JPS647655B2 - - Google Patents

Info

Publication number
JPS647655B2
JPS647655B2 JP10676079A JP10676079A JPS647655B2 JP S647655 B2 JPS647655 B2 JP S647655B2 JP 10676079 A JP10676079 A JP 10676079A JP 10676079 A JP10676079 A JP 10676079A JP S647655 B2 JPS647655 B2 JP S647655B2
Authority
JP
Japan
Prior art keywords
light
electrode
photoreceptor
voltage
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10676079A
Other languages
Japanese (ja)
Other versions
JPS5630131A (en
Inventor
Shunichi Ishihara
Nobuo Kitajima
Juji Nishigaki
Nobuko Kitahara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP10676079A priority Critical patent/JPS5630131A/en
Publication of JPS5630131A publication Critical patent/JPS5630131A/en
Publication of JPS647655B2 publication Critical patent/JPS647655B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電子写真法、特には容量変化層による
分配電圧の差を利用して電位像を形成し現像を行
なう電子写真法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic method, and particularly to an electrophotographic method in which a potential image is formed and developed using a difference in voltage distribution between capacitance change layers.

従来、電子写真感光体としては種々のものが知
られている。最も一般的な電子写真プロセス、即
ち、帯電し、画像露光を行つて静電像を形成する
プロセスに用いられる感光体の代表的な構成は、
支持体上に光導電層が形成されているものであ
る。
Conventionally, various types of electrophotographic photoreceptors are known. The typical configuration of a photoreceptor used in the most common electrophotographic process, that is, a process in which an electrostatic image is formed by charging and imagewise exposure, is as follows:
A photoconductive layer is formed on a support.

光導電層は、S,Se,PbO,及びS,Se,
Te,As,Sb等を有した合金や金属間化合物等の
無機光導電材料を真空蒸着して形成され、また
は、ZnO,CdS,TiO2,PbO等の無機光導電体
の絶縁性バインダーとの混合物を支持体に塗布し
て光導電層を形成する。絶縁性のバインダーとし
ては、各種樹脂が用いられる。静電像は、一般に
コロナ放電により感光体表面を帯電し、次いで画
像露光により露光部の帯電電荷を選択的に消失さ
せて形成されるものである。この静電像は、静電
像に対して反対極性の電荷に帯電されているトナ
ーで現像され、転写紙に転写される。このような
電子写真プロセスにおいては、コロナ帯電を行う
ためのワイヤーやシールドケース、また、コロナ
放電を生ぜしめるための高電圧を必要とするた
め、装置のコンパクト化が困難であることが指摘
される。
The photoconductive layer includes S, Se, PbO, and S, Se,
It is formed by vacuum evaporation of inorganic photoconductive materials such as alloys and intermetallic compounds containing Te, As, Sb, etc., or it is formed by insulating binder of inorganic photoconductors such as ZnO, CdS, TiO 2 , PbO, etc. The mixture is applied to a support to form a photoconductive layer. Various resins are used as the insulating binder. An electrostatic image is generally formed by charging the surface of a photoreceptor by corona discharge, and then selectively dissipating the charges in the exposed areas by imagewise exposure. This electrostatic image is developed with toner charged with a polarity opposite to that of the electrostatic image, and is transferred onto transfer paper. It has been pointed out that this type of electrophotographic process requires wires and shield cases to perform corona charging, as well as high voltage to generate corona discharge, making it difficult to make the equipment more compact. .

