【発明の詳細な説明】[Detailed description of the invention]
本発明は室内にスラリを圧入して液と渣
に分離し、次いで当該渣をさらに圧搾して脱水
するいわゆるフイルタープレス式加圧脱水方法の
改良に関するものである。
従来のフイルタープレスによる脱水方法は、通
常下記のごとく行なわれている。すなわち室の
外側を油圧シリンダーなどで押圧して内部圧力に
耐え得るようにしておき、当該室内部に脱水せ
んとするスラリをポンプなどで圧入し、その圧入
圧力によつて室の内壁に付設した布よりスラ
リ中の水分を除去してある程度脱水した渣を
得、次いで室内に付設してある圧搾膜内に加圧
水あるいは加圧空気を流入して当該圧搾膜を膨張
させ、この膨張力により室内の渣をさらに圧
搾して脱水し、最終的に含水率の少ない脱水ケー
キを得、次いで油圧シリンダーなどを用いて室
を開放して当該脱水ケーキを取りだすものであ
り、通常、室を横に複数個配して行なうもので
あり、布を固定するもの、あるいは布を走行
させるものなど、装置の形態は各種のものがある
が、基本的には前述したような操作によつてスラ
リを脱水するものである。
従来のフイルタープレスによる脱水方法は、前
述したように室内にダイヤフラム等の圧搾膜を
付設して、この圧搾膜の膨張力を用いて仕上げの
脱水を行なうのであるが、以下のような欠点があ
る。
すなわち一般に圧搾膜は物理的に強度の強い合
成ゴムなどを用いるが、しかしながら長時間の運
転によりその物理的強度が低下し、ついには破損
する。圧搾膜が破損すると仕上げの脱水が行なえ
なくなるので、これを交替せねばならないが、こ
の交替には多大の費用を必要とする。
本発明は従来のフイルタープレスによる脱水方
法の以上のような欠点を解決することを目的とす
るもので、室から圧搾膜を省略し得る脱水方法
を提供するものである。すなわち本発明は室に
付設した布内にスラリを圧入して液と渣に
分離した後、ひきつづいてスラリを室内に供給
するスラリ供給管あるいは別に設けた加圧空気供
給孔より、室内に直接加圧空気を流入させるこ
とにより渣をさらに圧搾脱水することを特徴と
する加圧脱水方法に関する。
以下に本発明を図面を参照して詳細に説明す
る。
第1図は本発明の脱水方法を実施する圧搾膜を
付設してないフイルタープレス装置の横断面説明
図であり、第2図は室部分の拡大縦断面説明図
である。
第1図において1は固定板2を支持した前部支
持脚、3は可動締付板4を前後進自在に支持する
駆動軸5を装備した後部支持脚、6は過板で、
図の中央に一点鎖線で示す部分に多数はさみ込ま
れている。また第2図に示すように枠7の両側
に夫々突出した一対の把手8,8を有し、一対の
把手8,8を前後部支持脚1,3間の両側に夫々
渡した過板支持梁9,9に前後方向摺動自在に
懸架した状態になつている。
上記過板6は、可動締付板4の前進によつ
て、枠部7が密着し、過板6の過面6aに
よつて室10を横列状に多数形成する。各室
10は過板に吊掛けた布11,11によつて
おおわれており、布11,11は各室10内
に充満したスラリを圧力の作用下で固形物と水に
分離し、分離した固形物を室10内に捕獲して
渣を形成し、最終的に脱水ケーキとして排出す
る。
一方12はスラリ槽、13はスラリ圧入ポンプ
で該ポンプ13は実際には前部支持脚1のスラリ
供給口14に接続したスラリ供給管15により
過板6のスラリ供給孔16によつて、相互に連通
した各室10内にスラリを圧入して供給する。
上記スラリ供給管15の途中には開閉弁V1を装
着し、該供給管15の開閉を行なうようにする。
なお第2図においては、スラリ供給管15が直
接、過板6のスラリ供給孔16に連結したよう
に図示してあり、以下の配管系においても同様で
ある。
また17は分離液排出管で、実際には前部支持
脚1の分離液排出口18を介して、過板6およ
び枠7のコーナー部分に一体成形した各耳部E
に設けた計4個の分離液孔18′に連結した分離
液排出管17によりフイルタープレスの系外に排
出する。なお分離液が有用物である場合は回収槽
(図示なし)を設け回収することもできる。
この分離液排出管17の途中には該排出管17
を開閉する第2開閉弁V2を設ける。
一方、圧縮空気供給管19を設け、可動締付板
4のバツクブロー口20を介して、過板6およ
びスラリ供給孔16に連通するバツクブロー管2
1を設け、その途中に装着した第6開閉弁V6を
開け、圧縮空気を各スラリ供給孔16に供給して
各スラリ供給孔16に残存するスラリを外部に排
出できるように構成する。このスラリの排出は上
記スラリ供給管15の第4開閉弁V4の下流か
ら、スラリ圧入ポンプ13を分岐してスラリ槽1
2に復帰するスラリ回収管22を利用し、該回収
管22の途中に設けた第3開閉弁V3を開放した
状態で行ない、スラリをスラリ槽12に回収す
る。
なお、スラリ供給管15の第1開閉弁V1と第
4開閉弁V4の間に他端を大気に開放した連結管
23を設け、圧縮空気供給管19、バツクブロー
管21、圧縮空気供給管19とをY点で相互に連
結する。なお、圧縮空気供給管19の途中に第5
開閉弁V5、バツクブロー管21の途中に第6開
閉弁V6、連結管23の途中に第7開閉弁V7を
装着し、可動締付板4のバツクブロー口20及び
固定板2のスラリ供給口14の両方を介し、過
板6のスラリ供給孔16より圧縮空気を導入し、
室10内の内圧を高める事ができる。
連結管23の大気開放端と連結部Y点の間に第
8開閉弁V8を装着し必要に応じ圧抜を行なう事
もできる。なお24は空気圧縮機である。
次に上記フイルタープレス装置を用いて本発明
の脱水方法を適用した場合の脱水工程を第3図の
工程図を参照しながら説明する。
() 過工程
(1) 過1
まず可動締付板4を前進させ、各過板6
を固定板2側に押圧した状態で、スラリ圧入
ポンプ13を駆動する。この段階では第1〜
第8開閉弁V1〜V8のうち第1、第2、第
