JPS62102189A - Container for nuclear reactor - Google Patents

Container for nuclear reactor

Info

Publication number
JPS62102189A
JPS62102189A JP60241485A JP24148585A JPS62102189A JP S62102189 A JPS62102189 A JP S62102189A JP 60241485 A JP60241485 A JP 60241485A JP 24148585 A JP24148585 A JP 24148585A JP S62102189 A JPS62102189 A JP S62102189A
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor
reactor pressure
vessel
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60241485A
Other languages
Japanese (ja)
Inventor
高史 仲山
鶴岡 良造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60241485A priority Critical patent/JPS62102189A/en
Publication of JPS62102189A publication Critical patent/JPS62102189A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は沸騰水型原子炉の格納容器に係り、特に改良沸
騰水型原子炉(ABWR)に採用されている原子炉格納
容器の構造に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a containment vessel for a boiling water reactor, and particularly relates to the structure of a reactor containment vessel employed in an improved boiling water reactor (ABWR). It is.

〔発明の背景〕[Background of the invention]

第2図に従来の沸騰水型原子炉(BWR)の原子炉格納
容器の内部構造を示す。
FIG. 2 shows the internal structure of a reactor containment vessel of a conventional boiling water reactor (BWR).

第2図において原子炉格納容器内では、ダイアフロムフ
ロア14を介してドライウェル11とサプレッションプ
ール12が上下に配置されている。
In FIG. 2, inside the reactor containment vessel, a dry well 11 and a suppression pool 12 are arranged one above the other with a diaphragm floor 14 in between.

また1は原子炉格納容器内に配置された原子炉圧力容器
である。原子炉圧力容器1はその下部につけられたスカ
ート3により圧力容器下部ペデスタル15上に支持され
ている。また圧力容器下部ペデスタル15内部の原子炉
圧力容器下部空間部7には、制御棒駆動機構が設置され
ている。
Further, 1 is a reactor pressure vessel located within the reactor containment vessel. The reactor pressure vessel 1 is supported on a pressure vessel lower pedestal 15 by a skirt 3 attached to its lower part. Further, a control rod drive mechanism is installed in the reactor pressure vessel lower space 7 inside the pressure vessel lower pedestal 15.

そのため、原子炉の定期検査時には、人が格納容器外部
扉13からドライウェル11を通って、原子炉圧力容器
下部空間7へ入る必要があった。
Therefore, during periodic inspections of the reactor, it is necessary for people to enter the reactor pressure vessel lower space 7 from the containment vessel external door 13 through the dry well 11.

しかし、通常運転時には、ドライウェル11および圧力
容器下部空間7は放射線量が高く1人が出入することは
不可能であった。
However, during normal operation, the radiation level in the dry well 11 and the pressure vessel lower space 7 was so high that it was impossible for one person to enter or exit.

一方、第3図に改良沸騰水型原子炉(ABI)の格納容
器内部構造を示す。第3図において第2図と同一符号は
同一部分を表わす。
On the other hand, FIG. 3 shows the internal structure of the containment vessel of an improved boiling water reactor (ABI). In FIG. 3, the same symbols as in FIG. 2 represent the same parts.

AIIWHにおいては、耐震性向上のだ、原子炉圧力容
器lの位置が従来のBWRと比較して低く、原子炉炉心
位置がダイヤフロムア14の高さにきている。
In AIIWH, the position of the reactor pressure vessel l is lower than that of conventional BWR, and the position of the reactor core is at the level of the diaphragm 14, which improves earthquake resistance.

このため、原子炉格納容器外部と原子炉圧力容器下部7
の連絡はトンネル4で行われる。
For this reason, the outside of the reactor containment vessel and the lower part of the reactor pressure vessel
Communication will take place through Tunnel 4.

ABWRの場合、原子炉圧力容器下部でには、インター
ナルポンプ5および制御棒駆動機構6が設置されている
In the case of ABWR, an internal pump 5 and a control rod drive mechanism 6 are installed at the bottom of the reactor pressure vessel.