一方、従来知られている電子写真感光体として
装置のコンパクト化が容易なものも提案されてい
る。その代表的なものとして、特開昭48−68238
号公報、特開昭51−150342号公報、特開昭53−
1027号公報、特開昭54−61534号公報および特開
昭54−61537号公報などに開示されている感光体
が挙げられる。これらの感光体はコロナ帯電を必
要としないで、荷電トナーによる現像が可能な電
位像を形成できるものである。電極が設けられて
いる光導電層に電圧を印加して画像露光を行うこ
とにより、印加されている電圧について露光部と
未露光部とにおいて、分配電圧の差を生ぜしめる
ことによつて電位像を形成するものである。しか
しながら、この電位像を形成するプロセスにおい
ては、光導電層の抵抗変化によつて感光体表面に
おける電圧変化を生じさせるものであり、これに
よつて現像可能な電位像を形成するものであるか
ら、感光体に対する電圧印加、画像露光および現
像処理を同時に行う必要があり、プロセス上また
は装置化の上での制約が伴う。
On the other hand, conventionally known electrophotographic photoreceptors that can be easily made compact have also been proposed. As a representative example, JP-A No. 48-68238
Publication No. 150342, Japanese Patent Publication No. 150342, Japanese Patent Publication No. 1983-1503-
Examples include photoreceptors disclosed in JP-A No. 1027, JP-A-54-61534, and JP-A-54-61537. These photoreceptors do not require corona charging and can form potential images that can be developed with charged toner. Image exposure is performed by applying a voltage to the photoconductive layer on which electrodes are provided, and a potential image is created by creating a difference in distributed voltage between the exposed and unexposed areas of the applied voltage. It forms the However, in the process of forming this potential image, a change in the resistance of the photoconductive layer causes a voltage change on the surface of the photoreceptor, thereby forming a developable potential image. , it is necessary to apply voltage to the photoreceptor, image exposure, and development processing at the same time, which entails restrictions in terms of process or equipment.

而して本発明は、このような制約のない、即
ち、帯電過程、画像露光、現像を順次に行うこと
ができる電子写真法を提供することを主たる目的
とする。
The main object of the present invention is to provide an electrophotographic method that is free from such restrictions, that is, in which the charging process, image exposure, and development can be performed sequentially.

本発明は、透光性支持体上に透光性電極および
遮光性電極を設けた光容量変化層を有し、該光容
量変化層上には画素を形成する孤立した導電体が
設けられており、透光性電極および遮光性電極は
該導電体と対向して配置されており、透光性電極
と遮光性電極間は電圧印加可能になつている電子
写真感光体の両電極に電圧を印加する工程後、ま
たは同時に、透光性支持体側から画像露光するこ
とにより電位像を形成し、その後に現像を行なう
ことを特徴とする電子写真法である。
The present invention has a light capacitance variable layer provided with a light-transmitting electrode and a light-shielding electrode on a light-transmitting support, and isolated conductors forming pixels are provided on the light capacitance variable layer. The light-transmitting electrode and the light-shielding electrode are arranged to face the conductor, and a voltage can be applied between the light-transmitting electrode and the light-shielding electrode.A voltage is applied to both electrodes of the electrophotographic photoreceptor. This is an electrophotographic method characterized by forming a potential image by imagewise exposing the light-transmitting support from the side of the light-transmitting support after or at the same time as the step of applying the voltage, followed by development.

本発明においては、電極が設けられている光容
量変化層に電圧を印加し画像露光を行うことによ
り、光容量変化層の露光部における容量の変化に
よつて露光部と非露光部とにおいて分配電圧の差
を生ぜしめ、此の分配電圧の差に対応して生ずる
感光体の表面電位の差により電位像を形成するも
のである。この電位像は、画像露光後においても
また、電圧印加を止めても保持されており、従つ
て、画像露光後に現像することができる。また、
電圧印加は、画像露光と同時に行つてよいし、電
圧印加した後、電源を切つてから画像露光をする
ことによつても電位像が形成される。
In the present invention, by applying a voltage to the photocapacitance change layer provided with an electrode and performing image exposure, the capacitance is distributed between the exposed part and the non-exposed part by changing the capacitance in the exposed part of the photocapacitance change layer. A difference in voltage is generated, and a potential image is formed by a difference in surface potential of the photoreceptor that occurs in response to the difference in distributed voltage. This potential image is retained even after image exposure and even when voltage application is stopped, and therefore can be developed after image exposure. Also,
The voltage application may be performed simultaneously with the image exposure, or a potential image can also be formed by applying the voltage, turning off the power, and then performing the image exposure.

