JPS646710B2 - - Google Patents

Info

Publication number
JPS646710B2
JPS646710B2 JP23127582A JP23127582A JPS646710B2 JP S646710 B2 JPS646710 B2 JP S646710B2 JP 23127582 A JP23127582 A JP 23127582A JP 23127582 A JP23127582 A JP 23127582A JP S646710 B2 JPS646710 B2 JP S646710B2
Authority
JP
Japan
Prior art keywords
titanium
case
aluminum
neutron
neutron detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP23127582A
Other languages
Japanese (ja)
Other versions
JPS59122990A (en
Inventor
Mitsuo Okamoto
Yasuo Hirose
Hiroyuki Dan
Takao Fuje
Toshimasa Tomota
Shinichi Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kansai Electric Power Co Inc
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Kansai Denryoku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Kansai Denryoku KK filed Critical Mitsubishi Electric Corp
Priority to JP23127582A priority Critical patent/JPS59122990A/en
Publication of JPS59122990A publication Critical patent/JPS59122990A/en
Publication of JPS646710B2 publication Critical patent/JPS646710B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T3/00Measuring neutron radiation

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、原子炉用中性子検出器の耐環境性
の改良に関するものである。 従来この種の装置として第1図に示すものがあ
つた。図において1は中性子検出器で、中性子の
有感部2を有する。3は有感部分から中性子束に
比例した電気信号を外部にとりだす同軸ケーブル
であり、通常この同軸ケーブルは有感部に一体的
に取付けられており、絶縁物としてはMgO、
Al2O3などの無機絶縁物が用いられ、外側のシー
ルド導体としてはステンレスステイールパイプが
用いられている。これは原子炉の強い放射線を受
けても劣化しないようにしたものである。4は有
感部のアルミニウムケースであり通常気密構造と
なつている。アルミニウムが使用される理由は、
アルミニウムの中性子吸収断面積が小さく(約
230mb)、このケースによる中性子検出器の実効
的な感度低下が小さいこと、および放射化断面積
も小さく(約210mb)、しかも放射化生成物の半
減期が短いため(約2、3分)、誘導放射能が短
時間で減衰し、検出器の交換作業の際等に作業者
が受ける放射線の被爆量が少くてすむからであ
る。ところで原子炉の仮想事故時には、検出器の
設置場所の温度、圧力が上昇する他苛性ソーダ水
がスプレーされる。中性子検出器はこのような状
態においても機態を維持することが望ましいが、
有感部のケースはアルミニウムでできているた
め、苛性ソーダ水に溶解されてしまい、中性子検
出器がガス封入型の場合には、このガスが漏れ出
たりするなどしで機能を喪失してしまう。また他
のタイプの中性子検出器の場合にも苛性ソーダ水
がケースを溶解し内部に侵入するので、電気絶縁
の劣化等の障害が生じるという欠点があつた。 この発明は、上記のような従来のものの欠点を
除去するためになされたもので、有感部をアルミ
ニウムとその外側に設けられた厚さ1.2mm以下の
チタンとの2重で構成し、少なくともチタンは水
密構造とすることにより、大きな感度低下を引き
起さず、また誘導放射能の点でも弊害をもたらさ
ずに上記のような悪い環境条件下でも機能する中
性子検出器を提供することを目的としている。 以下、この発明の一実施例を図について説明す
る。第2図において5はアルミニウムケース3の
外側に近接して設けられた薄い肉厚のチタンケー
スであり、このチタンケースは水密構造になつて
いる。 さてチタンは、中性子の吸収断面積は大きい
(5、6b)が、放射化断面積は小さく(7mb)、誘
導放射能の半減期も短い(5、8分)ので、チタ
ンケースを追加しても交換作業時の被爆量は問題
とならない。また実効的な感度低下に対しては、
使用するチタンの肉厚を薄くしているので大きな
問題とならない。実際、厚さtのスラブによる平
行熱中性子ビームのチタンに吸収による減衰を計
算すると以下の通りである。
This invention relates to improving the environmental resistance of a neutron detector for a nuclear reactor. A conventional device of this type is shown in FIG. In the figure, 1 is a neutron detector, which has a neutron sensitive part 2. 3 is a coaxial cable that takes out an electric signal proportional to the neutron flux from the sensitive part to the outside.This coaxial cable is usually attached integrally to the sensitive part, and the insulator is MgO,
An inorganic insulator such as Al 2 O 3 is used, and a stainless steel steel pipe is used as the outer shield conductor. This is to ensure that it does not deteriorate even when exposed to strong radiation from a nuclear reactor. Reference numeral 4 denotes an aluminum case for the sensitive part, which usually has an airtight structure. The reason aluminum is used is
The neutron absorption cross section of aluminum is small (approximately
230mb), the effective sensitivity reduction of the neutron detector due to this case is small, the activation cross section is also small (about 210mb), and the half-life of the activation product is short (about 2 to 3 minutes). This is because the induced radioactivity attenuates in a short period of time, reducing the amount of radiation that workers receive when replacing the detector. By the way, in the event of a hypothetical nuclear reactor accident, the temperature and pressure at the location where the detector is installed would rise, and caustic soda water would be sprayed. It is desirable for the neutron detector to maintain its operation even under such conditions, but
Since the case of the sensitive part is made of aluminum, it will dissolve in the caustic soda water, and if the neutron detector is a gas-filled type, this gas will leak out and cause it to lose its functionality. Other types of neutron detectors also have the disadvantage that caustic soda water dissolves the case and enters the interior, causing problems such as deterioration of electrical insulation. This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and the sensitive part is composed of a double layer of aluminum and titanium with a thickness of 1.2 mm or less provided on the outside, and at least By making titanium watertight, the aim is to provide a neutron detector that can function even under the above-mentioned adverse environmental conditions without causing a significant decrease in sensitivity or causing any harm in terms of induced radioactivity. It is said that An embodiment of the present invention will be described below with reference to the drawings. In FIG. 2, reference numeral 5 denotes a thin titanium case provided close to the outside of the aluminum case 3, and this titanium case has a watertight structure. Now, titanium has a large neutron absorption cross section (5, 6b), but a small activation cross section (7mb), and a short half-life of induced radioactivity (5, 8 minutes), so we added a titanium case. However, the amount of radiation exposure during replacement work is not a problem. In addition, for effective sensitivity reduction,
Since the thickness of the titanium used is thin, this is not a big problem. In fact, the attenuation due to absorption by titanium of a collimated thermal neutron beam by a slab of thickness t is calculated as follows.

