JPH0740358B2 - Method of manufacturing magnetic recording medium - Google Patents

Method of manufacturing magnetic recording medium

Info

Publication number
JPH0740358B2
JPH0740358B2 JP26339486A JP26339486A JPH0740358B2 JP H0740358 B2 JPH0740358 B2 JP H0740358B2 JP 26339486 A JP26339486 A JP 26339486A JP 26339486 A JP26339486 A JP 26339486A JP H0740358 B2 JPH0740358 B2 JP H0740358B2
Authority
JP
Japan
Prior art keywords
recording medium
magnetic recording
thin film
metal thin
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26339486A
Other languages
Japanese (ja)
Other versions
JPS63117318A (en
Inventor
良樹 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP26339486A priority Critical patent/JPH0740358B2/en
Publication of JPS63117318A publication Critical patent/JPS63117318A/en
Publication of JPH0740358B2 publication Critical patent/JPH0740358B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気テープ,磁気ディスクなどの磁気記録装
置に応用される高記録密度の磁気記録媒体に関するもの
で、特に走行安定性にすぐれた、耐摩耗性を有する磁気
記録媒体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium having a high recording density, which is applied to a magnetic recording device such as a magnetic tape or a magnetic disk, and is particularly excellent in running stability and durability. The present invention relates to a method for manufacturing a magnetic recording medium having abrasion resistance.

従来の技術 磁気ディスク,磁気テープ等に供せられる磁気記録媒体
の開発を目的として、従来γ−Fe2O3,Co含有γ−Fe2O3
またはCrO2等の強磁性粉末を有機バインダー中に分散し
て作製する塗布型磁気記録媒体に代わり、現在さらに高
密度化を目的とした、非磁性基板上に直接強磁性金属薄
膜をメッキ法,スパッタリング法,真空蒸着法,イオン
プレーティング法等によって形成する金属薄膜型磁気記
録媒体の開発が活発である。
2. Description of the Related Art Conventional γ-Fe 2 O 3 and Co-containing γ-Fe 2 O 3 have been developed for the purpose of developing magnetic recording media for magnetic disks and magnetic tapes.
Alternatively, instead of a coating type magnetic recording medium prepared by dispersing ferromagnetic powder such as CrO 2 in an organic binder, a ferromagnetic metal thin film is directly plated on a non-magnetic substrate for the purpose of higher density at present. Development of metal thin film magnetic recording media formed by sputtering, vacuum deposition, ion plating, etc. is active.

しかしながら、前記の金属薄膜型磁気記録媒体は、信号
を記録再生する際、高速相対運動下で磁気ヘッド等との
接触により摩擦や摩耗によって不安定な走行が生じ、や
がては摩耗粉や破損が発生することによって長期の使用
に耐えない。従って、磁気記録媒体は円滑な走行性と耐
摩耗性が使用環境条件下において持続することが実用化
において強く望まれている。
However, the above-mentioned metal thin film magnetic recording medium causes unstable running due to friction and wear due to contact with a magnetic head or the like under high-speed relative motion when recording and reproducing a signal, and eventually wear powder or damage occurs. Do not withstand long-term use by doing. Therefore, it is strongly desired for practical use that the magnetic recording medium keeps smooth running property and wear resistance under the use environment condition.

このため、従来USP4029541に見られるように強磁性金属
薄膜上を表面処理したり、あるいは高級脂肪酸(特開昭
55−1651,USP4456661)やフッ素系ポリマー(特開昭59
−167849)などの保護膜を形成して耐摩擦、耐摩耗性の
改良を行なうなど種々の改善がなされている。
For this reason, the ferromagnetic metal thin film is surface-treated as in the conventional USP4029541, or higher fatty acid (Japanese Patent Laid-Open No.
55-1651, USP4456661) and fluoropolymers (JP-A-59)
-167849) and other protective films have been formed to improve abrasion resistance and wear resistance.

