JPS644839Y2 - - Google Patents

Info

Publication number
JPS644839Y2
JPS644839Y2 JP6041384U JP6041384U JPS644839Y2 JP S644839 Y2 JPS644839 Y2 JP S644839Y2 JP 6041384 U JP6041384 U JP 6041384U JP 6041384 U JP6041384 U JP 6041384U JP S644839 Y2 JPS644839 Y2 JP S644839Y2
Authority
JP
Japan
Prior art keywords
sintered body
cbn
hard
base
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6041384U
Other languages
Japanese (ja)
Other versions
JPS60172764U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6041384U priority Critical patent/JPS60172764U/en
Publication of JPS60172764U publication Critical patent/JPS60172764U/en
Application granted granted Critical
Publication of JPS644839Y2 publication Critical patent/JPS644839Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

【考案の詳細な説明】 (1) 技術分野 本考案は、高温まで使用可能な工具用複合焼結
体を提供するものである。 (2) 従来技術とその問題点 立方晶窒化硼素(以下CBNと記す)はダイヤ
モンドに次ぐ高硬度な物質である。また熱伝導度
に優れ、高温における鉄属金属との反応性が少い
物質であり、超高圧高温下で合成される。 近年このCBNを焼結した硬質焼結体が開発さ
れ、実用に供されるようになつてきている。通常
これらの硬質焼結体は第3図に示すような硬質焼
結体層1が超硬合金などよりなる基体2に貼り合
わされた構造となつており、この複合構造焼結体
が工具本体に鑞付けにより固着されて用いられて
いる。 この硬質焼結体と基板との結合材としては、
Al,CO等の金属系のものやAl2O3,TiN等のセ
ラミツク系のものが知られている。 また、特公昭58−19428には、ダイヤモンド又
はCBNの粒子あるいはこれらの混合物とこれら
粒子と溶媒金属である結合母材とから成る硬質成
形体をTi,Ta及びかかる金属を含有する高温ロ
ー付合金からなる層を介して支持体に結合されて
いる研摩用物体が示されている。この場合も、硬
質成形体にはダイヤモンド又はCBN粒子以外に
これら粒子の溶媒となり得る金属、例えばダイヤ
モンドではCo,Ni,Feなど、CBNではAl,Pb,
Snなどが含有されている。 本願考案の如く、硬質焼結体中のCBNが実質
的に100%である場合、公知の方法では接合力が
弱くなり実用に供されない。 上述の如く、従来の工具用CBN焼結体は、金
属系またはセラミツク系の結合材を含み、これら
の混合粉末を主として超硬合金よりなる基体上に
配置し超高圧高温下で焼結することによつて製造
している。この焼結時に基体中の結合材、例えば
超硬合金の場合はCoは溶融して、CBN焼結体と
基体の界面近くでCBN焼結体を基体に接合させ
るための結合材として有効に働く。また、CBN
焼結体中の金属結合材もCBN粒子相互の結合は
勿論のこと、CBN焼結体と基体との接合にも有
効である。 しかし、CBN焼結体が実質的に100%のCBN
より成る場合、上述の2つの効果による焼結体と
基体との接合力は極めて弱くなる。これは、
CBNと基体中の結合材金属とのぬれ性が悪いた
め基体中の結合材金属がCBN焼結体と基体との
接合に有効に働かないためである。 (3) 考案の開示 本考案者らは以上の点に鑑み、研究を重ねた結
果、本考案を完成したものである。すなわち本願
はCBNの含有量が極めて多い硬質焼結体に関す
るものである。このようなCBNよりなる硬質焼
結体は通常六方晶窒化硼素(hBN)と数%以内
のhBNをCBNに変換する触媒物質、例えば窒化
硼素マグネシウム(Mg3BN3)とを出発原料とし
て超高温、高圧下で焼結する。このとき微量に触
媒物質が焼結体中に残つたり、未変換のhBNが
残つたりする。 従つて、本願でいう硬質焼結体は大部分が
CBNからなり、その量は95体積%以上である。 CBNは、反応性に乏しい物質であり、これを
実際の工具等で使用する場合は基体に接合した方
が種々使い勝手がよい。また強度補強も可能であ
る。 発明者等が鋭意検討した結果、この種硬質焼結
体はMo,Ti,Zr,Ta等と特に接合性がよいこ
とを見出したのある。 実質的に100%のCBN焼結体よりなる硬質焼結
体は熱伝導度が高くしかも鉄族金属との反応性が
少いため、工具用材料として注目されていたが基
体との接合が困難であつたために実用化が遅くな
つていたものである。 本考案複合焼結体を用いることで、バイトやス
ローアウエイチツプにロー付して使用することも
できる。 本考案において、焼結後実質的に100%のCBN
焼結体になるように配合された出発原料を高融点
金属と隣接した状態で超高圧高温発生室内に配
し、CBNの熱力学的に安定な領域で数分間以上
曝す。この焼結中に出発原料は実質的に100%の
CBNの焼結体を形成し、これと接した高融点金
属と反応して硼化物を形成し強固に硬質焼結体と
接合する。 焼結が終了した後、始めに温度を、次いで圧力
を下げて、複合焼結体を回収する。その後、工具
として使用するための形に研摩することができ
る。 本考案複合焼結体は、高融点金属と実質的に
100%のCBNから成る硬質焼結体が強固に接合し
ている。工具本体と高融点金属をロー付によつて
接合し、バイトやスローアウエイチツプとしても
使用でき、また、断続切削に対しても問題なく使
用できることがわかつた。 本願でいう硬質焼結体中のCBN粒子径は、特
に限定するものではないが比較的微粒のものの方
が望ましい。また高融点金属はMo,Ti,Zr,
Ta等を利用することができるが、Moは特に接合
強度が高く望ましい。しかしながら、他の金属を
用いても、ほぼ同等の効果を得ることができる。
高融点金属層の厚さは特に限定するものではない
が3mm以下が望ましい。硬質焼結体中のCBN以
外の物質としては、微量のCBNの合成物質、
hBN、高融点金属等の化合物や単体が含まれて
もよい。 以下図面を用いて実施例を示す。 第1図は本願考案によつて得た高融点金属と硬
質焼結体が接合した例を示す。第2図は本願で得
た工具用複合焼結体をスローアウエイチツプに用
いた場合を示す。 出発原料として平均粒度1μmの六方晶型窒化硼
素とCBNの合成触媒物質として窒化硼素マグネ
シウムをモル比で98:2に混合したものを用い
た。 この混合粉末を高融点金属が第1表に示す厚み
となるように配置した状態で、超高圧高温発生室
内に配し1350℃、5.5GPaの条件で10分間焼結す
る。 このようにして得た工具用複合焼結体の硬質焼
結体部はCBN100%であつた。これをレーザーを
用いて切断し、超硬合金母材に銀ろう付けして第
2図に示すスローアウエイチツプを作製した。 このようにして得た工具用複合焼結体をスロー
アウエイチツプとして使用した。その結果いずれ
も予想以上の長寿命であることがわかつた。 【表】
[Detailed description of the invention] (1) Technical field The present invention provides a composite sintered body for tools that can be used up to high temperatures. (2) Conventional technology and its problems Cubic boron nitride (hereinafter referred to as CBN) is a material with the second highest hardness after diamond. It is also a material with excellent thermal conductivity and little reactivity with ferrous metals at high temperatures, and is synthesized under ultra-high pressure and high temperature. In recent years, hard sintered bodies made from sintered CBN have been developed and are beginning to be put into practical use. Usually, these hard sintered bodies have a structure in which a hard sintered body layer 1 is bonded to a base body 2 made of cemented carbide, etc., as shown in Fig. 3, and this composite structure sintered body is attached to the tool body. It is used by being fixed by brazing. As a bonding material between this hard sintered body and the substrate,
