JPS645446B2 - - Google Patents

Info

Publication number
JPS645446B2
JPS645446B2 JP6904582A JP6904582A JPS645446B2 JP S645446 B2 JPS645446 B2 JP S645446B2 JP 6904582 A JP6904582 A JP 6904582A JP 6904582 A JP6904582 A JP 6904582A JP S645446 B2 JPS645446 B2 JP S645446B2
Authority
JP
Japan
Prior art keywords
superconducting
terminal
coil
superconducting coil
terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6904582A
Other languages
Japanese (ja)
Other versions
JPS58186909A (en
Inventor
Toshizo Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6904582A priority Critical patent/JPS58186909A/en
Publication of JPS58186909A publication Critical patent/JPS58186909A/en
Publication of JPS645446B2 publication Critical patent/JPS645446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Description

【発明の詳細な説明】 この発明は超電導コイルの保護装置に関するも
のであり、特に超電導コイルの運転中に内乱また
は外乱等により生じるクエンチ(超電導状態より
常電導状態への急激な転移)時に超電導コイルを
保護する超電導コイルの保護装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a protection device for a superconducting coil, and in particular, protects the superconducting coil from quenching (rapid transition from superconducting state to normal conducting state) caused by internal disturbance or disturbance during operation of the superconducting coil. This invention relates to a superconducting coil protection device that protects superconducting coils.

第1図は従来の超電導コイルの保護装置を示す
電気結線図である。第1図において、超電導コイ
ル1は、その両端の端子である第1の端子10
1、第2の端子102と、これら第1、第2の端
子101,102に接続された第1の電圧検出用
端子103、第2の電圧検出用端子104と、超
電導コイル1のインダクタンスより見た中点端子
105とを備えている。電源接続端子201,2
02は高速度遮断器等のスイツチ3を介して第
1、第2の端子101,102に接続されてい
る。電圧比較装置4は第1の端子101と中点端
子105間の電圧と第2の端子102と中点端子
105間の電圧を比較し、その差が所定値以上に
なるとスイツチ3を開放させる出力を生じるもの
である。保護回路5は例えば抵抗であり、第1、
第2の端子101,102間に接続されており、
スイツチ3の開放時に超電導コイル1の電流が供
給されて、この電流を減衰させるものである。
FIG. 1 is an electrical wiring diagram showing a conventional superconducting coil protection device. In FIG. 1, a superconducting coil 1 has first terminals 10 at both ends thereof.
1. The second terminal 102, the first voltage detection terminal 103 and the second voltage detection terminal 104 connected to the first and second terminals 101 and 102, and the inductance of the superconducting coil 1. A midpoint terminal 105 is provided. Power connection terminal 201, 2
02 is connected to first and second terminals 101 and 102 via a switch 3 such as a high-speed circuit breaker. The voltage comparator 4 compares the voltage between the first terminal 101 and the midpoint terminal 105 with the voltage between the second terminal 102 and the midpoint terminal 105, and outputs an output that opens the switch 3 when the difference exceeds a predetermined value. It is something that causes The protection circuit 5 is, for example, a resistor, and the first,
It is connected between the second terminals 101 and 102,
When the switch 3 is opened, a current is supplied to the superconducting coil 1, and this current is attenuated.

次に動作について説明する。今、超電導コイル
1の超電導状態が安定に継続しておれば、第1の
端子101と中点端子105間並びに第2の端子
102と中点端子105間には電圧は発生しな
い。また電源接続端子201,202からの励磁
電流iが変化すると、いわゆるLdi/dtなる電圧
が第1の端子101と中点端子105間並びに第
2の端子102と中点端子105間に発生する
が、中点端子105が丁度超電導コイル1のイン
ダクタンスの中点であれば、前記両端子間のイン
ダクタンスLが相等しく、丁度つり合つた電圧が
発生する。この状態では電圧比較装置4は動作し
ないように構成されており、例えばブリツジ結線
で構成されている。
Next, the operation will be explained. Now, if the superconducting state of the superconducting coil 1 continues stably, no voltage will be generated between the first terminal 101 and the midpoint terminal 105 and between the second terminal 102 and the midpoint terminal 105. Furthermore, when the excitation current i from the power supply connection terminals 201 and 202 changes, a voltage called Ldi/dt is generated between the first terminal 101 and the midpoint terminal 105 and between the second terminal 102 and the midpoint terminal 105. , if the midpoint terminal 105 is exactly the midpoint of the inductance of the superconducting coil 1, the inductances L between the two terminals are equal, and exactly balanced voltages are generated. In this state, the voltage comparator 4 is configured not to operate, and is configured, for example, by a bridge connection.