発明が解決しようとする問題点 しかしながら、表面処理のみでは走行性に改良が見られ
るものの金属薄膜への傷が発生し易く、また保護層を直
接形成すると、これが強磁性金属薄膜との密着性が弱い
ためやがては剥離したりあるいは変質したりするなどの
現象が見られ耐久性がなお不十分である。したがって、
本発明はかかる点にかんがみ、保護層を形成する際、強
磁性金属薄膜を表面処理することにより、金属薄膜の表
面性や保護層との密着性を改良することで磁気ヘッド等
との良好な走行性と耐摩耗性にすぐれた磁気記録媒体を
提供することを目的としている。
Problems to be Solved by the Invention However, the surface treatment alone may improve the running property, but scratches easily occur on the metal thin film, and when the protective layer is directly formed, the adhesion with the ferromagnetic metal thin film is improved. Due to its weakness, phenomena such as peeling off or deterioration are eventually observed, and durability is still insufficient. Therefore,
In view of this point, the present invention, when forming the protective layer, by surface-treating the ferromagnetic metal thin film, improves the surface property of the metal thin film and the adhesiveness with the protective layer, thereby achieving a good magnetic head and the like. It is an object of the present invention to provide a magnetic recording medium excellent in running property and abrasion resistance.

問題点を解決するための手段 非磁性基板上に設けた強磁性金属薄膜上の表面部を希硝
酸処理し、さらにその上にチオール類またはチオグリコ
ール酸類の化合物を1種以上形成して磁気記録媒体を構
成する。
Means for Solving the Problems Magnetic recording is performed by treating the surface of a ferromagnetic metal thin film provided on a non-magnetic substrate with dilute nitric acid, and further forming one or more compounds of thiols or thioglycolic acids on it. Make up the medium.

作用 強磁性金属薄膜を希硝酸処理することにより、表面部の
金属成分が酸化物を形成し、それ自身の耐摩耗性や保護
層との密着性が改良されたり、あるいはエッチング作用
により適度な粗さが形成されることにより、耐摩耗性の
改良や保護層の保持力が増加し、良好な走行性と耐久性
にすぐれた磁気記録媒体が得られる。
Action By treating the ferromagnetic metal thin film with dilute nitric acid, the metal components on the surface form oxides, improving its own wear resistance and adhesion with the protective layer, or by etching action to a suitable roughness. By forming the groove, the abrasion resistance is improved and the holding power of the protective layer is increased, and a magnetic recording medium excellent in running property and durability can be obtained.

実施例 図は、本発明の磁気記録媒体の断面図である。図におい
て1は非磁性基板、2は強磁性金属薄膜、3はチオール
類またはチオグリコール酸類の化合物を1種以上含有し
た保護層である。
Example FIG. 1 is a sectional view of a magnetic recording medium of the present invention. In the figure, 1 is a non-magnetic substrate, 2 is a ferromagnetic metal thin film, and 3 is a protective layer containing one or more compounds of thiols or thioglycolic acids.

本発明で磁気記録媒体に使用し得る非磁性基板1として
は、ポリアミド、ポリイミド、ポリスルフォン、ポリカ
ーボネート、ポリプロピレン、ポリエチレン、ポリエチ
レンテレフタレート、ポリ酢酸セルロース、およびポリ
塩化ビニル等の高分子材料、非磁性金属材料、ガラス、
磁器等のセラミック材料など周知の材料からなるフィル
ム板がある。
Examples of the non-magnetic substrate 1 that can be used in the magnetic recording medium of the present invention include polymer materials such as polyamide, polyimide, polysulfone, polycarbonate, polypropylene, polyethylene, polyethylene terephthalate, poly (cellulose acetate) and polyvinyl chloride, non-magnetic metal. Material, glass,
There is a film plate made of a known material such as a ceramic material such as porcelain.

また強磁性金属薄膜2を形成する強磁性材料としては、
Fe,Co,Niから選ばれる1種以上の金属またはこれらとM
n,Cr,Ti,P,Y,Sm,Biなどまたはこれらの酸化物を組み合
わせた合金がある。中でもCo,Cr,Niから選ばれる少なく
とも2種の元素で構成される強磁性金属薄膜は高い磁気
異方性エネルギーを有していることや耐食性などで好ま
しく、これらは真空蒸着法、スパッタリング法、イオン
プレーティング法、メッキ法等で容易に形成できる。
Further, as a ferromagnetic material for forming the ferromagnetic metal thin film 2,
One or more metals selected from Fe, Co, Ni or M and these
There are n, Cr, Ti, P, Y, Sm, Bi, etc., or alloys combining these oxides. Of these, ferromagnetic metal thin films composed of at least two elements selected from Co, Cr, and Ni are preferable because they have high magnetic anisotropy energy and corrosion resistance. These are vacuum deposition method, sputtering method, It can be easily formed by an ion plating method, a plating method, or the like.

