JPS643467Y2 - - Google Patents

Info

Publication number
JPS643467Y2
JPS643467Y2 JP1982061536U JP6153682U JPS643467Y2 JP S643467 Y2 JPS643467 Y2 JP S643467Y2 JP 1982061536 U JP1982061536 U JP 1982061536U JP 6153682 U JP6153682 U JP 6153682U JP S643467 Y2 JPS643467 Y2 JP S643467Y2
Authority
JP
Japan
Prior art keywords
adsorber
brake
blower
gas
heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982061536U
Other languages
Japanese (ja)
Other versions
JPS58165584U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6153682U priority Critical patent/JPS58165584U/en
Publication of JPS58165584U publication Critical patent/JPS58165584U/en
Application granted granted Critical
Publication of JPS643467Y2 publication Critical patent/JPS643467Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Description

【考案の詳細な説明】 本考案は原料空気の精製に吸着器を使用する型
式の空気分離装置に於て、膨張タービン制動ブロ
ワーの圧縮熱を利用して吸着器の再生用エネルギ
ーの節減を図つた吸着器再生用ガスの供給装置に
関するものである。
[Detailed description of the invention] This invention aims to save energy for regenerating the adsorber by using the compression heat of the expansion turbine damping blower in an air separation device that uses an adsorber to purify feed air. This invention relates to a gas supply device for regenerating an ivy adsorber.

空気を液化精溜することにより窒素および酸素
等を製造する装置に於ける原料空気中の水分およ
び炭酸ガスを除去する方式は大別してリバーシン
グ熱交換器等の非加熱再生式熱交換器により冷却
と精製を同時に行う方式とゼオライト等の吸着剤
により吸着精製を行う方式とがある。
Methods for removing moisture and carbon dioxide from the raw air in equipment that produces nitrogen, oxygen, etc. by liquefying and rectifying air can be broadly divided into cooling methods using non-heating regenerative heat exchangers such as reversing heat exchangers. There are two methods: one in which purification is carried out at the same time, and the other in which adsorption and purification is carried out using an adsorbent such as zeolite.

このうち吸着剤を用いた方式の空気液化分離装
置に於ては、吸着器の再生は通常該分離装置の廃
ガスを電熱器又は蒸気式加熱器で300℃迄加熱し
て供給することにより行つている。この場合、上
記廃ガスの温度は約4℃であるのでこの廃ガスを
300℃迄加熱するために多量のエネルギーを要し
ていた。
In air liquefaction separation equipment that uses adsorbents, regeneration of the adsorber is usually carried out by heating the waste gas from the separation equipment to 300°C with an electric heater or steam heater. It's on. In this case, the temperature of the above waste gas is about 4℃, so this waste gas is
It required a large amount of energy to heat up to 300℃.

本考案は、この種装置において膨張タービン制
動ブロワーには廃ガスを供給して制動を行わせて
いるが、この際加圧昇温した廃ガスは従来そのま
ま廃棄していた点に着目し、この圧縮熱を利用す
ることにより吸着器を再生するための所要エネル
ギーの節減を図り、同時にその再生用ガスの供給
系統に三方弁、保圧弁及び循環経路を設けて継続
運転を可能ならしめたものである。
The present invention focuses on the fact that in this type of equipment, waste gas is supplied to the expansion turbine braking blower to perform braking, but the waste gas, which has been pressurized and heated at this time, was conventionally disposed of as is. By utilizing the heat of compression, the energy required to regenerate the adsorber is reduced, and at the same time, a three-way valve, pressure holding valve, and circulation path are installed in the regeneration gas supply system to enable continuous operation. be.

