JPS645963B2 - - Google Patents

Info

Publication number
JPS645963B2
JPS645963B2 JP58001550A JP155083A JPS645963B2 JP S645963 B2 JPS645963 B2 JP S645963B2 JP 58001550 A JP58001550 A JP 58001550A JP 155083 A JP155083 A JP 155083A JP S645963 B2 JPS645963 B2 JP S645963B2
Authority
JP
Japan
Prior art keywords
shape
rolled material
width direction
coil
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58001550A
Other languages
Japanese (ja)
Other versions
JPS59127914A (en
Inventor
Masao Ookubo
Tomokazu Abe
Akeshi Sugie
Yukyasu Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP58001550A priority Critical patent/JPS59127914A/en
Publication of JPS59127914A publication Critical patent/JPS59127914A/en
Publication of JPS645963B2 publication Critical patent/JPS645963B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby

Description

【発明の詳細な説明】 本発明は圧延材の形状制御方法に関する。更に
詳細には、本発明は、冷間圧延後に巻取られた金
属材料のコイルクラウンに起因する板歪のうちの
塑性歪分を算出し、該塑性歪分を補償するように
圧延材の張力分布を制御して平坦度の高い金属板
を提供する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling the shape of a rolled material. More specifically, the present invention calculates the plastic strain component of the plate strain caused by the coil crown of the metal material wound after cold rolling, and adjusts the tension of the rolled material to compensate for the plastic strain component. The present invention relates to a method of controlling distribution and providing a metal plate with high flatness.

従来より金属材料の圧延に於いては形状制御の
ために、形状検出手段としてメジヤリングロール
を用い、制御手段としてはワークロールのベンデ
イング位置、圧下シリンダによる圧下位置の変
更、或いはクーラントの板幅方向噴出量の調整が
行われてていた。
Conventionally, in rolling metal materials, measuring rolls have been used as shape detection means for shape control, and control means include changing the bending position of the work roll, changing the rolling position with a rolling cylinder, or changing the width of the coolant in the plate width direction. The amount of ejection was adjusted.

公知の如く、メジヤリングロールとは板幅方向
に分割された複数のトランスデユーサ内臓ロール
で構成され、板幅方向の各ゾーン毎の応力を測定
する。これらの検出された応力分布に基づいて、
ロールベンデイング、或いはクーラントの板幅方
向噴出量分布又は圧下位置を修正する等して制御
目標値に対して板幅方向の応力分布、すなわち歪
分布を制御していた。
As is well known, the measuring roll is composed of a plurality of rolls with built-in transducers divided in the width direction of the sheet, and measures the stress in each zone in the width direction of the sheet. Based on these detected stress distributions,
The stress distribution, ie, the strain distribution, in the plate width direction has been controlled with respect to the control target value by roll bending or by correcting the coolant ejection amount distribution in the plate width direction or the rolling position.

しかしながら、上述の従来方法では単に圧延
後、すなわち巻取り前の圧延材の板幅方向の歪分
布を一定にするよう制御するものであつて、圧延
材の最終使用状態、すなわちコイルに巻取り、さ
らに巻戻した状態での歪分布を制御するものでは
ない。
However, in the conventional method described above, the strain distribution in the width direction of the rolled material is simply controlled to be constant after rolling, that is, before winding. Furthermore, it does not control the strain distribution in the rewound state.

本発明者らは純Al材(A1050)の冷間圧延直後
及び巻取後の応力分布を測定して板幅方向の形状
変化を調査し、これを第1図a及び第1図bに示
す。
The present inventors measured the stress distribution of pure Al material (A1050) immediately after cold rolling and after coiling to investigate the shape change in the sheet width direction, and the results are shown in Figures 1a and 1b. .

第1図aは巻取コイルの内巻部の部分の圧延材
の板幅方向の応力偏差値の分布を示すものであ
る。第1図aに示す如く、コイル内巻部の板材で
は板幅方向の応力偏差は小さく、許容範囲内であ
る。
FIG. 1a shows the distribution of stress deviation values in the width direction of the rolled material in the inner winding portion of the wound coil. As shown in FIG. 1a, the stress deviation in the plate width direction in the plate material of the inner winding portion of the coil is small and within the allowable range.