本発明において強磁性金属薄膜2を希硝酸処理すること
により表面の金属成分が酸化され、それ自身の耐摩耗性
や保護層との密着性が改良され走行性にすぐれた磁気記
録媒体が得られる。例えば強磁性金属薄膜がCo−Crの蒸
着膜の場合、希硝酸溶液濃度が0.001〜0.1規定(N)で
適当な時間これを浸漬処理すると、Crが酸化されてCrOx
が2〜3倍増加し、あるいはエッチング作用により媒体
の表面粗さが数10Åの状態から100〜200Åに粗面化され
耐摩擦性や保護層の保持力が改良される。この処理方法
は、希硝酸溶液濃度が0.01N、浸漬時間が10分以下で十
分その効果が発揮される。そして溶液温度は常温付近が
最も潤滑性に適切な改質作用を与えることが以下の実施
例で認められる。
In the present invention, by treating the ferromagnetic metal thin film 2 with dilute nitric acid, the metal components on the surface are oxidized, the wear resistance of itself and the adhesion to the protective layer are improved, and a magnetic recording medium excellent in running property is obtained. . For example, when the ferromagnetic metal thin film is a Co-Cr vapor deposition film, when the dilute nitric acid solution concentration is 0.001 to 0.1 N (N) and this is immersed for a suitable time, Cr is oxidized and CrO x
Is increased by 2 to 3 times, or the surface roughness of the medium is roughened from several tens of Å to 100 to 200 Å by the etching action to improve the abrasion resistance and the holding power of the protective layer. This treatment method is fully effective when the dilute nitric acid solution concentration is 0.01 N and the immersion time is 10 minutes or less. It is recognized in the following examples that the solution temperature has the most suitable modifying effect on the lubricity at around room temperature.

また、これらの強磁性金属薄膜2の表面部は、薄膜形成
時に酸素導入によって実用特性に影響を与えない範囲で
当初から酸化されていても、保護層との密着性の観点か
ら改善がみられ、より好ましい現象となる。
Further, the surface portion of these ferromagnetic metal thin films 2 is improved from the viewpoint of adhesion to the protective layer even if it is oxidized from the beginning within a range that does not affect practical characteristics due to introduction of oxygen during thin film formation. , A more preferable phenomenon.

本発明において、保護層3に用いるチオール類またはチ
オグリコール酸類の化合物は、芳香族環の極性基と反対
側に、直鎖または側鎖を有する直鎖構造の炭化水素基ま
たはフッ化炭化水素基と、チオール基またはチオグリコ
ール酸基からなる化合物であり、下式(A)または
(B)で示される。
In the present invention, the compound of thiols or thioglycolic acid used in the protective layer 3 is a linear structure hydrocarbon group or fluorocarbon group having a straight chain or a side chain on the side opposite to the polar group of the aromatic ring. And a thiol group or a thioglycolic acid group, which are represented by the following formula (A) or (B).

(ただし、Rは炭素数12〜24の炭化水素基または炭素数
8〜16のフッ化炭化水素基である)。
(However, R is a hydrocarbon group having 12 to 24 carbon atoms or a fluorohydrocarbon group having 8 to 16 carbon atoms).

