JPS644255B2 - - Google Patents

Info

Publication number
JPS644255B2
JPS644255B2 JP12391581A JP12391581A JPS644255B2 JP S644255 B2 JPS644255 B2 JP S644255B2 JP 12391581 A JP12391581 A JP 12391581A JP 12391581 A JP12391581 A JP 12391581A JP S644255 B2 JPS644255 B2 JP S644255B2
Authority
JP
Japan
Prior art keywords
magnetic
magnetic layer
layer
recording medium
ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12391581A
Other languages
Japanese (ja)
Other versions
JPS5826319A (en
Inventor
Yoshiaki Kai
Takuichi Oomura
Takashi Suzuki
Seiji Kamiharashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12391581A priority Critical patent/JPS5826319A/en
Publication of JPS5826319A publication Critical patent/JPS5826319A/en
Publication of JPS644255B2 publication Critical patent/JPS644255B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/85Coating a support with a magnetic layer by vapour deposition

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 本発明はスパツタリング蒸着法等も含めた真空
蒸着法により基板上に形成され金属強磁性体を主
成分とする磁性層を有する磁気記録媒体の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a magnetic recording medium having a magnetic layer formed on a substrate by a vacuum evaporation method including a sputtering evaporation method and the main component being a metal ferromagnetic material.

磁気記録用の磁性層に蒸着薄膜を用いることの
優位性は、飽和磁束密度が大であるため、厚さの
薄い磁性層とすることができ、また、抗磁力も比
較的高いものが得られるので高密度記録に有利と
なることである。蒸着薄膜の他の利点は真空蒸
着、スパツタリング蒸着等の方法により薄くかつ
厚さの一様な膜が容易に得られることである。こ
れらの理由から蒸着薄膜を磁気記録用の材料とし
て用いる傾向は近年増加しつつある。例えば、ポ
リエチレンテレフタレートなどのプラスチツク基
体上に蒸着によりコバルトを主体とした合金の磁
性層が形成されたビデオ用磁気テープが開発され
ている。
The advantage of using a vapor-deposited thin film as a magnetic layer for magnetic recording is that it has a high saturation magnetic flux density, which allows a thin magnetic layer and a relatively high coercive force. This is advantageous for high-density recording. Another advantage of vapor-deposited thin films is that thin films with uniform thickness can be easily obtained by methods such as vacuum evaporation and sputtering evaporation. For these reasons, there has been an increasing trend in recent years to use vapor deposited thin films as materials for magnetic recording. For example, video magnetic tapes have been developed in which a magnetic layer of a cobalt-based alloy is formed by vapor deposition on a plastic substrate such as polyethylene terephthalate.

