JPH0127770B2 - - Google Patents

Info

Publication number
JPH0127770B2
JPH0127770B2 JP58195012A JP19501283A JPH0127770B2 JP H0127770 B2 JPH0127770 B2 JP H0127770B2 JP 58195012 A JP58195012 A JP 58195012A JP 19501283 A JP19501283 A JP 19501283A JP H0127770 B2 JPH0127770 B2 JP H0127770B2
Authority
JP
Japan
Prior art keywords
pressure
desiccant
tower
dehumidifying
regeneration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58195012A
Other languages
Japanese (ja)
Other versions
JPS6087830A (en
Inventor
Shigezo Yamane
Yoshizo Asano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DAIDO PURANTO KOGYO KK
Original Assignee
DAIDO PURANTO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DAIDO PURANTO KOGYO KK filed Critical DAIDO PURANTO KOGYO KK
Priority to JP58195012A priority Critical patent/JPS6087830A/en
Publication of JPS6087830A publication Critical patent/JPS6087830A/en
Publication of JPH0127770B2 publication Critical patent/JPH0127770B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は圧縮空気などの加圧ガス中の水分を
除去する加圧ガス除湿装置における乾燥剤の再生
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for regenerating a desiccant in a pressurized gas dehumidifier that removes moisture from pressurized gas such as compressed air.

ガス中の水分を除去して乾燥ガスを得る方法と
して、シリカゲルや活性アルミナ等の乾燥剤を充
填した除湿塔内に被乾燥ガスを流通させて乾燥す
る方法があるが、この乾燥剤はある時間使用する
と水分で飽和して除湿能力がなくなるので再生す
る必要がある。ところが被乾燥ガスがたとえば圧
力7Kg/cm2程度の圧縮空気のような加圧ガスであ
る場合、従来は再生をおこなう除湿塔内をまず大
気圧に降圧させ、加熱空気等の加熱ガスおよび常
温空気等の冷却ガスを再生用ガスとして除湿塔内
にほぼ大気圧状態で流通させて、乾燥剤の加熱お
よび冷却をおこなつて除湿能力を回復させ、次に
被乾燥ガスを少量ずつ再生除湿塔内に流入させて
該除湿塔内を昇圧させ、再生と除湿の塔切換時の
シヨツクがなくなるようにしていた。上記の除湿
塔内圧力の降圧および昇圧は開閉弁等を用いて
徐々におこなわねばならないので、降圧、昇圧に
時間をとられるため本来の再生時間(加熱および
冷却)が短くなり、このため再生用ガス供給用の
ブロワ、ヒータ、クーラ等が大型化し、また開閉
弁の詰りなどにより降圧、昇圧が不充分なまま塔
切換がおこなわれると乾燥剤の破砕や除湿塔の破
損などの事故をおこすという問題があつた。
One way to obtain dry gas by removing moisture from the gas is to pass the gas to be dried through a dehumidifying tower filled with a desiccant such as silica gel or activated alumina. When used, it becomes saturated with water and loses its dehumidifying ability, so it needs to be regenerated. However, when the gas to be dried is a pressurized gas such as compressed air with a pressure of about 7 kg/cm 2 , conventionally the pressure inside the dehumidifying tower performing regeneration is first lowered to atmospheric pressure, and heated gas such as heated air and room temperature air are Cooling gas such as the above gas is passed through the dehumidification tower at almost atmospheric pressure as a regeneration gas, and the desiccant is heated and cooled to restore the dehumidification capacity, and then the to-be-dried gas is fed into the regeneration dehumidification tower little by little. The pressure inside the dehumidification tower was increased by flowing into the dehumidification tower, thereby eliminating the shock when switching between regeneration and dehumidification towers. The pressure inside the dehumidifying tower must be gradually lowered and raised using on-off valves, etc., so it takes time to lower and raise the pressure, which shortens the original regeneration time (heating and cooling). Gas supply blowers, heaters, coolers, etc. have become larger, and if towers are switched without sufficient pressure reduction or pressure increase due to clogged on-off valves, etc., accidents such as crushing of the desiccant and damage to the dehumidification tower may occur. There was a problem.