これらの化合物は、その化学構造から炭化水素基または
フッ化炭化水素基が良好な潤滑性の役割を果たす一方、
チオール基またはチオグリコール酸基が強磁性金属薄膜
と強く結合することにより、磁気ヘッド等のせん断によ
るはがれが小さく、介在する芳香族環が固い構造のため
耐摩耗性においてもすぐれた特性を示すものと考えられ
る。したがってこれらの化合物を保護層3として形成す
ると、良好な走行性と耐摩耗性にすぐれた特性が得られ
る。これらの化合物の炭素数は、炭化水素基であれば11
以下では、低分子化に伴う潤滑性の低下や磁気ヘッド等
との摺動による発生熱で分解しやすいこと、また25以上
であれば合成の複雑さや溶解性に難点が加わるばかりか
走行性の点でそれほど期待できない。したがって炭素数
は12〜24が好ましく、フッ化炭化水素基の炭素数も同様
の観点から8〜16が好ましい。保護層3の形成は、湿式
法であればこれらの化合物を溶媒で適量希釈し、ロール
コーティング、スピンコーティングまたはラングミュア
ーブロジェット法などで、また蒸着などの乾式法でも容
易に達成でき、これらの化合物を単独または混合して用
いることも可能である。
From the chemical structure of these compounds, hydrocarbon groups or fluorohydrocarbon groups play a role of good lubricity,
The thiol group or thioglycolic acid group is strongly bonded to the ferromagnetic metal thin film, so peeling due to shearing of the magnetic head etc. is small, and the intervening aromatic ring has a solid structure, which also has excellent wear resistance. it is conceivable that. Therefore, when these compounds are formed as the protective layer 3, excellent running properties and wear resistance are obtained. The carbon number of these compounds is 11 if they are hydrocarbon groups.
In the following, deterioration of lubricity due to low molecular weight and easy decomposition due to heat generated by sliding with a magnetic head etc., and if it is 25 or more, not only addition of difficulty in synthesis and solubility but also running property I can't expect much in terms. Therefore, the carbon number is preferably 12 to 24, and the carbon number of the fluorohydrocarbon group is preferably 8 to 16 from the same viewpoint. The formation of the protective layer 3 can be easily achieved by a wet method by diluting an appropriate amount of these compounds with a solvent, roll coating, spin coating, Langmuir-Blodgett method, or a dry method such as vapor deposition. It is also possible to use the compounds alone or in combination.

一方これらの膜厚は、薄膜であるほど望ましいが、薄す
ぎると膜形成においてピンホールが生じ易いことや金属
薄膜自身の影響が生じてくるため潤滑性が十分得られな
くなる。また厚いとスーペシングロスによる信号の出力
低下が見られるため400Å以下が好ましい。したがっ
て、保護層3は本発明のチオール類またはチオグリコー
ル酸類化合物を前記の方法によって形成する。
On the other hand, it is preferable that the film thickness is a thin film, but if it is too thin, pinholes are likely to occur in the film formation and the metal thin film itself affects the film, so that sufficient lubricity cannot be obtained. If the thickness is thick, the output of the signal may be reduced due to the superposing loss, so 400 Å or less is preferable. Therefore, the protective layer 3 is formed of the thiol compound or thioglycolic acid compound of the present invention by the above method.

実施例1 膜厚12μmのポリイミドフィルム上に、真空連続蒸着法
でCo−Cr(Co:Cr=8:2の重量比)を膜厚1300Å(AESで
分析)形成した試料を作製した(サンプルNo.1)。
Example 1 A sample was prepared by forming Co—Cr (weight ratio of Co: Cr = 8: 2) with a film thickness of 1300Å (analyzed by AES) on a 12 μm-thick polyimide film by a vacuum continuous vapor deposition method (Sample No.). .1).

これをさらに40×70mmの試験片とし以下の条件で表面処
理した後、これらを評価した。
This was further treated as a test piece of 40 × 70 mm under the following conditions and then evaluated.

評価は往復動摩擦係数計で、摩擦子が直径3mmも鋼球(S
UJ2)、荷重P=10gf,走行速度V=1.0mm/secで動摩擦
係数(μk)を測定し、走行初期と10Passで比較を行な
った。この結果を第1表に示す。
The reciprocating friction coefficient was evaluated, and the friction element has a steel ball (S
UJ2), load P = 10 gf, running speed V = 1.0 mm / sec, and the coefficient of dynamic friction (μk) was measured, and comparison was made at the beginning of running and 10 passes. The results are shown in Table 1.

これによると、未処理のサンプルNo.1は、初期からμk
が大きく走行途中約5PassでCo-Cr表面上での傷が目視に
おいてすら明確に発生しμkの変動が生じ始め、やがて
はμkが0.65と上昇して金属の摩耗粉が激しく透過傷が
見られた。これに対し、サンプルNo.2,3は初期の走行性
こそμkが0.25,0.23とやや改良されるものの、走行が
継続するにつれ傷が発生し10Passではμkが0.47,0.38
に上昇するなど良くなかった。
According to this, the unprocessed sample No. 1 has μk from the beginning.
The damage on the Co-Cr surface was clearly generated even about 5 passes during the course of the run, and the fluctuation of μk began to occur. It was On the other hand, in Sample Nos. 2 and 3, the initial runnability was slightly improved to μk of 0.25,0.23, but scratches occurred as the running continued and μk was 0.47,0.38 at 10 Pass.
It wasn't good to rise to.