ところで蒸着により形成された磁性層は一般に
空孔が多く空気中で腐食しやすい。そのため、記
録、再生時に、磁性層に磁気ヘツドが摺接するこ
とにより磁性層がはがれてノイズが発生したり、
あるいは記録、再生がまつたく不能となるような
実用上致命的な欠陥が発生する。そこで、金属強
磁性体を主成分とする磁性層の耐食性及び耐摩耗
性を改善する方法として、従来磁性層表面に有機
物層や耐食性の高い金属あるいは金属酸化物層を
形成して保護被膜とする方法や、金属磁性薄膜を
多湿空気中で加熱処理したり、酸化性溶液中に浸
漬処理することにより表面酸化層を形成して、保
護被膜とする方法が行なわれていた。しかし、こ
れらの方法では次のような問題が生じていた。す
なわち、磁性層上に有機物層や金属あるいは金属
酸化物を被覆する方法では、均一でピンホールが
ない保護被膜層を形成するためには0.1ミクロン
以上の膜厚を要する。そのため、磁気ヘツドと磁
性層との実効距離が長くなり、記録密度が低下す
る。一方、金属磁性薄膜を多湿空気中で加熱処理
し、保護酸化被膜を形成する方法では、磁性層が
電解メツキ、無電解メツキ等のメツキ法で形成さ
れている場合には磁性層がち密であるため、保護
性の高い酸化被膜が形成される。しかしながら、
真空蒸着法により形成される磁性薄膜は周知の通
り基体上において一次元的に成長した粒子群から
構成されているため、ピンホールの多い薄膜とな
つている。そのため、多湿空気中で加熱処理する
と、水蒸気はピンホール中で毛管凝縮を起し、液
状の水となつて磁性体表面に保護性のない水酸化
物を形成させ、また、磁性層を腐食させる。また
金属磁性薄膜を湿式処理により保護酸化被膜を形
成する方法では、処理液への浸漬、乾燥工程が入
り、広い面積の磁性層に対して均一な酸化被膜を
形成することは極めて難しい。さらに、溶液中の
不純物が表面に付着残留することにより、耐食性
が低下する。
Incidentally, a magnetic layer formed by vapor deposition generally has many pores and is easily corroded in the air. Therefore, during recording and reproduction, the magnetic head comes into sliding contact with the magnetic layer, causing the magnetic layer to peel off and generate noise.
Or, a practically fatal defect occurs that makes recording and reproduction impossible. Therefore, as a method to improve the corrosion resistance and abrasion resistance of a magnetic layer whose main component is a metal ferromagnetic material, conventionally, an organic layer or a metal or metal oxide layer with high corrosion resistance is formed on the surface of the magnetic layer to form a protective coating. Another method has been to heat a metal magnetic thin film in humid air or immerse it in an oxidizing solution to form a surface oxidation layer to form a protective coating. However, these methods have the following problems. That is, in the method of coating the magnetic layer with an organic layer, a metal, or a metal oxide, a film thickness of 0.1 micron or more is required to form a uniform, pinhole-free protective coating layer. Therefore, the effective distance between the magnetic head and the magnetic layer becomes longer, and the recording density decreases. On the other hand, in the method of heating a metal magnetic thin film in humid air to form a protective oxide film, if the magnetic layer is formed by a plating method such as electrolytic plating or electroless plating, the magnetic layer is dense. Therefore, a highly protective oxide film is formed. however,
As is well known, a magnetic thin film formed by vacuum evaporation is composed of a group of particles grown one-dimensionally on a substrate, resulting in a thin film with many pinholes. Therefore, when heat-treated in humid air, water vapor causes capillary condensation in the pinholes, turns into liquid water, forms hydroxide on the surface of the magnetic material, and corrodes the magnetic layer. . Furthermore, the method of forming a protective oxide film on a metal magnetic thin film by wet processing involves immersion in a treatment liquid and drying steps, making it extremely difficult to form a uniform oxide film over a wide area of the magnetic layer. Furthermore, impurities in the solution adhere and remain on the surface, resulting in a decrease in corrosion resistance.

このように、真空蒸着法により形成された磁性
層に耐食性のすぐれる極めて薄い保護被膜を形成
させる実用的な方法は従来なかつた。
As described above, there has been no practical method for forming an extremely thin protective coating with excellent corrosion resistance on a magnetic layer formed by vacuum evaporation.

本発明は、従来における以上のような問題を解
決するために、基体上に蒸着により形成された磁
性層にオゾンを用いて酸化処理を行なうものであ
る。
In order to solve the above-mentioned conventional problems, the present invention oxidizes a magnetic layer formed on a substrate by vapor deposition using ozone.

本発明の一例を説明すると、基体上に蒸着によ
り形成された例えばコバルト(Co)を主成分と
する磁性層をオゾン濃度0.01〜10容量%の雰囲気
中に10〜60分間放置する。これにより磁性層表面
及び粒界に安定なCoの高次の酸化物すなわちCo
の四三酸化物を形成させる。なおここで、オゾン
酸化処理を行なう前の前処理として磁性層をチツ
ソガスなどの不活性ガス雰囲気中で100℃程度の
温度で熱処理し、吸着水、結晶水を除去すると、
オゾン酸化処理の効果がさらに高まる。オゾン濃
度は上記0.01%〜10容量%の範囲が望ましく、そ
れは次の理由に基づく。オゾン濃度が0.01容量%
以下の領域においてはオゾンの酸化作用が弱く、
磁性層全域を均一に処理することができない。一
方オゾン濃度が10%容量%以上の領域において
は、オゾンの酸化作用が強すぎて、基体がプラス
チツクフイルムからなる場合、そのフイルムを構
成する高分子をも酸化し分解することがある。
To explain one example of the present invention, a magnetic layer mainly composed of, for example, cobalt (Co) formed on a substrate by vapor deposition is left for 10 to 60 minutes in an atmosphere with an ozone concentration of 0.01 to 10% by volume. As a result, a stable higher-order oxide of Co, Co
to form tetroxide. Here, as a pretreatment before performing the ozone oxidation treatment, the magnetic layer is heat treated at a temperature of about 100°C in an inert gas atmosphere such as Tituso gas to remove adsorbed water and crystallized water.
The effect of ozone oxidation treatment is further enhanced. The ozone concentration is preferably in the range of 0.01% to 10% by volume, and this is based on the following reason. Ozone concentration is 0.01% by volume
The oxidizing effect of ozone is weak in the following areas.
It is not possible to uniformly process the entire magnetic layer. On the other hand, in a region where the ozone concentration is 10% by volume or more, the oxidizing effect of ozone is so strong that if the substrate is made of plastic film, it may also oxidize and decompose the polymers that make up the film.