次に、超電導コイル1内の内乱、例えば電磁力
で部分的にワイヤが動くワイヤ運動によつて摩擦
熱が生じ、または超電導コイル1内への磁束の急
激な侵入であるフラツクスジヤンプ等の原因によ
つて、超電導コイル1が部分的に発熱しその部分
の超電導状態が破られると、常電導化して電圧が
発生する。この常電導転移は超電導コイル1全体
に一度に起るのではなく、上述の原因によつてど
こか1箇所にその種ができ、それが回復不可能に
なつて初めて超電導コイル1全体への波及が起
る。この速度は数〜数十m/s程度の伝播とされ
ており、この現象が第1の端子101と中点端子
105間並びに第2の端子102と中点端子10
5間に、同時に全く同じ形態で起る確率は極めて
低い。従つて、第1の端子101と中点端子10
5間並びに第2の端子102の中点端子105間
の電圧を電圧比較装置4において比較監視すれ
ば、クエンチの発生が比較的早期に発見できる。
このクエンチの発生を電圧比較装置4において検
出すると、スイツチ3を開放して超電導コイル1
の電流を保護回路5に流し、保護回路5の抵抗R
と超電導コイル1のインダクタンスLとで定まる
減衰時定数L/Rで電流を減衰させ、超電導コイ
ル1を保護する。
Next, causes of internal disturbances within the superconducting coil 1, such as frictional heat caused by wire movement where the wire partially moves due to electromagnetic force, or flux jump, which is the sudden intrusion of magnetic flux into the superconducting coil 1. As a result, when the superconducting coil 1 partially generates heat and the superconducting state of that part is broken, it becomes normal conductive and a voltage is generated. This normal conduction transition does not occur in the entire superconducting coil 1 at once, but seeds are formed somewhere due to the above-mentioned causes, and only when it becomes irrecoverable does it spread to the entire superconducting coil 1. happens. This speed is said to propagate at several to several tens of m/s, and this phenomenon occurs between the first terminal 101 and the midpoint terminal 105 and between the second terminal 102 and the midpoint terminal 10.
The probability that two events will occur in exactly the same form at the same time is extremely low. Therefore, the first terminal 101 and the midpoint terminal 10
5 and between the midpoint terminal 105 of the second terminal 102 are compared and monitored by the voltage comparator 4, the occurrence of quench can be detected relatively early.
When the voltage comparator 4 detects the occurrence of this quench, the switch 3 is opened and the superconducting coil 1
flows through the protection circuit 5, and the resistance R of the protection circuit 5
The current is attenuated by the attenuation time constant L/R determined by the inductance L of the superconducting coil 1 and the inductance L of the superconducting coil 1, thereby protecting the superconducting coil 1.

実際には、ノイズ等の誤動作を防止するため
に、ある程度常電導領域が確立してから電圧比較
装置4が動作するように、電圧比較装置4に検出
レベルを設定して、ある程度の時間遅れが与えら
れている。
In practice, in order to prevent malfunctions due to noise, etc., a detection level is set in the voltage comparator 4 so that the voltage comparator 4 operates after the normal conductivity region has been established to a certain extent, and a certain amount of time delay is established. It is given.