ところが、サンプルNo.4では、初期からμkが小さく10
Pass後においても0.22でほとんど変化なく、かつ表面観
察においても傷が見られないなど著しい改善が見られ
た。
However, in sample No. 4, μk was small from the beginning,
Even after passing, it was 0.22, showing almost no change, and no significant scratches were observed on the surface observation.

従って、強磁性金属薄膜を希硝酸処理した記録媒体は、
他の処理法と比べて走行性がより改良されたかつ耐摩耗
性にすぐれた磁気記録媒体であることが分かった。
Therefore, the recording medium obtained by treating the ferromagnetic metal thin film with diluted nitric acid is
It was found that the magnetic recording medium has improved runnability and excellent abrasion resistance as compared with other treatment methods.

実施例2 膜厚30μmのポリエチレンテレフタレートフィルム上に
実施例1と同様の金属組成で、膜厚1500Åの試料を作製
した。そしてこれをさらに実施例1と同様の大きさの試
験片で以下の希硝酸濃度(N)、浸漬時間(min)、浸
漬温度(℃)で処理し実施例1と同様の測定で20Pass後
のμkと表面観察で比較した。
Example 2 A sample having a film thickness of 1500 Å was prepared on the polyethylene terephthalate film having a film thickness of 30 μm with the same metal composition as in Example 1. Then, this was further treated with a test piece having the same size as in Example 1 at the following dilute nitric acid concentration (N), immersion time (min) and immersion temperature (° C), and the same measurement as in Example 1 was performed after 20 passes. .mu.k and surface observation were compared.

以上のことからこれらは未処理のサンプルNo.1と比べて
いずれも走行性や摩耗性が改良されていることが分か
る。そしてこれらの処理条件は0.001〜0.1Nの濃度が好
ましく、浸漬時間は10〜60min、浸漬温度は25℃付近が
好ましい。そしてさらに0.01N、10min、25℃の場合未処
理と比較して耐摩耗性で15〜20倍改良され、この条件が
最も好ましい。この時媒体の表面解析をすると、それは
ESCA,AES分析でCrOxが表面に偏析し、さらに表面粗さ計
で見ると100〜200Åにエッチングされていることが分か
った。このことから記録媒体はCrOxの耐摩耗性と接触面
積の減少に従って走行性が改良されたものと考えられ
る。
From the above, it can be seen that the runnability and wearability of these are all improved as compared with the untreated sample No. 1. The treatment conditions are preferably a concentration of 0.001 to 0.1 N, an immersion time of 10 to 60 min, and an immersion temperature of about 25 ° C. Further, in the case of 0.01 N, 10 min, 25 ° C., abrasion resistance is improved by 15 to 20 times as compared with untreated, and this condition is most preferable. At this time, the surface analysis of the medium shows that
ESCA and AES analyzes showed that CrOx was segregated on the surface, and when it was observed with a surface roughness meter, it was etched to 100 to 200Å. From this, it is considered that the recording medium has improved runnability as CrOx wear resistance and the contact area decrease.

このことから以上の条件下で処理した記録媒体は耐摩
擦、耐摩耗性において効果が得られることが明らかであ
った。
From this, it is clear that the recording medium treated under the above conditions is effective in the abrasion resistance and the abrasion resistance.

実施例3 次にサンプルNo.1を直径100mmの試験片で0.01N、5min
(25℃)間希硝酸処理した後、これにp−トリデシルチ
オフェノールおよびp−トリデシルフェニルチオグリコ
ール酸をそれぞれ0.1wt%含むクロロホルム溶液で、約1
50Åの厚み(エリプソメトリー)にスピンコート(1000
rpm,20secで2回塗り)した試料(サンプルNo.12,13)
とサンプルNo.1に直接これらを塗布した試料(サンプル
No.14,15)をそれぞれ作製し、実施例1と同様の評価で
200Passまで試験した。これを第3表に示す。
Example 3 Next, sample No. 1 was tested with a test piece having a diameter of 100 mm for 0.01 N for 5 min.
After dilute nitric acid treatment (at 25 ° C.), chloroform solution containing 0.1 wt% each of p-tridecylthiophenol and p-tridecylphenylthioglycolic acid was added to about 1
50 Å thickness (ellipsometry) spin coating (1000
Sample (sample No.12, 13) applied twice at rpm, 20 sec.
And a sample (sample for which these were applied directly to sample No. 1
Nos. 14 and 15) were prepared and evaluated in the same manner as in Example 1.
Tested up to 200Pass. This is shown in Table 3.

