JPS646657B2 - - Google Patents

Info

Publication number
JPS646657B2
JPS646657B2 JP14666583A JP14666583A JPS646657B2 JP S646657 B2 JPS646657 B2 JP S646657B2 JP 14666583 A JP14666583 A JP 14666583A JP 14666583 A JP14666583 A JP 14666583A JP S646657 B2 JPS646657 B2 JP S646657B2
Authority
JP
Japan
Prior art keywords
weight
less
ethylene
minutes
copolymer rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14666583A
Other languages
Japanese (ja)
Other versions
JPS6038448A (en
Inventor
Yutaka Takado
Takashi Kenjo
Hajime Nishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tonen Chemical Corp
Original Assignee
Tonen Sekiyu Kagaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tonen Sekiyu Kagaku KK filed Critical Tonen Sekiyu Kagaku KK
Priority to JP14666583A priority Critical patent/JPS6038448A/en
Publication of JPS6038448A publication Critical patent/JPS6038448A/en
Publication of JPS646657B2 publication Critical patent/JPS646657B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリオレフイン組成物に関し、詳細
には高密度ポリエチレン、結晶性ポリプロピレ
ン、エチレン―α―オレフイン共重合体ゴム、お
よび充填剤からなる耐熱変形性、表面硬度、剛性
に優れ、特に耐ドローダウン性の良好な大型ブロ
ー成形に適したポリオレフイン組成物に関する。 従来、ポリエチレン、ポリプロピレンは、とも
に比較的安価で、成形性が良好であるため、汎用
樹脂としてフイルム、シート、容器、電気機械部
品、雑貨品などの広い分野に成形物として用いら
れている。また、成形も押出、射出、ブローの各
方法が適用されているが、ブロー成形品のうち特
に大型の成形品については、ポリプロピレンに比
べて耐ドローダウン性に優れるポリエチレン、特
に高密度ポリエチレンによる成形が多く行われて
いる。 しかしながら、大型ブロー成型品のうちでも太
陽光にさらされる構造部材、例えば自動車外装
品、バンパー、パレツト、太陽熱温水器集熱体な
どは、ポリエチレン単独の成形品では耐熱変性温
度が十分ではなく、また表面硬度、剛性面におい
ても限界があつた。 本発明は、上記のような大型ブロー成形品にお
けるポリエチレンの欠点を改善する目的でなされ
たものであつて、本発明のポリオレフイン組成物
は、(イ)メルトインデツクス(JISK6760による温
度190℃、荷重2.16Kgの条件で測定、以下MIとい
う)が0.5g/10分以下の高密度ポリエチレン50
〜93重量%、(ロ)メルトフローインデツクス
(JISK 6758による温度230℃、荷重2.16Kgの条件
で測定、以下MFIという)が0.5g/10分以下の
結晶性ポリプロピレン5〜50重量%、(ハ)メルトフ
ローインデツクスが1.0g/10分以下のエチレン
―α―オレフイン共重合体ゴム2〜20重量%未満
および(ニ)充填剤0〜30重量%とからなるものであ
る。 以下、本発明の構成について詳細に説明する。 本発明において用いる高密度ポリエチレンとし
ては、密度が0.93g/c.c.以上、好ましくは0.94〜
0.97g/c.c.で、重量平均分子量が10万以上、好ま
しくは15万以上で、MIが0.5g/10分以下、好ま
しくは0.3g/10分以下、特に好ましくは0.1g/
10分以下のものがあげられる。MIがこれらの範
囲を外れる場合は、耐ドローダウン性が低下して
得られる成形物の肉厚分布を均一とすることが難
かしくなり、また耐衝撃性が低下するために好ま
しくない。また、高密度ポリエチレンは、ホモタ
イプの他にコモノマー、例えばブテン―1、ヘキ
セン―1などを共重合させたタイプのものも使用
できる。一般に前者は剛性の向上、後者はストレ
スクラツキングを防止する目的に、それぞれ選択
して使用される。 本発明において用いる結晶性ポリプロピレンと
しては、アイソタクチツクの結晶性ポリプロピレ
ンであつて、プロピレンの単独重合体またはエチ
レン含有量10モル%以下のプロピレン―エチレン
のランダムもしくはブロツク共重合体であつても
よいが、MFIが0.5g/10分以下のものである。
MFIが0.5g/10分を越えるものであると、ブロ
ー成形におけるドローダウン性が激しく、パリソ
ンの長い大型ブロー成形物の成形が難かしくな
る。 本発明において用いるエチレン―α―オレフイ
ン共重合体ゴムとしては、エチレンとα―オレフ
イン、例えばプロピレン、ブテン―1、ヘキセン
―1、オクテン―1などとの共重合体ゴム、また
はエチレン―プロピレンの系に第三成分として非
共役ジエン類、例えばエチリデンノルボルネン、
ジシクロペンタジエン、1,4―ヘキサジエンな
どを共重合させた三元共重合体ゴム(以下
EPDM)があげられる。これらのうちではエチ
レン―プロピレン共重合体ゴム(以下EPR)ま
たはEPDMが好ましい。これらエチレン―α―
オレフイン共重合体ゴムは、エチレン含有量が20
〜90重量%、ムーニー粘度(JISK―
6300ML1+4100℃以下同)が60〜100を有するもの
が好ましく、特にMFIが1.0g/10分以下、好ま
しくは0.7g/10分以下のものとする。上記共重
合体ゴムの中のエチレン含有量が90重量%を越え
るとゴム的性質が不十分となり、得られる成形物
の衝撃強度が低下する。また、上記共重合体ゴム
のムーニー粘度が上記の範囲外のものを用いる
と、後述する高密度ポリエチレンと結晶性ポリプ
ロピレンとの混練における相溶性が悪くなり、さ
らに組成物の耐ドローダウン性のためにも好まし
くない。 本発明において用いられる充填剤としては、例
えば、マイカ、タルク、繊維状ケイ酸カルシウ
ム、炭酸カルシウム、硫酸バリウム、カオリン、
アルミナ、炭酸マグネシウム、酸化チタン、シリ
