JPH03296693A - Fuel breakdown detector - Google Patents

Fuel breakdown detector

Info

Publication number
JPH03296693A
JPH03296693A JP2099215A JP9921590A JPH03296693A JP H03296693 A JPH03296693 A JP H03296693A JP 2099215 A JP2099215 A JP 2099215A JP 9921590 A JP9921590 A JP 9921590A JP H03296693 A JPH03296693 A JP H03296693A
Authority
JP
Japan
Prior art keywords
neutron
heat exchanger
shielding body
fuel
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2099215A
Other languages
Japanese (ja)
Inventor
Hisao Watanabe
久夫 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2099215A priority Critical patent/JPH03296693A/en
Publication of JPH03296693A publication Critical patent/JPH03296693A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To improve the sensitivity of detection of a delayed neutron by a construction wherein a neutron detector is covered with a gamma-ray shielding body and an exposed face of the gamma-ray shielding body covered with a neutron shielding body except for the face is fitted closely on the outer surface of the case body of an intermediate heat exchanger of a primary coolant system. CONSTITUTION:A bracket 15 is provided in projection at a part of the outer peripheral surface of the case body of an intermediate heat exchanger 2 of a primary coolant system, which is located slightly above a part of the surface at which a piping 4 from a reactor vessel is connected to the heat exchanger 2. A neutron detector 9 is surrounded and buried in a gamma-ray shielding body 8, while the shielding body 8 is covered with a neutron shielding body 11 except for one face thereof. A fuel breakdown detector 6 is set on the bracket 5 in such a manner that the exposed face of the shielding body 8 is fitted closely on a heat insulating material layer 7 of the heat exchanger 2. In this construction, the detector 6 has no opening for piercing into the piping 4 and is fitted directly to the heat exchanger 2, and therefore various problems accompanying the provision of the opening can be banished.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速増殖炉における燃料破損検出装置に係る。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a fuel failure detection device in a fast breeder reactor.

(従来の技術) 液体ナトリウム冷却型の高速増殖炉炉心を構成する燃料
の破損を検出する燃料破損検出装置としては、破損燃料
から冷却材である液体ナトリウム中に漏出する先行核か
ら放出される遅発中性子を検知し、これによって燃料破
損を検出する遅発中性子法による燃料破損検出装置が知
られている。
(Prior art) A fuel failure detection device for detecting damage to the fuel constituting the core of a liquid sodium-cooled fast breeder reactor is a fuel failure detection device that detects failure of the fuel that constitutes the core of a liquid sodium-cooled fast breeder reactor. A fuel damage detection device using a delayed neutron method is known, which detects fired neutrons and thereby detects fuel damage.

第3図は前記遅発中性子法による従来の燃料破損検出装
置の系統図、第4図は前記燃料破損検出装置における中
性子検出器周辺の構造を示す断面図である。
FIG. 3 is a system diagram of a conventional fuel failure detection device using the delayed neutron method, and FIG. 4 is a sectional view showing the structure around the neutron detector in the fuel failure detection device.

第3図において、原子炉容器1、−法主冷却系中間熱交
換器2、−法主冷却系循環ボンプ3は順次−次配管4に
よって接続されている。前記−法主冷却系中間熱交換器
2は、二次系配管5を介して図示しない蒸気発生器と接
続されている。また、燃料破損検出装置6は前記二次配
管4中の中間熱交換器2と循環ポンプ3との間の部分に
設けられている。
In FIG. 3, the reactor vessel 1, the main cooling system intermediate heat exchanger 2, and the main cooling system circulation pump 3 are sequentially connected by a sequential piping 4. The main cooling system intermediate heat exchanger 2 is connected to a steam generator (not shown) via a secondary system piping 5. Further, the fuel damage detection device 6 is provided in a portion of the secondary pipe 4 between the intermediate heat exchanger 2 and the circulation pump 3.