なおp−トリデシルチオフェノールは、トリデシルベン
ゼンを硫酸でスルフォン化し、テトラヒドロフラン中塩
化チオニルでアシル化した後、さらに亜鉛触媒(硫酸酸
性中)で反応させて得られ、p−トリデシルチオグリコ
ール酸はp−トリデシルチオフェノールをさらにアルカ
リ存在下でモノクロル酢酸で処理して合成される。した
がって以下の実施例に記載するチオール類およびチオグ
リコール酸類は全てこれらの方法で合成した化合物を用
いている。
Note that p-tridecylthiophenol is obtained by sulfonating tridecylbenzene with sulfuric acid, acylating with thionyl chloride in tetrahydrofuran, and further reacting with a zinc catalyst (in sulfuric acid acidity) to obtain p-tridecylthioglycolic acid. Is synthesized by further treating p-tridecylthiophenol with monochloroacetic acid in the presence of alkali. Therefore, the thiols and thioglycolic acids described in the following examples all use compounds synthesized by these methods.

これによるとサンプルNo.12〜15はいずれも初期におい
てはμk値が0.2以下と小さく、また表面観察において
も走行傷がほとんどみられないなどすぐれた特性を有し
ている。しかしながらサンプルNo.14,15のように直接保
護層を形成した試料では、走行が継続するにつれ、やが
ては塗膜が剥がれてきたり金属薄膜上に傷が生じてきた
りして200Pass後にはμkが上昇し走行性が不安定にな
っている。これに対し、希硝酸処理したサンプルNo.12,
13は良好な走行性に継続性があり、すぐれた記録媒体で
あることが分かった。このことは希硝酸処理することに
より金属薄膜上を洗浄することで不要な有機汚染物の除
去やあるいは金属成分を改質することにより塗膜の塗れ
性が改良されたりエッチング部で保持が向上したものと
考えられる。したがって表面処理の後さらにチオール類
またはチオグリコール酸類の化合物を保護層として形成
すると耐摩擦、耐摩耗性に良好な磁気記録媒体が得られ
ることが分かる。
According to this, each of Sample Nos. 12 to 15 has excellent characteristics such that the μk value is as small as 0.2 or less at the initial stage, and running scratches are hardly observed even on the surface observation. However, for samples with a direct protective layer such as sample Nos. 14 and 15, as the running continued, the coating film eventually peeled off and scratches were formed on the metal thin film, and μk increased after 200 Pass. The running performance is unstable. In contrast, diluted nitric acid treated sample No. 12,
It was found that No. 13 is an excellent recording medium with good running performance and continuity. This means that by cleaning the metal thin film with a dilute nitric acid treatment, unnecessary organic contaminants are removed, or by modifying the metal component, the wettability of the coating film is improved and the retention in the etching part is improved. It is considered to be a thing. Therefore, it can be seen that when a compound of thiols or thioglycolic acids is further formed as a protective layer after the surface treatment, a magnetic recording medium excellent in abrasion resistance and abrasion resistance can be obtained.

実施例4 膜厚12μmのポリイミドフィルム上にCo-Crを950Å形成
した試料を作製し(サンプルNo.16)、これに直接塗布
した時と、実施例3と同様の条件で希硝酸処理した時の
それぞれにロールコーティング法でp−ステアリルチオ
フェノールを厚み130Åで形成した試料を作製し、切断
して8mm幅のテープとした(サンプルNo.17,18)。
Example 4 A sample in which 950Å Co-Cr was formed on a polyimide film having a thickness of 12 μm was prepared (Sample No. 16), and the sample was directly applied to the sample and treated with dilute nitric acid under the same conditions as in Example 3. Samples each having a thickness of 130Å formed with p-stearyl thiophenol by roll coating were prepared and cut into 8 mm wide tapes (Sample Nos. 17 and 18).

これらを幅100μm、6Rのフェライトヘッドを固定した
直径60mmのシリンダーでテープの片端に100gfのテンシ
ョンをかけ周波数7.3MHz、周速5.5m/secでペンレコーダ
ーにより出力の経時変化を調べ、初期より3dB低下した
時間とその時の表面観察を比較した。これを第4表に示
す。
With a cylinder with a diameter of 60 mm and a ferrite head with a width of 100 μm and 6R fixed, a tension of 100 gf was applied to one end of the tape and the change over time in the output was examined with a pen recorder at a frequency of 7.3 MHz and a peripheral speed of 5.5 m / sec. The reduced time and the surface observation at that time were compared. This is shown in Table 4.