本発明による感光体の代表的な構成は第1図に
示される。第1図に示される感光体1は、支持体
2、光容量変化層3、弧立導電体4、透光性電極
5および遮光性電極6から構成されているもので
ある。透光性電極5および遮光性電極6は、支持
体2の上に形成されているパターン状電極であ
り、その形状は第2図に示されるようなくし型に
なつている。孤立導電体4は、不連続な島状導電
体であり、形成する画像の画素となる重要な導電
体である。孤立電極の形状は、第3図の平面図に
示されるように、孤立された四角形になつてい
る。
A typical configuration of a photoreceptor according to the present invention is shown in FIG. The photoreceptor 1 shown in FIG. 1 is composed of a support 2, a variable photocapacitance layer 3, an arcuate conductor 4, a light-transmitting electrode 5, and a light-shielding electrode 6. The light-transmitting electrode 5 and the light-shielding electrode 6 are patterned electrodes formed on the support 2, and have a comb-like shape as shown in FIG. The isolated conductor 4 is a discontinuous island-shaped conductor, and is an important conductor that becomes a pixel of an image to be formed. The shape of the isolated electrode is an isolated square, as shown in the plan view of FIG.

支持体は透光性であり、ガラス、樹脂等で形成
される。透光性電極および遮光性電極は種々の方
法により形成されるが、その代表的な製法は、蒸
着とホトレジストを用いた化学エツチングによる
方法である。この方法による場合は、支持体の表
面にまず透光性電極を形成する材料、例えば、
In2O3,SnO2等を支持体に蒸着した後、ホトレジ
ストを用いてくし形状のマスキングパターンを形
成し、次いで酸又はアルカリ等の所定のエツチン
グ液を用いてIn2O3等の層を選択的にエツチング
除去した後、ホトレジストのマスキングパターン
を除去して透光性電極を形成できる。また、遮光
性電極も全く同様にして支持体上に形成される。
遮光性電極形成材料としては、Al,Ag,Pb,
Zn,Ni,Au,Cr,Mo,In,Nb,Ta,U,Ti,
Pt等の各種金属が用いられる。これらの金属は、
蒸着、電子ビーム蒸着、スパツタリング蒸着等に
よつて層に形成される。
The support is transparent and made of glass, resin, or the like. The light-transmitting electrode and the light-shielding electrode can be formed by various methods, but the typical manufacturing method is vapor deposition and chemical etching using photoresist. When using this method, the material for forming the transparent electrode on the surface of the support, for example,
After depositing In 2 O 3 , SnO 2 , etc. on a support, a comb-shaped masking pattern is formed using photoresist, and then a layer of In 2 O 3 , etc. is etched using a predetermined etching solution such as acid or alkali. After selectively etching away, the photoresist masking pattern can be removed to form a transparent electrode. Further, a light-shielding electrode is also formed on the support in exactly the same manner.
Light-shielding electrode forming materials include Al, Ag, Pb,
Zn, Ni, Au, Cr, Mo, In, Nb, Ta, U, Ti,
Various metals such as Pt are used. These metals are
The layer is formed by vapor deposition, electron beam deposition, sputtering deposition, etc.

