JPS644048Y2 - - Google Patents

Info

Publication number
JPS644048Y2
JPS644048Y2 JP6931083U JP6931083U JPS644048Y2 JP S644048 Y2 JPS644048 Y2 JP S644048Y2 JP 6931083 U JP6931083 U JP 6931083U JP 6931083 U JP6931083 U JP 6931083U JP S644048 Y2 JPS644048 Y2 JP S644048Y2
Authority
JP
Japan
Prior art keywords
refrigerant
refrigerant liquid
receiver tank
air heat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6931083U
Other languages
Japanese (ja)
Other versions
JPS59174578U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6931083U priority Critical patent/JPS59174578U/en
Publication of JPS59174578U publication Critical patent/JPS59174578U/en
Application granted granted Critical
Publication of JPS644048Y2 publication Critical patent/JPS644048Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】 本考案はヒートポンプシステムに係り、特に複
数の空気熱交換器を有するヒートポンプシステム
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat pump system, and particularly to a heat pump system having a plurality of air heat exchangers.

一般に、既設の地下鉄等において排熱を利用し
て冷暖房等を行う場合、機械室にヒートポンプを
設置する場所がない場合やトンネル内に配管の設
置スペースがない場合などが予想されるが、通常
駅舎近傍に機械室を設けてヒートポンプを設置
し、駅舎に複数の空気熱交換器を設置して熱回収
を行うヒートポンプシステムが用いられる。
In general, when using exhaust heat to perform heating and cooling in existing subways, etc., it is expected that there will be cases where there is no place to install a heat pump in the machine room or where there is no space to install piping in the tunnel, but normally station buildings A heat pump system is used in which a heat pump is installed in a machine room nearby, and multiple air heat exchangers are installed in the station building to recover heat.

第1図はこの種のヒートポンプシステムの従来
例を示す構成図で、図中1,2は駅舎に設置され
た空気熱交換器、3は連絡水配管、4は駅舎近傍
の機械室に設置されたヒートポンプで、蒸発器
5、圧縮機6、凝縮器7より構成されている。な
お、符号8は圧縮機6を駆動するモータ、9は凝
縮器7内に利用温水を供給する利用温水循環ポン
プである。
Figure 1 is a configuration diagram showing a conventional example of this type of heat pump system. In the figure, 1 and 2 are air heat exchangers installed in the station building, 3 is the connecting water pipe, and 4 is the air heat exchanger installed in the machine room near the station building. The heat pump is composed of an evaporator 5, a compressor 6, and a condenser 7. Note that 8 is a motor that drives the compressor 6, and 9 is a hot water circulation pump that supplies hot water to the condenser 7.

このヒートポンプシステムの場合は2基の空気
熱交換器1,2によつて熱交換された回収冷水は
連絡水配管3を通つて蒸発器5に入り、蒸発器5
→圧縮機6→凝縮器7→蒸発器5を循環する冷媒
と熱交換される。蒸発器5内で冷媒と熱交換した
回収冷水はポンプ10によつて連絡水配管3を通
り、再び空気熱交換器1,2に供給される。一
方、蒸発器5で回収冷水と熱交換した冷媒は圧縮
機6を経て凝縮器7に入り、利用側の温水と熱交
換されていた。
In the case of this heat pump system, the recovered cold water that has been heat exchanged by the two air heat exchangers 1 and 2 enters the evaporator 5 through the connecting water pipe 3.
Heat is exchanged with the refrigerant circulating through → compressor 6 → condenser 7 → evaporator 5. The recovered cold water that has undergone heat exchange with the refrigerant in the evaporator 5 passes through the connecting water pipe 3 by the pump 10 and is again supplied to the air heat exchangers 1 and 2. On the other hand, the refrigerant that has exchanged heat with the recovered cold water in the evaporator 5 passes through the compressor 6 and enters the condenser 7, where it exchanges heat with the hot water on the user side.

しかしながら、このような従来のヒートポンプ
システムにおいては空気熱交換器1,2で扱う空
気温度は冬期の場合10℃前後となるため、回収冷
水は回収温度差として3℃程度となるので、不凍
液等を使う必要性が生じる。また、蒸発器5にお
ける蒸発温度も0℃〜−2℃前後となるので、ヒ
ートポンプサイクルの効率が落ちると共に回収温
度差が小さいために連絡水配管3の口径を大口径
にしなければならず。設備費のコストが増加する
という欠点があつた。
However, in such a conventional heat pump system, the temperature of the air handled by the air heat exchangers 1 and 2 is around 10℃ in winter, so the difference in temperature of recovered cold water is about 3℃, so antifreeze etc. The need to use it arises. Further, since the evaporation temperature in the evaporator 5 is around 0°C to -2°C, the efficiency of the heat pump cycle is reduced and the difference in recovery temperature is small, so the diameter of the connecting water pipe 3 must be made large. The disadvantage was that the cost of equipment increased.

