JPH0620508B2 - Dehumidification method of pressurized air - Google Patents

Dehumidification method of pressurized air

Info

Publication number
JPH0620508B2
JPH0620508B2 JP62287433A JP28743387A JPH0620508B2 JP H0620508 B2 JPH0620508 B2 JP H0620508B2 JP 62287433 A JP62287433 A JP 62287433A JP 28743387 A JP28743387 A JP 28743387A JP H0620508 B2 JPH0620508 B2 JP H0620508B2
Authority
JP
Japan
Prior art keywords
adsorption
air
tower
adsorbent
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62287433A
Other languages
Japanese (ja)
Other versions
JPH01130717A (en
Inventor
正明 松永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUTANI KAKOKI
Original Assignee
MARUTANI KAKOKI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUTANI KAKOKI filed Critical MARUTANI KAKOKI
Priority to JP62287433A priority Critical patent/JPH0620508B2/en
Publication of JPH01130717A publication Critical patent/JPH01130717A/en
Publication of JPH0620508B2 publication Critical patent/JPH0620508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加圧空気を効率良く除湿する方法に関するもの
である。
TECHNICAL FIELD The present invention relates to a method for efficiently dehumidifying pressurized air.

〔従来の技術〕[Conventional technology]

加圧空気中の水分を除去する方法として、今日多く採用
されている方法に、吸着式除湿方法がある。
As a method for removing water in pressurized air, an adsorption-type dehumidifying method is widely used today.

この方法は、シリカゲル、アルミナゲル、ゼオライト等
の吸着剤を充填した2基の吸着塔の一方に湿潤した加圧
空気を通し、除湿乾燥して系外に取り出す吸着工程を行
なわせ、他方の吸着塔では吸着剤を加熱して該吸着剤が
吸着した水分を脱着させた後、冷却等の工程を経て該吸
着剤を再生する加熱再生工程を行なわせるようにすると
共に、両塔の工程を交互に切換えることにより連続的に
加圧空気の水分を除去する方法である。
In this method, one of two adsorption towers packed with an adsorbent such as silica gel, alumina gel, or zeolite is passed through an adsorption step in which moist compressed air is passed, dehumidified and dried, and taken out of the system, and the other adsorption is performed. In the tower, after heating the adsorbent to desorb the water adsorbed by the adsorbent, a heating regeneration step of regenerating the adsorbent through steps such as cooling is performed, and the steps of both towers are alternated. It is a method of continuously removing the water content of the pressurized air by switching to.

一般に、加圧空気中の水分は大気の湿度が圧縮後の冷却
により、飽和凝縮して発生する水滴と水蒸気とから成
り、発生した水滴はフィルタなどで除去できるが、水蒸
気はそれでは除去出来ないので、吸着剤に吸着させて除
去することが広く行なわれている。そのために上記のよ
うな方法が採られているのである。
In general, water in pressurized air consists of water droplets and water vapor that are saturated and condensed due to cooling after the atmospheric humidity is cooled, and the water droplets that are produced can be removed with a filter, but water vapor cannot be removed with it. It is widely practiced to remove them by adsorbing them on an adsorbent. Therefore, the method as described above is adopted.

而して、水蒸気は上記の吸着工程において除去される
が、吸着剤が飽和状態になれば、加熱空気により吸着剤
から水分を脱着させなければならず、そのためには、通
常、大気圧の空気をヒータで加熱し、ブロワなどで吸着
塔内に導入させて2〜3時間の加熱再生を行なうが、塔
出口の温度が上昇した時点で加熱を打ち切る。即ち、加
熱時間は風量とヒータの容量によって設定できる。一
方、冷却は一般に乾燥した製品空気の一部を使用し、塔
内を通過させて行ない、塔内温度が常温付近に致れば、
再生工程を終了するようにしている。
Thus, although water vapor is removed in the adsorption step described above, when the adsorbent becomes saturated, it is necessary to desorb moisture from the adsorbent by heating air. Is heated with a heater and introduced into the adsorption tower with a blower or the like to perform heat regeneration for 2 to 3 hours, but the heating is stopped when the temperature at the tower outlet rises. That is, the heating time can be set by the air volume and the heater capacity. On the other hand, cooling is generally performed by using a part of the dried product air and passing through the inside of the tower, and if the temperature inside the tower is close to room temperature,
The regeneration process is completed.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