図は本考案による吸着器再生用ガスの供給装置
の一実施例を示す図である。図に於て切替使用さ
れ対で成る原料空気中の水分および炭酸ガス除去
用吸着器1,1′は吸着剤として通常ゼオライト
が充填されており、管2より導入された圧縮原料
空気は吸着器入口弁3を経て吸着過程にある一方
の吸着器1に入り、水分および炭酸ガスを吸着剤
に吸着されて精製空気となり空気出口逆止弁4,
4′の一方の弁4を通り、管5を経て次工程の熱
交換器6に導入される。熱交換器6において分離
低温ガスとの熱交換により液化温度附近迄冷却さ
れた精製原料空気は精溜塔に導入され、液化精溜
されて製品ガスおよび廃ガスとに分離される。
The figure shows an embodiment of the adsorber regeneration gas supply device according to the present invention. In the figure, adsorbers 1 and 1', which are used alternately and are used to remove moisture and carbon dioxide from the feed air, are usually filled with zeolite as an adsorbent, and the compressed feed air introduced from the pipe 2 is It enters one of the adsorbers 1 which is in the adsorption process via the inlet valve 3, and the water and carbon dioxide are adsorbed by the adsorbent to become purified air.Air outlet check valve 4,
It passes through one valve 4 of 4' and is introduced into a heat exchanger 6 for the next step via a pipe 5. The purified feed air cooled to near the liquefaction temperature by heat exchange with the separated low-temperature gas in the heat exchanger 6 is introduced into the rectification tower, where it is liquefied and rectified and separated into product gas and waste gas.

精溜塔で分離され導出された廃ガスは前記熱交
換器6に入り原料空気と熱交換し昇温後導出して
一部分岐するが大部分は膨張タービン7に入りほ
ぼ常圧まで降圧、降温して寒冷を発生した後管8
より再び熱交換器6に入り、前記分岐した一部と
合流し、原料空気と熱交換してこれを冷却し自身
は昇温して約4℃で該熱交換器6を導出後、その
大部分は管9、管10より制動ブロワー11に入
る。制動ブロワー11は膨張タービン7で発生し
た動力を吸収し該膨張タービン7の回転数を規定
値に保持するが、従来は、制動により加圧、昇温
した廃ガスは該制動ブロワー11を排出後そのま
ま廃棄されていた。
The waste gas separated and led out in the rectification column enters the heat exchanger 6, where it exchanges heat with the raw material air, and after raising its temperature, is drawn out and partially branched out, but most of it enters the expansion turbine 7, where the pressure is lowered to almost normal pressure and the temperature is lowered. After the cold generation occurs, the tube 8
It enters the heat exchanger 6 again, merges with the branched part, exchanges heat with the raw material air, cools it, and heats itself up to about 4°C. After leading out the heat exchanger 6, its large The part enters the brake blower 11 through pipes 9 and 10. The brake blower 11 absorbs the power generated by the expansion turbine 7 and maintains the rotation speed of the expansion turbine 7 at a specified value. Conventionally, the exhaust gas, which has been pressurized and heated by braking, is discharged from the brake blower 11. It was just discarded.

本考案はこの従来廃棄していた制動加圧により
昇温した制動タービン排出ガスを、制動用ブロワ
ー11の出口配管12、三方弁13を介して加熱
器14に導入して約300℃に加熱した後、加熱器
14の出口配管15を経、再生加熱ガス入口逆止
弁16,16′の一方の弁16′を経て、加熱再生
過程にある吸着器1′に導入する。吸着器1′に導
入された吸着器再生用加熱ガスは該器1′内を流
れ、前周期で吸着した水分および炭酸ガスを同伴
して管17′を経、廃ガス出口弁18′より大気に
放出される。吸着器1には同様に管17を経て廃
ガス出口弁18が設けられている。また管17,
17′には夫々吸着器切換時、吸着器内ガスを大
気に放出するための圧力放出弁19,19′を設
けられている。吸着器再生用加熱ガスを所望量流
して吸着器1′の加熱脱着過程が終了すると、次
いで非加熱の廃ガスによる冷却過程に入る。即ち
冷却過程は管9よりの4℃の廃ガスを制動タービ
ン11を経ずに管20を経、直接三方弁13を経
て加熱源を切つた加熱器14を経、開状態にある
切換弁16′を経て吸着器1′に導入する。この冷
却用廃ガスの流量が多く必要で、制動ブロワー1
1に行く量が少ない場合は制動ガス量としては不
足するので管12を分岐した管21により制動ブ
ロワー出口ガスをリサイクルさせる。
In the present invention, the brake turbine exhaust gas heated by the brake pressurization, which was conventionally discarded, is introduced into the heater 14 through the outlet pipe 12 of the brake blower 11 and the three-way valve 13, and heated to approximately 300°C. Thereafter, the gas is introduced into the adsorber 1' which is in the process of heating and regeneration through the outlet pipe 15 of the heater 14 and one of the regenerated heated gas inlet check valves 16, 16'. The heated gas for adsorber regeneration introduced into the adsorber 1' flows through the adsorber 1', carries with it the moisture and carbon dioxide adsorbed in the previous cycle, passes through the pipe 17', and is discharged into the atmosphere from the waste gas outlet valve 18'. is released. The adsorber 1 is likewise provided with a waste gas outlet valve 18 via a line 17 . Also tube 17,
17' are provided with pressure release valves 19 and 19', respectively, for releasing the gas in the adsorber to the atmosphere when the adsorber is switched. When the heating desorption process of the adsorber 1' is completed by flowing the desired amount of heated gas for adsorber regeneration, a cooling process using unheated waste gas begins. That is, in the cooling process, the 4°C waste gas from the pipe 9 is passed through the pipe 20 without passing through the brake turbine 11, directly through the three-way valve 13, the heater 14 with the heating source turned off, and then the switching valve 16 which is in the open state. ' into the adsorber 1'. A large flow rate of this cooling waste gas is required, and the brake blower 1
If the amount going to 1 is small, the amount of brake gas is insufficient, so the brake blower outlet gas is recycled through a pipe 21 branched from the pipe 12.