カ、カーボンブラツク、ガラス繊維、炭素繊維な
どがあげられる。これら充填剤の粒径は0.05〜
200μで、好ましくは0.1〜100μである。また、充
填剤はポリオレフインとの親和性を改良するため
に各種有機シラン化合物で表面処理を行うことが
できる。充填剤は、要求される成形物の形状や機
械的性質により、その種類、粒径、添加量が適宜
選択される。 本発明のポリオレフイン組成物は、上記の高密
度ポリエチレン50〜93重量%、結晶性ポリプロピ
レン5〜50重量%、エチレン―α―オレフイン共
重合体ゴム2〜20重量%未満および充填剤0〜30
重量%からなる配合物である。 上記樹脂組成物に占める結晶性ポリプロピレン
の割合が、5重量%未満では得られる成形物の耐
熱性が改善されず、一方、50重量%を越えると耐
ドローダウン性および耐衝撃性が悪くなり大型ブ
ロー成形物の成形が難かしくなる。また、エチレ
ン―α―オレフイン共重合体ゴムの割合が、2重
量%未満では、高密度ポリエチレンと結晶性ポリ
プロピレンとの相溶性が充分でなく耐衝撃性、表
面平滑性が悪くなり、一方、20重量以上では得ら
れる成形物の剛性、耐熱性および表面硬度などが
低下する。さらに、充填剤の割合が30重量%を越
えると耐熱性、表面硬度および剛性は向上するも
のの、ブロー成形におけるパリソン切断部の融着
の悪化および耐衝撃性が低下するために好ましく
ない。 次に、本発明の組成物の製造方法は、上記の各
成分を配合し高速ミキサー、バンバリーミキサ
ー、連続ニーダ、単軸または二軸スクリユー押出
機などの混練機を用いて加熱溶融状態で混練する
ことによつて得られる。得られる組成物は、耐ド
ローダウン性のうえからMFIが0.5g/10分以下
であることが好ましい。 なお、各成分の配合、混練に際し、酸化防止
剤、紫外線吸収剤、金属劣化防止剤などの安定
剤、滑剤、帯電防止剤、電気特性改良剤、難燃化
剤、加工性改良剤、顔料などの各種添加剤を配合
することができる。 以上、本発明のポリオレフイン組成物は、ブロ
ー成形法、プレス成形法、押出成形法、射出成形
法のごとき各種の成形法によつて、容器、中空
物、ボード、シート、球状物、棒状物、パイプな
どの各種の成形物に成形できる。また、本発明の
組成物は、耐ドローダウン性に優れ、得られる成
形物は耐衝撃性をそこなうことなく耐熱性、表面
硬度、剛性などに優れるために大型成形物、例え
ばバンパー、自動車内外装品、太陽熱温水器集熱
体、パレツト燃料タンクなどの大型ブロー成形用
組成物として好適である。特にブロー成形したと
きには塗膜強度に優れたものが得られる。 以下に本発明を実施例でさらに具体的に説明す
る。なお、実施例における%は重量を示し、試験
法は次のとおりである。 (1) 曲げ弾性率 ASTM D790 (2) アイゾツト衝撃強度
ASTM D2563.2mm厚試験片、ノツチ付 (3) 表面硬度 ASTM D785 (ロツクウエル硬さ) (4) 熱変形温度 JIS K7207 荷重4.6Kg/cm2 (5) ドローダウンの評価 大型中空成形機〔石川
島播磨重工業社製、IPB―200C(商品名)〕
を使用し、長さ1.6m、巾0.16m、重さ
3Kgのバンパーおよび長さ0.4m、巾0.3
mの燃料タンクを成形し、下部肉厚に対す
る上部肉厚の比が0.8〜1.0を◎、0.6〜0.8
未満を〇、0.6未満、成形不良または成形
不能を×とした。 実施例 1〜8 高密度ポリエチレン(密度0.950g/c.c.、
MI0.04g/10分、以下HDPE―1という)、結晶
性ポリプロピレン(MFI0.5g/10分、以下PPと
いう)、EPDM(エチレン含有量72%、ムーニー
粘度90、MFI0.7g/10分)、EPR(エチレン含有
量73%、ムーニー粘度70、MFI0.7g/10分)、タ
ルク(平均粒径5μ)、炭酸カルシウム(平均粒径
5μ)、繊維結晶性ケイ酸カルシウム(商品名;ワ
ラステナイト、平均粒径10μ)およびアルミナ
(平均粒径0.1μ)を表―1に示す組合せで配合し
て高速ミキサーで混合し、得られた混合物を温度
200℃で設定した連続ニーダで溶融混練した後ペ
レツト化した。得られたペレツトを用いてブロー
成形を行いドローダウンの評価並びに射出成形機
を用いて試験片を成形し、曲げ弾性率、熱変形温
度およびアイゾツト衝撃強度を測定し、その結果
を表―1に示した。実施例8においては、さらに
塗膜強度を求めたところ720g/10mmであつたが、
実施例8で用いたHDPE単独のものでは60g/10
mmに過ぎなかつた。
The present invention relates to a polyolefin composition, and more particularly, it is composed of high-density polyethylene, crystalline polypropylene, ethylene-α-olefin copolymer rubber, and filler, and has excellent heat deformation resistance, surface hardness, and rigidity, and particularly has excellent drawdown resistance. The present invention relates to a polyolefin composition with good properties and suitable for large-scale blow molding. Conventionally, polyethylene and polypropylene are both relatively inexpensive and have good moldability, so they have been used as general-purpose resins as molded products in a wide range of fields such as films, sheets, containers, electromechanical parts, and miscellaneous goods. In addition, extrusion, injection, and blow molding methods are used for molding, but for particularly large blow molded products, polyethylene, especially high-density polyethylene, is used, which has better drawdown resistance than polypropylene. is being done a lot. However, among large blow molded products, structural