然し乍ら、上記の方法における冷却時間は通過させる乾
燥空気のみに依存し、もし冷却時間を短縮させたけれ
ば、製品乾燥空気を大量に消費しなければならないた
め、その量には自ずから制限がある。従来はこの冷却工
程に2〜3時間を要し、吸着塔の切換時間が長時間にな
ると、同時に消費する乾燥空気の量も多くならざるを得
ないし、更に、切換時間の長さは吸着塔の大きさに比例
するところから、装置が大型化してコストが増大し不経
済になるという問題点があったのである。
However, the cooling time in the above method depends only on the dry air to be passed, and if the cooling time is to be shortened, a large amount of the product dry air must be consumed, so that the amount is naturally limited. Conventionally, this cooling process requires 2 to 3 hours, and when the adsorption tower switching time becomes long, the amount of dry air consumed at the same time is inevitably increased, and further, the switching time is long. However, there is a problem in that the size of the device becomes large, the cost increases, and it becomes uneconomical.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述のような従来技術の問題点を解決し、従来
吸着塔の冷却に要していた2〜3時間を大幅に短縮し、
塔の切換時間を従来方法のおよそ1/2にすることを可
能ならしめる除湿方法を提供することを目的としてなさ
れたもので、その構成は、シリカゲル,アルミナゲル,
ゼオライト等の吸着剤を充填した2基の吸着塔を並列
し、一方の吸着塔に湿った空気を通過させて水分を吸着
除去させ乾燥させると共に湿度検知器により吸着剤の水
分量を監視し、前記吸着剤に水分破過が生じたら、他方
の塔に切換えて除湿を継続させると共に先に吸着工程に
あった吸着塔を再生させる吸着式除湿方法において、吸
着塔の再生に際し、該吸着塔の内部に大気圧下で加熱外
部空気を通して加熱した後、吸着工程にある他の吸着塔
の出口加圧乾燥空気の全量をもって加圧下冷却すると共
に前記冷却により加熱された乾燥空気を冷却器により冷
却し、常温に戻された乾燥空気をその圧力,容量を実質
的に損なうことなく回収することを特徴とするものであ
る。
The present invention solves the problems of the prior art as described above, and greatly reduces the 2-3 hours conventionally required for cooling the adsorption tower,
The purpose of the present invention is to provide a dehumidification method that makes it possible to reduce the switching time of the tower to about half that of the conventional method. The composition is silica gel, alumina gel,
Two adsorption towers filled with an adsorbent such as zeolite are arranged in parallel, and one of the adsorption towers is allowed to pass through moist air to adsorb and remove moisture, and at the same time monitor the moisture content of the adsorbent by a humidity detector, When water breakthrough occurs in the adsorbent, in the adsorption type dehumidification method of switching to the other tower and continuing dehumidification and regenerating the adsorption tower that was previously in the adsorption step, when regenerating the adsorption tower, After heating inside air at atmospheric pressure through external air, the total amount of pressurized dry air at the outlet of another adsorption tower in the adsorption step is cooled under pressure and the dried air heated by the cooling is cooled by a cooler. The feature is that the dry air returned to room temperature is recovered without substantially impairing its pressure and capacity.