この発明は上記従来の欠点を解消するもので、
除湿と乾燥剤の再生をほぼ同圧の加圧状態でおこ
なうことにより塔切換前後の降圧、昇圧が不要
で、機器の小型化が達成できる加圧ガス除湿装置
における乾燥剤の再生方法を提供しようとするも
のであつて、その要旨とするところは、内部に乾
燥剤を充填した一対の除湿塔のうち交互に選定し
た一方の除湿塔において加圧ガスの除湿をおこな
い、他方の除湿塔において乾燥剤を加熱後冷却し
て乾燥剤の再生をおこなう乾燥剤の再生方法にお
いて、上記他方の除湿塔にクーラとドレンセパレ
ータとブロワとヒータとを直列に接続して閉回路
を形成させ、該閉回路内に再生用ガスを循環させ
て乾燥剤を加熱および冷却して再生をおこなうと
ともに、上記一方の除湿塔の加圧ガス流通路と上
記閉回路とを均圧管で接続し、上記再生中におけ
る上記閉回路内の圧力を上記一方の除湿塔の加圧
ガス流通路の圧力とほぼ同圧にすることにある。
This invention solves the above-mentioned conventional drawbacks,
We would like to provide a method for regenerating the desiccant in a pressurized gas dehumidifier, which performs dehumidification and regeneration of the desiccant under almost the same pressurized state, thereby eliminating the need for lowering or increasing the pressure before and after switching the tower, and which can achieve downsizing of the equipment. The gist of this is that pressurized gas is dehumidified in one of a pair of dehumidifying towers filled with a desiccant, which are selected alternately, and the pressurized gas is dried in the other dehumidifying tower. In a desiccant regeneration method in which the desiccant is regenerated by heating and then cooling the desiccant, a cooler, a drain separator, a blower, and a heater are connected in series to the other dehumidification tower to form a closed circuit, and the closed circuit is At the same time, the pressurized gas flow path of one of the dehumidification towers and the closed circuit are connected with a pressure equalizing pipe, and the desiccant is heated and cooled by circulating the regeneration gas inside the dehumidification tower. The purpose is to make the pressure in the closed circuit almost the same as the pressure in the pressurized gas flow path of the one dehumidification tower.

以下図面によりこの発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

図中、1は圧縮空気除湿用の除湿装置で、2お
よび3は除湿塔であり、耐圧ケーシングの中にシ
リカゲル、活性アルミナ、合成ゼオライトなどの
乾燥剤が充填してある。4は圧縮空気供給源に接
続されるガス入口、5は使用側に接続される乾燥
ガス出口、6および7は塔切換用の四方弁であ
る。また8は四方弁6と7を接続する管路9内に
挿入された加熱冷却流通方向切換用の四方弁、1
0はこの四方弁の他の2ポート間を接続するルー
プ状の管路である。この管路10内には、冷却水
を用いるクーラ11、ドレンセパレータ12、ブ
ロワ13および電熱式のヒータ14に直列に挿入
接続されている。15はドレン水排出用のドレン
トラツプである。また16はブロワ13の吸込側
とガス出口5付近とを接続する均圧管で、17は
この均圧管の途中に設けた逆止弁である。
In the figure, 1 is a dehumidifying device for dehumidifying compressed air, 2 and 3 are dehumidifying towers, and a pressure-resistant casing is filled with a desiccant such as silica gel, activated alumina, or synthetic zeolite. 4 is a gas inlet connected to a compressed air supply source, 5 is a dry gas outlet connected to the use side, and 6 and 7 are four-way valves for column switching. Further, reference numeral 8 denotes a four-way valve for switching the direction of heating and cooling flow inserted into the pipe line 9 connecting the four-way valves 6 and 7;
0 is a loop-shaped pipe connecting the other two ports of this four-way valve. Inside this conduit 10, a cooler 11 using cooling water, a drain separator 12, a blower 13, and an electric heater 14 are inserted and connected in series. 15 is a drain trap for discharging drain water. Further, 16 is a pressure equalizing pipe connecting the suction side of the blower 13 and the vicinity of the gas outlet 5, and 17 is a check valve provided in the middle of this pressure equalizing pipe.

次に上記構成の除湿装置1を用いて乾燥剤の再
生をおこなう方法について説明する。図面は除湿
塔2においてたとえば圧力7Kg/cm2程度の圧縮空
気の除湿を、除湿塔3において乾燥剤の再生をお
こなつている状態を示し、太線図示部は被乾燥ガ
スの流通経路を、実線の矢印は乾燥剤加熱中の再
生用ガス流通方向を、破線の矢印は乾燥剤冷却中
の再生用ガス流通方向をそれぞれ示している。
Next, a method for regenerating the desiccant using the dehumidifying device 1 having the above configuration will be explained. The drawing shows the dehumidification of compressed air at a pressure of, for example, 7 kg/cm 2 in the dehumidification tower 2, and the regeneration of the desiccant in the dehumidification tower 3. The arrow indicates the direction in which the regeneration gas flows while the desiccant is being heated, and the dashed arrow indicates the direction in which the regeneration gas flows during the cooling of the desiccant.