これに対して上記の欠点を補うものとしていわ
ゆる直膨形のヒートポンプシステムが提案されて
いる。第2図は直膨形ヒートポンプシステムの構
成図で、図中第1図と同一部分には同一符号が付
されている。この直膨形ヒートポンプシステムの
場合は空気熱交換器1,2で熱交換された冷媒ガ
スは冷媒ガス出口管11を通つてアキユームレー
タ12に供給された後、圧縮機6によつて凝縮器
7に供給され、利用側の温水と熱交換される。凝
縮器7で利用側の温水と熱交換された冷媒は冷媒
液となつて受液器13に貯溜され、冷媒液供給管
13を通つて再び空気熱交換1,2に供給され
る。したがつて、このヒートポンプシステムの場
合は蒸発温度が3℃前後となるので成績係数が向
上し、配管サイズも小口径となるので設備費の軽
減を計ることができる。
In contrast, a so-called direct expansion type heat pump system has been proposed to compensate for the above-mentioned drawbacks. FIG. 2 is a block diagram of a direct expansion heat pump system, in which the same parts as in FIG. 1 are given the same reference numerals. In the case of this direct expansion type heat pump system, the refrigerant gas that has undergone heat exchange with the air heat exchangers 1 and 2 is supplied to the accumulator 12 through the refrigerant gas outlet pipe 11, and then is sent to the condenser by the compressor 6. 7 and exchanges heat with hot water on the user side. The refrigerant that has undergone heat exchange with hot water on the user side in the condenser 7 becomes a refrigerant liquid and is stored in a liquid receiver 13, and is again supplied to the air heat exchangers 1 and 2 through the refrigerant liquid supply pipe 13. Therefore, in the case of this heat pump system, the evaporation temperature is around 3° C., so the coefficient of performance is improved, and the piping size is small, so equipment costs can be reduced.

ところが、この直膨形ヒートポンプシステムの
場合には空気熱交換器1,2が設置される場所で
空気温度に偏差があるとき、空気熱交換器1,2
への冷媒液供給量が不安定となり、冷媒ガス中へ
の液キヤリーオーバー等が生じ、二相流効果によ
る流動不安定およびヒートポンプの運転困難等を
生ずるおそれがあつた。また、駅間など遠距離で
の熱回収を行う場合は高圧令媒を遠距離移送する
ことになり、安全面からも好ましくない。さら
に、圧縮機6が遠心圧縮機の場合、ヒートポンプ
の部分負荷においてホツトガスバイパス弁が開く
と差圧が減少し、冷媒液供給に支障をきたすこと
もある。
However, in the case of this direct expansion type heat pump system, when there is a deviation in air temperature at the location where the air heat exchangers 1 and 2 are installed, the air heat exchangers 1 and 2
The amount of refrigerant liquid supplied to the refrigerant became unstable, causing liquid carryover into the refrigerant gas, which could result in unstable flow due to the two-phase flow effect and difficulty in operating the heat pump. Furthermore, when heat recovery is performed over a long distance, such as between stations, the high-pressure reagent must be transported over a long distance, which is not desirable from a safety standpoint. Further, when the compressor 6 is a centrifugal compressor, when the hot gas bypass valve opens at partial load of the heat pump, the differential pressure decreases, which may impede the refrigerant liquid supply.

本考案は上記の事情に鑑みなされたものであ
り、複数の空気熱交換器の設置場所に空気温度の
偏差があつても安定した冷媒液の供給を行うこと
のできるヒートポンプシステムを提供することを
目的とするものである。
The present invention was developed in view of the above circumstances, and aims to provide a heat pump system that can stably supply refrigerant liquid even if there is a deviation in air temperature at the installation locations of multiple air heat exchangers. This is the purpose.

以下、図面に示す実施例に基づいて本考案を詳
細に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings.