【表】 中性子場の擾乱は、周囲の体系に依存するので
中性子検出器のみを取出して解析しても精度のよ
い答は得られないが、上記減衰量は一応の目安を
与えてくれる。チタンを持込むことにより、周囲
の中性子束も下がりそのうえ、なお中性子が有感
部に到達するまでにチタンによる吸収があるの
で、チタンケースによる実効的な感度低下は、中
性子検出器の置かれる周囲の体系にもよるが、原
子炉の場合のような周囲に中性子減速体がある場
合は、上記値の数倍程度になると推測される。
我々が黒鉛減速体系内で行つた0.6mm厚のチタン
ケースによる実効的な感度低下は6〜10%であつ
た。従つてチタン厚を1.2mm程度以下しておけば
感度低下は数十%程度以下にできると推定され
る。 次にチタンは耐腐食性が良好であり、苛性ソー
ダ水には浸されず、チタンケースは水密構造にし
てあるので、苛性ソーダ水がアルミニウムケース
まで到達して悪作用をすることはない。なお事故
時の大きな圧力には薄いチタンケースでは耐え得
ず変形を起す場合もあるが、これに耐えるに必要
な強度はアルミニウムケースで分坦させることが
できる。アルミニウムは極めて中性子の吸収断面
積および放射化断面積が小さいので相当アルミニ
ウムの肉厚を厚くしても、上記に述べた弊害は生
じない。つまりチタンケースは、水密性を保持し
ていれば高圧下で変形しても、すぐ内側にある厚
肉のアルミニウムケースにより支えられある程度
以上の変形は起さない。従つて有感部はチタンケ
ースにより耐食性が保証されアルミニウムケース
により耐圧性が保証される。 以上のように、この発明によれば、有感部を内
側がアルミニウムで外側が厚さ1.2mm以下の水密
なチタンとし、強度性の役割と耐食性の役割を分
坦したので、チタンの肉厚が薄くでき、大幅な実
効的感度の低下をもたらすことなく原子炉の事故
時の悪環境条件下でも機能する中性子検出器が得
られる。
[Table] Disturbances in the neutron field depend on the surrounding system, so it is not possible to obtain accurate answers by extracting and analyzing only the neutron detector, but the above attenuation amount provides a rough guide. By introducing titanium, the neutron flux around the neutron detector decreases.In addition, the neutrons are absorbed by the titanium before they reach the sensitive part, so the effective reduction in sensitivity due to the titanium case is due to the surrounding area where the neutron detector is placed. Although it depends on the system, if there is a neutron moderator nearby, as in the case of a nuclear reactor, it is estimated that the value will be several times the above value.
The effective sensitivity reduction due to the 0.6 mm thick titanium case in our graphite moderation system was 6-10%. Therefore, it is estimated that if the titanium thickness is kept below about 1.2 mm, the decrease in sensitivity can be reduced to about several tens of percent or less. Next, titanium has good corrosion resistance and cannot be soaked in caustic soda water, and since the titanium case has a watertight structure, the caustic soda water will not reach the aluminum case and cause any adverse effects. Note that a thin titanium case may not be able to withstand the large pressure that occurs during an accident and may cause deformation, but an aluminum case can provide the strength necessary to withstand this. Aluminum has an extremely small absorption cross section and activation cross section for neutrons, so even if the thickness of aluminum is increased considerably, the above-mentioned disadvantages will not occur. In other words, if the titanium case maintains watertightness, even if it deforms under high pressure, it will be supported by the thick aluminum case immediately inside and will not deform beyond a certain level. Therefore, the titanium case ensures corrosion resistance of the sensitive part, and the aluminum case ensures pressure resistance. As described above, according to this invention, the sensitive part is made of aluminum on the inside and watertight titanium on the outside with a thickness of 1.2 mm or less, and the role of strength and corrosion resistance are separated, so the thickness of titanium The present invention provides a neutron detector that can be made thin and that can function even under adverse environmental conditions during a nuclear reactor accident without significantly reducing the effective sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の中性子検出器を示す構成図、
第2図はこの発明の一実施例による中性子検出器
を示す構成図である。 図中、1は中性子検出器、2は有感部、3は同
軸ケーブル、4はアルミニウムケース、5はチタ
ンケースである。なお図中同一符号は同一又は相
当部分を示す。
FIG. 1 is a configuration diagram showing a conventional neutron detector;
FIG. 2 is a block diagram showing a neutron detector according to an embodiment of the present invention. In the figure, 1 is a neutron detector, 2 is a sensitive part, 3 is a coaxial cable, 4 is an aluminum case, and 5 is a titanium case. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 1 中性子の有感部をアルミニウムで被うと共
に、そのアルミニウムを厚さが1.2mm以下で水密
なチタンで被つたことを特徴とする原子炉用中性
子検出器。 2 アルミニウムは気密である特許請求の範囲第
1項記載の原子炉用中性子検出器。
[Claims] 1. A neutron detector for a nuclear reactor, characterized in that a neutron-sensitive part is covered with aluminum, and the aluminum is covered with watertight titanium with a thickness of 1.2 mm or less. 2. The neutron detector for a nuclear reactor according to claim 1, wherein the aluminum is airtight.
JP23127582A 1982-12-28 1982-12-28 Neutron detector for nuclear reactor Granted JPS59122990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23127582A JPS59122990A (en) 1982-12-28 1982-12-28 Neutron detector for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23127582A JPS59122990A (en) 1982-12-28 1982-12-28 Neutron detector for nuclear reactor