本発明により形成される例えばCoの四三酸化
物は低次の酸化物に比べ耐食性及び耐摩耗性にす
ぐれており、また、磁性層表面酸化層の自己修復
作用をもつている。また、本発明によると、磁性
層に低温で保護性の高い高次酸化物を形成でき、
このため高温処理に対して熱負けなどの悪影響が
生じるプラスチツクフイルムを用いた基体に蒸着
された磁性層に対して、本発明は特に有効であ
る。なおここで、本発明によらず、通常の空気あ
るいは酸素中で熱処理した場合には低次の酸化物
が形成される。一方、この場合、四三酸化物を形
成するためには、一般的に数100℃の温度を必要
とする。
For example, the tetratrioxide of Co formed according to the present invention has superior corrosion resistance and wear resistance compared to lower-order oxides, and also has a self-healing effect on the oxidized layer on the surface of the magnetic layer. Further, according to the present invention, a highly protective higher oxide can be formed in the magnetic layer at low temperatures,
For this reason, the present invention is particularly effective for magnetic layers deposited on substrates using plastic films, which have adverse effects such as heat loss when subjected to high-temperature processing. Note that, even though the present invention is not applied, when heat treatment is performed in ordinary air or oxygen, lower-order oxides are formed. On the other hand, in this case, a temperature of several hundred degrees Celsius is generally required to form the trioxide.

次に具体的に本発明の実施例を説明する。 Next, embodiments of the present invention will be specifically described.