members that are exposed to sunlight, such as automobile exterior parts, bumpers, pallets, solar water heater heat collectors, etc., do not have sufficient heat resistance to denaturation with polyethylene molded products alone. There were also limits in terms of surface hardness and rigidity. The present invention was made for the purpose of improving the drawbacks of polyethylene in large blow molded products as described above, and the polyolefin composition of the present invention has the following characteristics: (a) Melt index (temperature 190°C, load High-density polyethylene 50 (measured under 2.16Kg conditions, hereinafter referred to as MI) of 0.5g/10 minutes or less
~93% by weight, (b) 5 to 50% by weight of crystalline polypropylene with a melt flow index (measured according to JISK 6758 at a temperature of 230°C and a load of 2.16 kg, hereinafter referred to as MFI) of 0.5 g/10 minutes or less, ( c) 2 to less than 20% by weight of an ethylene-α-olefin copolymer rubber having a melt flow index of 1.0 g/10 minutes or less, and (d) 0 to 30% by weight of a filler. Hereinafter, the configuration of the present invention will be explained in detail. The high-density polyethylene used in the present invention has a density of 0.93 g/cc or more, preferably 0.94 to
0.97 g/cc, weight average molecular weight is 100,000 or more, preferably 150,000 or more, and MI is 0.5 g/10 min or less, preferably 0.3 g/10 min or less, particularly preferably 0.1 g/10 min or less.
It can take less than 10 minutes. If MI is outside these ranges, the drawdown resistance decreases, making it difficult to make the thickness distribution of the resulting molded product uniform, and impact resistance decreases, which is not preferable. In addition to the homo-type high-density polyethylene, a type copolymerized with a comonomer such as butene-1, hexene-1, etc. can also be used. In general, the former is used to improve rigidity, and the latter to prevent stress cracking, respectively. The crystalline polypropylene used in the present invention is isotactic crystalline polypropylene, and may be a propylene homopolymer or a propylene-ethylene random or block copolymer with an ethylene content of 10 mol% or less, MFI is 0.5g/10 minutes or less.
If the MFI exceeds 0.5 g/10 minutes, the drawdown during blow molding will be severe, making it difficult to mold a large blow molded product with a long parison. The ethylene-α-olefin copolymer rubber used in the present invention is a copolymer rubber of ethylene and α-olefin, such as propylene, butene-1, hexene-1, octene-1, etc., or an ethylene-propylene based copolymer rubber. and non-conjugated dienes, such as ethylidene norbornene, as a third component.
Ternary copolymer rubber (hereinafter referred to as
EPDM). Among these, ethylene-propylene copolymer rubber (hereinafter referred to as EPR) or EPDM is preferred. These ethylene-α-
Olefin copolymer rubber has an ethylene content of 20
~90% by weight, Mooney viscosity (JISK)