これに対して、第1図bに示すコイル外巻部の
板材では圧延直後の状態ではほとんど応力偏差が
みられないにもかかわらず、巻取後の板材では板
幅方向に大きな応力分布が観察された。すなわ
ち、外巻部の板材では板幅中心部が板幅縁部に対
して伸びた状態であつて、いわゆる中伸びの状態
であることが解かる。
On the other hand, although almost no stress deviation is observed in the plate material of the outer coil part shown in Figure 1b immediately after rolling, a large stress distribution is observed in the width direction of the plate material after winding. It was done. In other words, it can be seen that in the plate material of the outer winding part, the center part of the plate width is extended with respect to the edge part of the plate width, and is in a so-called medium elongation state.

本発明者らは、こうした巻取後のコイルの板幅
方向の形状変化はコイル巻取により発生するもの
と推定し、コイル径及び巻取張力が板幅方向の形
状変化に及ぼす影響を調査し、その結果を第2図
及び第3図に示す。
The present inventors presumed that this shape change in the width direction of the coil after winding was caused by coil winding, and investigated the effects of the coil diameter and winding tension on the shape change in the width direction. , the results are shown in FIGS. 2 and 3.

第2図及び第3図は、巻取コイル径に対する外
巻部の板材の板幅方向の形状変化を図示したもの
であり、第2図は巻取機の前方張力が4.36Kg/mm2
で、第3図は2.50Kg/mm2で巻取つたコイルの場合
を示す。
Figures 2 and 3 illustrate the shape change in the width direction of the plate material in the outer winding section with respect to the diameter of the winding coil .
Figure 3 shows the case of a coil wound at 2.50Kg/ mm2 .

第2図及び第3図に示すように、圧延直後、す
なわち巻取前の圧延材では板幅方向の形状変化は
ほとんどみられないにもかかわらず、巻取後では
コイル径が900mmを越えるとコイル径に比例して
中伸びに圧延材の板幅方向の形状変化が観察され
る。更に第2図と第3図を比較すると、第3図に
示す弱張力で巻取つた場合には形状変化率が小さ
く、巻取張力が形状変化に大きく影響しているこ
とが解かる。
As shown in Figures 2 and 3, although there is almost no shape change in the width direction of the rolled material immediately after rolling, that is, before winding, when the coil diameter exceeds 900 mm after winding, A shape change in the width direction of the rolled material is observed during mid-elongation in proportion to the coil diameter. Further, when comparing FIG. 2 and FIG. 3, it is clear that when the material is wound with the low tension shown in FIG. 3, the rate of change in shape is small, and the winding tension has a large influence on the change in shape.

本発明者らは、巻取後の形状変化について圧延
材の板クラウンの重ね合せによるコイルクラウン
(コイルが太鼓型を示す)の影響が考えられるた
め、板クラウン及びコイルクラウンの相互関係を
調査した。その結果を第4図a,b,c,dに示
す。供試材は純Al(A1050)材料であり、いずれ
の場合も約1.1%程度の板クラウンに対して約1.2
mm中高の太鼓状を示している。圧延材がこのよう
な太鼓状のコイルに巻取られる際に、板幅方向の
張力分布は板幅中央で特に大きな値を示し、これ
に起因する形状変化が考えられる。
The present inventors investigated the mutual relationship between the plate crown and the coil crown, since the shape change after winding is thought to be influenced by the coil crown (the coil exhibits a drum shape) due to the overlapping of the plate crowns of the rolled material. . The results are shown in Figures 4a, b, c, and d. The sample material is pure Al (A1050) material, and in each case, the plate crown is about 1.2% of the plate crown of about 1.1%.
It shows a drum shape with medium height. When a rolled material is wound into such a drum-shaped coil, the tension distribution in the width direction of the strip exhibits a particularly large value at the center of the strip width, and the shape change is thought to be caused by this.

従つて、コイルクラウンによる影響を考慮しな
い従来の形状制御方法では、上述の如き圧延材の
板幅方向歪を解消することができない。
Therefore, conventional shape control methods that do not consider the influence of the coil crown cannot eliminate the strain in the width direction of the rolled material as described above.