なお制動ブロワー11の出口配管12は管22
を分岐し、これは保圧弁23を経て管24により
大気へ解放されている。また加熱器14の出口配
管15の吸着器1又は1′の入口部には各入口部
を結ぶ管25およびバランス弁26が設けられて
おり切換時両吸着器の圧を均圧させる。そして両
吸着器の圧をバランスする均圧工程時は、再生用
ガスの流れが停止するがこの場合管12の圧を圧
力検出制御器P.I.Cにより検出して保圧弁23を
作動させ、制動ブロワーの吸入圧力を一定値に保
持する。制動ブロワーの吐出圧力はブロワー内に
設けられている絞り弁で一定に調節される。
Note that the outlet pipe 12 of the brake blower 11 is a pipe 22.
is branched off, and is released to the atmosphere via a pipe 24 via a pressure holding valve 23. Further, a pipe 25 connecting each inlet and a balance valve 26 are provided at the inlet of the adsorber 1 or 1' of the outlet pipe 15 of the heater 14 to equalize the pressures of both adsorbers at the time of switching. During the pressure equalization process to balance the pressures of both adsorbers, the flow of regeneration gas is stopped, but in this case, the pressure in the pipe 12 is detected by the pressure detection controller PIC, the pressure holding valve 23 is activated, and the brake blower is activated. Maintain suction pressure at a constant value. The discharge pressure of the brake blower is regulated at a constant level by a throttle valve provided within the blower.

いま原料空気1350m3/hの装置に本考案を適用
した場合膨張タービン7に導入される廃ガス量は
1000m3/hであり、該タービン入口に於ける条件
は入口温度−154℃、圧力4Kg/cm2Gである。ま
た該膨張タービン出口に於ては温度−183℃、圧
力0.3Kg/cm2Gである。一方この膨張タービン7
で発生した動力を吸収し、タービンの回転数を規
定値に合せるのに必要な制動ブロワー11の条件
は入口温度4℃、入口圧力0.2Kg/cm2G、出口圧
力1.22Kg/cm2Gの場合、必要な廃ガス量は1040
m3/h、出口温度は60℃である。従つて該制動タ
ービン出口よりの廃ガスを吸着器再生用ガスとし
て用いることによりこれを300℃迄加熱するに要
するエネルギーは (300−60)0.3=72.0Kcal/m3 であり、従来は88.8Kcal/m3必要であるから
16.8Kcal/m3のエネルギーが節減出来る。
If the present invention is applied to a device with feed air of 1350 m 3 /h, the amount of waste gas introduced into the expansion turbine 7 will be
1000 m 3 /h, and the conditions at the turbine inlet are an inlet temperature of -154°C and a pressure of 4 kg/cm 2 G. At the outlet of the expansion turbine, the temperature is -183°C and the pressure is 0.3 kg/cm 2 G. On the other hand, this expansion turbine 7
The conditions for the brake blower 11 necessary to absorb the power generated by the engine and adjust the rotational speed of the turbine to the specified value are: inlet temperature 4℃, inlet pressure 0.2Kg/cm 2 G, outlet pressure 1.22Kg/cm 2 G. In this case, the amount of waste gas required is 1040
m 3 /h, outlet temperature 60°C. Therefore, the energy required to heat the waste gas from the brake turbine outlet to 300°C by using it as adsorber regeneration gas is (300-60)0.3=72.0Kcal/m 3 , compared to the conventional energy of 88.8Kcal. /m 3 is required
Energy savings of 16.8Kcal/ m3 can be achieved.