先ず被乾燥ガスである圧縮空気はガス入口4か
ら四方弁6を経て除湿塔2内に流入し、除湿後四
方弁7を経てガス出口5から流出し加圧乾燥空気
として使用される。一方四方弁8を実線図示の切
換状態とすれば、管路9と10は除湿塔3に接続
する閉回路18を形成する。また均圧管16は除
湿塔2の加圧ガス流通路の圧力を上記閉回路18
内に伝達し両者をほぼ同圧に維持する。そこでブ
ロワ13を運転しヒータ14による加熱をおこな
えば、ブロワ13により吐出された閉回路18内
の空気は、四方弁8,7を経て除湿塔3内に再生
用加熱ガスとして流入し、除湿塔3内を除湿時と
逆方向に流通して乾燥剤を加熱し、四方弁6,8
を経てクーラ11により冷却され、ドレンセパレ
ータ12により凝縮水が分離されたのちブロワ1
3に戻るという循環を繰返す。ドレンセパレータ
12による凝縮水の除去および該凝縮水のドレン
トラツプ15からの排出に伴つて閉回路18内の
圧力が降下すれば、均圧管16を経て除湿塔2の
加圧ガス流通路から加圧空気が閉回路18内に補
給され、該閉回路の圧力を上記加圧ガス流通路の
圧力とほぼ同圧に維持する。また逆止弁17は閉
回路18内の湿つた空気がガス出口5部に供給さ
れるのを防止する。
First, compressed air, which is the gas to be dried, flows from the gas inlet 4 through the four-way valve 6 into the dehumidifying tower 2, and after dehumidifying, passes through the four-way valve 7 and flows out from the gas outlet 5, where it is used as pressurized dry air. On the other hand, when the four-way valve 8 is in the switching state shown by the solid line, the pipes 9 and 10 form a closed circuit 18 connected to the dehumidification tower 3. Further, the pressure equalizing pipe 16 adjusts the pressure in the pressurized gas flow path of the dehumidification tower 2 to the closed circuit 18.
The pressure is transmitted to the inside and the pressure is maintained at approximately the same level between the two. Therefore, when the blower 13 is operated and heating is performed by the heater 14, the air in the closed circuit 18 discharged by the blower 13 passes through the four-way valves 8 and 7 and flows into the dehumidifying tower 3 as heating gas for regeneration. The desiccant is heated by flowing in the opposite direction to that during dehumidification through the four-way valves 6 and 8.
The condensed water is then cooled by the cooler 11, and the condensed water is separated by the drain separator 12.
Return to step 3 and repeat the cycle. When the pressure in the closed circuit 18 drops as the condensed water is removed by the drain separator 12 and discharged from the drain trap 15, pressurized air is discharged from the pressurized gas flow path of the dehumidification tower 2 via the pressure equalization pipe 16. is replenished into the closed circuit 18 to maintain the pressure in the closed circuit at approximately the same pressure as the pressure in the pressurized gas flow path. The check valve 17 also prevents moist air in the closed circuit 18 from being supplied to the gas outlet 5.

以上のようにして除湿塔3の乾燥剤の加熱を所
定時間(たとえば2時間)おこなつたのち、四方
弁8を破線で示す状態に切換え、ヒータ14の加
熱を断つ。これによつてクーラ11により冷却さ
れブロワ13から吐出された閉回路18内の空気
は、四方弁8および6を経て再生用冷却ガスとし
て除湿塔3内を前記加熱時と逆方向に流通し、乾
燥剤を冷却後、四方弁7,8を経てクーラ11に
より冷却され、ドレンセパレータ12により凝縮
水を分離後、ブロワ13に戻るという循環を繰返
す。このとき均圧管16により前記の乾燥剤加熱
時と同様な均圧化作用が得られ、閉回路18内の
圧力は除湿塔2の加圧ガス流通路の圧力とほぼ同
圧に維持される。
After heating the desiccant in the dehumidifying tower 3 for a predetermined period of time (for example, 2 hours) as described above, the four-way valve 8 is switched to the state shown by the broken line, and the heating of the heater 14 is cut off. As a result, the air in the closed circuit 18 cooled by the cooler 11 and discharged from the blower 13 passes through the four-way valves 8 and 6 and circulates in the dehumidifying tower 3 as cooling gas for regeneration in the opposite direction to that during heating. After the desiccant is cooled, it is cooled by the cooler 11 via the four-way valves 7 and 8, and after the condensed water is separated by the drain separator 12, it returns to the blower 13, and the cycle is repeated. At this time, the pressure equalization pipe 16 provides a pressure equalization effect similar to that during heating of the desiccant described above, and the pressure in the closed circuit 18 is maintained at approximately the same pressure as the pressure in the pressurized gas flow path of the dehumidification tower 2.