4だけを開き、スラリ供給管15によつて前
部支持脚1の供給口14側から各過板6の
スラリ供給口16を通じて各過板6の間に
形成された各室10内にスラリを供給す
る。この場合のスラリ圧入圧は、通常4〜7
Kg/cm2とし、布11によつて分離した分離
液は、過板6の各分離液孔18′に集めた
のち、分離液排出管17によつてフイルター
プレス系外に排出する。
(2) 過2
本工程は必らずしも必要でないが、過板
が多い場合には前部支持脚1側からのスラリ
圧入のみでは可動締付板4に近い側の室1
0へのスラリの充満が完全に行なわれないこ
とがあるので、これを補うために行なう。こ
の場合には過1における第4開閉弁V4に
代えて第7開閉弁V7、第6開閉弁V6を開
きスラリを連結管23を介して、可動締付板
4の供給口20から各室10に供給する。
() 気体圧入工程1
スラリ圧入ポンプ13を停止し、第1〜第8
開閉弁V1〜V8のうち、圧縮空気供給管19
に通じる第5、第6、第7、第4、第2開閉弁
V5,V6,V7,V4,V2のみを開き、前
部支持脚1のスラリ供給口14を介しスラリ供
給孔16より圧縮空気を室10内に供給し
室10内に捕獲した渣を圧縮空気による5〜
7Kg/cm2の圧力で圧搾する。この圧搾では、圧
搾される渣の性質によつても異なるが、通常
重量比にして約10〜15%の脱水が行なわれ、
渣は脱水ケーキを形成する。
なお圧搾によつて分離された分離液は、前記
過工程と同様に各分離液孔18′を介して分
離液排出管17によりフイルタープレス系外に
排出する。
() 気体圧入工程2
本工程では上記の工程において第2開閉弁
V2を閉じ、室10内を密閉状態にすること
により、室の内圧を高め枠7より外側の
布11に浸透してくる水分をフイルタープレス
下方に落下せしめる事により、室10内の水
分を系外に押し出し脱水するもので通常5〜10
%の脱水が行なわれる。この工程はの工程に
おいて圧縮空気が分離液排出管17に漏洩が多
い場合には特に有効である。
() バツクブロー工程
このバツクブロー工程は、スラリ供給孔16
部分のスラリの脱水が不充分で、流動状態のま
まで残存しているため、これを除去する工程で
ある。本工程では第5、第6、第3開閉弁V
5,V6,V3のみを開きバツクブロー管21
により可動締付板4の供給口20を介して、
過板6のスラリ供給孔16に向け、圧縮空気を
作用させる。この圧縮空気によつてスラリ供給
孔16部分の流動状態にあるスラリは、前部支
持脚1側のスラリ供給口14に押し出し、スラ
リ供給管15を逆流し、スラリ圧入ポンプ13
を分岐するスラリ回収管22によりスラリ槽1
2に回収する。
() 水抜き工程
水抜き工程においては可動締付板4を若干後
退させ、過板6の押圧状態を緩めて、上記工
程中に枠部等に溜つた液を自由落下させ
る。
() ケーキ排出工程
水抜き工程に続いて可動締付板4を大きく後
退させるとともに、具体的に図示しないが公知
の各種開枠機構により、過板6が相互に所定
の間隔で開枠する。したがつてそれまで過板
6,6の間に挾み付けている脱水済みのケーキ
をその自重によつて落下し回収することができ
る。
本発明の脱水方法は通常以上のような工程で行
なうが、スラリの性状によつては()あるいは
()のどちらかを省略してもさしつかえない。
なお室内に圧縮空気を供給する場合、図で示
した装置においてはスラリ供給口を利用して圧縮
空気を供給するようにしているが、室内に圧縮
空気供給孔を別に設けて、ここから圧縮空気を供
給してもさしつかえない。
以上説明したごとく、本発明は室内に圧搾膜
を付設し、この圧搾膜を内部から加圧して膨張さ
せることにより渣をさらに脱水する従来の加圧
脱水方法と異なり、室内に形成する渣に直接
圧縮空気を供給し、この押圧力で渣をさらに脱
水するものであるから圧搾膜を必要とせず、した
がつて前述した従来の脱水方法における欠点を全
て解決することができ、従来の圧搾膜を装備する
フイルタープレスのイニシヤルコストおよび維持
管理費を大巾に低減させることができる。
以下に本発明の実施例を説明する。
実施例
第1図および第2図に示した装置を用い、第3
図に示した工程にしたがつて本発明の方法によつ
てスラリを脱水しその結果を第1表に示した。
The present invention relates to an improvement in a so-called filter press pressure dehydration method in which a slurry is pressurized into a chamber and separated into a liquid and a residue, and then the residue is further compressed for dehydration. The conventional dewatering method using a filter press is usually carried out as follows. In other words, the outside of the chamber is pressed with a hydraulic cylinder or the like to withstand the internal pressure, and the slurry to be dehydrated is pressurized into the chamber using a pump, and the pressure applied is used to attach it to the inner wall of the chamber. Moisture in the slurry is removed from the cloth to obtain a somewhat dehydrated