第4図において、第3図に示した燃料破損検出装置6が
設けられた一次配管4の外側部には、保温材層7が設け
られ、この保温材層7の外側に前記燃料破損検出装置6
が設けられている。燃料破損検出装置6はγ線遮蔽体8
に包囲された中性子検出器9と、前記配管4を貫通させ
る開口部12を具え、前記中性子検出器9に対する中性
子の侵入を遮断する中性子遮蔽体11とを具える。図中
、10は配管4内を流れる液体ナトリウム、13は前記
中性子遮蔽体11を支持する架台、14は前記保温材層
7に設けられ、前記中性子遮蔽体11の開口部12に対
向する咽喉部をそれぞれ示している。
In FIG. 4, a heat insulating material layer 7 is provided on the outer side of the primary pipe 4 in which the fuel damage detection device 6 shown in FIG. 6
is provided. The fuel damage detection device 6 includes a γ-ray shield 8
The neutron detector 9 includes a neutron detector 9 surrounded by a neutron detector 9, and a neutron shield 11 having an opening 12 passing through the pipe 4 and blocking neutrons from entering the neutron detector 9. In the figure, 10 is liquid sodium flowing inside the pipe 4, 13 is a pedestal that supports the neutron shield 11, and 14 is a throat part provided in the heat insulating layer 7 and facing the opening 12 of the neutron shield 11. are shown respectively.

燃料破損の場合には、遅発中性子を放射する先行核が冷
却材である液体ナトリウム10とともに管路4内を流れ
ることとなる。前記先行核の放射する遅発中性子は配管
4、γ線遮蔽体8を貫通して中性子検出器9に入射し、
ここで検出される。
In the event of fuel failure, the leading nucleus emitting delayed neutrons will flow through the pipe 4 together with liquid sodium 10 as a coolant. The delayed neutrons emitted by the preceding nucleus penetrate the piping 4 and the γ-ray shield 8 and enter the neutron detector 9,
detected here.

この検出によって燃料破損を告知する警報が発せられる
This detection causes an alarm to notify of fuel damage.

前記構成の従来の燃料破損検出装置6において。In the conventional fuel failure detection device 6 having the above configuration.

γ線遮蔽体8は配管4内を流れる液体ナトリウムが常時
放射するγ線が中性子検出器に入射するのを防止し、中
性子検出器9のバックグラウンドノイズを低減させるも
のである。また、中性子遮蔽体11は燃料破損検出装置
6の最外側に設けられ、それを設置した室内にある遅発
中性子以外の中性子が中性子検出器9に入射するのを防
止し、同様にバックグラウンドノイズを低減させるもの
である。なお、γ線遮蔽体8はγ線を遮断することがで
き、中性子を透過させることができる鉛等によって構成
されている。
The gamma ray shield 8 prevents gamma rays constantly emitted by the liquid sodium flowing in the pipe 4 from entering the neutron detector, and reduces background noise in the neutron detector 9. The neutron shield 11 is provided on the outermost side of the fuel failure detection device 6, and prevents neutrons other than delayed neutrons in the room where it is installed from entering the neutron detector 9, and also prevents background noise. This reduces the Note that the γ-ray shield 8 is made of lead or the like that can block γ-rays and transmit neutrons.

また、前記架台13はかなりの重量がある燃料破損検出
装置6の重量が配管4に作用しないようにするもので、
#!料破損検呂装置の重量をプラント床面に支持す、る
ものである。
Furthermore, the pedestal 13 prevents the weight of the fuel damage detection device 6, which is quite heavy, from acting on the pipe 4.
#! This is to support the weight of the material damage inspection device on the plant floor.

さらに、前記咽喉部14は配管4を貫通させる中性子遮
蔽体11の開口部12をできるだけ小さくし、そこから
測定系内に直接入射してくる遅発中性子以外の中性子を
減少させ、バックグラウンドノイズを低減させるように
している。
Furthermore, the throat part 14 makes the opening 12 of the neutron shield 11 that penetrates the pipe 4 as small as possible, reduces neutrons other than delayed neutrons that directly enter the measurement system from there, and reduces background noise. I'm trying to reduce it.