以上のようにして除湿塔3の乾燥剤の冷却を所
定時間(たとえば1時間)おこなつて、乾燥剤が
冷却されたら、四方弁6,7を点線で示す流通状
態に切換えて除湿塔3においてガスの除湿を、除
湿塔2において上記と同様な乾燥剤の再生をおこ
なうのであるが、この塔切換の際には、除湿塔2
および3内はほぼ同圧であるため、塔切換えはシ
ヨツクも少なくごく短時間でおこなうことがで
き、ただちに除湿および再生を開始することがで
きるのである。
After cooling the desiccant in the dehumidifying tower 3 for a predetermined period of time (for example, one hour) as described above, when the desiccant is cooled, the four-way valves 6 and 7 are switched to the flow state shown by the dotted line, and the desiccant in the dehumidifying tower 3 is cooled. The gas is dehumidified by regenerating the desiccant in the dehumidifying tower 2 in the same manner as described above, but when switching the tower, the dehumidifying tower 2
Since the pressure inside the chamber and the column 3 are almost the same, switching of the columns can be carried out in a very short time with few shocks, and dehumidification and regeneration can be started immediately.

上記実施例においては再生時の除湿塔内の加熱
ガスの流通方向を除湿時と逆方向にしたので、多
量に水分を吸着した除湿時上流側の乾燥剤を下流
側にして加熱ガスを流すため、水分の蒸発が短時
間で完了し、またさらに再生時の除湿塔内の冷却
ガスの流通方向は除湿時と同方向(加熱時と逆方
向)にしたので、除湿時における水分吸着量の多
い側の乾燥剤をより低温に冷却して早期に除湿能
力を回復させることができ、結局除湿時、加熱
時、冷却時のガス流をすべて同方向とする並流式
の場合に比べて再生時間は約半分で済むという大
きな利点を有するものである。なお上記の並流式
の場合等にも本発明は適用可能であり、この場合
は四方弁8を省略でき、装置は簡素化される。ま
た上記実施例では均圧管16は、除湿側における
ほぼ最低圧力部分であるガス出口5付近と、閉回
路18におけるほぼ最低圧力部分であるブロワ1
3の吸込側とを接続したので除湿塔2,3の圧力
差が特に小さい合理的な接続位置にあるが、ガス
入口付近とブロワ13の吸込口あるいは吐出口付
近など、上記以外の位置に接続することも可能
で、特に均圧管16を除湿前のガス入口4付近に
接続する場合は、逆止弁17は不要となる。
In the above embodiment, the direction of flow of the heated gas in the dehumidification tower during regeneration is reversed to that during dehumidification, so that when dehumidifying a large amount of water, the desiccant on the upstream side is turned to the downstream side and the heated gas is flowed. , moisture evaporation is completed in a short time, and the flow direction of the cooling gas in the dehumidification tower during regeneration is the same direction as during dehumidification (opposite direction to that during heating), so a large amount of moisture is adsorbed during dehumidification. By cooling the desiccant on the side to a lower temperature, the dehumidifying ability can be recovered quickly, resulting in a shorter regeneration time compared to a parallel flow system in which the gas flows during dehumidification, heating, and cooling all flow in the same direction. This has the great advantage of requiring only about half the cost. Note that the present invention is also applicable to the case of the above-mentioned parallel flow type, and in this case, the four-way valve 8 can be omitted, and the apparatus is simplified. Further, in the above embodiment, the pressure equalizing pipe 16 is connected to the vicinity of the gas outlet 5, which is approximately the lowest pressure part on the dehumidification side, and to the blower 1, which is approximately the lowest pressure part in the closed circuit 18.
3 is connected to the suction side of dehumidifier 13, which is a reasonable connection position where the pressure difference between dehumidification towers 2 and 3 is particularly small. In particular, when the pressure equalization pipe 16 is connected to the vicinity of the gas inlet 4 before dehumidification, the check valve 17 becomes unnecessary.