ポリエチレンテレフタレートフイルム上にコバ
ルト80%、ニツケル20%の磁性層を真空蒸着法で
形成させたものにオゾン処理を行なつた。処理条
件はオゾン濃度1%、雰囲気温度50℃、処理時間
30分間とした。このように本発明により磁性層に
オゾン処理した磁気記録媒体および、比較とし
て、未処理の磁気記録媒体、100℃、1時間の条
件で磁性層を空気酸化した磁気記録媒体をそれぞ
れ反射電子線回折(ED)、x線光電子分光法
(ESCA)、およびオージエ電子分光法(AES)に
より磁性層表面の酸化状態、および深さ方向の分
析を行なつた。分析結果の一例として、AESで
の深さ方向分析結果を第1図、第2図、第3図に
それぞれ示す。なおここで、第1図は磁性層未処
理の磁気記録媒体について、第2図は磁性層を空
気酸化処理した磁気記録媒体について、第3図は
本発明により磁性層をオゾン処理した磁気記録媒
体について、それぞれ分析した結果を示す。第1
図に示すように、未処理品は表面にCoO、NiOが
形成されているが、その酸化層は厚さ20〜30Å程
度の極めて薄い自然酸化層であり、保護膜とはな
らない。また、第2図に示すように空気酸化した
磁性層表面にもCoO、NiOが形成されており、そ
の酸化層の厚さはほぼ50Åであり、前記の自然酸
化層の厚さより増加している。しかし、形成され
ている酸化層はコバルトの低次の酸化物であり、
保護膜としての作用は比較的弱い。これに対し
て、第3図に示すように、オゾン処理では
Co3O4、NiOが形成されており、その酸化層の厚
さはほぼ70Åであり、前記空気酸化層の厚さより
厚いことがわかつた。一方オゾン処理で形成され
たCo3O4はCoOに比べ耐食性及び耐摩耗性にはる
かにすぐれており、表面酸化層の自己修復作用を
もつている。さらに、オゾンは磁性体の粒界内部
に侵入し、柱状粒子表面すなわち磁性体内部の活
性部を安定なCo3O4に改質する作用を呈するもの
と考えられる。
A magnetic layer of 80% cobalt and 20% nickel was formed on a polyethylene terephthalate film by vacuum evaporation, and then treated with ozone. Processing conditions are ozone concentration 1%, ambient temperature 50℃, and processing time.
The duration was 30 minutes. As described above, a magnetic recording medium whose magnetic layer was ozone-treated according to the present invention, an untreated magnetic recording medium, and a magnetic recording medium whose magnetic layer was air-oxidized at 100°C for 1 hour were analyzed by reflection electron diffraction, respectively. The oxidation state of the surface of the magnetic layer and the depth direction were analyzed using (ED), x-ray photoelectron spectroscopy (ESCA), and Auger electron spectroscopy (AES). As an example of the analysis results, the depth direction analysis results using AES are shown in Figs. 1, 2, and 3, respectively. Note that FIG. 1 shows a magnetic recording medium with an untreated magnetic layer, FIG. 2 shows a magnetic recording medium with a magnetic layer treated with air oxidation, and FIG. 3 shows a magnetic recording medium with a magnetic layer treated with ozone according to the present invention. The results of each analysis are shown below. 1st
As shown in the figure, CoO and NiO are formed on the surface of the untreated product, but the oxide layer is an extremely thin natural oxide layer with a thickness of about 20 to 30 Å and does not serve as a protective film. Additionally, as shown in Figure 2, CoO and NiO are also formed on the air-oxidized magnetic layer surface, and the thickness of the oxidized layer is approximately 50 Å, which is greater than the thickness of the natural oxidized layer described above. . However, the oxide layer that is formed is a low-order oxide of cobalt,
Its action as a protective film is relatively weak. On the other hand, as shown in Figure 3, ozone treatment
It was found that Co 3 O 4 and NiO were formed, and the thickness of the oxidized layer was approximately 70 Å, which was thicker than the thickness of the air oxidized layer. On the other hand, Co 3 O 4 formed by ozone treatment has much better corrosion resistance and wear resistance than CoO, and has a self-healing effect on the surface oxide layer. Furthermore, it is thought that ozone penetrates into the grain boundaries of the magnetic material and has the effect of modifying the surface of the columnar particles, that is, the active part inside the magnetic material, into stable Co 3 O 4 .

次に前記のようにして作成した三種の磁気記録
媒体の耐食性及び耐摩耗性を調べるため、40℃、
相対湿度90%の腐食試験を行ない、表面層の変色
状態、光学顕微鏡での錆の観察、および磁気ヘツ
ドによる引つかき試験を行なつた。未処理品の場
合、1週間で黄色に変色しており、全面に錆発生
が認められた。また、引つかき試験で磁性層のは
く離が起つた。空気酸化処理品では1週間で部分
的な錆発生が認められ、引つかき試験でも一部磁
性層のはく離が認められた。これに対して、本発
明によるオゾン処理品の場合、1ケ月の腐食試験
でもほとんど錆は認められず、また、引つかき試
験においても何ら問題がないことが確認された。
一方、コバルト・ニツケルよりなる磁性層の表面
に70Å程度の酸化保護被膜を形成させても、電磁
変換特性にはまつたく問題がないことが確認され
た。
Next, in order to investigate the corrosion resistance and abrasion resistance of the three types of magnetic recording media prepared as described above,
A corrosion test was conducted at a relative humidity of 90%, and the state of discoloration of the surface layer was observed, rust was observed using an optical microscope, and a scratch test was conducted using a magnetic head. In the case of untreated products, the color changed to yellow within one week, and rust was observed on the entire surface. In addition, peeling of the magnetic layer occurred during the drag test. Partial rust formation was observed in the air oxidized product after one week, and peeling of the magnetic layer was also observed in some areas in the scratch test. On the other hand, in the case of the ozone-treated product according to the present invention, almost no rust was observed even in a one-month corrosion test, and it was confirmed that there were no problems in a stick test.
On the other hand, it was confirmed that even if an oxidation protective film of about 70 Å was formed on the surface of the magnetic layer made of cobalt-nickel, there would be no problem with the electromagnetic conversion characteristics.