residue, and then pressurized water or pressurized air is flowed into a pressing membrane attached to the room to expand the pressing membrane, and this expansion force causes the inside of the room to be expanded. The residue is further compressed and dehydrated to finally obtain a dehydrated cake with a low water content, and then a chamber is opened using a hydraulic cylinder or the like to take out the dehydrated cake. Usually, multiple chambers are arranged horizontally. There are various types of devices, such as those that fix the cloth or those that run the cloth, but basically the slurry is dehydrated by the operations described above. It is. As mentioned above, the conventional dewatering method using a filter press involves installing a pressing membrane such as a diaphragm inside the room and using the expansion force of this pressing membrane to perform the final dehydration, but it has the following drawbacks. . That is, generally, a physically strong material such as synthetic rubber is used for the pressing membrane, but the physical strength decreases with long-term operation and eventually breaks. If the squeeze membrane is damaged, the final dewatering cannot be performed, so it must be replaced, but this replacement requires a large amount of cost. The present invention aims to solve the above-mentioned drawbacks of the conventional dehydration method using a filter press, and provides a dehydration method that can omit the press membrane from the chamber. That is, in the present invention, after the slurry is pressurized into a cloth attached to the chamber and separated into liquid and residue, the slurry is directly supplied into the chamber through a slurry supply pipe that supplies the slurry into the chamber or a pressurized air supply hole provided separately. The present invention relates to a pressurized dehydration method characterized in that the residue is further compressed and dehydrated by introducing pressurized air. The present invention will be explained in detail below with reference to the drawings. FIG. 1 is an explanatory cross-sectional view of a filter press apparatus without a pressing membrane for carrying out the dewatering method of the present invention, and FIG. 2 is an explanatory enlarged longitudinal cross-sectional view of a chamber portion. In FIG. 1, 1 is a front support leg that supports a fixed plate 2, 3 is a rear support leg that is equipped with a drive shaft 5 that supports a movable clamping plate 4 so as to be able to move forward and backward, and 6 is a top plate.