以上はこの発明を圧縮空気の除湿装置に適用し
た場合について説明したが、この発明はN2ガス
その他の各種加圧ガスの除湿装置に適用すること
ができる。
Although the present invention has been described above in a case where it is applied to a dehumidifying device for compressed air, the present invention can also be applied to a dehumidifying device for N 2 gas and other various pressurized gases.

以上説明したようにこの発明によれば、加圧ガ
スの除湿と乾燥剤の再生を両除湿塔内をほぼ同圧
にしておこなうので、塔切換時の降圧、昇圧の操
作が不要であり、どの時点で塔切換がおこなわれ
ても吸着剤の破砕や除湿塔の破損などの事故をお
こすことがない。また降圧、昇圧のための時間が
不要となるため再生時間は乾燥剤の加熱と冷却に
フルに利用でき、その結果再生風量が少なくてす
み、さらに再生中の圧力が高いため再生ガスの見
かけの流量が低圧再生の場合の数分の一と少量に
なるため、ヒータ、クーラ、ブロワ、配管等は全
て小型のものでよい。また被乾燥ガス流路と再生
用ガス流路とがほぼ同圧のため、塔切換用の四方
弁部分におけるシール性(通り抜け)がほとんど
問題とならない。また従来の低圧再生の場合はド
レンの排出にめんどうなウオーターシール等のシ
ール機構が必要であつたが、この発明によれば高
圧再生で外気の吸引はないため維持の簡単なフロ
ートによる自動開閉式のドレントラツプ等を用い
ることができる。
As explained above, according to the present invention, dehumidification of pressurized gas and regeneration of desiccant are performed at almost the same pressure in both dehumidification towers, so there is no need to lower or raise the pressure when switching towers. Even if the tower is switched at this point, accidents such as crushing of the adsorbent and damage to the dehumidification tower will not occur. In addition, since no time is required for pressure reduction and pressure increase, the regeneration time can be fully utilized for heating and cooling the desiccant, resulting in less regeneration air volume and, since the pressure during regeneration is high, the apparent regeneration gas Since the flow rate is a fraction of that in low-pressure regeneration, the heater, cooler, blower, piping, etc. can all be small. Further, since the pressure of the drying gas flow path and the regeneration gas flow path is approximately the same, there is almost no problem with sealing performance (passing through) at the four-way valve portion for switching the column. In addition, in the case of conventional low-pressure regeneration, a troublesome sealing mechanism such as a water seal was required to discharge the condensate, but with this invention, since there is no suction of outside air with high-pressure regeneration, an automatic opening/closing system using a float that is easy to maintain. A drain trap or the like can be used.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の方法を実施するための装置
の一例を示す系統図である。 1……除湿装置、2……除湿塔、3……除湿
塔、6……四方弁、7……四方弁、8……四方
弁、9……管路、10……管路、11……クー
ラ、12……ドレンセパレータ、13……ブロ
ワ、14……ヒータ、16……均圧管、18……
閉回路。
FIG. 1 is a system diagram showing an example of an apparatus for carrying out the method of the present invention. DESCRIPTION OF SYMBOLS 1... Dehumidification device, 2... Dehumidification tower, 3... Dehumidification tower, 6... Four-way valve, 7... Four-way valve, 8... Four-way valve, 9... Pipe line, 10... Pipe line, 11... ... Cooler, 12 ... Drain separator, 13 ... Blower, 14 ... Heater, 16 ... Pressure equalization pipe, 18 ...
closed circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 内部に乾燥剤を充填した一対の除湿塔のうち
交互に選定した一方の除湿塔において加圧ガスの
除湿をおこない、他方の除湿塔において乾燥剤を
加熱後冷却して乾燥剤の再生をおこなう乾燥剤の
再生方法において、上記他方の除湿塔にクーラと
ドレンセパレータとブロワとヒータとを直列に接
続して閉回路を形成させ、該閉回路内に再生用ガ
スを循環させて乾燥剤を加熱および冷却して再生
をおこなうとともに、上記一方の除湿塔の加圧ガ
ス流通路と上記閉回路とを均圧管で接続し、上記
再生中における上記閉回路内の圧力を上記一方の
除湿塔の加圧ガス流通路の圧力とほぼ同圧にする
ことを特徴とする加圧ガス除湿装置における乾燥
剤の再生方法。
1 Out of a pair of dehumidifying towers filled with desiccant inside, pressurized gas is dehumidified in one of the dehumidifying towers selected alternately, and in the other dehumidifying tower, the desiccant is heated and then cooled to regenerate the desiccant. In the desiccant regeneration method, a cooler, a drain separator, a blower, and a heater are connected in series to the other dehumidification tower to form a closed circuit, and a regeneration gas is circulated within the closed circuit to heat the desiccant. At the same time, the pressurized gas flow path of the one dehumidifying tower and the closed circuit are connected with a pressure equalizing pipe, and the pressure in the closed circuit during the regeneration is controlled by the dehumidifying tower of the one dehumidifying tower. A method for regenerating a desiccant in a pressurized gas dehumidifier, characterized in that the pressure is made to be approximately the same as the pressure in a pressurized gas flow path.
JP58195012A 1983-10-18 1983-10-18 Regenerating process of drying agent for dehumidifyer of compressed gas Granted JPS6087830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58195012A JPS6087830A (en) 1983-10-18 1983-10-18 Regenerating process of drying agent for dehumidifyer of compressed gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58195012A JPS6087830A (en) 1983-10-18 1983-10-18 Regenerating process of drying agent for dehumidifyer of compressed gas