以上のように構成された従来の装置では、単一
の超電導コイル1に対しては極めて簡単で有効で
あるが、複数の超電導コイル1を同軸状に複数層
設置し、各々が無関係に励磁電流を変化させる場
合には、次に説明するように保護が不可能とな
る。すなわち複数の超電導コイル1を各々勝手に
励磁すると、それは該当コイルから見ると外部磁
界に変動となる。特に複数の超電導コイル1内に
同軸状に水冷の常電導コイルを設置して構成され
たハイブリツド・マグネツトの場合においては、
いかに軸方向に対称に磁界分布するように考慮を
払つても、各々の超電導コイル1の中点端子10
5の選び方が悪いと、磁界変動による電圧発生に
不平衡を生じて、異常がなくても保護回路5を働
かしてしまうことになる。
The conventional device configured as described above is extremely simple and effective for a single superconducting coil 1, but a plurality of superconducting coils 1 are installed coaxially in multiple layers, and each one receives an exciting current independently of the other. , protection becomes impossible as explained below. That is, when a plurality of superconducting coils 1 are individually excited, the external magnetic field changes when viewed from the corresponding coil. In particular, in the case of a hybrid magnet configured by coaxially installing a water-cooled normal conducting coil within a plurality of superconducting coils 1,
No matter how much consideration is given to axially symmetrical magnetic field distribution, the center terminal 10 of each superconducting coil 1
If 5 is selected incorrectly, imbalance will occur in voltage generation due to magnetic field fluctuations, and the protection circuit 5 will be activated even if there is no abnormality.

一般に超電導マグネツトは、最小の励磁電力で
強力なマグネツトが作れるが、磁界に限界があり
8T(テスラ)〜12Tが最大とされている。世界最
強マグネツトは30T程度のものがあるが、不足分
は超電導マグネツトの内側に水冷の常電導マグネ
ツトを設置して、最大10MW級の励磁電力が得ら
れるようにハイブリツド・マグネツトに構成され
るが、この場合において上述の欠点が生じる。ま
た、常電導マグネツトの励磁電源は一般に大容量
でノイズ性の要素も多く、異常がなくても保護回
路5を働かせる場合がより多くなる。さらに超電
導コイル1の小型化は、中心部により高磁界に耐
え得る超電導材を用いることによつてなされ、内
層は外層よりも材料を二種類以上加えることがあ
り、これをグレーデイングという。従つて内層と
外層とを全く同コイル状に作つても、相互に無関
係に考えることができなくなり、保護回路5の動
作がさらに複雑となる。
In general, superconducting magnets can produce strong magnets with minimal excitation power, but there is a limit to the magnetic field.
The maximum is 8T (Tesla) to 12T. The world's strongest magnets are around 30T, but to make up for the shortfall, a water-cooled normal conducting magnet is installed inside the superconducting magnet to create a hybrid magnet that can generate up to 10MW of excitation power. In this case, the disadvantages mentioned above arise. In addition, the excitation power source for a normally conductive magnet generally has a large capacity and has many noise elements, so that the protection circuit 5 is often activated even if there is no abnormality. Further, the size of the superconducting coil 1 is reduced by using a superconducting material that can withstand higher magnetic fields in the center, and the inner layer may be made of two or more materials than the outer layer, and this is called grading. Therefore, even if the inner layer and the outer layer are made in exactly the same coil shape, they cannot be considered independently of each other, and the operation of the protection circuit 5 becomes even more complicated.

この発明は以上のような従来の欠点を除去する
ためになされたものである。以下面図によつてこ
の発明の一実施例を説明する。
This invention was made in order to eliminate the above-mentioned conventional drawbacks. An embodiment of the present invention will be described with reference to the drawings below.