ホトレジストとしては、従来一般に使用される
物質を任意に使用できる。例えば、市販のものと
して、商品名:KPR(Kodak photo Resist、コ
ダツク製……現像液:メチレンクロライド、トリ
クレン等)、商品名:KMER(Kodak Metal
Etch Resist、コダツク製……現像液:キシレン、
トリクレン等)、商品名:TPR(東京応化製……
現像液:キシレン、トリクレン等)、商品名:シ
ツプレーAZ1300(シツプレー製……現像液:アル
カリ水溶液)、商品名:KTFR(Kodak Thin
Film Resist、コダツク製……現像液:キレシ
ン、トリクレン等)、商品名:FNRR(富土薬品
工業……現像液:クロロセン)、商品名:FPER
(Fuji Photo Etching Resist、富土写真フイル
ム製……現像液:トリクレン)、商品名:TESH
DOOL(岡本化学工業製……現像液:水)、および
商品名:フジレジスト7(富土薬品工業製……現
像液:水)等がある。尚、マスクの使用後、マス
クの除去はトリクレン、メチレンクロライド、商
品名:AZリムーバー(シツプレー製)、硫酸等が
用いられる。
As the photoresist, any conventionally commonly used materials can be used. For example, as commercially available products, product name: KPR (Kodak photo resist, made by Kodatsuku...developer: methylene chloride, trichlene, etc.), product name: KMER (Kodak Metal
Etch Resist, made by Kodatsuku...Developer: xylene,
Triclean, etc.), Product name: TPR (manufactured by Tokyo Ohka...
Developer: xylene, trichlene, etc.), Product name: Situpre AZ1300 (manufactured by Situpre...Developer: alkaline aqueous solution), Product name: KTFR (Kodak Thin
Film Resist, made by Kodatsuku...Developer: Chiresin, Trichlene, etc.), Product Name: FNRR (Tofuto Pharmaceutical Co., Ltd....Developer: Chlorocene), Product Name: FPER
(Fuji Photo Etching Resist, manufactured by Fuji Photo Film...Developer: Triclean), Product name: TESH
DOOL (manufactured by Okamoto Chemical Industries, developer: water), and product name: Fujiresist 7 (manufactured by Tomito Pharmaceutical Industry, developer: water). After use, the mask can be removed using triclene, methylene chloride, AZ Remover (trade name, manufactured by Shippray), sulfuric acid, or the like.

透光性電極および遮光性電極の形成は、くし形
状の開口部を有するマスクを介して電極形成材料
を支持体上に蒸着した後、マスクを除去すること
によつても形成できる。透光性電極の厚さは、通
常500Å〜6000Å程度に、また遮光性電極の厚さ
は、通常500Å〜2μ程度にされる。透光性電極と
遮光性電極が形成された後、光容量変化層が形成
される。光容量変化層は、可視光、赤外光、紫外
光、X線等の光によつて容量が変化する材料から
形成される。このような材料として代表的なもの
としては、Zncds,In,ハロゲン原子等の不純物
を多量に含むあるいは格子欠陥を多量に導入した
cds,s,格子欠陥を多量に導入したZno,Znsが
あり、その他強誘電体として知られている物質が
使用できる。例えば、PLZT{(Pb,La)(Zn,
Ti)O3},BaTiO3、ボラサイト(Me3B7O13X:
Me=2価金属、X=ハロゲン)、Gd2(M0O43
(NH2CH2COOH)3・H2SO4等である。なお、
Zno,Cdsは一般に光導電性物質として知られて
いるが、これらに多量の不純物、格子欠陥等を導
入することにより、光容量変化を示させることが
可能である。これらの材料は焼結して又は蒸着し
て層状に形成されて、あるいは結着樹脂に分散含
有させて層状に形成されて容量変化層にされる。
容量変化層の厚さは、適宜設定されるが、通常
500Å〜100μ、特には1μ〜30μが好適である。光
容量変化層の上に孤立導電体4を形成する。孤立
導電体は、透光性電極や遮光性電極と全く同様に
形成されるものである。孤立導電体の厚さは、通
常500Å〜20μに設定される。この場合の厚さは
大きな意味をもたない。
The light-transmitting electrode and the light-shielding electrode can also be formed by depositing the electrode forming material onto the support through a mask having comb-shaped openings, and then removing the mask. The thickness of the light-transmitting electrode is usually about 500 Å to 6000 Å, and the thickness of the light-blocking electrode is usually about 500 Å to 2 μ. After the light-transmitting electrode and the light-blocking electrode are formed, a photocapacitance changing layer is formed. The photocapacitance change layer is formed from a material whose capacity changes with light such as visible light, infrared light, ultraviolet light, and X-rays. Typical examples of such materials include materials that contain large amounts of impurities such as Zncds, In, and halogen atoms, or that have introduced large amounts of lattice defects.
There are cds, s, Zno and Zns with a large number of lattice defects introduced, and other materials known as ferroelectrics can be used. For example, PLZT{(Pb, La) (Zn,
Ti)O 3 }, BaTiO 3 , Borasite (Me 3 B 7 O 13 X:
Me=divalent metal, X=halogen), Gd 2 (M 0 O 4 ) 3 ,
(NH 2 CH 2 COOH) 3・H 2 SO 4 etc. In addition,
Zno and Cds are generally known as photoconductive materials, and by introducing a large amount of impurities, lattice defects, etc. into them, it is possible to cause them to exhibit a change in photocapacitance. These materials are formed into a layer by sintering or vapor deposition, or are dispersed in a binder resin and formed into a layer to form a capacitance change layer.
The thickness of the capacitance change layer is set appropriately, but is usually
500 Å to 100 μ, particularly 1 μ to 30 μ is suitable. An isolated conductor 4 is formed on the photocapacitance change layer. The isolated conductor is formed in exactly the same way as a light-transmitting electrode or a light-shielding electrode. The thickness of the isolated conductor is usually set to 500 Å to 20 μ. Thickness in this case does not have much meaning.