6300ML 1+4 100°C or lower) is preferably 60 to 100, particularly MFI is 1.0 g/10 minutes or less, preferably 0.7 g/10 minutes or less. If the ethylene content in the copolymer rubber exceeds 90% by weight, the rubber properties will be insufficient and the impact strength of the resulting molded product will be reduced. In addition, if the Mooney viscosity of the copolymer rubber is outside the above range, the compatibility during kneading of high density polyethylene and crystalline polypropylene, which will be described later, will be poor, and the drawdown resistance of the composition will deteriorate. It is also undesirable. Examples of fillers used in the present invention include mica, talc, fibrous calcium silicate, calcium carbonate, barium sulfate, kaolin,
Examples include alumina, magnesium carbonate, titanium oxide, silica, carbon black, glass fiber, and carbon fiber. The particle size of these fillers is from 0.05 to
200μ, preferably 0.1 to 100μ. Further, the filler can be surface-treated with various organic silane compounds in order to improve its affinity with polyolefin. The type, particle size, and amount of the filler to be added are appropriately selected depending on the required shape and mechanical properties of the molded article. The polyolefin composition of the present invention comprises 50 to 93% by weight of the above-mentioned high-density polyethylene, 5 to 50% by weight of crystalline polypropylene, 2 to less than 20% by weight of ethylene-α-olefin copolymer rubber, and 0 to 30% of filler.
% by weight. If the proportion of crystalline polypropylene in the resin composition is less than 5% by weight, the heat resistance of the resulting molded product will not be improved, while if it exceeds 50% by weight, drawdown resistance and impact resistance will deteriorate and large It becomes difficult to mold the blow molded product. Furthermore, if the proportion of the ethylene-α-olefin copolymer rubber is less than 2% by weight, the compatibility between high-density polyethylene and crystalline polypropylene is insufficient, resulting in poor impact resistance and surface smoothness. If the weight exceeds the weight, the rigidity, heat resistance, surface hardness, etc. of the molded product obtained will decrease. Further, if the proportion of the filler exceeds 30% by weight, although heat resistance, surface hardness and rigidity are improved, it is not preferable because the fusion of the cut portion of the parison during blow molding deteriorates and the impact resistance decreases. Next, the method for producing the composition of the present invention involves blending the above-mentioned components and kneading them in a heated molten state using a kneading machine such as a high-speed mixer, a Banbury mixer, a continuous kneader, or a single-screw or twin-screw extruder. obtained by The resulting composition preferably has an MFI of 0.5 g/10 minutes or less from the viewpoint of drawdown resistance. In addition, when blending and kneading each