即ち、本発明方法の主要点は、加熱再生の終了した吸着
塔の冷却に製品乾燥空気の全量を利用する点にある。こ
うすることにより、加熱再生によって高温になった塔
は、加圧空気によって吸着圧まで昇圧され、その後、製
品乾燥空気の取り出しラインを切り換えることにより、
その全量を高温の塔に導入させて、塔の冷却を行なうと
共に排出する高温空気はクーラなどの手段によって冷却
し、温度を低下せしめてこれを乾燥空気の供給ラインに
戻し、製品空気として取り出すようにする。高温の塔は
従来方法の冷却空気の通過に比較して大量の冷却風量を
得られるため、冷却時間は従来方法の1/10以下に短縮
される。更に、省エネルギ化のために塔から排出された
高温エネルギはクーラなどで冷却せずに蓄熱層などに回
収すれば、再生加熱用のヒータの補助に利用することが
出来る。
That is, the main point of the method of the present invention is that the entire amount of the product dry air is used for cooling the adsorption tower after the heating and regeneration. By doing this, the tower heated to a high temperature by heating and regeneration is pressurized to the adsorption pressure by the pressurized air, and then by switching the product dry air extraction line,
The whole amount is introduced into the high temperature tower, the tower is cooled and the high temperature air discharged is cooled by a means such as a cooler, the temperature is lowered and it is returned to the dry air supply line and taken out as product air. To Since the high temperature tower can obtain a large amount of cooling air as compared with the passage of cooling air in the conventional method, the cooling time is shortened to 1/10 or less of that in the conventional method. Furthermore, in order to save energy, the high temperature energy discharged from the tower can be used for assisting a heater for regenerative heating if it is recovered in a heat storage layer without being cooled by a cooler or the like.

一方、従来方法では2〜3時間必要であった冷却時間が
10〜15分程度でよくなるため、塔の吸着時間を3〜4時
間に短縮できる。従って、従来8時間の吸着時間を設定
していた装置に比して約半分の大きさの装置で充分な成
果を挙げることが出来るのである。
On the other hand, the cooling time required by the conventional method was 2 to 3 hours.
Since it will be improved in about 10 to 15 minutes, the adsorption time of the column can be shortened to 3 to 4 hours. Therefore, it is possible to obtain a sufficient result with an apparatus that is about half the size of an apparatus that has conventionally set an adsorption time of 8 hours.

〔実施例〕〔Example〕

次に本発明の実施例を図により説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

図は本発明方法を実施する装置のフローシートで、A,
Bはシリカゲル,アルミナゲル,ゼオライト等の吸着剤
を充填した吸着塔、1はブロワ、2はヒータ、3はクー
ラ、4は湿度検知センサ、5は温度検知センサ、6は水
分が飽和した加圧空気の供給ラインCに設けた弁、7,
7′,8,8′,9,9′10,10′,11,11′,12,1
2′,13は自動弁、14は製品空気のラインDに設けた
弁、Eは排出ライン、Fは冷却ラインである。
The figure is a flow sheet of an apparatus for carrying out the method of the present invention.
B is an adsorption tower filled with an adsorbent such as silica gel, alumina gel, or zeolite, 1 is a blower, 2 is a heater, 3 is a cooler, 4 is a humidity detection sensor, 5 is a temperature detection sensor, and 6 is a pressure saturated with water. A valve provided in the air supply line C, 7,
7 ', 8,8', 9,9'10,10 ', 11,11', 12,1
2'and 13 are automatic valves, 14 is a valve provided in the product air line D, E is a discharge line, and F is a cooling line.

いま、吸着塔Aでは吸着工程が、同じく吸着塔Bでは再
生のための加熱工程が行なわれているとする。
Now, it is assumed that the adsorption tower A is performing the adsorption step, and the adsorption tower B is also performing the heating step for regeneration.

この状態では、弁6,自動弁7,12,弁14,自動弁
8′,11′が開放され、他の弁及び及び自動弁は閉じら
れている。
In this state, valve 6, automatic valve 7, 12, valve 14, automatic valve
8'and 11 'are open and the other valves and / or the automatic valve are closed.