第1図に示す感光体を用いて電位像が形成され
ることは第4図により説明される。第4図は第1
図の感光体の等価回路である。感光体の透光性電
極と遮光性電極との間に電源7が接続され、第4
図において、電源7による印加電圧をVaとして
表示されている。C1は遮光性電極6と孤立導電
体4との間の容量であり、C2は孤立導電体4と
透光性電極5との間の容量である。孤立導電体4
における電位Voは透光性電極5と孤立導電体4
との間における印加電圧であり、 Vo=C1/C1+C2Va ……式(1) で示される。電圧Vaを印加してから支持体側か
ら画像露光を行うことにより露光部と非露光部と
における孤立導電体の電位に差を生ずる。露光部
については、遮光性電極で遮光されている部分は
露光の光が光容量変化層に到達しないので、遮光
性電極と孤立導電体との間の容量であるC1は不
変である。また、透光性電極の部分は露光の光が
光容量変化層に到達するので、孤立導電体と透光
性電極との間の容量C2は増大する。式(1)を Vo=1/C2/C1+1Va ……式(2) と変形すれば、直接示されるように容量C2が増
大すれば孤立導電体の電位は減少する。他方、非
露光部では、C1およびC2とも変化は生じないの
で、孤立導電体の電位は減少しない。そこで、露
光部では電位が低くなつて電位像が形成される。
印加電圧の極性を逆にすれば反転した電位像が形
成される。このようにして形成された電位像は、
電子写真における通常の現像方式により現像さ
れ、転写紙に転写される。本発明による感光体は
第1図に示される構成の外、種々の他の構成をと
ることができる。第5図、第6図および第7図
は、それぞれ他の構成例の主なものを示してい
る。式(2)に示されるように、高コントラストの電
位像を形成するためには、容量C1を大きく設定
することが有利であり、そこで、第5図に示され
る感光体8は、容量C1を大きくするために遮光
性電極6を光容量変化層の中間に設けた構成であ
る。第6図に示される感光体9は、遮光性電極6
を上方に設けると共に、透光性電極10をパター
ン状にせず連続層として形成したものであり、透
光性電極の製造が簡略化される。第7図に示され
る感光体11は、第6図に示す感光体の変形例で
あり、遮光性電極6と透光性電極10との間の電
流を少なくするため、遮光性電極に対応する形状
の遮光層12、さらにその上に必要に応じて誘電
率が小さく高い絶縁性の絶縁層13を設けた構成
のものである。遮光層は、導電性でも絶縁性でも
よい。
The formation of a potential image using the photoreceptor shown in FIG. 1 will be explained with reference to FIG. Figure 4 is the first
This is an equivalent circuit of the photoreceptor shown in the figure. A power source 7 is connected between the light-transmitting electrode and the light-shielding electrode of the photoreceptor, and the fourth
In the figure, the voltage applied by the power source 7 is indicated as Va. C 1 is the capacitance between the light-shielding electrode 6 and the isolated conductor 4 , and C 2 is the capacitance between the isolated conductor 4 and the light-transmitting electrode 5 . isolated conductor 4
The potential Vo at is between the transparent electrode 5 and the isolated conductor 4.
It is the applied voltage between Vo=C 1 /C 1 +C 2 Va... expressed by equation (1). By applying the voltage Va and then performing image exposure from the support side, a difference is generated in the potential of the isolated conductor between the exposed area and the non-exposed area. Regarding the exposed part, since the exposure light does not reach the photocapacitance change layer in the part shielded by the light-shielding electrode, the capacitance C 1 between the light-shielding electrode and the isolated conductor remains unchanged. Furthermore, since exposure light reaches the photocapacitance changing layer in the transparent electrode portion, the capacitance C 2 between the isolated conductor and the transparent electrode increases. If the equation (1) is transformed into Vo=1/C 2 /C 1 +1Va . . . equation (2), it is directly shown that as the capacitance C 2 increases, the potential of the isolated conductor decreases. On the other hand, in the non-exposed area, neither C 1 nor C 2 changes, so the potential of the isolated conductor does not decrease. Therefore, the potential at the exposed portion becomes low and a potential image is formed.
If the polarity of the applied voltage is reversed, an inverted potential image is formed. The potential image formed in this way is
The image is developed using a normal development method in electrophotography and transferred to transfer paper. The photoreceptor according to the present invention can have various other configurations in addition to the configuration shown in FIG. FIG. 5, FIG. 6, and FIG. 7 each show the main components of other configuration examples. As shown in equation (2), in order to form a high-contrast potential image, it is advantageous to set the capacitance C 1 large. Therefore, the photoreceptor 8 shown in FIG. 1 , the light-shielding electrode 6 is provided in the middle of the photocapacitance changing layer. The photoreceptor 9 shown in FIG.
is provided above, and the transparent electrode 10 is formed as a continuous layer without being patterned, which simplifies the manufacture of the transparent electrode. The photoreceptor 11 shown in FIG. 7 is a modification of the photoreceptor shown in FIG. 6, and in order to reduce the current between the light-shielding electrode 6 and the light-transmitting electrode 10, The structure includes a shaped light shielding layer 12 and, if necessary, an insulating layer 13 having a low dielectric constant and high insulating properties. The light shielding layer may be conductive or insulating.