(発明が解決しようとする課題) ところが、保温材層7、配管4、配管4内を流れる液体
ナトリウム等は中性子遮蔽効果が非常に小さいため、前
記のように保温材層7と開口部12との間隙をできるだ
け小さくなるようにしても、前記開口部12からの遅発
中性子以外の中性子の侵入を完全に避けることができず
、連発中性子の検出感度がある限度に抑えられてしまう
欠点があった・ また、前記開口部12は前記のようにできるだけ小さい
ことが要求されるものであるにも拘らず、原子炉運転時
にその内部を流れる液体ナトリウムの温度変化により、
配管4はかなりの熱変位を示すのでそれに対処するため
前記開口部12はある限度以下の大きさとすることは困
難である。また、配管4の据付誤差を吸収するためにも
ある程度の大きさは必要である。
(Problem to be Solved by the Invention) However, since the neutron shielding effect of the heat insulating layer 7, the piping 4, and the liquid sodium flowing through the pipe 4 is very small, the insulating material layer 7 and the opening 12 are not connected to each other as described above. Even if the gap is made as small as possible, the intrusion of neutrons other than delayed neutrons from the opening 12 cannot be completely avoided, and there is a drawback that the detection sensitivity for continuous neutrons is suppressed to a certain limit. Additionally, although the opening 12 is required to be as small as possible as described above, due to temperature changes in the liquid sodium flowing inside the reactor during operation,
Since the piping 4 exhibits considerable thermal displacement, it is difficult to make the opening 12 smaller than a certain limit in order to cope with this. In addition, a certain size is necessary to absorb installation errors of the piping 4.

従って、前記開口部の形状、寸法は前記の互いに相反す
る要求を勘案した上で決定する必要があり、また前記開
口部12を含む燃料破損検出装置6は製作上、据付上厳
しく管理するようにしなければならない。これ等は、燃
料破損検出装置のコストを上昇させる大きな原因となっ
ている。
Therefore, the shape and dimensions of the opening must be determined by taking into account the conflicting requirements mentioned above, and the fuel failure detection device 6 including the opening 12 must be strictly controlled in manufacturing and installation. There must be. These factors are a major cause of increasing the cost of the fuel damage detection device.

本発明は上記の事情に基づきなされたもので、燃料破損
による先行核の放射する遅発中性子の検出感度が高くし
かも低コストの燃料破損検出装置を提供することを目的
としている。
The present invention has been made based on the above-mentioned circumstances, and an object of the present invention is to provide a fuel failure detection device that has high sensitivity in detecting delayed neutrons emitted by preceding nuclei due to fuel failure and is low in cost.

[発明の構成] (11題を解決するための手段) 本発明の燃料破損検出装置は、中性子検出器をγ線遮蔽
体で覆い、前記γ線遮蔽体の一面を除き中性子遮蔽体で
覆ってなるものを、γ線遮蔽体の露出した面を一次冷却
系中間熱交換器筺体外面に密着させて取り付けたことを
特徴とする。
[Structure of the Invention] (Means for Solving Problem 11) The fuel damage detection device of the present invention includes a neutron detector covered with a gamma ray shield, and a neutron shield except one surface of the gamma ray shield. This is characterized in that the exposed surface of the gamma ray shield is attached in close contact with the outer surface of the primary cooling system intermediate heat exchanger housing.

(作用) 上記構成の本発明の燃料破損検出装置においては、−水
冷却系中間熱交換器に直接に取り付けられているため、
配管を貫通させるための開口部を設ける必要はない。
(Function) In the fuel damage detection device of the present invention having the above configuration, - Since it is directly attached to the water cooling system intermediate heat exchanger,
There is no need to provide an opening for the piping to pass through.

従って、前記開口部の設置に伴う種々の問題は一掃され
る。
Therefore, various problems associated with the installation of said openings are eliminated.