而して、吸着工程は、コンプレッサからの水分が飽和し
た除湿すべき加圧空気が、ラインCから弁6,自動弁7
を経て吸着塔Aに導入され、該吸着塔A内を通過し、除
湿乾燥された後、自動弁12を経、クーラ3により冷却さ
れて、ラインDの弁14から製品空気として系外に取り出
される。
In the adsorption process, the compressed air from the compressor, which is saturated with water and should be dehumidified, is discharged from the line C through the valve 6 and the automatic valve 7.
After being introduced into the adsorption tower A, passed through the adsorption tower A, dehumidified and dried, then passed through the automatic valve 12, cooled by the cooler 3, and taken out of the system as product air from the valve 14 of the line D. Be done.

一方、加熱工程は、ブロワ1からの空気を大気圧付近で
ヒータ2により180℃に加熱し、自動弁11′を経て吸着
塔Bの頂部から導入させて吸着剤を加熱再生させ、脱離
した水蒸気と共に自動弁8′を経て排出ラインEから系
外へ排出させるようにしており、この加熱再生工程は前
記ラインEに設置された温度センサ5により設定温度
(90〜120℃)が検出されたら終了する。
On the other hand, in the heating step, the air from the blower 1 is heated to 180 ° C. by the heater 2 in the vicinity of the atmospheric pressure and introduced from the top of the adsorption tower B via the automatic valve 11 ′ to regenerate the adsorbent by heating and desorb it. The steam and the steam are discharged from the discharge line E through the automatic valve 8'to the outside of the system. In this heating and regeneration process, when the temperature sensor 5 installed in the line E detects the set temperature (90 to 120 ° C). finish.

このようにして加熱工程が終了したら、自動弁8′を閉
じて自動弁13を開放し、吸着塔Aの塔頂から出された加
圧空気を吸着塔Bに導入することにより、該塔Bを昇圧
させて供給加圧空気の圧力と一致させ、冷却工程に入
る。この冷却工程では、自動弁9′及び10を開放して塔
Bの底部を塔Aの頂部と連結させ、更に塔頂の自動弁1
2′を開放し、同時に自動弁12,13を閉じれば、乾燥空
気の全量が冷却ラインFを通って、塔Bの底部から頂部
に流れ、塔Bは冷却される。また、この冷却工程により
塔Bの頂部から出される高温の乾燥空気はクーラ3によ
り常温に冷却され、ラインDの弁14から製品空気として
系外に取り出される。
When the heating process is completed in this way, the automatic valve 8'is closed and the automatic valve 13 is opened, and the pressurized air discharged from the top of the adsorption tower A is introduced into the adsorption tower B, whereby the tower B Is increased to match the pressure of the supplied pressurized air, and the cooling process starts. In this cooling step, the automatic valves 9'and 10 are opened to connect the bottom of the tower B to the top of the tower A, and further the automatic valve 1 at the top of the tower.
If 2'is opened and the automatic valves 12 and 13 are closed at the same time, the entire amount of dry air flows through the cooling line F from the bottom to the top of the tower B, and the tower B is cooled. The high temperature dry air discharged from the top of the tower B by this cooling step is cooled to room temperature by the cooler 3 and taken out of the system as product air from the valve 14 of the line D.

また、吸着工程は、冷却ラインFに設置された湿度検知
センサ4により相対湿度が設定値を超えた時点で終了す
るのであるが、前記相対湿度の設定値を高くしても、そ
の検出に際し、吸着塔Bの存在が出口乾燥度を著しく改
善し、極めて低露点の空気(DP−40℃)が得られる。
Further, the adsorption step ends when the relative humidity exceeds the set value by the humidity detection sensor 4 installed in the cooling line F. However, even if the set value of the relative humidity is increased, in the detection thereof, The presence of the adsorption tower B significantly improves the dryness at the outlet, resulting in air (DP-40 ° C) having an extremely low dew point.

一方、吸着塔Aの出口相対湿度が20〜50%に達したら、
吸着工程を吸着塔Bに切換え、以後同様な操作を繰り返
すことにより、連続的に加圧空気の除湿が行なわれるの
である。
On the other hand, when the outlet relative humidity of the adsorption tower A reaches 20 to 50%,
By switching the adsorption step to the adsorption tower B and repeating the same operation thereafter, dehumidification of the pressurized air is continuously performed.