Many of them are sandwiched in the area indicated by the dashed line in the center of the figure. Further, as shown in FIG. 2, a pair of handles 8, 8 are provided on both sides of the frame 7, and the pair of handles 8, 8 are passed between the front and rear support legs 1, 3, respectively. It is suspended on beams 9, 9 so as to be slidable in the front and rear directions. As the movable clamping plate 4 moves forward, the frame portion 7 of the overplate 6 comes into close contact with the overplate 6, and a large number of chambers 10 are formed in rows by the oversurface 6a of the overplate 6. Each chamber 10 is covered with a cloth 11, 11 hung on a cover plate, and the cloth 11, 11 separates the slurry filled in each chamber 10 into solids and water under the action of pressure. The solids are captured in chamber 10 to form a residue and are finally discharged as a dehydrated cake. On the other hand, 12 is a slurry tank, 13 is a slurry press-in pump, and the pump 13 is actually connected to the slurry supply port 14 of the front support leg 1 through the slurry supply hole 16 of the over plate 6. The slurry is press-fitted and supplied into each chamber 10 that communicates with the chambers 10.
An on-off valve V1 is installed in the middle of the slurry supply pipe 15 to open and close the supply pipe 15. In FIG. 2, the slurry supply pipe 15 is shown to be directly connected to the slurry supply hole 16 of the over plate 6, and the same applies to the piping system described below. Reference numeral 17 denotes a separated liquid discharge pipe, which is actually connected to each ear portion E integrally formed on the corner portion of the over plate 6 and the frame 7 through the separated liquid discharge port 18 of the front support leg 1.
The separated liquid is discharged out of the filter press system through a separated liquid discharge pipe 17 connected to a total of four separated liquid holes 18' provided in the filter press. Note that if the separated liquid is useful, a recovery tank (not shown) may be provided to recover it. In the middle of this separated liquid discharge pipe 17, the discharge pipe 17
A second on-off valve V2 is provided to open and close. On the other hand, a compressed air supply pipe 19 is provided, and the back blow pipe 2 communicates with the over plate 6 and the slurry supply hole 16 via the back blow port 20 of the movable clamping plate 4.
1 is provided, and a sixth on-off valve V6 installed in the middle thereof is opened, compressed air is supplied to each slurry supply hole 16, and the slurry remaining in each slurry supply hole 16 can be discharged to the outside. This slurry is discharged from the slurry tank 1 by branching the slurry press-in pump 13 from the downstream of the fourth on-off valve V4 of the slurry supply pipe 15.
The slurry is recovered into the slurry tank 12 by using the slurry recovery pipe 22 that returns to step 2 with the third on-off valve V3 provided in the middle of the recovery pipe 22 open. Note that a connecting pipe 23 with the other end open to the atmosphere is provided between the first on-off valve V1 and the fourth on-off valve V4 of the slurry supply pipe 15, and the compressed air supply pipe 19, back blow pipe 21, and compressed air supply pipe 19 are connected to each other. are interconnected at Y point. Note that there is a fifth pipe in the middle of the compressed air supply pipe 19.