以上のように、本発明によると、耐食性ならび
に耐摩耗性にすぐれる磁気記録媒体を容易に製造
することができる。
As described above, according to the present invention, a magnetic recording medium with excellent corrosion resistance and wear resistance can be easily manufactured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図および第3図はCoNiよりなる
磁性層表面におけるオージエ電子分光法による深
さ方向の分析結果を示す図で、このうち、第1図
は磁性層未処理の磁気記録媒体について、第2図
は磁性層を空気酸化処理した磁気記録媒体につい
て、第3図は本発明により磁性層をオゾン処理し
た磁気記録媒体について、それぞれ分析した結果
を示す。
Figures 1, 2, and 3 are diagrams showing the analysis results in the depth direction by Auger electron spectroscopy on the surface of a magnetic layer made of CoNi, of which Figure 1 shows a magnetic recording medium with an untreated magnetic layer. 2 shows the results of analysis of a magnetic recording medium whose magnetic layer was subjected to air oxidation treatment, and FIG. 3 shows the results of analysis of a magnetic recording medium whose magnetic layer was subjected to ozone treatment according to the present invention.

Claims (1)

【特許請求の範囲】 1 基体上に形成され強磁性金属よりなる磁性層
をオゾンを用い処理することを特徴とする磁気記
録媒体の製造方法。 2 オゾンの濃度が0.01〜10容量%の範囲内にあ
ることを特徴とする特許請求の範囲第1項記載の
磁気記録媒体の製造方法。 3 強磁性金属がコバルトを含むことを特徴とす
る特許請求の範囲第1項記載の磁気記録媒体の製
造方法。 4 基体がプラスチツクフイルムからなることを
特徴とする特許請求の範囲第1項記載の磁気記録
媒体の製造方法。
[Scope of Claims] 1. A method for manufacturing a magnetic recording medium, characterized in that a magnetic layer formed on a substrate and made of a ferromagnetic metal is treated with ozone. 2. The method for manufacturing a magnetic recording medium according to claim 1, wherein the ozone concentration is within a range of 0.01 to 10% by volume. 3. The method of manufacturing a magnetic recording medium according to claim 1, wherein the ferromagnetic metal contains cobalt. 4. The method of manufacturing a magnetic recording medium according to claim 1, wherein the substrate is made of a plastic film.
JP12391581A 1981-08-06 1981-08-06 Manufacture for magnetic recording medium Granted JPS5826319A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12391581A JPS5826319A (en) 1981-08-06 1981-08-06 Manufacture for magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12391581A JPS5826319A (en) 1981-08-06 1981-08-06 Manufacture for magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5826319A JPS5826319A (en) 1983-02-16
JPS644255B2 true JPS644255B2 (en) 1989-01-25

Family

ID=14872488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12391581A Granted JPS5826319A (en) 1981-08-06 1981-08-06 Manufacture for magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5826319A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03201217A (en) * 1989-12-27 1991-09-03 Fuji Photo Film Co Ltd Production of magnetic recording medium
TW200605809A (en) 2004-06-09 2006-02-16 Shibuya Ryutsu Co Ltd Foldable umbrella

Also Published As

Publication number Publication date
JPS5826319A (en) 1983-02-16

Similar Documents

Publication Publication Date Title
JPS644255B2 (en)
US4876113A (en) Method for producing magnetic recording media
JPS6122852B2 (en)
US3721613A (en) Article having an electroless deposition and method of producing such article
US20030224216A1 (en) Magnetic recording medium and process for producing same
JPH0319602B2 (en)
JPH0125140B2 (en)
JPS6126135B2 (en)
JPS58133634A (en) Production of magnetic recording medium
JPS58134414A (en) Manufacture of magnetic recording medium
JPS639022A (en) Production of magnetic recording medium
JPH0125139B2 (en)
JP2538123B2 (en) Fixed magnetic disk and manufacturing method thereof
JPH05166167A (en) Stationary magnetic disk and production thereof
JPH0740358B2 (en) Method of manufacturing magnetic recording medium
JPH0554377A (en) Production of magnetic recording medium
JPS6038731A (en) Magnetic recording body
JPS6085431A (en) Magnetic recording material
JPS60219638A (en) Production of magnetic disk
JPS58130436A (en) Magnetic recording medium
JPS62183034A (en) Production of magnetic recording medium
JPH03245320A (en) Magnetic recording medium and its production
JPH02108224A (en) Magnetic recording medium
JPH10112019A (en) Magnetic recording medium and its production
JPS63136319A (en) Production of magnetic recording medium