以上説明した感光体の各態様において、孤立導
電体をはじめとするパターン状電極は、四角形、
六角形あるいはくし形等に限らず適宜他の形状で
あつてよいものである。
In each aspect of the photoreceptor described above, the patterned electrodes including the isolated conductor are rectangular,
The shape is not limited to a hexagonal shape or a comb shape, but may be any other shape as appropriate.

実施例 1 ガラス板の上に電子ビームによる蒸着で、
In2O3を2000Å厚に全面に蒸着し透光性電極を形
成した。次に、Zncds(ZnS:Cds=4:6モル
比)粉末をシリコーン樹脂に2:1(重量比)の
割合でメチルエチルケトンに希釈したものを塗布
して5μ厚に形成した。次にその上に、メタルマ
スクを介してAlを1000Åに蒸着して、第2図に
示されるようなくし型の遮光性電極(a=25μ、
b=10μ)だけを形成した。次にその上に、再度
ZnCdsの光容量変化層を5μ厚に塗布形成した。次
にその上に、第3図に示されるような孤立導電体
を形成した。即ち、光容量変化層上にメタルマス
クを介して、Alを蒸着させることにより1000Å
厚の孤立電極(f=g=25μ、h=10μ)を形成
した。
Example 1 By electron beam evaporation on a glass plate,
In 2 O 3 was deposited on the entire surface to a thickness of 2000 Å to form a transparent electrode. Next, Zncds (ZnS:Cds=4:6 molar ratio) powder diluted with methyl ethyl ketone at a ratio of 2:1 (weight ratio) was coated on a silicone resin to form a 5 μm thick film. Next, Al was vapor-deposited to a thickness of 1000 Å through a metal mask, and a comb-shaped light-shielding electrode (a = 25 μ,
b=10μ) was formed. Then on top of that again
A photocapacitance changing layer of ZnCds was coated to a thickness of 5μ. Next, an isolated conductor as shown in FIG. 3 was formed thereon. That is, by depositing Al on the photocapacitance change layer through a metal mask, a thickness of 1000 Å was formed.
A thick isolated electrode (f=g=25μ, h=10μ) was formed.