component, antioxidants, ultraviolet absorbers, stabilizers such as metal deterioration inhibitors, lubricants, antistatic agents, electrical property improvers, flame retardants, processability improvers, pigments, etc. Various additives can be blended. As described above, the polyolefin composition of the present invention can be produced into containers, hollow objects, boards, sheets, spherical objects, rod-shaped objects, etc. by various molding methods such as blow molding, press molding, extrusion molding, and injection molding. Can be molded into various molded objects such as pipes. In addition, the composition of the present invention has excellent drawdown resistance, and the molded products obtained have excellent heat resistance, surface hardness, rigidity, etc. without impairing impact resistance. It is suitable as a composition for large-scale blow molding of products, solar water heater heat collectors, pallet fuel tanks, etc. Particularly when blow molding is performed, a coating film with excellent strength can be obtained. The present invention will be explained in more detail below using Examples. In addition, % in an example shows weight, and the test method is as follows. (1) Flexural modulus ASTM D790 (2) Izot impact strength
ASTM D256 3.2mm thick test piece, with notch (3) Surface hardness ASTM D785 (Rockwell hardness) (4) Heat distortion temperature JIS K7207 Load 4.6Kg/cm 2 (5) Drawdown evaluation Large blow molding machine [Ishikawajima Harima Manufactured by Heavy Industries, IPB-200C (product name)]
A bumper with a length of 1.6 m, a width of 0.16 m, and a weight of 3 kg and a length of 0.4 m and a width of 0.3
Molding a fuel tank of m, the ratio of the upper wall thickness to the lower wall thickness is 0.8 ~ 1.0, ◎, 0.6 ~ 0.8
Less than 0.6 was rated as 〇, less than 0.6 was rated as poor molding or non-moldable was rated as ×. Examples 1 to 8 High density polyethylene (density 0.950 g/cc,
MI 0.04 g/10 min, hereinafter referred to as HDPE-1), crystalline polypropylene (MFI 0.5 g/10 min, hereinafter referred to as PP), EPDM (ethylene content 72%, Mooney viscosity 90, MFI 0.7 g/10 min), EPR (ethylene content 73%, Mooney viscosity 70, MFI 0.7g/10 min), talc (average particle size 5μ), calcium carbonate (average particle size
5μ), fibrous crystalline calcium silicate (trade name: wollastenite, average particle size 10μ), and alumina (average particle size 0.1μ) were blended in the combinations shown in Table 1 and mixed in a high-speed mixer. Temperature the mixture
The mixture was melt-kneaded in a continuous kneader set at 200°C and then pelletized. The obtained pellets were blow molded to evaluate the drawdown, and test pieces were molded using an injection molding machine to measure the flexural modulus, thermal deformation temperature, and Izo impact strength.The results are shown in Table 1. Indicated. In Example 8, the coating film strength was further determined to be 720 g/10 mm, but
In the case of HDPE alone used in Example 8, 60g/10
It was only mm.