Metal-based materials such as Al and CO, and ceramic-based materials such as Al 2 O 3 and TiN are known. Furthermore, in Japanese Patent Publication No. 58-19428, a hard molded body consisting of diamond or CBN particles or a mixture thereof and a bonding matrix of these particles and a solvent metal is used as a high-temperature brazing alloy containing Ti, Ta, and such metals. An abrasive object is shown bonded to a support via a layer consisting of. In this case as well, in addition to diamond or CBN particles, the hard compact contains metals that can serve as solvents for these particles, such as Co, Ni, Fe, etc. for diamond, Al, Pb,
Contains Sn, etc. When the CBN in the hard sintered body is substantially 100%, as in the invention of the present application, the bonding force becomes weak in the known method, making it impractical. As mentioned above, conventional CBN sintered bodies for tools include metal-based or ceramic-based binders, and these mixed powders are placed on a base mainly made of cemented carbide and sintered under ultra-high pressure and high temperature. Manufactured by. During this sintering, the binder in the base, for example Co in the case of cemented carbide, melts and acts as a binder to join the CBN sintered body to the base near the interface between the CBN sintered body and the base. . Also, CBN
The metal binding material in the sintered body is effective not only for bonding the CBN particles with each other but also for bonding the CBN sintered body and the substrate. However, the CBN sintered body is essentially 100% CBN.
In this case, the bonding force between the sintered body and the base body due to the above two effects becomes extremely weak. this is,
This is because the wettability between CBN and the binder metal in the base is poor, so the binder metal in the base does not work effectively to bond the CBN sintered body and the base. (3) Disclosure of the invention In view of the above points, the inventors of the present invention have completed the present invention as a result of repeated research. That is, the present application relates to a hard sintered body having an extremely high content of CBN. Such hard sintered bodies made of CBN are usually produced using hexagonal boron nitride (hBN) and a catalyst material that converts within a few percent of hBN into CBN, such as magnesium boron nitride (Mg 3 BN 3 ), at ultra-high temperatures. , sintering under high pressure. At this time, a trace amount of the catalyst substance remains in the sintered body, or unconverted hBN remains. Therefore, the hard sintered bodies referred to in this application are mostly
It consists of CBN, the amount of which is more than 95% by volume. CBN is a substance with poor reactivity, and when using it in actual tools, etc., it is more convenient to bond it to a base. Strength reinforcement is also possible. As a result of intensive studies, the inventors have found that this type of hard sintered body has particularly good bondability with Mo, Ti, Zr, Ta, etc. The hard sintered body, which is essentially 100% CBN sintered body, has high thermal conductivity and low reactivity with iron group metals, so it has attracted attention as a material for tools, but it is difficult to bond it to the base material. Due to the heat, practical application was delayed. By using the composite sintered body of the present invention, it can also be used by brazing a cutting tool or throw-away tip. In this invention, virtually 100% CBN after sintering