Publications (2)

Publication Number Publication Date
JPS6087830A JPS6087830A (en) 1985-05-17
JPH0127770B2 true JPH0127770B2 (en) 1989-05-30

Family

ID=16334061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58195012A Granted JPS6087830A (en) 1983-10-18 1983-10-18 Regenerating process of drying agent for dehumidifyer of compressed gas

Country Status (1)

Country Link
JP (1) JPS6087830A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6418426A (en) * 1987-07-13 1989-01-23 Hokkaido Gas Kk Extremely low dew-point adsorption dehydration process for multicomponent town gas
JPH01199628A (en) * 1988-02-01 1989-08-11 Tokiwa Denki:Kk Low humidity storage device
JPH02273509A (en) * 1989-04-12 1990-11-08 Mitsubishi Electric Corp Air drier
CN102179142A (en) * 2011-04-08 2011-09-14 苏州苏净安发空调有限公司 Afterheat regeneration type air drying device

Also Published As

Publication number Publication date
JPS6087830A (en) 1985-05-17

Similar Documents

Publication Publication Date Title
US4783432A (en) Dryer regeneration through heat of compression and pressure swing desorption
JP5031816B2 (en) Apparatus for drying compressed gas and method of using the same
US3204388A (en) Buffer bed dehumidification
US5632802A (en) Apparatus and method of regenerating adsorbers for drying air
US7691183B2 (en) Method for drying compressed gas and device used thereby
US6221130B1 (en) Method of compressing and drying a gas and apparatus for use therein
CA2057920C (en) Desiccant gas drying system
CN106268199B (en) Device for drying compressed gas and compressor installation provided with such a device
KR100793980B1 (en) Absorption type air drying system for both purge process and non-purge process of using compression heat
US4761968A (en) High efficiency air drying system
JPH10235136A (en) Method and device for drying compressed air
CN208626969U (en) A kind of freezing-micro-heat regeneration absorbent combination drying device
KR101498643B1 (en) Air dryer system for power saving and lower dew point
JPH0127770B2 (en)
JPH08141353A (en) Dehumidifier
KR100825391B1 (en) Non-purge processing absorption type air drying system and method for preventing hunting dew point and keeping up very low dew point
WO2021132346A1 (en) Organic solvent recovery system
KR200258699Y1 (en) Apparatus for blower regenerating non-purge absorption air drier
KR20030022485A (en) Method and apparatus for blower regenerating non-purge absorption air drier
KR100467425B1 (en) absoption type air dryer system
JPS61192324A (en) Apparatus for dehumidifying compressed gas
JPH01130717A (en) Method for dehumidifying compressed air
KR101479662B1 (en) Non-Purge and non-heater air dryer system using heat of compression and air drying method
JPS61125421A (en) Thermally regenerative adsorption tower and apparatus for dehumidifying compressed air
WO2021132347A1 (en) Organic solvent recovery system