従つて、本発明は上述の従来技術の問題を解決
することを目的とする。
Therefore, the present invention aims to solve the problems of the prior art mentioned above.

更に詳細には、本発明は巻取後でも板幅方向の
形状変化の少ない圧延材を得ることのできる形状
制御方法を提供するものである。
More specifically, the present invention provides a shape control method that makes it possible to obtain a rolled material with little change in shape in the sheet width direction even after winding.

本発明に従い、所定の張力下で圧延され、巻取
られる金属材料の形状を形状検出器で検出し、該
検出値に基づいて圧延材の幅方向張力を調整して
形状を制御する方法に於いて; 圧延材の板クラウンから巻取コイルのコイルク
ラウンを求め、 該コイルクラウンに起因する巻取後の板歪を算
出し、 上記圧延板の応力−歪線図より上記歪のうちの
塑性歪を求めて該塑性歪に対応する応力を計算
し、 形状検出器で検出される張力分布が前記応力を
補正した張力分布となるように板幅方向の張力を
制御して、巻取後平坦な板を得ることを特徴とす
る圧延材の形状制御方法が提供される。
According to the present invention, in a method of detecting the shape of a metal material that is rolled and wound under a predetermined tension using a shape detector, and adjusting the width direction tension of the rolled material based on the detected value to control the shape. Find the coil crown of the coil to be wound from the plate crown of the rolled material, calculate the plate strain after winding caused by the coil crown, and calculate the plastic strain of the above strain from the stress-strain diagram of the rolled plate. The stress corresponding to the plastic strain is calculated, and the tension in the width direction of the plate is controlled so that the tension distribution detected by the shape detector becomes the tension distribution corrected for the stress, so that the plate is flat after winding. A method for controlling the shape of a rolled material is provided, the method comprising obtaining a plate.

張力分布の調整手段としては、ロールベンデイ
ング位置又は圧下シリンダ位置の変更、更にクー
ラントの板幅方向噴出量の調整等がある。
Examples of means for adjusting the tension distribution include changing the roll bending position or the position of the reduction cylinder, and adjusting the amount of coolant ejected in the plate width direction.

以下、添付の図面を参照して本発明を更に詳細
に説明する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

本発明者らの研究によると、圧延材の板幅方向
の歪分布は、圧延による歪分布、巻取コイルとそ
の直前のデフレクタロールとの間の板幅方向の圧
延材の軌跡長差による歪分布、圧延材のクリープ
による歪分布、及び上述した巻取コイルクラウン
による歪分布がある。
According to the research of the present inventors, the strain distribution in the width direction of the rolled material is due to the strain distribution due to rolling, the strain caused by the difference in trajectory length of the rolled material in the width direction between the take-up coil and the deflector roll immediately before it. distribution, strain distribution due to creep of the rolled material, and strain distribution due to the above-mentioned winding coil crown.

これらのうち、圧延による歪分布は従来より形
状検出器により検出し、ロールベンデイング及び
圧下シリンダの調整或いはクーラントの板幅方向
での噴出量調整によつて従来より行われていたも
のである。
Among these, the strain distribution due to rolling has conventionally been detected by a shape detector, and has been conventionally carried out by adjusting roll bending and rolling cylinders, or adjusting the amount of coolant ejected in the width direction of the plate.

更に軌跡長差による歪分布は、巻取ロール及び
デフレクタロールの現状のクラウンを考慮しても
せいぜい0.00025%程度のものであり、形状検出
器の測定精度よりはるかに小さいものであるので
本発明は無視する。
Furthermore, the strain distribution due to the difference in trajectory length is at most about 0.00025% even considering the current crown of the take-up roll and deflector roll, which is much smaller than the measurement accuracy of the shape detector. ignore.

また、圧延材のクリープによる歪分布について
は、圧延温度、材質によつては巻取後のクリープ
の影響を無視できない場合もあるが、本発明の方
法では一応考慮しない。
Furthermore, regarding the strain distribution due to creep in the rolled material, depending on the rolling temperature and material, the influence of creep after winding cannot be ignored in some cases, but this is not considered in the method of the present invention.