The starting materials blended to form a sintered body are placed adjacent to a high melting point metal in an ultra-high pressure and high temperature generation chamber and exposed to the thermodynamically stable region of CBN for several minutes or more. During this sintering, the starting material is essentially 100%
A sintered body of CBN is formed, which reacts with the high melting point metal that comes into contact with it to form boride, which is firmly bonded to the hard sintered body. After sintering is completed, first the temperature and then the pressure are lowered and the composite sintered body is recovered. It can then be ground into shape for use as a tool. The composite sintered body of the present invention is essentially made of high melting point metal.
The hard sintered body made of 100% CBN is firmly bonded. It was found that the tool body and high-melting point metal can be joined together by brazing and used as a cutting tool or throw-away tip, and can also be used for interrupted cutting without any problems. The CBN particle size in the hard sintered body as referred to in the present application is not particularly limited, but relatively fine particles are preferable. In addition, high melting point metals include Mo, Ti, Zr,
Although Ta or the like can be used, Mo is particularly desirable because of its high bonding strength. However, almost the same effect can be obtained using other metals.
The thickness of the high melting point metal layer is not particularly limited, but is preferably 3 mm or less. Substances other than CBN in the hard sintered body include trace amounts of CBN synthetic materials,
Compounds or simple substances such as hBN and high melting point metals may be included. Examples will be described below using the drawings. FIG. 1 shows an example in which a high melting point metal and a hard sintered body obtained by the invention of the present invention are joined. FIG. 2 shows a case where the composite sintered body for tools obtained in the present invention is used for a throw-away tip. A mixture of hexagonal boron nitride with an average particle size of 1 μm and magnesium boron nitride as a CBN synthesis catalyst material in a molar ratio of 98:2 was used as a starting material. This mixed powder was arranged so that the high melting point metal had the thickness shown in Table 1, and was placed in an ultra-high pressure and high temperature generating chamber and sintered for 10 minutes at 1350° C. and 5.5 GPa. The hard sintered body portion of the composite sintered body for tools thus obtained was 100% CBN. This was cut using a laser and silver soldered to a cemented carbide base material to produce the throw-away chip shown in FIG. 2. The composite sintered body for tools thus obtained was used as a throw-away chip. As a result, it was found that both had longer life spans than expected. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案で得られた工具用複合焼結体で
あり、第2図は工具用複合焼結体をスローアウエ
イチツプとして利用した例を示す。第3図は従来
の硬質焼結体を基体に接合したものである。 1:硬質焼結体、2:基体、3:本願で得た硬
質焼結体、4:高融点金属、5:スローアウエイ
チツプ台金。
FIG. 1 shows a composite sintered body for tools obtained by the present invention, and FIG. 2 shows an example in which the composite sintered body for tools is used as a throw-away chip. FIG. 3 shows a conventional hard sintered body joined to a base body. 1: Hard sintered body, 2: Substrate, 3: Hard sintered body obtained in the present application, 4: High melting point metal, 5: Throwaway chip base metal.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 立方晶型窒化硼素から成る硬質焼結体がMo,
Ti,Zr,Taの高融点金属と直接接合しているこ
とを特徴とする工具用複合焼結体。
A hard sintered body made of cubic boron nitride is Mo,
A composite sintered body for tools that is directly bonded to high melting point metals such as Ti, Zr, and Ta.
JP6041384U 1984-04-23 1984-04-23 Composite sintered body for tools Granted JPS60172764U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6041384U JPS60172764U (en) 1984-04-23 1984-04-23 Composite sintered body for tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6041384U JPS60172764U (en) 1984-04-23 1984-04-23 Composite sintered body for tools