【表】【table】

【表】 比較例 1〜3 実施例において、PPのMFIが2g/10分のも
のを配合した場合(比較例1)並びにタルクの配
合量が30%を越える場合(比較例2)および
EPDMの配合量が30%を越える場合(比較例3)
についても同様の評価を行い、その結果を表―2
に示した。
[Table] Comparative Examples 1 to 3 In the examples, when PP with an MFI of 2 g/10 min was blended (Comparative Example 1), when the blended amount of talc exceeded 30% (Comparative Example 2), and
When the EPDM content exceeds 30% (Comparative Example 3)
A similar evaluation was conducted for , and the results are shown in Table 2.
It was shown to.

【表】 実施例 9,10 実施例2および3において、HDPE―1に代り
密度0.953g/c.c.、MI0.3g/10分の高密度ポリエ
チレン(以下HDPE―2という)を用いた以外は
同様にして評価を行い、その結果を表―3に示し
た。 比較例 4 実施例2において、HDPE―1に代り密度
0.950g/c.c.、MI0.6g/10分の高密度ポリエチレ
ンを用いた以外は同様にして評価を行い、その結
果を表―3に併記した。
[Table] Examples 9 and 10 The same procedure was repeated as in Examples 2 and 3 except that high-density polyethylene (hereinafter referred to as HDPE-2) with a density of 0.953 g/cc and an MI of 0.3 g/10 minutes was used instead of HDPE-1. The results are shown in Table 3. Comparative Example 4 In Example 2, density was used instead of HDPE-1.
Evaluations were conducted in the same manner except that high-density polyethylene of 0.950 g/cc and MI of 0.6 g/10 min was used, and the results are also listed in Table 3.

【表】 実施例 11〜13 高密度ポリエチレン(密度0.950g/c.c.、
MI0.05g/10分、以下HDPEという)、結晶性ポ
リプロピレン(MFI0.4g/10分、以下PPとい
う)、EPR(エチレン含有量73%、ムーニー粘度
70)、およびマイカ(平均粒子径30μ)を表―4
に示す組合せで配合して高速ミキサーで混合し、
得られた混合物を温度200℃に設定した連続ニー
ダで溶融混練した後ペレツト化した。得られたペ
レツトを用いてブロー成形を行いドローダウンの
評価並びに射出成形機を用いて試験片を成形し、
曲げ弾性率、アイゾツト衝撃強度、表面硬度およ
び熱変形温度を測定し、その結果を表―4に示し
た。
[Table] Examples 11-13 High-density polyethylene (density 0.950 g/cc,
MI0.05g/10min, hereinafter referred to as HDPE), crystalline polypropylene (MFI0.4g/10min, hereinafter referred to as PP), EPR (ethylene content 73%, Mooney viscosity
70) and mica (average particle size 30μ) in Table 4.
Combine the combinations shown in and mix with a high-speed mixer.
The resulting mixture was melt-kneaded in a continuous kneader set at a temperature of 200°C and then pelletized. Blow molding was performed using the obtained pellets to evaluate drawdown, and test pieces were molded using an injection molding machine.
The flexural modulus, Izot impact strength, surface hardness, and heat distortion temperature were measured, and the results are shown in Table 4.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 (イ)メルトインデツクスが0.5g/10分以下の
高密度ポリエチレン50〜93重量%、(ロ)メルトフロ
ーインデツクスが0.5g/10分以下の結晶性ポリ
プロピレン5〜50重量%および(ハ)メルトフローイ
ンデツクスが1.0以下のエチレン―α―オレフイ
ン共重合体ゴム2〜20重量%未満とからなること
を特徴とするポリオレフイン組成物。
1 (a) 50-93% by weight of high-density polyethylene with a melt flow index of 0.5 g/10 minutes or less, (b) 5-50% by weight of crystalline polypropylene with a melt flow index of 0.5 g/10 minutes or less, and ) A polyolefin composition comprising 2 to less than 20% by weight of an ethylene-α-olefin copolymer rubber having a melt flow index of 1.0 or less.
JP14666583A 1983-08-12 1983-08-12 Polyolefin composition Granted JPS6038448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14666583A JPS6038448A (en) 1983-08-12 1983-08-12 Polyolefin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14666583A JPS6038448A (en) 1983-08-12 1983-08-12 Polyolefin composition