インターナルポンプ5および制御棒駆動機構6は、定期
検査毎に一定数を分解して点検のため、格納容器外へ搬
出し、終了後再び圧力容器下部へ搬入し据付ける必要が
ある。
A certain number of internal pumps 5 and control rod drive mechanisms 6 must be disassembled and carried out of the containment vessel for inspection at every periodic inspection, and then carried back to the lower part of the pressure vessel and installed.

しかし、従来のBWRでは左力容器下部空間部の放射線
量は非常に高く作業の対策が必要であった。ABWRで
は、圧力容器下部にインターナルポンプ5を取り付ける
ため原子炉圧力容器1の底部の厚さは従来のものより厚
くなっている。また原子炉シュラウ゛ドと圧力容器、の
間の氷厚も増加している。そのため、原子炉圧力容器下
部の放射熱線量は、圧力容器底部からの直接の放射線に
ついて。
However, in conventional BWRs, the radiation dose in the lower space of the left force vessel was extremely high and required work countermeasures. In ABWR, the internal pump 5 is attached to the lower part of the pressure vessel, so the thickness of the bottom of the reactor pressure vessel 1 is thicker than that of conventional reactor pressure vessels. The ice thickness between the reactor shroud and the pressure vessel is also increasing. Therefore, the amount of radiant heat rays at the bottom of the reactor pressure vessel refers to the radiation directly from the bottom of the pressure vessel.

従来の10分の1以下となり、圧力容器1とガンマシー
ルド2の間からもれてくる放射線量も、従来のものと比
べてγ線で約10分の1.中性子線で約100分の1の
なる。
The amount of radiation leaking from between the pressure vessel 1 and the gamma shield 2 is also about 1/10th of that of the conventional one. It is about 1/100th that of a neutron beam.

一方、原子炉圧力容器1底部からの直接放射線量と圧力
容器1とガンマシールド2の間からもれ出る放射線量を
比較すると、γ線に関しては約15倍中性子線に関して
は約100倍以上、圧力容器1とガンマシールド2の間
からもれ出る放射線量の方が大きくなっている。
On the other hand, when comparing the radiation dose directly from the bottom of the reactor pressure vessel 1 and the radiation dose leaking from between the pressure vessel 1 and the gamma shield 2, it is found that for gamma rays it is about 15 times, for neutron beams it is about 100 times more, and for pressure The amount of radiation leaking from between the container 1 and the gamma shield 2 is larger.

この圧力容器1とガンマシールド2の間からもれ出てく
る放射線量を圧力容器底部からの直接放射線量程度に抑
えられると、原子炉定期検査時の原子炉圧力容器下部空
間の線量は極端に小さくなる。
If the amount of radiation leaking from between the pressure vessel 1 and gamma shield 2 can be suppressed to the level of direct radiation from the bottom of the pressure vessel, the dose in the space below the reactor pressure vessel during periodic reactor inspections will be extremely high. becomes smaller.

尚、圧力容器の上部の格納容器との間を遮蔽する公知例
としては例えば特開昭59−171890号公報のもの
がある。
A known example of shielding the space between the upper part of the pressure vessel and the containment vessel is disclosed in JP-A-59-171890.

〔発明の目的〕[Purpose of the invention]

本発明の目的は原子炉圧力容器下部空間において、原子
炉圧力容器しガンマシールドの間かにもれ出る放送線を
遮へいすることにより、原子炉圧力容器下部空間の線量
を大幅に低減した原子炉格納容器を提供することにある
The purpose of the present invention is to provide a nuclear reactor in which the radiation dose in the lower space of the reactor pressure vessel is significantly reduced by shielding broadcasting lines leaking between the reactor pressure vessel and the gamma shield. The purpose is to provide a containment vessel.

〔発明の概要〕[Summary of the invention]

改良沸騰水型原子炉(ABWR)はインタナルポンプの
採用により、圧力容器底部の肉厚およびシュラドと圧力
容器間の氷厚が従来の沸騰水型原子炉に比較して厚くな
っている。そのため、原子炉圧力容器下部の空間は、従
来負BWRと比較して放装線量は低減されているが圧力
容器からの直接放射線量と圧力容器とガンマシールドの
間からもれ出る放射量の間には大きな差がある。
The improved boiling water reactor (ABWR) uses an internal pump, so the wall thickness at the bottom of the pressure vessel and the thickness of the ice between the shrad and the pressure vessel are thicker than in conventional boiling water reactors. Therefore, although the radiation dose in the space below the reactor pressure vessel is reduced compared to conventional negative BWR, there is a difference between the direct radiation dose from the pressure vessel and the radiation dose leaking from between the pressure vessel and the gamma shield. There is a big difference.