An on-off valve V5, a sixth on-off valve V6 in the middle of the back blow pipe 21, and a seventh on-off valve V7 in the middle of the connecting pipe 23 are installed, and the back blow port 20 of the movable clamping plate 4 and the slurry supply port 14 of the fixed plate 2 are Compressed air is introduced from the slurry supply hole 16 of the overplate 6 through both,
The internal pressure within the chamber 10 can be increased. It is also possible to install an eighth on-off valve V8 between the atmosphere-opening end of the connecting pipe 23 and the connecting point Y to release pressure if necessary. Note that 24 is an air compressor. Next, the dewatering process when the dewatering method of the present invention is applied using the filter press apparatus will be described with reference to the process diagram of FIG. 3. () Over process (1) Over process 1 First, move the movable clamping plate 4 forward, and each over process plate 6
The slurry press-in pump 13 is driven while being pressed against the fixed plate 2 side. At this stage, the first
Only the first, second, and fourth of the eighth opening/closing valves V1 to V8 are opened, and the slurry supply pipe 15 is used to pass the slurry supply port 16 of each overboard 6 from the supply port 14 side of the front support leg 1 to the slurry supply pipe 15. Slurry is supplied into each chamber 10 formed between the overplates 6. In this case, the slurry press-in pressure is usually 4 to 7
Kg/cm 2 and separated by the cloth 11, the separated liquid is collected in each separated liquid hole 18' of the filter plate 6 and then discharged to the outside of the filter press system through the separated liquid discharge pipe 17. (2) Over 2 Although this step is not necessarily necessary, if there are many overlapping plates, it is not enough to press in the slurry from the front support leg 1 side.
0 may not be completely filled with slurry, so this is done to compensate for this. In this case, the seventh on-off valve V7 and the sixth on-off valve V6 are opened instead of the fourth on-off valve V4 in Part 1, and the slurry is passed through the connecting pipe 23 from the supply port 20 of the movable clamping plate 4 to each chamber 10. supply to. () Gas pressure injection step 1 Stop the slurry pressure injection pump 13, and
Among the on-off valves V1 to V8, compressed air supply pipe 19
Open only the fifth, sixth, seventh, fourth, and second on-off valves V5, V6, V7, V4, and V2 leading to is supplied into the chamber 10, and the residue captured in the chamber 10 is heated with compressed air.
Squeeze at a pressure of 7Kg/ cm2 . In this pressing, dehydration is usually done by about 10 to 15% by weight, although it varies depending on the properties of the squeezed residue.
The residue forms a dehydrated cake. The separated liquid separated by squeezing is discharged to the outside of the filter press system through the separated liquid discharge pipe 17 through each separated liquid hole 18' in the same way as in the above-mentioned step. () Gas pressure injection process 2 In this process, the second on-off valve V2 is closed in the above process, and the inside of the chamber 10 is sealed, thereby increasing the internal pressure of the chamber and reducing the moisture that permeates into the fabric 11 outside the frame 7. This device dehydrates the water in the chamber 10 by letting it fall below the filter press to push out the moisture in the chamber 10 and dehydrate it.
% dehydration takes place. This process is particularly effective when there is a lot of leakage of compressed air into the separated liquid discharge pipe 17 in the process. () Back blowing process This back blowing process is carried out through the slurry supply hole 16.
This is a step to remove some of the slurry that has not been sufficiently dehydrated and remains in a fluid state. In this process, the fifth, sixth, and third on-off valves V
5. Open only V6 and V3 and back blow pipe 21
Through the supply port 20 of the movable clamping plate 4,
Compressed air is applied to the slurry supply hole 16 of the overboard 6. Due to this compressed air, the slurry in a fluid state in the slurry supply hole 16 is pushed out to the slurry supply port 14 on the side of the front support leg 1, flows backward through the slurry supply pipe 15, and flows through the slurry press-in pump 13.