Publications (2)

Publication Number Publication Date
JPS6038448A JPS6038448A (en) 1985-02-28
JPS646657B2 true JPS646657B2 (en) 1989-02-06

Family

ID=15412847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14666583A Granted JPS6038448A (en) 1983-08-12 1983-08-12 Polyolefin composition

Country Status (1)

Country Link
JP (1) JPS6038448A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116318B2 (en) * 1988-09-30 1995-12-13 新神戸電機株式会社 Matte polypropylene sheet
JPH04214738A (en) * 1990-12-12 1992-08-05 Showa Denko Kk Hollow molded article with hinge
JPH0830131B2 (en) * 1991-01-25 1996-03-27 三菱化学株式会社 Thermoplastic polymer composition
AU2011240071B2 (en) 2010-04-12 2015-01-22 Omya International Ag Composition for blow molding
JP2013227462A (en) * 2012-04-27 2013-11-07 Sanko Co Ltd Resin molded article
CN103467822B (en) * 2013-09-18 2015-08-12 倪敏 A kind ofly prepare raw material of PE structured wall popes and preparation method thereof
BE1027756B1 (en) 2019-11-13 2021-06-15 Anheuser Busch Inbev Sa USE OF A POLYMER COMPOSITION, CRATE MANUFACTURED FROM SUCH POLYMER COMPOSITION AND PROCESS FOR MANUFACTURING SUCH CRATE OR PALLET

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5439860B2 (en) * 1972-06-16 1979-11-30

Also Published As

Publication number Publication date
JPS6038448A (en) 1985-02-28

Similar Documents

Publication Publication Date Title
US4871805A (en) Polypropylene composition
US6642312B2 (en) Polyolefin-based composite resin composition having high strength and low linear expansion
JPS6228174B2 (en)
JP2001220472A (en) Low-linear expansion polyolefin-based composite resin composition, and part item for automotive sheathing material
EP0663937B1 (en) Thermoplastic olefins with low viscosity
JPS646657B2 (en)
JPS646656B2 (en)
JP2521380B2 (en) Polypropylene resin molding material
KR102187566B1 (en) Polypropylene resin composition and molded product thereof
JPS6359416B2 (en)
JP2711571B2 (en) Polyolefin composition for large blow molded products
KR100465177B1 (en) Polypropylene resin composition with excellent rigidity, heat resistance and dimension stability
JP3189477B2 (en) Polypropylene resin molded product
EP0426315A2 (en) Polypropylene resin composition
EP1362079B1 (en) Polypropylene resin composition with improved surface hardness and scratch resistance properties
JPH0718087A (en) Production of resin composition
KR20100118664A (en) Polypropylene resin composition with improved flow-mark inhibition
KR19980067272A (en) Composite elastomeric composition for automotive exterior
JP2711570B2 (en) Polyolefin composition
JP2746466B2 (en) Resin composition
JPS60112844A (en) Polypropylene composition for injection molding
KR100620356B1 (en) A polypropylene resin composition having excellent flowability, stiffness, and size stability
JP3092960B2 (en) Molding
JP2902718B2 (en) Resin composition
JPH0598128A (en) Resin composition for automobile