第2図はこの発明に係る超電導コイルの保護装
置の一実施例を示す電気結線図、第3図は第2図
の部分拡大図である。図中、第1図と同一部分も
しくは相当部分には同一符号もしくは同一符号に
サフイツクスを付している。第2図および第3図
において、超電導コイル1はグレーデイングされ
た層状の第1の超電導コイル1a、第2の超電導
コイル1bおよび第3の超電導コイル1cから構
成され、それぞれの両端の端子である第1の端子
101a,101b,101c、並びに第2の端
子102a,102b,102cと、第1の端子
101a,101b,101cに接続された第1
の電圧検出用端子103a,103b,103
c、並びに第2の端子102a,102b,10
2cに接続された第2の電圧検出用端子104
a,104b,104cと、中点端子105a,
105b,105cとを備えている。電源接続端
子201a,201b,201c,202a,2
02b,202cは高速度遮断器等のスイツチ3
a,3b,3cを介して第1の端子101a,1
01b,101cと第2の端子102a,102
b,102cに接続されている。電圧比較装置4
は第1、第2、第3の超電導コイル1a,1b,
1cのそれぞれの第1の端子101a,101
b,101cと中点端子105a,105b,1
05c間の電圧と、第2の端子102a,102
b,102cと中点端子105a,105b,1
05c間の電圧をそれぞれのコイル毎に比較し、
少なくとも一つのコイルにおけるその差が所定値
以上になるとスイツチ3a,3b,3cを開放さ
せる出力を生じるものである。保護回路5a,5
b,5cは例えば抵抗であり、第1の端子101
a,101b,101cと第2の端子102a,
102b,102c間に接続されており、スイツ
チ3a,3b,3cの開放時に第1、第2、第3
の超電導コイル1a,1b,1cの電流が供給さ
れて、この電流を減衰させるものである。水冷の
常電導コイル6は超電導コイル1の内部中央に設
置され、超電導コイル1と共にハイブリツド構成
を取るものである。
FIG. 2 is an electrical wiring diagram showing an embodiment of the superconducting coil protection device according to the present invention, and FIG. 3 is a partially enlarged view of FIG. 2. In the figure, parts that are the same as or equivalent to those in FIG. In FIG. 2 and FIG. 3, the superconducting coil 1 is composed of a first superconducting coil 1a, a second superconducting coil 1b, and a third superconducting coil 1c, each of which has a graded layered structure, with terminals at both ends of each. The first terminals 101a, 101b, 101c, the second terminals 102a, 102b, 102c, and the first terminals connected to the first terminals 101a, 101b, 101c.
Voltage detection terminals 103a, 103b, 103
c, and second terminals 102a, 102b, 10
The second voltage detection terminal 104 connected to 2c
a, 104b, 104c, and the midpoint terminal 105a,
105b and 105c. Power supply connection terminals 201a, 201b, 201c, 202a, 2
02b, 202c are switches 3 such as high speed circuit breakers
The first terminals 101a, 1 via a, 3b, 3c
01b, 101c and second terminals 102a, 102
b, 102c. Voltage comparison device 4
are the first, second, and third superconducting coils 1a, 1b,
1c, each of the first terminals 101a, 101
b, 101c and midpoint terminals 105a, 105b, 1
05c and the second terminal 102a, 102
b, 102c and midpoint terminals 105a, 105b, 1
Compare the voltage between 05c for each coil,
When the difference in at least one coil exceeds a predetermined value, an output is generated that opens the switches 3a, 3b, and 3c. Protection circuit 5a, 5
b, 5c are resistors, for example, and the first terminal 101
a, 101b, 101c and the second terminal 102a,
102b and 102c, and when the switches 3a, 3b, and 3c are opened, the first, second, and third
A current is supplied to the superconducting coils 1a, 1b, and 1c, and this current is attenuated. A water-cooled normal conductive coil 6 is installed at the center inside the superconducting coil 1, and has a hybrid configuration together with the superconducting coil 1.

次に動作について説明する。今、第1の超電導
コイル1aに流れる電流をi1、第1の端子101
aと中点端子105a間のインダクタンスをL1
第2の端子102aと中点端子105a間のイン
ダクタンスをL2、常電導コイル6に流れる電流
をi6、電流i6によりインダクタンスL1,L2への相
互インダクタンスをM1,M2とすると、インダク
タンスL1,L2の端子間電圧V1,V2はそれぞれ次
式で表わされる。ただし超電導状態が保たれてい
るものとする。
Next, the operation will be explained. Now, the current flowing through the first superconducting coil 1a is i 1 , and the current flowing through the first terminal 101 is
The inductance between a and the midpoint terminal 105a is L 1 ,
Let L 2 be the inductance between the second terminal 102a and the midpoint terminal 105a, i 6 be the current flowing through the normally conducting coil 6 , and let M 1 and M 2 be the mutual inductances caused by the current i 6 to the inductances L 1 and L 2 . , the voltages V 1 and V 2 between the terminals of the inductances L 1 and L 2 are respectively expressed by the following equations. However, it is assumed that the superconducting state is maintained.