(実施例) 第3図と同一部分には同一符号を付した第1図は本発明
の一実施例を示す系統図、第2図は燃料破損検出装置の
中性子検出器周辺を拡大して示す断面図である。第1図
に示すように前記実施例においては、燃料破損検出装置
6は一次冷却系中間熱交換器2の側壁外周面上端近傍、
すなわち原子炉容器1からの配管4が一次冷却系中間熱
交換器2に接続する位置より若干上方の部位に設置され
ている。
(Embodiment) The same parts as in Fig. 3 are given the same reference numerals. Fig. 1 is a system diagram showing one embodiment of the present invention, and Fig. 2 is an enlarged view of the vicinity of the neutron detector of the fuel failure detection device. FIG. As shown in FIG. 1, in the embodiment, the fuel damage detection device 6 is located near the upper end of the outer peripheral surface of the side wall of the intermediate heat exchanger 2 in the primary cooling system.
That is, the piping 4 from the reactor vessel 1 is installed at a position slightly above the position where it connects to the intermediate heat exchanger 2 of the primary cooling system.

第2図において、−水冷却系中間熱交換器2の筺体外周
面の前記部位には、ブラケット15が突設されている。
In FIG. 2, a bracket 15 is provided to protrude from the outer circumferential surface of the casing of the water-cooled intermediate heat exchanger 2. As shown in FIG.

また、中性子検出器9はγ線遮蔽体8に包囲埋設されて
おり、γ線遮蔽体8にはその一面を除き中性子遮蔽体1
1が覆われている。
In addition, the neutron detector 9 is surrounded and buried in the γ-ray shield 8, and the neutron shield 8 includes the neutron shield 1 except for one side of the γ-ray shield 8.
1 is covered.

而して、燃料破損検出装置6は前記γ線遮蔽体8の露出
された1面を前記−水冷却系中間熱交換器2の保温材層
7に密着させて、前記ブラケット15上に設置されてい
る。なお、図中16は前記−水冷却系中間熱交換器2を
建屋に吊下支持するためのサポート胴を示している。
The fuel damage detection device 6 is installed on the bracket 15 with the exposed one surface of the γ-ray shield 8 in close contact with the heat insulating material layer 7 of the water-cooled intermediate heat exchanger 2. ing. Note that 16 in the figure indicates a support shell for suspending and supporting the water-cooled intermediate heat exchanger 2 in a building.

上記構成の実施例にあっては、燃料破損検出装置が配管
4を貫通させるための開口を有せず、直接に一次冷却系
中間熱交換器2に取り付けられているため、前記開口部
の設置に伴う種々の問題は一掃される。
In the embodiment with the above configuration, since the fuel damage detection device does not have an opening for penetrating the pipe 4 and is directly attached to the primary cooling system intermediate heat exchanger 2, it is difficult to install the opening. Various problems associated with this will be eliminated.

[発明の効果] 上記から明らかなように本発明の燃料破損検出器は一次
冷却系中間熱交換器に直接に取り付けられているため、
配管を貫通させるための開口部を設ける必要はない。
[Effects of the Invention] As is clear from the above, since the fuel damage detector of the present invention is directly attached to the intermediate heat exchanger of the primary cooling system,
There is no need to provide an opening for the piping to pass through.