第3図は本考案の一実施例であるヒートポンプ
システムで、2基の空気熱交換器の場合の構成を
示す図で、図中第1図及び第2図と同一部分には
同一符号が付されている。同図において符号21
は空気熱交換器1,2からの冷媒ガスとヒートポ
ンプ4からの冷媒液とを貯溜するレシーバタン
ク、22はレシーバタンク21内の冷媒液レベル
を制御するレベル制御器、23はレベル制御器2
2からの信号に基づいてレシーバタンク21への
冷媒液供給量をを制御する制御弁、24,25は
レシーバタンク21内の冷媒液を空気熱交換器
1,2へ各々強制的に供給する供給ポンプであ
る。
Figure 3 shows a heat pump system that is an embodiment of the present invention, showing the configuration of two air heat exchangers. has been done. In the same figure, numeral 21
2 is a receiver tank that stores the refrigerant gas from the air heat exchangers 1 and 2 and the refrigerant liquid from the heat pump 4; 22 is a level controller that controls the refrigerant liquid level in the receiver tank 21;
Control valves 24 and 25 control the amount of refrigerant liquid supplied to the receiver tank 21 based on a signal from the receiver tank 21, and control valves 24 and 25 forcibly supply the refrigerant liquid in the receiver tank 21 to the air heat exchangers 1 and 2, respectively. It's a pump.

レシーバタンク21内の冷媒液は供給ポンプ2
4,25によつて昇圧され、それぞれ冷媒液供給
管14および冷媒液供給量制御弁15を介して空
気熱交換器1,2に供給される。空気熱交換器
1,2に供給された冷媒液は空気熱によつてレシ
ーバタンク圧力に応じた圧力で蒸発し、冷媒ガス
となつて冷媒ガス出口管11を通つてレシーバタ
ンク21に供給される。レシーバタンク21では
空気熱交換器1,2で発生した冷媒ガスをタンク
内部に設けられた適当なミスト分離器(図示せ
ず)によりミストを分離した後、冷媒ガスのみが
圧縮機6により圧縮され凝縮器7に送気される。
このようにしてレシーバタンク21から送気され
た冷媒ガスは凝縮器7で利用側の温水と熱交換
し、凝縮して冷媒液となる。凝縮器7で凝縮した
冷媒液は凝縮圧力と等しい圧力で受液器13に貯
溜され、レベル制御器22および制御弁23とに
より供給量が制御されながら冷媒液供給管14を
介してレシーバタンク21に供給される。そし
て、レシーバタンク21に供給された冷媒液は、
再び供給ポンプ24,25によつて空気熱交換器
1,2に供給され、上述した流路を循環する。
The refrigerant liquid in the receiver tank 21 is supplied to the supply pump 2
4 and 25, and is supplied to the air heat exchangers 1 and 2 via the refrigerant liquid supply pipe 14 and the refrigerant liquid supply amount control valve 15, respectively. The refrigerant liquid supplied to the air heat exchangers 1 and 2 is evaporated by air heat at a pressure corresponding to the receiver tank pressure, becomes refrigerant gas, and is supplied to the receiver tank 21 through the refrigerant gas outlet pipe 11. . In the receiver tank 21, the mist is separated from the refrigerant gas generated in the air heat exchangers 1 and 2 by an appropriate mist separator (not shown) provided inside the tank, and only the refrigerant gas is compressed by the compressor 6. Air is sent to the condenser 7.
The refrigerant gas thus sent from the receiver tank 21 exchanges heat with the hot water on the user side in the condenser 7, and is condensed to become a refrigerant liquid. The refrigerant liquid condensed in the condenser 7 is stored in the liquid receiver 13 at a pressure equal to the condensation pressure, and is sent to the receiver tank 21 via the refrigerant liquid supply pipe 14 while the supply amount is controlled by the level controller 22 and the control valve 23. is supplied to The refrigerant liquid supplied to the receiver tank 21 is
The air is again supplied to the air heat exchangers 1 and 2 by the supply pumps 24 and 25, and circulated through the above-mentioned channels.