〔発明の効果〕〔The invention's effect〕

本発明は上述の通りであって、本発明方法によれば、従
来廃棄されていた冷却用の乾燥空気が略全量回収できる
ばかりでなく、冷却時間を従来方法の1/10以下に短縮
でき、従って、吸着塔の大きさを従来方法の1/2に設
定出来て極めて経済的であり、また、吸着塔の切換に際
しては、湿度センサを用いることにより、四季の季節変
動に追従して全負荷運転が可能となり、極めて省エネル
ギ的な除湿操作を行なうことが出来る。
The present invention is as described above, and according to the method of the present invention, not only is it possible to recover almost all the dry air for cooling that has been conventionally discarded, but the cooling time can be shortened to 1/10 or less of the conventional method, Therefore, the size of the adsorption tower can be set to 1/2 of that of the conventional method, which is extremely economical. Moreover, when switching the adsorption tower, the humidity sensor is used to follow the seasonal changes of the four seasons and the total load. It is possible to operate, and it is possible to perform dehumidifying operation that is extremely energy-saving.

特に、吸着塔の切換が、従来方法では破過点を検出した
時点で切り換える方式が大半であったが、本発明によれ
ば、破過点を通り過ぎ、出口相対湿度が50%を超えても
充分露点−40℃を得ることができ、塔の吸着剤を飽和吸
着量に設定できるため、切換時間が長くなって、省エネ
ルギ効果は極めて大きくなる。
In particular, in the conventional method, the switching of the adsorption tower was mostly the method of switching at the time when the breakthrough point was detected, but according to the present invention, even if the breakthrough point is passed and the outlet relative humidity exceeds 50%. Since the dew point of -40 ° C can be obtained sufficiently and the adsorbent in the tower can be set to the saturated adsorption amount, the switching time becomes long and the energy saving effect becomes extremely large.

【図面の簡単な説明】[Brief description of drawings]

図は本発明の実施例のフローシートである。 A,B……吸着塔、C……加圧空気供給ライン、D……
製品空気取出しライン、E……排出ライン、F……冷却
ライン、1……ブロワ、2……ヒータ、3……クーラ、
4……湿度検知センサ、5……温度検知センサ、6,14
……弁、7,7′,8,8′,9,9′,10,10′,11,1
1′,12,12′,13,13′……自動弁
The figure is a flow sheet of an embodiment of the present invention. A, B ... Adsorption tower, C ... Pressurized air supply line, D ...
Product air extraction line, E ... exhaust line, F ... cooling line, 1 ... blower, 2 ... heater, 3 ... cooler,
4 ... Humidity detection sensor, 5 ... Temperature detection sensor, 6, 14
... Valves, 7,7 ', 8,8', 9,9 ', 10,10', 11,1
1 ', 12, 12', 13, 13 '... Automatic valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】シリカゲル,アルミナゲル,ゼオライト等
の吸着剤を充填した2基の吸着塔を並列し、一方の吸着
塔に湿った空気を通過させて水分を吸着除去させ乾燥さ
せると共に湿度検知器により吸着剤の水分量を監視し、
前記吸着剤に水分破過が生じたら、他方の塔に切換えて
除湿を継続させると共に先に吸着工程にあった吸着塔を
再生する吸着式除湿方法において、吸着塔の再生に際
し、該吸着塔の内部に大気圧下で加熱外部空気を通して
加熱した後、吸着工程にある他の吸着塔の出口加圧乾燥
空気の全量をもって加圧下冷却すると共に前記冷却によ
り加熱された乾燥空気を冷却器により冷却し、常温に戻
された乾燥空気をその圧力,容量を実質的に損なうこと
なく回収することを特徴とする加圧空気の除湿方法。
1. A pair of adsorption towers filled with an adsorbent such as silica gel, alumina gel, zeolite, etc. are arranged in parallel, and one of the adsorption towers is allowed to pass moist air to adsorb and remove moisture to be dried, and a humidity detector. To monitor the water content of the adsorbent,
When water breakthrough occurs in the adsorbent, in the adsorption type dehumidification method of switching to the other tower and continuing dehumidification and regenerating the adsorption tower that was previously in the adsorption step, when regenerating the adsorption tower, After heating inside air at atmospheric pressure through external air, the total amount of pressurized dry air at the outlet of another adsorption tower in the adsorption step is cooled under pressure and the dried air heated by the cooling is cooled by a cooler. A method for dehumidifying compressed air, which comprises recovering dry air returned to room temperature without substantially impairing its pressure and capacity.
JP62287433A 1987-11-16 1987-11-16 Dehumidification method of pressurized air Expired - Lifetime JPH0620508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62287433A JPH0620508B2 (en) 1987-11-16 1987-11-16 Dehumidification method of pressurized air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62287433A JPH0620508B2 (en) 1987-11-16 1987-11-16 Dehumidification method of pressurized air