本考案はこの様に従来方式の吸着器再生用ガス
の加熱系統に改良を加えて、膨張タービン制動ブ
ロワーによる圧縮熱を利用して吸着器の加熱再生
用ガスの加熱エネルギーの節減を図つたものであ
り、更に加熱器入口に三方弁を設けて吸着器冷却
時は制動ブロワーを経ない廃ガスを用いる様に
し、また制動ブロワー出口には圧力調節弁を設け
ることにより、吸着器切換時均圧の状態でも制動
ブロワー入口圧力を常に一定圧力に保持される様
にするとともに、制動ブロワーの制動ガスを確保
するため該制動ブロワーの出口ガスを該制動ブロ
ワーに循環させる経路を設けることにより、安定
継続運転を可能ならしめたものである。そして特
に、この循環経路を設けることで、制動ブロワー
の出口ガスは冷却工程時不足分循環吸入し、制動
ブロワーの負荷を一定に保ち圧力変動をなくすこ
とができる。この結果例えば原料空気1350m3/h
で窒素ガス160m3/h液化窒素65m3/hを製造す
る装置の場合約10kw動力費節減が可能になつた。
In this way, the present invention improves the conventional adsorber regeneration gas heating system and uses the compression heat from the expansion turbine brake blower to save heating energy for the adsorber regeneration gas. Furthermore, by installing a three-way valve at the heater inlet to use waste gas that does not pass through the brake blower when cooling the adsorber, and by installing a pressure control valve at the brake blower outlet, the pressure can be equalized when switching the adsorber. Even under these conditions, the inlet pressure of the brake blower is always maintained at a constant pressure, and a path is provided to circulate the outlet gas of the brake blower to the brake blower in order to secure the brake gas for the brake blower, thereby ensuring continued stability. This made it possible to drive. Particularly, by providing this circulation path, the outlet gas of the brake blower can be circulated and sucked in the amount that is insufficient during the cooling process, thereby making it possible to keep the load on the brake blower constant and eliminate pressure fluctuations. As a result, for example, raw air 1350m 3 /h
In the case of a device that produces 160 m 3 /h of nitrogen gas and 65 m 3 /h of liquefied nitrogen, it has become possible to save approximately 10 kW in power costs.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本考案による一実施例のフローシート図で
ある。 1及び1′は吸着器、7は膨張タービン、11
は制動ブロワー、12,15は出口配管、13は
三方弁、14は加熱器、23は保圧弁である。
The figure is a flow sheet diagram of an embodiment of the present invention. 1 and 1' are adsorbers, 7 is an expansion turbine, 11
1 is a brake blower, 12 and 15 are outlet pipes, 13 is a three-way valve, 14 is a heater, and 23 is a pressure holding valve.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 原料空気の精製に吸着器を使用し、膨張タービ
ン制動にブロワーを使用する型式の空気分離装置
に於て、廃ガス出口配管を二分して一方を制動ブ
ロワー11入口へ連結するとともに他方を三方弁
13を介して加熱器14に連結し、前記制動ブロ
ワー11の出口配管12を三分してその一つを前
記三方弁13を介して加熱器14に連結し、かつ
加熱器14の出口配管15を前記吸着器1または
吸着器1′に連結し、前記三分した他の一つを保
圧弁23を介して大気へ開放し、さらに他の一つ
を前記制動ブロワー11に循環せしめたことを特
徴とする空気分離装置の吸着器再生用ガス供給装
置。
In an air separation device that uses an adsorber to purify raw air and a blower to brake the expansion turbine, the waste gas outlet pipe is divided into two, one of which is connected to the inlet of the brake blower 11, and the other connected to a three-way valve. The outlet pipe 12 of the brake blower 11 is divided into three parts, one of which is connected to the heater 14 via the three-way valve 13, and the outlet pipe 15 of the heater 14 is connected to the heater 14 through the three-way valve 13. is connected to the adsorber 1 or adsorber 1', the other one of the three parts is opened to the atmosphere via the pressure holding valve 23, and the other one is circulated to the brake blower 11. Features: A gas supply device for regenerating the adsorber of an air separation device.
JP6153682U 1982-04-27 1982-04-27 Gas supply device for regenerating the adsorber of air separation equipment Granted JPS58165584U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6153682U JPS58165584U (en) 1982-04-27 1982-04-27 Gas supply device for regenerating the adsorber of air separation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6153682U JPS58165584U (en) 1982-04-27 1982-04-27 Gas supply device for regenerating the adsorber of air separation equipment