このように希硝酸処理したサンプルNo.18は、スチルテ
スターによっても、保護層を全く形成していない時より
も約10倍、未処理で保護層のみを形成した時よりも約2
倍の長期信頼性を有しており、実用可能な磁気記録媒体
を実現できる。
Sample No. 18 thus treated with dilute nitric acid was about 10 times more than when the protective layer was not formed at all by the still tester, and about 2 times as much as when only the protective layer was not formed.
It has double the long-term reliability and can realize a practical magnetic recording medium.

実施例5 膜厚20μmポリアミド上に強磁性金属薄膜を第5表に示
す組成で蒸着した試料を直径60mmの試験片として実施例
4と同様に表面処理し、さらにチオール類またはチオグ
リコール酸類の炭化水素基またはフッ化炭化水素基を変
えた化合物で保護層を積層した。そしてこれらの表面状
態を水による接触角(2.5μl,30sec後)の測定とピン−
ディスク型の摩擦係数計で1時間後のμkと表面観察で
比較した。この際強磁性金属薄膜を0.1Torrの酸素雰囲
気で蒸着した試料も加えた。これは表面から100〜150Å
の深さで酸素が金属成分よりも多い層を有した記録媒体
であり、第5表にはOxで示している。また保護層の厚み
はエリプソメトリーで測定し、ヘッドに6RのSUJ2、V=
3m/sec、半径13mmのところで試験した。
Example 5 A sample obtained by vapor-depositing a ferromagnetic metal thin film having a composition shown in Table 5 on a polyamide having a thickness of 20 μm was treated as a test piece having a diameter of 60 mm in the same manner as in Example 4, and carbonization of thiols or thioglycolic acids was performed. A protective layer was laminated with a compound in which a hydrogen group or a fluorohydrocarbon group was changed. Then, these surface conditions were measured by contact angle with water (2.5 μl, after 30 sec) and pin-
A disc type friction coefficient meter was used to compare μk after 1 hour and surface observation. At this time, a sample in which a ferromagnetic metal thin film was deposited in an oxygen atmosphere of 0.1 Torr was also added. This is 100-150Å from the surface
The recording medium has a layer containing more oxygen than the metal component at the depth of, and is indicated by Ox in Table 5. The thickness of the protective layer is measured by ellipsometry, and the head is 6R SUJ2, V =
The test was conducted at a radius of 13 mm at 3 m / sec.

以上のことからサンプルNO.19〜30は接触角がいずれも8
0〜97度と高く、低い表面エネルギー状態を示してお
り、このことからμkが0.14〜0.26と走行性が良好であ
った。そして表面観察でもこれらはほとんど無傷な状態
であり、また傷があっても痕跡程度が生じているのみで
あった。
From the above, sample Nos. 19 to 30 all have contact angles of 8
The surface energy state was as high as 0 to 97 degrees and low, indicating that the μk was 0.14 to 0.26 and the running property was good. The surface observation revealed that they were almost intact, and even if there were scratches, only traces were produced.

したがって、希硝酸処理した後で、炭素数12〜24の炭化
水素基または炭素数8〜16のフッ化炭化水素基を有する
チオール類またはチオグリコール酸類の化合物を400Å
以下で積層することで、良好な潤滑性と耐摩耗性にすぐ
れた特性の磁気記録媒体が得られることが分かる。
Therefore, after dilute nitric acid treatment, 400 Å of thiol or thioglycolic acid compounds having a hydrocarbon group having 12 to 24 carbon atoms or a fluorohydrocarbon group having 8 to 16 carbon atoms are used.
It is understood that by laminating the layers below, a magnetic recording medium having excellent lubricity and wear resistance can be obtained.