本発明は、原子炉圧力容器とガンマシールドの間からも
れ出る放射線を遮へいする遮へい構造物を設けるこりに
より、原子炉圧力容器下部の線量を大幅に低減し原子炉
の定期検査中の作業性を大幅に向上する。
The present invention provides a shielding structure that shields radiation leaking from between the reactor pressure vessel and the gamma shield, thereby significantly reducing the radiation dose at the bottom of the reactor pressure vessel and improving workability during periodic inspections of the reactor. significantly improve.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図により説明する。 An embodiment of the present invention will be described below with reference to FIG.

本発明は、圧力容器下部空間7から臨むことのできる圧
力容器1およびガンマシールド2の間の空間を遮へいす
ることのできる遮へい構造物8および当該遮へい構造物
の下に設けられた鋼板ライナ9で構成される。
The present invention provides a shielding structure 8 that can shield the space between the pressure vessel 1 and the gamma shield 2 that can be viewed from the pressure vessel lower space 7, and a steel plate liner 9 provided under the shielding structure. configured.

改良沸騰水型原子炉(ABI)は従来の沸騰水型原子炉
(BWR)と比較して、圧力容器下部に、インタナルポ
ンプを取り付けるため、原子炉圧力容器底部の肉厚は厚
くなっている。一方、J7X子炉シュラウドと原子炉圧
力容器1の間に存在する氷厚もBWRと比較して厚くな
っている。
Compared to conventional boiling water reactors (BWR), improved boiling water reactors (ABI) have an internal pump installed at the bottom of the pressure vessel, so the wall thickness at the bottom of the reactor pressure vessel is thicker. . On the other hand, the ice thickness existing between the J7X sub-reactor shroud and the reactor pressure vessel 1 is also thicker compared to the BWR.

そのため、原子炉圧力容器下部空間での線量はABIi
lRではBWRと比較して通常運転中でも以下のように
低減される。
Therefore, the dose in the lower space of the reactor pressure vessel is ABIi
In 1R, compared to BWR, it is reduced as follows even during normal operation.

(1)γ線について 圧力容器下部から放出される放射線量は、約30分の1
以下であり約100 m R/ Hr以下に抑えられる
(1) Regarding gamma rays, the radiation dose emitted from the bottom of the pressure vessel is approximately 1/30th
It can be suppressed to about 100 mR/Hr or less.

圧力容器1とガンマシールド2の間の空間からもれ出る
放射線量は約10分の1となるが、また100 m R
/ Hrよりも大きい。
The amount of radiation leaking from the space between the pressure vessel 1 and the gamma shield 2 is approximately 1/10, but it is also 100 mR.
/ Greater than Hr.

(2)中性子線について 気力容器下部から放出される放射線量はほぼ零にまで抑
えられる。
(2) Regarding neutron beams, the amount of radiation emitted from the bottom of the air vessel can be suppressed to almost zero.

圧力容器1とガンマシールド2の間の空間からもれ出る
放射線量は約100分の1以下に、低減されるが、まだ
100 m R/ Hrよりも大きい。
The radiation dose escaping from the space between the pressure vessel 1 and the gamma shield 2 is reduced to about 100 times or less, but is still greater than 100 m R/Hr.

この様に、ABWHの原子炉圧力容器下部の放射線量は
、原子炉圧力容器1とガンマシールド2の間の空間部か
らもれ出る放射線を遮へいすることにより、通常運転時
にも人が立入ることができるような放射線量に迄、低減
することが可能である。一方、定期検査時には10mR
/Hr以下に迄、原子炉圧力容器下部の線量は低減され
る。
In this way, the radiation dose at the bottom of the reactor pressure vessel of the ABWH can be reduced by shielding the radiation leaking from the space between the reactor pressure vessel 1 and the gamma shield 2, making it difficult for people to enter even during normal operation. It is possible to reduce the radiation dose to such a level that it is possible to do so. On the other hand, during regular inspections, 10mR
The dose at the bottom of the reactor pressure vessel is reduced to below /Hr.