このように本実施例においては、ヒートポンプ
4からの冷媒液をレシーバタンク21で減圧して
貯溜し、供給ポンプ24,25によつてレシーバ
タンク21内の冷媒液を空気熱交換器1,2にそ
れぞれ強制的に供給するようにしたので、直接供
給の場合に比べてヒートポンプの部分負荷および
熱交換器設置場所に空気温度の偏差がある場合で
も冷媒液、冷媒ガスの差圧偏差による冷媒液供給
の不安定を抑制できる。また、強制供給であるの
で低圧冷媒が利用でき、遠距離の移送に際しての
安全性が向上する。さらに、本ヒートポンプシス
テムは冷媒による潜熱利用であるので、冷水や不
凍液利用の場合に比べて配管サイズおよび熱交換
器が小型となり設備費のコストアツプが低減され
る。
In this embodiment, the refrigerant liquid from the heat pump 4 is depressurized and stored in the receiver tank 21, and the refrigerant liquid in the receiver tank 21 is supplied to the air heat exchangers 1 and 2 by the supply pumps 24 and 25. Since each is forcibly supplied, compared to the case of direct supply, even if there is a partial load of the heat pump or a deviation in air temperature at the location where the heat exchanger is installed, the refrigerant liquid can be supplied by the differential pressure difference between the refrigerant liquid and refrigerant gas. instability can be suppressed. In addition, since the refrigerant is forcedly supplied, low-pressure refrigerant can be used, improving safety during long-distance transportation. Furthermore, since this heat pump system uses latent heat from a refrigerant, the piping size and heat exchanger are smaller than in the case of using cold water or antifreeze, which reduces equipment costs.

次に本考案の他の実施例について説明する。第
4図は本考案のヒートポンプシステムに除霜機能
を付加した場合を示す構成図で、図中第3図と同
一部分には同一符号が付されている。同図におい
て31は空気熱交換器1に設置された着霜感知
器、32はレシーバタンク21の冷媒ガス入口側
に設けられた入口側遮断弁、33はレシーバタン
ク21の冷媒液出口側に設けられた出口側遮断
弁、34は冷媒ガス貯溜タンク、35は冷媒液フ
ロースイツチ、36,37はリリーフ弁、38は
気液分離器である。なお、図示は省略したが空気
熱交換器2側も同様の構成となつている。
Next, another embodiment of the present invention will be described. FIG. 4 is a configuration diagram showing a case where a defrosting function is added to the heat pump system of the present invention, in which the same parts as in FIG. 3 are given the same reference numerals. In the figure, 31 is a frost detector installed in the air heat exchanger 1, 32 is an inlet-side shutoff valve installed on the refrigerant gas inlet side of the receiver tank 21, and 33 is installed on the refrigerant liquid outlet side of the receiver tank 21. 34 is a refrigerant gas storage tank, 35 is a refrigerant liquid flow switch, 36 and 37 are relief valves, and 38 is a gas-liquid separator. Although not shown, the air heat exchanger 2 side has a similar configuration.

次に除霜運転下での動作について説明する。空
気熱交換器1に設置された着霜感知器31によつ
て着霜状態が感知されると、感知器31からの着
霜信号によつて入口側遮断弁32が全閉されると
共に冷媒液供給量制御弁15が全開となる。な
お、このとき供給ポンプ24は運転状態が維持さ
れている。このようにして空気熱交換器1および
入口側遮断弁32との間に閉じ込められた冷媒ガ
スは、供給ポンプ24の吐出圧力により加圧され
て液化し、空気熱交換器1と入口側遮断弁32と
の間の管内は冷媒液で充満する。管内の圧力がリ
リーフ弁36の設定圧力に達するとリリーフ弁3
6が開放となり、冷媒液が冷媒液供給管14に戻
されリサイクルとなる。なお、このとき冷媒液フ
ロースイツチ35がリリーフ弁36からの冷媒液
の流れを感知し、出口側遮断弁33を全閉にして
レシーバタンク21からの冷媒液供給を遮断す
る。
Next, the operation under defrosting operation will be explained. When a frosting state is detected by the frosting sensor 31 installed in the air heat exchanger 1, the inlet side shutoff valve 32 is fully closed by the frosting signal from the sensor 31, and the refrigerant liquid is completely closed. The supply amount control valve 15 is fully opened. Note that at this time, the supply pump 24 is maintained in an operating state. The refrigerant gas thus trapped between the air heat exchanger 1 and the inlet-side shutoff valve 32 is pressurized by the discharge pressure of the supply pump 24 and liquefied. 32 is filled with refrigerant liquid. When the pressure inside the pipe reaches the set pressure of the relief valve 36, the relief valve 3
6 is opened, and the refrigerant liquid is returned to the refrigerant liquid supply pipe 14 for recycling. At this time, the refrigerant flow switch 35 senses the flow of refrigerant from the relief valve 36 and completely closes the outlet-side shutoff valve 33 to cut off the refrigerant supply from the receiver tank 21.