Slurry tank 1
Collect at 2. () Water draining process In the water draining process, the movable clamping plate 4 is moved back slightly, the pressure on the overboard 6 is relaxed, and the liquid accumulated in the frame etc. during the above process is allowed to fall freely. () Cake discharging step Following the water draining step, the movable clamping plate 4 is moved back greatly, and the over-plates 6 are opened at a predetermined interval from each other by various known opening mechanisms (not specifically shown). Therefore, the dehydrated cake that has been sandwiched between the overplates 6, 6 can fall under its own weight and be recovered. The dehydration method of the present invention is carried out through the steps described above, but depending on the properties of the slurry, either () or () may be omitted. When supplying compressed air indoors, the device shown in the figure uses the slurry supply port to supply compressed air, but a separate compressed air supply hole is provided indoors, and the compressed air is supplied from here. There is no problem in supplying As explained above, unlike the conventional pressurized dehydration method in which a compressed membrane is installed indoors and the compressed membrane is pressurized from inside and expanded to further dehydrate the residue, the present invention directly applies the compressed membrane directly to the residue formed indoors. Since compressed air is supplied and the residue is further dehydrated using this pressing force, there is no need for a pressing membrane, and therefore all of the drawbacks of the conventional dehydration methods mentioned above can be solved, and the conventional pressing membrane can be removed. The initial cost and maintenance cost of the filter press to be equipped can be significantly reduced. Examples of the present invention will be described below. Example Using the apparatus shown in FIGS. 1 and 2, the third
The slurry was dehydrated by the method of the present invention according to the steps shown in the figure, and the results are shown in Table 1.
【表】
なお本実施例は第3図に示した工程図において
過2の工程を省略し、過工程1におけるスラ
リの圧入圧力を4Kg/cm2とし、気体圧入工程1お
よび2の圧縮空気の圧力を6Kg/cm2とした場合の
結果である。
第1表に見られるごとく本発明の脱水方法は含
水率の低い脱水ケーキが得られ、この値は従来の
圧搾膜を用いる脱水方法による脱水ケーキとほぼ
等しい。[Table] In this example, the second step in the process diagram shown in FIG. These are the results when the pressure was 6 Kg/cm 2 . As shown in Table 1, the dehydration method of the present invention yields a dehydrated cake with a low moisture content, and this value is approximately equal to that obtained by the conventional dehydration method using a squeeze membrane.
【図面の簡単な説明】[Brief explanation of the drawing]
第1図は本発明の脱水方法を実施する圧搾膜を
付設してないフイルタープレス装置の横断面説明
図であり、第2図は室部分の拡大縦断面説明図
であり、第3図は本発明の脱水工程図である。
1……前部支持脚、2……固定板、3……後部
支持脚、4……可動締付板、5……駆動軸、6…
…過板、7……枠、8……把手、9……過
板支持梁、10……室、11……布、12…
…スラリ槽、13……スラリ圧入ポンプ、14…
…スラリ供給口、15……スラリ供給管、16…
…スラリ供給孔、17……分離液排出管、18…
…分離液排出口、18′……分離液孔、19……
圧縮空気供給管、20……バツクブロー口、21
……バツクブロー管、22……スラリ回収管、2
3……連絡管、24……空気圧縮機。
FIG. 1 is an explanatory cross-sectional view of a filter press apparatus without a pressing membrane for carrying out the dehydration method of the present invention, FIG. 2 is an explanatory enlarged vertical cross-sectional view of the chamber portion, and FIG. It is a dehydration process diagram of the invention. DESCRIPTION OF SYMBOLS 1... Front support leg, 2... Fixed plate, 3... Rear support leg, 4... Movable clamping plate, 5... Drive shaft, 6...
...passing plate, 7...frame, 8...handle, 9...passing plate support beam, 10...chamber, 11...cloth, 12...
...Slurry tank, 13...Slurry pressure injection pump, 14...
...Slurry supply port, 15...Slurry supply pipe, 16...
... Slurry supply hole, 17 ... Separated liquid discharge pipe, 18 ...
...Separated liquid outlet, 18'...Separated liquid hole, 19...
Compressed air supply pipe, 20...Back blow port, 21
... Back blow pipe, 22 ... Slurry recovery pipe, 2
3...Connection pipe, 24...Air compressor.