本発明では、原子炉圧力容器下部空間7から臨む原子炉
圧力容器1とガンマシールド2の空間を遮へいすること
により、当該空間からもれ出る放射線を遮へいすること
ができる。本発明では、中性子線は遮へい構造物8で、
またγ線については当該遮へい構造物8に張られた鋼板
ライナ9で遮へいする。
In the present invention, by shielding the space between the reactor pressure vessel 1 and the gamma shield 2 that are viewed from the reactor pressure vessel lower space 7, radiation leaking from the space can be shielded. In the present invention, the neutron beam is shielded by the shielding structure 8,
Furthermore, gamma rays are shielded by a steel plate liner 9 stretched over the shielding structure 8.

本発明によれば、原子炉圧力容器下部空間7については
、当該遮へい構造物8と原子炉圧力容器1の底部肉厚に
よりバウンダリが形成される。このバランダレ以下では
、原子炉定期検査時の線量を10 m R/ Hr以下
に低減することが可能である。
According to the present invention, a boundary is formed in the reactor pressure vessel lower space 7 by the shielding structure 8 and the bottom wall thickness of the reactor pressure vessel 1. Below this balance, it is possible to reduce the dose during periodic reactor inspection to below 10 mR/Hr.

第4図に本発明の一変型例を示す。FIG. 4 shows a modified example of the present invention.

本変型例では1原子炉圧力容器スカート3は、圧力容器
1の最下部に取り付けられている場合を考えたものであ
る。
In this modification, a case is considered in which the reactor pressure vessel skirt 3 is attached to the lowest part of the pressure vessel 1.

本変型例では、原子炉圧力容器1とガンマシールド2の
間の原子炉圧力容器スカート3上部に遮へい構造物8を
設ける。
In this modification, a shielding structure 8 is provided above the reactor pressure vessel skirt 3 between the reactor pressure vessel 1 and the gamma shield 2.

本変型例では原子妹格納容器内に、原子炉圧力容器1の
搬入後、遮へい構造物8を入れることによって容易に実
施可能である。
This modification can be easily carried out by inserting the shielding structure 8 into the nuclear containment vessel after the reactor pressure vessel 1 is carried in.

また、原子炉圧力容器スカート3には、原子炉圧力容器
1とガンマシールドの間からもれ出るγ線を遮へいでき
る厚さをもつような構成とする。
Further, the reactor pressure vessel skirt 3 is configured to have a thickness capable of shielding gamma rays leaking from between the reactor pressure vessel 1 and the gamma shield.

本変型例では、原子炉圧力容器の底部肉厚および圧力容
器スカート3および遮へい構造物3でバウンダリが形成
され、炉心から、原子炉圧力容器下部空間7へ放出され
る放射線は大幅に低減される。
In this modification, a boundary is formed by the bottom wall thickness of the reactor pressure vessel, the pressure vessel skirt 3, and the shielding structure 3, and the radiation emitted from the reactor core to the lower reactor pressure vessel space 7 is significantly reduced. .

これにより、原子炉圧力容器下部空間7は、大幅に線量
が低減し、定期検査時にもロボット導入に必要は全くな
くなる。
As a result, the radiation dose in the lower space 7 of the reactor pressure vessel is significantly reduced, and there is no need to introduce robots during periodic inspections.

また、通常運転時でも、原子炉圧力容器下部の線量は小
さいため、人が出入りすることが可能となり、機器の点
検が容易となる。
Furthermore, even during normal operation, the radiation dose at the bottom of the reactor pressure vessel is small, making it possible for people to enter and exit the reactor, making it easier to inspect equipment.

〔発明の効果〕〔Effect of the invention〕

以下、本発明の効果について述べる (1) ABlilRのインタナルポンプおよび制御捧
駆動機構取りはずしがロボット化された場合本発明によ
り、原子炉圧力容器下部の放射線量がノ゛ト常に小さく
なればロボット化の必要がなくなり、大幅なコストダウ
ンとなる。
The effects of the present invention will be described below (1) When the internal pump and control drive mechanism removal of ABliR is robotized If the present invention constantly reduces the radiation dose at the bottom of the reactor pressure vessel, robotization will be possible. is no longer necessary, resulting in a significant cost reduction.