冷媒液供給管14に戻された冷媒は再び供給ポ
ンプ24によつて空気熱交換器1に供給され、空
気熱交換器1→冷媒ガス出口管11→気液分離器
38→リリーフ弁36→冷媒液供給管14→空気
熱交換器1と短絡ループを形成して循環する。そ
して、このように上述した流路を循環するうちに
供給ポンプ24の動力により循環冷媒が昇温し、
空気熱交換器1に付着した霜が融解される。
The refrigerant returned to the refrigerant liquid supply pipe 14 is again supplied to the air heat exchanger 1 by the supply pump 24, and the air heat exchanger 1 → refrigerant gas outlet pipe 11 → gas-liquid separator 38 → relief valve 36 → refrigerant The liquid supply pipe 14 forms a short-circuit loop with the air heat exchanger 1 and circulates. As the refrigerant circulates through the flow path described above, the temperature of the refrigerant increases due to the power of the supply pump 24.
Frost attached to the air heat exchanger 1 is melted.

一方、気液分離器38では空気熱交換器1から
の循環冷媒中に含まれる不凝縮縮性ガスの気泡や
除霜終了時近辺での発生冷媒液泡を冷媒ガス貯溜
タンク34に貯溜し、供給ポンプ24での気泡吸
込みによるキヤビテーシヨンの発生を防止してい
る。
On the other hand, in the gas-liquid separator 38, bubbles of non-condensable gas contained in the circulating refrigerant from the air heat exchanger 1 and refrigerant liquid bubbles generated near the end of defrosting are stored in the refrigerant gas storage tank 34 and supplied. Cavitation caused by suction of air bubbles by the pump 24 is prevented.

除霜が終了すると着霜感知器31からの除霜信
号により供給ポンプ24が停止し、出口側遮断弁
33が除々に開となり、短絡ループが均圧となつ
た後に出入口側遮断弁32,33が全開され、通
常の熱回収運転に入る。なお、リリーフ弁36は
供給ポンプ24の停止時に自動的に閉となる。ま
た、リリーフ弁37は除霜終了時に出入口側遮断
弁32,33が正常動作しなかつた際、管内の高
温化による圧力の上昇をバイパス管を経てレシー
バタンク21に逃がしている。
When defrosting is completed, the supply pump 24 is stopped by the defrosting signal from the frost sensor 31, the outlet side shutoff valve 33 is gradually opened, and after the short circuit loop becomes equalized, the inlet and outlet side shutoff valves 32, 33 are opened. is fully opened and normal heat recovery operation begins. Note that the relief valve 36 is automatically closed when the supply pump 24 is stopped. Further, the relief valve 37 releases the pressure increase due to the high temperature inside the pipe to the receiver tank 21 through the bypass pipe when the inlet/outlet side cutoff valves 32, 33 do not operate normally at the end of defrosting.

このように本実施例では着霜時にレシーバタン
ク21と熱回収系とを切離し、1基の空気熱交換
器が着霜しても個別に除霜運転ができるので、全
系を停止して熱回収を中断する必要がなく、安定
した熱供給を使用側に送ることもできる。
In this way, in this embodiment, when frost forms, the receiver tank 21 and the heat recovery system are separated, and even if one air heat exchanger becomes frosted, defrosting operation can be performed individually, so the entire system is stopped and the heat recovery system is removed. There is no need to interrupt recovery, and a stable heat supply can be sent to the user.