従つて、本発明では巻取コイルクラウンによる
圧延材の板幅方向の歪分布を考虜して、この歪分
布を解消する形状制御方法を提供する。
Therefore, the present invention takes into consideration the strain distribution in the width direction of a rolled material due to the winding coil crown, and provides a shape control method for eliminating this strain distribution.

第5図a及びbはそれぞれ巻取コイル及び圧延
材の断面を示す。
Figures 5a and 5b show cross-sections of the wound coil and rolled material, respectively.

圧延材のクラウンScは断面の幾何学的形状よ
り次式で表される。
The crown Sc of the rolled material is expressed by the following equation based on the geometric shape of the cross section.

Sc=hc−he/hc (1) ただし、hcは板幅中央部の厚み、 heは板幅端部の厚み、 巻取コイルは圧延材をN回巻取つて形成される
ので次式が成立する。
Sc=hc-he/hc (1) However, hc is the thickness at the center of the plate width, he is the thickness at the edge of the plate width, and the winding coil is formed by winding the rolled material N times, so the following formula holds: do.

D=2Nhe+d (2) D+2△=2Nhc+d (3) ただし、Dはコイル端部の外径 dはコイル内径 △Rはコイルクラウン量 上式(1)、(2)、(3)より下式が求められる。 D=2Nhe+d (2) D+2△=2Nhc+d (3) However, D is the outer diameter of the coil end. d is the inner diameter of the coil △R is the coil crown amount The following equation can be obtained from the above equations (1), (2), and (3).

△R=(D−d)Sc/2(1−Sc) (4) (4)式は圧延材のクラウンScがN回積み重なつ
て巻取コイルクラウン△Rになるとの仮定である
が、圧延材の剛性のため端部が厳密に重なり合う
ことはない。従つて、材質毎に巻取クラウン量を
実測して上記理論値に対する補正係数αを求めて
補正する必要がある。式(4)は補正係数αによつて
次のように補正される。
△R=(D-d)Sc/2(1-Sc) (4) Equation (4) assumes that the crown Sc of the rolled material is stacked N times to form the wound coil crown △R. Due to the rigidity of the rolled material, the ends do not overlap exactly. Therefore, it is necessary to actually measure the amount of winding crown for each material, find the correction coefficient α for the above-mentioned theoretical value, and correct it. Equation (4) is corrected by the correction coefficient α as follows.

△R=(D−d)Sc/2(1−Sc)・α (5) これにより圧延材の巻取時に発生する歪は次式
(6)によつて求められる ε2=2△R/D=(D−d)Sc/D(1−Sc)
・α(6) ここで、圧延材の最終使用時に問題となるのは
上記の歪ε2のうちの塑性歪ε2pである。従つて、
圧延後の材料の応力−歪線図より、塑性歪ε2Pを
求める。塑性歪ε2Pは、第6図に示すように応力
−歪曲線でε2の点より材料の弾性率に相当する傾
きで直線を描き、その歪量方向の軸との交点に該
当する。
△R=(D-d)Sc/2(1-Sc)・α (5) As a result, the strain generated during winding of the rolled material is calculated by the following formula:
Obtained by (6) ε 2 =2△R/D=(D-d)Sc/D(1-Sc)
・α(6) Here, it is the plastic strain ε 2 p of the above strain ε 2 that becomes a problem during the final use of the rolled material. Therefore,
The plastic strain ε 2 P is determined from the stress-strain diagram of the material after rolling. As shown in FIG. 6, the plastic strain ε 2 P corresponds to the point where a straight line is drawn from the point ε 2 on the stress-strain curve with an inclination corresponding to the elastic modulus of the material, and the line intersects with the axis in the strain direction.

第7図を参照してコイルクラウンによる歪を補
償するための形状制御方法を説明する。
A shape control method for compensating for distortion caused by the coil crown will be described with reference to FIG.

まず圧延材のクラウン率Sc、クラウン形状及
びコイルクラウン係数αを、前回の類似する圧延
材についての実測値又は仮定によつて決定する。
First, the crown ratio Sc, crown shape, and coil crown coefficient α of the rolled material are determined based on previously measured values or assumptions for a similar rolled material.