このようにして第6図に示されるような感光体
を製造した。
In this way, a photoreceptor as shown in FIG. 6 was manufactured.

この感光体の透光性電極をアースして、透光性
電極と遮光性電極との間に400Vの直流電圧を印
加し、ガラス板の方から画像露光を行つて電位像
を形成し、振動容量型の電位計で電位を測定した
結果、露光部では40V、非露光部では260Vの電
位を得た。このコントラストは印加電圧を取り除
いても殆んど変らずに保持された。
The light-transmitting electrode of this photoreceptor is grounded, and a DC voltage of 400 V is applied between the light-transmitting electrode and the light-shielding electrode, and image exposure is performed from the glass plate to form a potential image, which causes vibrations. As a result of measuring the potential with a capacitive electrometer, we obtained a potential of 40V in the exposed area and 260V in the non-exposed area. This contrast remained almost unchanged even when the applied voltage was removed.

次に、感光体の表面にアースをした対向電極を
近づけ(約3mm)、のトナーをもつた液体現像
剤で現像したところ、非露光部の孤立導電体にの
みトナーがのり画像が現われた。この後、対向電
極に紙をのせ、感光体と密着させ遮光性電極に−
200Vの電圧をかけ遮光性電極をアースにすると、
紙上に像の転写ができ感光体上には残留のトナー
がほとんどなくなり次の像作成にそのままつかえ
た。なお、電圧の向きは上の例と逆にした場合、
同じように画像を再現できた。この場合、現像の
トナーはトナーを用いた。
Next, when a grounded counter electrode was brought close to the surface of the photoreceptor (approximately 3 mm) and development was performed using a liquid developer containing toner, the toner was applied only to the isolated conductors in the non-exposed areas, and an image appeared. After that, place paper on the counter electrode and bring it into close contact with the photoreceptor, making it a light-shielding electrode.
When a voltage of 200V is applied and the light-shielding electrode is grounded,
The image could be transferred onto the paper, and there was almost no residual toner on the photoreceptor, which could be used as is for creating the next image. In addition, if the direction of the voltage is reversed from the above example,
I was able to reproduce the image in the same way. In this case, toner was used for development.

上記の現象を解析するために、孤立導電体の代
りにAl電極を感光体の全面につけ、中間の遮光
性電極と上部のAl電極との間の静電容量Ca、透
光性電極と上部のAl電極との間の非露光部の静
電容量をCbD、1000luxの光を照射したときを
CbLとすると、 Ca=910PF CbL=7526PF CbD=452PF となり、光照射することにより透光性電極と上部
のAl電極の静電容量Cbが変化することが認めら
れた。
In order to analyze the above phenomenon, an Al electrode was attached to the entire surface of the photoreceptor instead of an isolated conductor, and the electrostatic capacitance Ca between the middle light-shielding electrode and the upper Al electrode, and the capacitance Ca between the light-transmitting electrode and the upper Al electrode were measured. The capacitance of the non-exposed area between the Al electrode is CbD, and the capacitance when irradiated with 1000 lux light is
Assuming CbL, Ca=910PF CbL=7526PF CbD=452PF, and it was observed that the capacitance Cb of the transparent electrode and the upper Al electrode changed by light irradiation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による感光体の1態様を示す。
第2図および第3図は第1図の感光体に用いた電
極の形状を示す図面である。第4図は第1図に示
す感光体と等価の回路図である。第5図、第6図
および第7図は本発明により感光体のそれぞれ1
態様である。 1……感光体、2……支持体、3……光容量変
化層、4……孤立導電体、5……透光性電極、6
……遮光性電極、7……電源。
FIG. 1 shows one embodiment of a photoreceptor according to the present invention.
2 and 3 are drawings showing the shape of the electrodes used in the photoreceptor of FIG. 1. FIG. FIG. 4 is a circuit diagram equivalent to the photoreceptor shown in FIG. 1. FIGS. 5, 6 and 7 show one photoreceptor, respectively, according to the present invention.
It is a mode. DESCRIPTION OF SYMBOLS 1...Photoreceptor, 2...Support, 3...Photocapacitance changing layer, 4...Isolated conductor, 5...Transparent electrode, 6
...Light-shielding electrode, 7...Power source.