以上述べたように本考案によれば、複数の空気
熱交換器からの冷媒ガスとヒートポンプからの冷
媒液とをレシーバタンクに貯溜し、このレシーバ
タンク内の冷媒液をレベル制御器からの制御信号
により制御弁で所定レベルに制御しながら供給ポ
ンプによつて複数の空気熱交換器に各々強制的に
供給するようにしたので、複数の空気熱交換器の
設置場所に空気温度の偏差があつたとしても安定
した冷媒液の供給を行うことのできるヒートポン
プシステムを提供できる。
As described above, according to the present invention, refrigerant gas from a plurality of air heat exchangers and refrigerant liquid from a heat pump are stored in a receiver tank, and the refrigerant liquid in the receiver tank is controlled by a control signal from a level controller. As a result, air temperature was forcibly supplied to each of the multiple air heat exchangers using a supply pump while controlling the temperature to a predetermined level using a control valve. However, it is possible to provide a heat pump system that can stably supply refrigerant liquid.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はいずれも従来のヒートポ
ンプシステムの構成を示す図で、第1図は水配管
にて熱回収を行うヒートポンプシステムの構成
図、第2図は直膨形ヒートポンプシステムの構成
図、第3図は本考案の一実施例であるヒートポン
プシステムの構成図、第4図は同実施例のヒート
ポンプシステムに除霜機能を付加した場合を示す
構成図である。 1,2……空気熱交換器、6……圧縮機、7…
…凝縮器、12……アキユームレータ、21……
レシーバタンク、22……レベル制御器、23…
…制御弁、24,25……供給ポンプ。
Figures 1 and 2 are both diagrams showing the configuration of a conventional heat pump system. Figure 1 is a configuration diagram of a heat pump system that recovers heat through water piping, and Figure 2 is a configuration diagram of a direct expansion type heat pump system. 3 and 3 are block diagrams of a heat pump system according to an embodiment of the present invention, and FIG. 4 is a block diagram showing a case where a defrosting function is added to the heat pump system of the same embodiment. 1, 2... Air heat exchanger, 6... Compressor, 7...
... Condenser, 12 ... Accumulator, 21 ...
Receiver tank, 22...Level controller, 23...
...control valve, 24, 25...supply pump.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 複数の空気熱交換器からの冷媒ガスとヒートポ
ンプからの冷媒液とを貯溜するレシーバタンク
と、このレシーバタンク内の冷媒液レベルを制御
するレベル制御器と、このレベル制御器からの信
号に基づいてレシーバタンクへの冷媒液供給量を
制御する制御弁と、この制御弁によつてレシーバ
タンクへ供給された冷媒液を前記複数の空気熱交
換器に供給する供給ポンプとを具備したことを特
徴とするヒートポンプシステム。
a receiver tank that stores refrigerant gas from the plurality of air heat exchangers and refrigerant liquid from the heat pump; a level controller that controls the level of the refrigerant liquid in the receiver tank; and a level controller that controls the level of the refrigerant liquid in the receiver tank. The present invention is characterized by comprising a control valve that controls the amount of refrigerant liquid supplied to the receiver tank, and a supply pump that supplies the refrigerant liquid supplied to the receiver tank by the control valve to the plurality of air heat exchangers. heat pump system.
JP6931083U 1983-05-10 1983-05-10 heat pump system Granted JPS59174578U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6931083U JPS59174578U (en) 1983-05-10 1983-05-10 heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6931083U JPS59174578U (en) 1983-05-10 1983-05-10 heat pump system

Publications (2)

Publication Number Publication Date
JPS59174578U JPS59174578U (en) 1984-11-21
JPS644048Y2 true JPS644048Y2 (en) 1989-02-02

Family

ID=30199465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6931083U Granted JPS59174578U (en) 1983-05-10 1983-05-10 heat pump system

Country Status (1)

Country Link
JP (1) JPS59174578U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012139248A1 (en) * 2011-04-12 2012-10-18 Tsinghua University Heat and cold sources of temperature and humidity independent control air conditioning system

Also Published As

Publication number Publication date
JPS59174578U (en) 1984-11-21

Similar Documents

Publication Publication Date Title
CN101611275A (en) Be used to control the method and system of air-conditioning system
EP0107880A1 (en) Method of operating a bimodal heat pump and a bimodal heat pump for operation by the method
CN104654679A (en) Condensing system, air-cooled air conditioning system and control method
JPS644048Y2 (en)
CN204460863U (en) A kind of condenser system and air-cooled type air conditioning system
CN209655614U (en) A kind of heat pump low temperature anti-freeze system
CN106524559A (en) Anti-vibration type air cooled heat pump flooded water chilling unit and control method thereof
CN206583130U (en) A kind of high energy efficiency heat recovery heat pump air conditioner hot water machine
KR100202608B1 (en) The oil retrieving device of an inverter heapump
CN209944824U (en) Refrigeration oil recovery device and air conditioning unit
JPS5856528Y2 (en) Refrigeration equipment
CN210772857U (en) Air conditioning system
JPS6467572A (en) Air conditioner
JPH0522761Y2 (en)
JP3008925B2 (en) Refrigeration equipment
JPS60101458A (en) Double effect absorption type refrigerator
JPH0828993A (en) Heat storage type air conditioner
CN109631389A (en) A kind of heat pump low temperature anti-freeze system
JP3139099B2 (en) Heat transfer device
CN114061176A (en) Refrigeration system and defrosting control method thereof
CN116538711A (en) Refrigerating circuit applied to water chilling unit and water chilling unit
JPS5829396Y2 (en) Air conditioning equipment
JP3109212B2 (en) Heat transfer device
CN116885331A (en) Energy storage battery temperature control system and energy storage battery cabinet
JPS6342188B2 (en)