従って、熱変位吸収、取付誤差吸収を可能とするための
要求と、バックグラウンドノイズを減少するための要求
との相反する要求に基づく開口部の形状、寸法の決定や
、燃料破損検出装置の製作、据付等を厳しく管理する必
要はなく、コストの低い燃料破損検出装置とすることが
できる。また、前記開口部によるバックグラウンドノイ
ズの上昇はなく、高精度の検出を行うことができる。
Therefore, the shape and dimensions of the opening are determined based on the contradictory requirements of enabling thermal displacement absorption and installation error absorption, and the requirement of reducing background noise, and the fabrication of the fuel damage detection device. , there is no need to strictly control installation, etc., and a low-cost fuel damage detection device can be obtained. Further, there is no increase in background noise due to the opening, and highly accurate detection can be performed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す系統図、第2図は燃料
破損検出装置の中性子検出器周辺を周辺を拡大して示す
断面図、第3図は前記遅発中性子法による従来の燃料破
損検出装置の系統図、第4図は前記燃料破損検出装置に
おける中性子検出器周辺の構造を示す断面図である。 1・・・・・・原子炉容器 2・・・・・・−水冷却系
中間熱交換器 3・・・・・・−次冷却系主循環ポンプ
 4・・・・・・配管 5・・・・・・二次系配管 6
・・・・・・燃料破損検出装置7・・・・・・保温材層
 8・・・・・・γ線遮蔽体 9・・・・・・中性子検
出器 10・・・・・・液体ナトリウム 11・・・・
・・中性子遮蔽体 12・・・・・・開口部 13・・
・・・・架台14・・・・・・咽喉部 15・・・・・
・ブラケット 16・・・・・・サポート胴
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a cross-sectional view showing the vicinity of the neutron detector of the fuel failure detection device in an enlarged manner, and Fig. 3 is a system diagram showing the neutron detector of the fuel failure detection device. FIG. 4, a system diagram of the fuel damage detection device, is a sectional view showing the structure around the neutron detector in the fuel damage detection device. 1... Reactor vessel 2... - Water cooling system intermediate heat exchanger 3... - Secondary cooling system main circulation pump 4... Piping 5... ...Secondary system piping 6
...Fuel damage detection device 7 ... Heat insulation layer 8 ... γ-ray shield 9 ... Neutron detector 10 ... Liquid sodium 11...
...Neutron shield 12...Opening 13...
... Frame 14 ... Throat 15 ...
・Bracket 16... Support body

Claims (1)

【特許請求の範囲】[Claims] 中性子検出器をγ線遮蔽体で覆い、前記γ線遮蔽体の一
面を除き中性子遮蔽体で覆ってなるものを、γ線遮蔽体
の露出した面を一次冷却系中間熱交換器筺体外面に密着
させて取り付けたことを特徴とする燃料破損検出装置。
A neutron detector is covered with a gamma ray shield, and the gamma ray shield is covered with the neutron shield except for one side, and the exposed surface of the gamma ray shield is tightly attached to the outer surface of the primary cooling system intermediate heat exchanger housing. A fuel damage detection device characterized in that it is installed with
JP2099215A 1990-04-17 1990-04-17 Fuel breakdown detector Pending JPH03296693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2099215A JPH03296693A (en) 1990-04-17 1990-04-17 Fuel breakdown detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2099215A JPH03296693A (en) 1990-04-17 1990-04-17 Fuel breakdown detector

Publications (1)

Publication Number Publication Date
JPH03296693A true JPH03296693A (en) 1991-12-27

Family

ID=14241434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2099215A Pending JPH03296693A (en) 1990-04-17 1990-04-17 Fuel breakdown detector

Country Status (1)

Country Link
JP (1) JPH03296693A (en)

Similar Documents

Publication Publication Date Title
US3888730A (en) Nuclear reactors
US6345080B1 (en) Measurement device for determining boron concentration
JPH03296693A (en) Fuel breakdown detector
US4226676A (en) Liquid metal cooled nuclear reactors
JP3041058B2 (en) Tank type fast breeder reactor
US3393125A (en) Testing for fuel element sheathing failures in nuclear reactors
JPH0267994A (en) Shielding body for radiation measurement
JPS61145492A (en) Fuel damage detector
JPS6337357B2 (en)
JP3426611B2 (en) Radiation detector
JPS6018037B2 (en) Fast breeder reactor internal pipe damage detection device
JPS6082888A (en) Reactor containing vessel piping
JPS646710B2 (en)
JPH0439637B2 (en)
JPH0385496A (en) Fast breeder reactor
JPS60133398A (en) Radiation shielding device for piping through-hole
JPS60179693A (en) Detector for damaged fuel
JPH0122159Y2 (en)
JPH0421839B2 (en)
JPS60104293A (en) Detector for neutron of nuclear reactor
JPH07248389A (en) Fast reactor
JPS63148198A (en) Burst slug detector
Folkrod et al. Hazards Summary Report on the JUGGERNAUT Reactor
JPS6296894A (en) Horizontal supporter for boiling water type reactor pressurevessel
JPS5877695A (en) Method and device for detecting fuel failure