V1=L1di1/dt+M1di6/dt V2=L2di1/dt+M2di6/dt 第1の超電導コイル1aが第2図において、上
下完全に対称に構成されているとすると、L1
L2、M1=M2が成立し、i1およびi2に如何なる変
動があつても常にV1=V2が成立して、電圧平衡
が保たれる。これは第1、第2、第3の超電導コ
イル1a,1b,1cと常電導コイル6との如何
なる組合せにおいても同様なことが成立する。従
つて、超電導状態が保たれた通常の運転モード
で、第1、第2、第3の超電導コイル1a,1
b,1c並びに常電導コイル6の励磁電流を各々
無関係に変化させても、常電導転移がない限り電
圧の平衡はくずれず、クエンチ検知が完全に行わ
れる。
V 1 = L 1 di 1 / dt + M 1 di 6 / dt V 2 = L 2 di 1 / dt + M 2 di 6 / dt As shown in Fig. 2, the first superconducting coil 1a is configured vertically and completely symmetrically. Then, L 1 =
L 2 , M 1 =M 2 holds true, and no matter what fluctuations occur in i 1 and i 2 , V 1 =V 2 always holds true, and voltage balance is maintained. This holds true for any combination of the first, second, and third superconducting coils 1a, 1b, and 1c and the normal conducting coil 6. Therefore, in the normal operation mode in which the superconducting state is maintained, the first, second, and third superconducting coils 1a, 1
Even if the excitation currents b, 1c and the normal conducting coil 6 are changed independently, the voltage balance will not be disrupted as long as there is no normal conducting transition, and quench detection will be performed perfectly.

また、クエンチの発生でなく、常電導コイル6
の異常、例えばどこかに層間短絡が起つた場合を
想定すると、一般には常電導コイル6の第2図に
おける上下の磁束分布に非対称を生じる。このと
きM1≠M2となるのでV1≠V2となり、電圧比較
装置4は出力を生じてスイツチ3a,3b,3c
を開放させ、保護回路5a,5b,5cに第1、
第2、第3の超電導コイル1a,1b,1cの電
流を流して減衰させ、装置の安全を保つ。またこ
の場合において、常電導コイル6も同様に電源回
路のスイツチ(図示せず)を開放してもよい。
In addition, instead of quenching, the normal conduction coil 6
If it is assumed that an abnormality occurs, for example, an interlayer short circuit occurs somewhere, an asymmetry will generally occur in the upper and lower magnetic flux distributions of the normally conducting coil 6 in FIG. 2. At this time, since M 1 ≠ M 2 , V 1 ≠ V 2 , and the voltage comparator 4 produces an output and switches 3a, 3b, 3c.
is opened, and the protection circuits 5a, 5b, 5c are
The safety of the device is maintained by passing current through the second and third superconducting coils 1a, 1b, and 1c to attenuate it. Further, in this case, a switch (not shown) of the power supply circuit may be opened for the normal conduction coil 6 as well.

以上のようにこの発明によれば、層状に設置さ
れた複数の超電導コイルの各超電導コイル毎に、
電圧検出用端子をその両端および中点より出し、
これを相互に比較するように構成しているため、
クエンチの検知が完全に行われるのみならず、他
のコイルと結合された場合においても安全保護が
できる効果を有する。
As described above, according to the present invention, for each superconducting coil of a plurality of superconducting coils installed in layers,
Bring out the voltage detection terminals from both ends and the middle point,
I have configured this to compare with each other, so
Not only is the quench detected completely, but it also has the effect of providing safety protection even when combined with other coils.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の超電導コイルの保護装置を示す
電気結線図、第2図はこの発明に係る超電導コイ
ルの保護装置の一実施例を示す電気結線図、第3
図は第2図の部分拡大図である。 図において、1a,1b,1cは第1、第2、
第3の超電導コイル、101a,101b,10
1cは第1の端子、102a,102b,102
cは第2の端子、103a,103b,103c
は第1の電圧検出用端子、104a,104b,
104cは第2の電圧検出用端子、105a,1
05b,105cは中点端子、201a,201
b,201c,202a,202b,202cは
電源接続端子、3a,3b,3cはスイツチ、4
は電圧比較装置、5a,5b,5cは保護回路、
6は常電導コイルである。なお、各図中同一部分
もしくは相当部分には同一符号もしくは同一符号
にサフイツクスを付している。
FIG. 1 is an electrical wiring diagram showing a conventional superconducting coil protection device, FIG. 2 is an electrical wiring diagram showing an embodiment of the superconducting coil protection device according to the present invention, and FIG.
The figure is a partially enlarged view of FIG. 2. In the figure, 1a, 1b, 1c are the first, second,
Third superconducting coil, 101a, 101b, 10
1c is the first terminal, 102a, 102b, 102
c is the second terminal, 103a, 103b, 103c
are first voltage detection terminals, 104a, 104b,
104c is a second voltage detection terminal, 105a, 1
05b, 105c are middle point terminals, 201a, 201
b, 201c, 202a, 202b, 202c are power supply connection terminals, 3a, 3b, 3c are switches, 4
is a voltage comparator, 5a, 5b, 5c are protection circuits,
6 is a normal conducting coil. In each figure, the same parts or corresponding parts are denoted by the same reference numerals or a suffix attached to the same reference numerals.