次いで形状検出ロール回転数及び圧延材の板厚
によりコイル径を計算する。
Next, the coil diameter is calculated based on the number of rotations of the shape detection roll and the thickness of the rolled material.

これらの値に基づき、圧延材の幅方向の所定の
区分i毎にコイルクラウン分布△Ri、巻取後の
歪分布ε2i、巻取後の応力分布σ2i=σ(ε2i)及び
塑性歪分布ε2piを求める。ここで、塑性歪ε2piは
上述の如く応力−歪曲線より応力分布σ2iを得て、
これより次式により求まる。
Based on these values, for each predetermined section i in the width direction of the rolled material, the coil crown distribution △Ri, the strain distribution after winding ε 2 i, and the stress distribution after winding σ 2 i = σ (ε 2 i) and the plastic strain distribution ε 2 pi. Here, the plastic strain ε 2 pi is obtained by obtaining the stress distribution σ 2 i from the stress-strain curve as described above,
From this, it can be found using the following formula.

ε2pi=ε2i−σ2i/E (6) ここでEは圧延された材料の弾性係数を示す。 ε 2 pi=ε 2 i−σ 2 i/E (6) where E indicates the elastic modulus of the rolled material.

次いで塑性歪ε2piに対応する応力分布σ2siを応
力−歪曲線より求めて次式に従い、形状検出器の
張力分布目標値を修正する。
Next, the stress distribution σ 2 si corresponding to the plastic strain ε 2 pi is determined from the stress-strain curve, and the tension distribution target value of the shape detector is corrected according to the following equation.

i*=σi*+σ0−σ2pi (7) ここで、i*は形状検出器の張力分布目標
値、 σi*はi番目の区域の圧延材の応力、 σ0は平均応力を示す。
i*=σi*+σ 0 −σ 2 pi (7) Here, i* is the tension distribution target value of the shape detector, σi* is the stress of the rolled material in the i-th area, and σ 0 is the average stress.

第8図は本発明の方法をロールベンデイング位
置とクーラントの噴出量の調整により実施する装
置の概略図である。
FIG. 8 is a schematic diagram of an apparatus for carrying out the method of the present invention by adjusting the roll bending position and the amount of coolant jetted.

圧延材1は仕上圧延スタンド2で圧延された
後、巻取機(図示せず)で巻取られる直前に形状
検出ロール(デフレクタロールとしても作動す
る)3を通過する。検出ロール3で検出された幅
方向の応力分布σi*はCPU4に入力される。
CPUでは第7図に示す手順でσ2piを計算し、i
*を制御装置5に出力する。
After the rolled material 1 is rolled in a finishing rolling stand 2, it passes through a shape detection roll (also functioning as a deflector roll) 3 immediately before being wound up in a winder (not shown). The stress distribution σi* in the width direction detected by the detection roll 3 is input to the CPU 4.
The CPU calculates σ 2 pi using the procedure shown in Figure 7, and calculates i
* is output to the control device 5.

制御装置5はロールベンデイング作動装置6及
びクーラント作動装置7を操作し、目標応力分布
σi*が達成されるようにロールベンデイング量
及びクーラントの圧延材幅方向の分布を調整す
る。
The control device 5 operates the roll bending actuating device 6 and the coolant actuating device 7, and adjusts the amount of roll bending and the distribution of coolant in the width direction of the rolled material so that the target stress distribution σi* is achieved.

実施例 純Al材(A1050)を厚さ1.13mmから0.65mmに圧
下し、コイルに巻取る圧延方法に本発明の方法を
適用した。
Example The method of the present invention was applied to a rolling method in which pure Al material (A1050) was rolled down from a thickness of 1.13 mm to 0.65 mm and wound into a coil.

圧延材のクラウン率は1%であり、板幅方向の
クラウン分布を2次曲線とし、クラウン補正係数
をα=0.48と仮定した。
It was assumed that the crown ratio of the rolled material was 1%, the crown distribution in the sheet width direction was a quadratic curve, and the crown correction coefficient was α = 0.48.

更に、応力−歪曲線を以下の式で近似した。 Furthermore, the stress-strain curve was approximated by the following formula.