発明の効果 本発明による磁気記録媒体は、強磁性金属薄膜の表面部
を希硝酸処理した後、チオール類またはチオグリコール
酸類化合物の保護層を形成することにより、走行性が改
良された耐久性に良い磁気記録媒体が得られる。
EFFECTS OF THE INVENTION The magnetic recording medium according to the present invention has a durability improved in running property by forming a protective layer of a thiol compound or a thioglycolic acid compound after the surface of a ferromagnetic metal thin film is treated with dilute nitric acid. A good magnetic recording medium can be obtained.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例における磁気記録媒体の断面図であ
る。 1……非磁性基板、2……強磁性金属薄膜、3……保護
層。
The figure is a cross-sectional view of a magnetic recording medium in an example of the present invention. 1 ... Non-magnetic substrate, 2 ... Ferromagnetic metal thin film, 3 ... Protective layer.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】非磁性基板上に設けた強磁性金属薄膜の表
面部を希硝酸処理し、さらにその上面に下記の式(A)
または(B)に示すチオール類、またはチオグリコール
酸類の化合物を少なくとも1種を含有した保護層を形成
することを特徴とする磁気記録媒体の製造法。 (ただし、Rは炭素数12〜24の炭化水素基または炭素数
8〜16のフッ化炭化水素基である)。
1. A surface of a ferromagnetic metal thin film provided on a non-magnetic substrate is treated with dilute nitric acid, and the upper surface thereof is subjected to the following formula (A).
Alternatively, a method for producing a magnetic recording medium, which comprises forming a protective layer containing at least one compound of thiols or thioglycolic acid shown in (B). (However, R is a hydrocarbon group having 12 to 24 carbon atoms or a fluorohydrocarbon group having 8 to 16 carbon atoms).
【請求項2】希硝酸溶液濃度が0.001〜0.1規定である特
許請求の範囲第1項記載の磁気記録媒体の製造法。
2. The method for producing a magnetic recording medium according to claim 1, wherein the concentration of the dilute nitric acid solution is 0.001 to 0.1 N.
【請求項3】保護層の膜厚を400Å以下に形成する特許
請求の範囲第1項記載の磁気記録媒体の製造法。
3. The method for producing a magnetic recording medium according to claim 1, wherein the protective layer is formed to have a film thickness of 400 Å or less.
【請求項4】強磁性金属薄膜の表面組成が酸化されてい
る特許請求の範囲第1項記載の磁気記録媒体の製造法。
4. The method for producing a magnetic recording medium according to claim 1, wherein the surface composition of the ferromagnetic metal thin film is oxidized.
JP26339486A 1986-11-05 1986-11-05 Method of manufacturing magnetic recording medium Expired - Lifetime JPH0740358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26339486A JPH0740358B2 (en) 1986-11-05 1986-11-05 Method of manufacturing magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26339486A JPH0740358B2 (en) 1986-11-05 1986-11-05 Method of manufacturing magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS63117318A JPS63117318A (en) 1988-05-21
JPH0740358B2 true JPH0740358B2 (en) 1995-05-01

Family

ID=17388883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26339486A Expired - Lifetime JPH0740358B2 (en) 1986-11-05 1986-11-05 Method of manufacturing magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0740358B2 (en)

Also Published As

Publication number Publication date
JPS63117318A (en) 1988-05-21

Similar Documents

Publication Publication Date Title
US5039555A (en) Method of preparing lubricant for recording media
JPH0740358B2 (en) Method of manufacturing magnetic recording medium
JPS6292114A (en) Magnetic recording medium and its production
JPS5837615B2 (en) magnetic recording medium
JP2718923B2 (en) Manufacturing method of magnetic recording medium
JPH0833991B2 (en) Method of manufacturing magnetic recording medium
JP2644873B2 (en) Magnetic recording medium and method of manufacturing the same
JPS6180522A (en) Magnetic recording medium
JPS6383918A (en) Magnetic recording medium
JPS63237213A (en) Magnetic recording medium
JPS62124623A (en) Magnetic recording medium
JPH0687299B2 (en) Magnetic recording medium
JPH02126418A (en) Magnetic recording medium
JPS6145412A (en) Production of magnetic recording medium
JPS62162224A (en) Magnetic recording medium
JPS6224423A (en) Magnetic recording medium and its production
JPH07101505B2 (en) Magnetic recording medium
JPH01184617A (en) Magnetic recording medium
JPH05128504A (en) Manufacture of magnetic recording medium
JPH0734259B2 (en) Magnetic recording medium
JPS6233322A (en) Magnetic recording medium
JPH05342564A (en) Magnetic recording medium
JPH1069630A (en) Magnetic recording medium
JPH0587889B2 (en)
JPS62103837A (en) Magnetic recording medium