Claims (1)

【特許請求の範囲】[Claims] 1 透光性支持体上に透光性電極および遮光性電
極を設けた光容量変化層を有し、該光容量変化層
上には画素を形成する孤立した導電体が設けられ
ており、透光性電極および遮光性電極は該導電体
と対向して配置されており、透光性電極と遮光性
電極間は電圧印加可能になつている電子写真感光
体の両電極に電圧を印加する工程後、または同時
に、透光性支持体側から画像露光することにより
電位像を形成し、その後に現像を行なうことを特
徴とする電子写真法。
1. A light capacitance changing layer having a light-transmitting electrode and a light-shielding electrode provided on a light-transmitting support, an isolated conductor forming a pixel is provided on the light-capacitance changing layer, and a transparent A step of applying a voltage to both electrodes of the electrophotographic photoreceptor, in which the light-transmitting electrode and the light-shielding electrode are arranged to face the conductor, and a voltage can be applied between the light-transmitting electrode and the light-shielding electrode. An electrophotographic method characterized in that a potential image is formed by imagewise exposure from the light-transmitting support side afterwards or simultaneously, and then development is performed.
JP10676079A 1979-08-21 1979-08-21 Electrophotographic receptor Granted JPS5630131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10676079A JPS5630131A (en) 1979-08-21 1979-08-21 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10676079A JPS5630131A (en) 1979-08-21 1979-08-21 Electrophotographic receptor

Publications (2)

Publication Number Publication Date
JPS5630131A JPS5630131A (en) 1981-03-26
JPS647655B2 true JPS647655B2 (en) 1989-02-09

Family

ID=14441860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10676079A Granted JPS5630131A (en) 1979-08-21 1979-08-21 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5630131A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5487583A (en) * 1992-11-30 1996-01-30 Fuji Kiko Co., Ltd. Laterally adjustable automotive seat with lifter device
JP5593617B2 (en) * 2009-02-26 2014-09-24 株式会社リコー Image carrier, image forming method, image forming apparatus, and process cartridge

Also Published As

Publication number Publication date
JPS5630131A (en) 1981-03-26

Similar Documents

Publication Publication Date Title
US2939787A (en) Exposure of photochemical compositions
JPS647655B2 (en)
US4656356A (en) Device for charging electrophotographic apparatus
EP0019068B1 (en) Charge receptor film for charge transfer imaging
US4365015A (en) Photosensitive member for electrophotography composed of a photoconductive amorphous silicon
JPS5919335B2 (en) electrophotography
JPS641012B2 (en)
GB1578960A (en) Electrophotographic imaging member and process
US3975635A (en) Xeroradiographic plate
JPS58139160A (en) Image forming element and image forming method using this element
US3754908A (en) Electrophotographic production of colour photoconductive mosaic material
JPH0128378B2 (en)
JPS58139159A (en) Image forming element and image forming method using this element
US3625681A (en) Method of liquid developing a photoconductive plate
US4175957A (en) Electrophotographic process using insulating dot overlayer
JPS6252843B2 (en)
US4022528A (en) Ion modulator having independently controllable bias electrode
JPH027055B2 (en)
US4022527A (en) Ion modulator having independently controllable bias electrode
JPH0131187B2 (en)
SU705410A1 (en) Method of producing an electrophotographic image
JPH0231384B2 (en) GENZOHOHO
JPS58140744A (en) Image forming element and image forming method using its element
JPS58150954A (en) Photosensitive member and recording method
Metcalf et al. Xerography and electrostatic printing