σ(ε)=7000×ε/100 (ε≦0.144%) σ(ε)=10.08+233.03−191.62+54.77 ただし=ε−0.144(0.144%ε0.48%) σ(ε)=70.9/100(ε−0.48)+15.69(30.48%
) ただし、εはパーセントで示す。
σ(ε)=7000×ε/100 (ε≦0.144%) σ(ε)=10.08+233.0 3 −191.6 2 +54.77 However=ε−0.144(0.144%ε0.48%) σ(ε)= 70.9/100 (ε-0.48) + 15.69 (30.48%
) However, ε is expressed as a percentage.

以上のデータをもとに板幅を20等分して、第7
図に示す手順で板幅方向の塑性歪分布を計算し、
その結果を第9図に示す。
Based on the above data, divide the board width into 20 equal parts and
Calculate the plastic strain distribution in the plate width direction using the procedure shown in the figure.
The results are shown in FIG.

圧延材の断面形状が平坦になるように(すなわ
ちσi*=0)、目標値*を巻取コイル径毎に計
算し、その結果を第10図に示す。
The target value * was calculated for each winding coil diameter so that the cross-sectional shape of the rolled material was flat (ie, σi*=0), and the results are shown in FIG.

以上のようにして求めた*でロールベンデイ
ング位置及びクーラント量を調整し結果、極めて
平坦な断面形状の圧延材コイルが得られた。
The roll bending position and the amount of coolant were adjusted according to * determined as above, and as a result, a rolled material coil with an extremely flat cross-sectional shape was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a及びbはそれぞれ圧延材巻取コイルの
内巻部及び外巻部の幅方向の応力分布を巻取前及
び巻取後の状態で示す。第2図は圧延材の巻取前
及び巻取後の状態の幅方向の伸び率の変化とコイ
ル径との関係を示す。第3図は巻取機の前方張力
を低下して巻取つた場合の第2図と類似のグラフ
である。第4図a,b,c及びdは圧延材クラウ
ンと巻取コイルクラウンを比較して示す。第5図
aは巻取コイル断面を、第5図bは圧延材断面を
それぞれ示す。第6図は圧延材の応力−歪曲線を
示す。第7図は本発明に従い張力分布目標値を求
める方法のフローチヤートである。第8図は本発
明の方法を実施するための装置の概略図である。
第9図は本発明に従い、圧延材の巻取コイルの幅
方向の塑性歪分布をコイル径毎に求めた結果を示
す。第10図は第8図に示す塑性歪分布を補償す
るための応力分布目標値をコイル径毎に求めた結
果を示す。
Figures 1a and 1b show the stress distribution in the width direction of the inner and outer winding parts of the rolled material winding coil before and after winding, respectively. FIG. 2 shows the relationship between the change in the elongation rate in the width direction and the coil diameter before and after winding of the rolled material. FIG. 3 is a graph similar to FIG. 2 when winding is performed with the front tension of the winder being reduced. Figures 4a, b, c and d show a comparison of the rolled material crown and the wound coil crown. FIG. 5a shows a cross section of the wound coil, and FIG. 5b shows a cross section of the rolled material. FIG. 6 shows the stress-strain curve of the rolled material. FIG. 7 is a flowchart of a method for determining a target tension distribution value according to the present invention. FIG. 8 is a schematic diagram of an apparatus for carrying out the method of the invention.
FIG. 9 shows the results of determining the plastic strain distribution in the width direction of a wound coil of a rolled material for each coil diameter according to the present invention. FIG. 10 shows the results of determining stress distribution target values for each coil diameter to compensate for the plastic strain distribution shown in FIG. 8.

Claims (1)

