture
JP2502344B2 (en) Method for producing complex oxide superconductor thin film
JPH01230405A (en) Production of oxide superconducting thick film
JP2525833B2 (en) Method for manufacturing superconducting member
JPH01203258A (en) Production of oxide superconducting sintered body
Behrndt Evaporation of Ferromagnetic Thin Films
CN114335328A (en) Metal-titanium oxide composite particle film giant spin Hall angle material and preparation method thereof
JP2816792B2 (en) Superconducting magnetic shield container and method of manufacturing the same
JPH02118063A (en) Production of oxide superconductor
JPH0227612A (en) Oxide superconducting wire rod
JPH01238078A (en) Formation of superconductive wiring
JPS63299010A (en) Ceramic superconductive material
JPS63304528A (en) Manufacture of superconductive wire
JPH01112614A (en) Manufacture of super conductive film