(2)原子炉通常運転中でも、原子炉圧力容器下部空間
の線量は100 m R/ Hr以下に抑えれるため、
作業員の立入が可能となり、機器の保守点検に非常に大
きな効果をもつ。
(2) Even during normal reactor operation, the dose in the lower space of the reactor pressure vessel can be kept below 100 mR/Hr;
This allows access for workers, which has a great effect on equipment maintenance and inspection.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図は従来
の沸騰水型原子炉の格納容器を以示す断面図、第3図は
従来の改良沸騰水型原子炉の格納容器を示す断面図、第
4図は本発明の変型例を示す断面図である。
Fig. 1 is a sectional view showing an embodiment of the present invention, Fig. 2 is a sectional view showing a containment vessel of a conventional boiling water reactor, and Fig. 3 is a sectional view showing a containment vessel of a conventional improved boiling water reactor. FIG. 4 is a sectional view showing a modification of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1、原子炉圧力容器のまよりを囲むガンマシールドおよ
び前記圧力容器下部に空間をもつ原子炉格納容器におい
て、前記圧力容器およびガンマシールドの間の空間から
圧力容器下部空間へもれ出る放射線を遮へいする構造物
を設置し、当該遮へい構造物と原子炉圧力容器底部肉厚
によつて構成されるバウンダリの下部では、大幅な線量
低減が可能であることを特徴とする原子炉格納容器。
1. In a reactor containment vessel having a gamma shield surrounding the main part of the reactor pressure vessel and a space below the pressure vessel, shield radiation leaking from the space between the pressure vessel and the gamma shield to the space below the pressure vessel. A nuclear reactor containment vessel characterized in that a structure is installed therein, and a significant reduction in radiation dose is possible in the lower part of the boundary formed by the shielding structure and the bottom wall thickness of the reactor pressure vessel.
JP60241485A 1985-10-30 1985-10-30 Container for nuclear reactor Pending JPS62102189A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60241485A JPS62102189A (en) 1985-10-30 1985-10-30 Container for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60241485A JPS62102189A (en) 1985-10-30 1985-10-30 Container for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS62102189A true JPS62102189A (en) 1987-05-12

Family

ID=17075014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60241485A Pending JPS62102189A (en) 1985-10-30 1985-10-30 Container for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS62102189A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304070A (en) * 2006-05-15 2007-11-22 Taisei Corp Shielding structure of nuclear reactor pressure vessel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007304070A (en) * 2006-05-15 2007-11-22 Taisei Corp Shielding structure of nuclear reactor pressure vessel

Similar Documents

Publication Publication Date Title
US4158599A (en) Method of refueling reactor
US3071527A (en) Nuclear reactor
US6452993B1 (en) Method of carrying out large-sized apparatus
CN1041573C (en) Low activated incore instrument
JPS62102189A (en) Container for nuclear reactor
US3141828A (en) Nuclear reactor equipment
US3802962A (en) Neutron flux measurement installation for liquid-cooled nuclear reactors
JPS61191993A (en) Container for nuclear reactor
JPS6140589A (en) Lower structure of pressure vessel for nuclear reactor
JPS61173191A (en) Container for nuclear reactor
JPH07218677A (en) Nuclear reactor facility
JPS63217295A (en) Boiling water type reactor
JPH04254791A (en) Fast breeder reactor
JP2624866B2 (en) Reactor shielding device
JPH0321516Y2 (en)
Lolich Advanced Nuclear Research Reactor
JPH07306282A (en) Assembly for annihilation disposal of long life nuclide and core of reactor
JPS6330785A (en) Reactor pressure-vessel support structure
Hilvety et al. HFIR POOL CRITERIA
DeBoisblanc The Advanced Test Reactor-ATR Final Conceptual Design
JPH0314151B2 (en)
JPS5837587A (en) Fast breeder
Swop THE ARGONNE HIGH LEVEL GAMMA IRRADIATION FACILITY: DESCRIPTION AND OPERATING PROCEDURES
JP2006010313A (en) Radioactive material storage building
JPS59171890A (en) Radiation shielding device of reactor well