Claims (1)

【特許請求の範囲】[Claims] 1 同軸状に複数層施された複数の超電導コイ
ル、前記の複数の超電導コイルの内部中心部に配
置された常電導コイル、前記複数の超電導コイル
のそれぞれの両端と中間点の電圧を前記複数の超
電導コイル毎にそれぞれ比較し差電圧が所定値以
上になると付勢される電圧比較装置、および前記
電圧比較装置の付勢時に前記複数個の超電導コイ
ルから電流が供給され前記電流を減衰させる保護
回路を備えたことを特徴とする超電導コイルの保
護装置。
1 A plurality of superconducting coils formed in multiple layers coaxially, a normal conducting coil arranged at the center of the plurality of superconducting coils, and a voltage at both ends and a midpoint of each of the plurality of superconducting coils, a voltage comparison device that compares each superconducting coil and is activated when a differential voltage exceeds a predetermined value; and a protection circuit that receives current from the plurality of superconducting coils and attenuates the current when the voltage comparison device is activated. A superconducting coil protection device characterized by comprising:
JP6904582A 1982-04-23 1982-04-23 Protection apparatus for superconductive coil Granted JPS58186909A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6904582A JPS58186909A (en) 1982-04-23 1982-04-23 Protection apparatus for superconductive coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6904582A JPS58186909A (en) 1982-04-23 1982-04-23 Protection apparatus for superconductive coil

Publications (2)

Publication Number Publication Date
JPS58186909A JPS58186909A (en) 1983-11-01
JPS645446B2 true JPS645446B2 (en) 1989-01-30

Family

ID=13391214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6904582A Granted JPS58186909A (en) 1982-04-23 1982-04-23 Protection apparatus for superconductive coil

Country Status (1)

Country Link
JP (1) JPS58186909A (en)

Also Published As

Publication number Publication date
JPS58186909A (en) 1983-11-01

Similar Documents

Publication Publication Date Title
EP1864305B1 (en) On-load tap changer
EP0464679B1 (en) Superconducting AC current limiter equipped with quick-recoverable trigger coils
US5414586A (en) Superconducting current limiting device
US5218505A (en) Superconductor coil system and method of operating the same
EP0227407A2 (en) A protection circuit for a power converter apparatus
US3466504A (en) Continuous shunt protection means for superconducting solenoids
EP0399481B1 (en) Current limiting device
US4349853A (en) Strong magnetic field generator and method of operating the same
US4081853A (en) Overcurrent protection system
JPS645446B2 (en)
JPH02202320A (en) Superconducting current limiter
CA1047127A (en) Superconductive sensing circuit for providing improved signal-to-noise
JPH06347575A (en) Magnetic field generator with protector against quench of superconducting coil and quench protection coil
JP3051916B2 (en) Flux-balanced superconducting current limiter
US6335851B1 (en) Current-limiting device
JP2901068B2 (en) Current limiting device
JPH06132120A (en) Superconductive magnet apparatus
EP0107359A2 (en) Alternating current limiting type semiconductor current circuit breaker
JP2533119B2 (en) Superconducting device for short circuit suppression
JP2599986B2 (en) Superconducting magnet protection method and protection device
JP2937403B2 (en) switchboard
JPH0446521A (en) Power distribution system
JPS63202005A (en) Protective circuit of plurality of superconducting winding
JP2679020B2 (en) Superconducting device and thermal permanent current switch
Mbunwe et al. Solid-State Protection of a Perturbed Electric Power System Network