Publications (2)

Publication Number Publication Date
JPS59122990A JPS59122990A (en) 1984-07-16
JPS646710B2 true JPS646710B2 (en) 1989-02-06

Family

ID=16921045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23127582A Granted JPS59122990A (en) 1982-12-28 1982-12-28 Neutron detector for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS59122990A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1705112A1 (en) * 2005-03-22 2006-09-27 Single Buoy Moorings Inc. Enhanced side-by-side mooring construction
JP4744307B2 (en) * 2006-01-19 2011-08-10 濱中ナット株式会社 Mechanical property imparting structure
JP6613464B2 (en) * 2015-03-06 2019-12-04 住友重機械工業株式会社 Neutron beam detector

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4122317Y1 (en) * 1964-08-21 1966-11-07

Also Published As

Publication number Publication date
JPS59122990A (en) 1984-07-16

Similar Documents

Publication Publication Date Title
US4623508A (en) Wide range flux monitor assembly
US4076585A (en) Method of continuous testing for leak-tightness and mechanical resistance of a reactor vessel jacket and a reactor in which said method is employed
JPS646710B2 (en)
JP2000147187A (en) Neutron flux measuring device
EP1732085A1 (en) Method and apparatus for non-destructive examination using neutron backscattering
US4986112A (en) Composite pressure vessel for a nuclear environment
JPH0363595A (en) Thunderbolt-resistance type neutron measuring instrument
US4091288A (en) Threshold self-powered gamma detector for use as a monitor of power in a nuclear reactor
EP3467843A1 (en) Reactor output monitoring device
GB1156342A (en) Testing for Fuel Element Sheathing Failures in Nuclear Reactors
KR101523194B1 (en) spent fuel pool subcritical monitoring system and using spent fuel spontaneous neutron source
JPH07140252A (en) Criticality alarm system
JPH0421839B2 (en)
JPH04289715A (en) Structure of attaching mi cable to nuclear reactor
GB1062292A (en) Improvements in or relating to leak detection, particularly in nuclear fuel elements
Shugars et al. Experience with neutron flux monitoring systems qualified for post-accident monitoring
Haley et al. Criticality incident detection assessment methodology
JPS6337913B2 (en)
JPS62102189A (en) Container for nuclear reactor
JPH03296693A (en) Fuel breakdown detector
Mariani Nuclear hazard/fire hazard: an elusive and important linkage
JPS59190693A (en) Method of calculating substitutive value of local power range monitor
Ketter Reference initiating event for an externally initiated severe accident in a 950 MWe LWR
JPH0439637B2 (en)
GB862379A (en) Improvements in or relating to neutron detectors