Publications (2)

Publication Number Publication Date
JPH01130717A JPH01130717A (en) 1989-05-23
JPH0620508B2 true JPH0620508B2 (en) 1994-03-23

Family

ID=17717254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62287433A Expired - Lifetime JPH0620508B2 (en) 1987-11-16 1987-11-16 Dehumidification method of pressurized air

Country Status (1)

Country Link
JP (1) JPH0620508B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60103327T2 (en) * 2000-06-16 2005-05-25 Mann + Hummel Protec Gmbh Drying device and method for controlling the air flow in the device
JP2006349304A (en) * 2005-06-20 2006-12-28 Daikin Ind Ltd Humidity conditioner
CN109731444A (en) * 2019-01-22 2019-05-10 无锡联合超滤净化设备科技有限公司 A kind of regenerative system is unpowered zero gas consumption compression Technology of Thermal Drying and device
CN115518497A (en) * 2022-11-01 2022-12-27 杭州嘉隆气体设备有限公司 Blast regeneration compressed air dryer and use method thereof
CN115779644B (en) * 2023-02-03 2023-04-28 杭州嘉隆气体设备有限公司 Blowing regeneration dryer and control method thereof

Also Published As

Publication number Publication date
JPH01130717A (en) 1989-05-23

Similar Documents

Publication Publication Date Title
US4783432A (en) Dryer regeneration through heat of compression and pressure swing desorption
US4197713A (en) Process and plant for the recovery of water from humid air
US6221130B1 (en) Method of compressing and drying a gas and apparatus for use therein
US3193985A (en) Method and apparatus for dehumidification of gases
JPS59184707A (en) Pressure swing adsorption for medical oxygen generator
CN1057817A (en) The method and system of improved membrane nitrogen
US5183484A (en) Process for removal of water in raw material mixed gas
CN110368780A (en) A kind of energy-saving pressure-variable adsorption tail gas recycle and the complete set of equipments and method utilized
JPH0620508B2 (en) Dehumidification method of pressurized air
EP0512395A2 (en) Separation of liquid mixtures by thermal swing adsorption
CN206793347U (en) One kind cooling absorption waste heat regenerating drier
JPH0143569B2 (en)
JPH05103938A (en) Separation of mixture gas by pressure-temperature swing adsorption method
JPH09122432A (en) Gas separator using pressure swing adsorption process
CN205999017U (en) PSA nitrogen making machine and the linked system of dryer
JP3544860B2 (en) Pretreatment device in air separation unit
SU1690826A1 (en) Installation for adsorptive desiccation of gases
JP3051330B2 (en) Method and apparatus for removing carbon dioxide in a pressurized closed space
WO1995024958A1 (en) Method and apparatus for separating gas
JPH0127770B2 (en)
CN108025247A (en) By means of the method and apparatus of enthalpy wheel and sorption wheel purification air
WO1990006164A1 (en) Method and apparatus for dehumidifying gas
JPS61192324A (en) Apparatus for dehumidifying compressed gas
JPS58170518A (en) Operation of adsorbing tower
JP2000225183A (en) Recovery of gas for regeneration in gas refining system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 14