Publications (2)

Publication Number Publication Date
JPS58165584U JPS58165584U (en) 1983-11-04
JPS643467Y2 true JPS643467Y2 (en) 1989-01-30

Family

ID=30071727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6153682U Granted JPS58165584U (en) 1982-04-27 1982-04-27 Gas supply device for regenerating the adsorber of air separation equipment

Country Status (1)

Country Link
JP (1) JPS58165584U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792327B2 (en) * 1987-03-11 1995-10-09 株式会社日立製作所 Gas separation apparatus and method for controlling the amount of raw material gas thereof
JP6925950B2 (en) * 2017-12-15 2021-08-25 三菱重工機械システム株式会社 Bottle cleaning system and bottle filling system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527034A (en) * 1978-08-16 1980-02-26 Hitachi Ltd Pressure swing adsorption system used with heat regeneration method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527034A (en) * 1978-08-16 1980-02-26 Hitachi Ltd Pressure swing adsorption system used with heat regeneration method

Also Published As

Publication number Publication date
JPS58165584U (en) 1983-11-04

Similar Documents

Publication Publication Date Title
CN108348839A (en) Adsorbent regeneration method in the transformation and temp.-changing adsorption of combination
CA2146172C (en) Pressure swing adsorption heat recovery
JP2007517663A (en) Method for producing purified compressed gas and adsorbent wheel system
JP2010510472A (en) Adjusting device for air supply in drying chamber of coating equipment and method for adjusting air supply
JPH07108368B2 (en) Method for removing water in mixed gas
JPS61254221A (en) Apparatus for removing co2
JPH0565206B2 (en)
CN208626969U (en) A kind of freezing-micro-heat regeneration absorbent combination drying device
JPS643467Y2 (en)
CN102380361A (en) Process utilizing product nitrogen gas to involve regeneration of molecular sieve absorbers
CN210303031U (en) Multi-bed temperature swing adsorption gas purification system
CN209865719U (en) Compressed air three-tower adsorption dryer
CN210448618U (en) Zero gas consumption deoiling adsorption drying system of gas
CN111760426A (en) Multi-tower type energy-saving zero-air-consumption blast heating adsorption drying device
CN214552322U (en) Waste heat drying machine
JPH05137958A (en) Device for removing carbon dioxide in ventilation air
CN2341098Y (en) Absorptive drier with waste heat recovery
RU2157722C2 (en) Method of cleaning and drying gas and device for realization of this method
JPH06102132B2 (en) Solvent concentration recovery device
JPH11319458A (en) Pretreating device in air separation device
CN202238066U (en) Device for product nitrogen gas to participate in molecular sieve adsorber regeneration
JP3841792B2 (en) Pretreatment method in air separation apparatus and apparatus used therefor
CN207951069U (en) A kind of low-grade fever regenerative system heating regeneration wind using air compressor machine compressed air heat
JPH0620508B2 (en) Dehumidification method of pressurized air
JPH09122432A (en) Gas separator using pressure swing adsorption process