Publications (2)

Publication Number Publication Date
JPS60172764U JPS60172764U (en) 1985-11-15
JPS644839Y2 true JPS644839Y2 (en) 1989-02-07

Family

ID=30587737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6041384U Granted JPS60172764U (en) 1984-04-23 1984-04-23 Composite sintered body for tools

Country Status (1)

Country Link
JP (1) JPS60172764U (en)

Also Published As

Publication number Publication date
JPS60172764U (en) 1985-11-15

Similar Documents

Publication Publication Date Title
RU2011649C1 (en) Method of manufacturing ceramics for cutting tools
KR100371979B1 (en) Abrasive tool, dressing tool and method of manufacturing the dressing tool
JP2907315B2 (en) Production of polycrystalline cubic boron nitride
JPS63232903A (en) Tool insert
JP2004505786A (en) Manufacturing method of polishing products containing diamond
JP2004506094A (en) Manufacturing method of polishing products containing cubic boron nitride
JPS62228449A (en) Sintered compact for high hardness tool and its production
JPS6159270B2 (en)
JPS644840Y2 (en)
JPS644839Y2 (en)
JPS6125761B2 (en)
JPH11188510A (en) Hard sintered body cutting tool
JPS61270074A (en) Body for polishing
JPS6049589B2 (en) Composite sintered body for tools and its manufacturing method
JPS5916942A (en) Composite diamond-sintered body useful as tool and its manufacture
JPS61136605A (en) Joining method of sintered hard material and metallic material
JPS6323155B2 (en)
JPS60263601A (en) Composite sintered tool
JPS62271604A (en) Hard quality abrasive structure and its manufacture
JPH0742170B2 (en) Cubic boron nitride based sintered body
JPS6283447A (en) Sintered diamond and its production
JPS60263602A (en) Composite sintered tool
JPS63191505A (en) High hard sintered body tool
JPS6054973A (en) Hard diamond sintered body and manufacture
JP3412529B2 (en) Manufacturing method of indexable cutting insert with excellent chipping resistance