【特許請求の範囲】 1 所定の張力下で圧延され、巻取られる金属材
料の形状を形状検出器で検出し、該検出値に基づ
いて圧延材の幅方向張力を調整して形状を制御す
る方法に於いて; 圧延材の板クラウンから巻取コイルのコイルク
ラウンを求め、 該コイルクラウンに起因する巻取後の板歪を算
出し、 上記圧延板の応力−歪線図より上記歪のうちの
塑性歪を求めて該塑性歪に対応する応力を計算
し、 形状検出器で検出される張力分布が前記応力を
補正した張力分布となるように板幅方向の張力を
制御して、巻取後平坦な板を得ることを特徴とす
る圧延材の形状制御方法。 2 圧延機のロールベンデイング位置を変更する
ことによつて板幅方向の張力分布を制御すること
を特徴とする特許請求の範囲第1項に記載の圧延
材の形状制御方法。 3 圧延機に付設されたクーラント噴出手段の板
幅方向の噴出量を変更することによつて板幅方向
の張力分布を制御することを特徴とする特許請求
の範囲第1項に記載の圧延材の形状制御方法。
[Claims] 1. The shape of the metal material being rolled and wound under a predetermined tension is detected by a shape detector, and the shape is controlled by adjusting the widthwise tension of the rolled material based on the detected value. In the method; the coil crown of the coil to be wound is determined from the plate crown of the rolled material, the plate strain after winding caused by the coil crown is calculated, and the stress-strain diagram of the rolled plate is used to determine the amount of the above distortion. Find the plastic strain of the sheet, calculate the stress corresponding to the plastic strain, control the tension in the width direction of the sheet so that the tension distribution detected by the shape detector is the tension distribution corrected for the stress, and then wind the sheet. A method for controlling the shape of a rolled material, characterized by obtaining a flat plate. 2. The method for controlling the shape of a rolled material according to claim 1, characterized in that the tension distribution in the width direction of the sheet is controlled by changing the roll bending position of the rolling mill. 3. The rolled material according to claim 1, wherein the tension distribution in the width direction of the plate is controlled by changing the amount of spray in the width direction of the coolant jetting means attached to the rolling mill. shape control method.
JP58001550A 1983-01-08 1983-01-08 Method for controlling shape of rolled material Granted JPS59127914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58001550A JPS59127914A (en) 1983-01-08 1983-01-08 Method for controlling shape of rolled material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58001550A JPS59127914A (en) 1983-01-08 1983-01-08 Method for controlling shape of rolled material

Publications (2)

Publication Number Publication Date
JPS59127914A JPS59127914A (en) 1984-07-23
JPS645963B2 true JPS645963B2 (en) 1989-02-01

Family

ID=11504630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58001550A Granted JPS59127914A (en) 1983-01-08 1983-01-08 Method for controlling shape of rolled material

Country Status (1)

Country Link
JP (1) JPS59127914A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59144508A (en) * 1983-02-04 1984-08-18 Mitsubishi Alum Co Ltd Rolling method of metallic sheet material
JP2693495B2 (en) * 1988-07-07 1997-12-24 石川島播磨重工業株式会社 Rolling method and rolling equipment

Also Published As

Publication number Publication date
JPS59127914A (en) 1984-07-23

Similar Documents

Publication Publication Date Title
JP3253013B2 (en) Strip crown and shape control method in hot rolling
JPS645963B2 (en)
JP2010099722A (en) Method and device for controlling pinch roll of winding machine
JP3230648B2 (en) Shape control method in reverse rolling
JP3067879B2 (en) Shape control method in strip rolling
JPS6111123B2 (en)
JP3069001B2 (en) Feedback control method of sheet crown / shape model
JP2670164B2 (en) Method of reducing L warpage in cold rolling
WO2024057454A1 (en) Camber control device for continuous rolling mill
JP3117913B2 (en) Shape control method and temper rolling mill in temper rolling
JP3587579B2 (en) Metal strip profile control method in tandem cold rolling mill
JP3396774B2 (en) Shape control method
JP2002066635A (en) Method for manufacturing hot rolled steel strip
JP2650575B2 (en) Thick plate width control rolling method
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JP3440737B2 (en) Camber control method in thick plate rolling
JP3516726B2 (en) Edge drop control method during cold rolling
JP2583695B2 (en) Rolling mill
JP2950182B2 (en) Manufacturing method of tapered steel plate
JP2661497B2 (en) Strip crown control device and strip crown control method during hot rolling
JP2001179332A (en) Control method and device for winding banded steel material
JP2000301221A (en) Method for controlling edge drop during cold rolling
JP2719216B2 (en) Edge drop control method for sheet rolling
JPS6390309A (en) Plane shape control method for sheet stock rolling mill
JPH07236905A (en) Method for controlling crown