JPS643367B2 - - Google Patents

Info

Publication number
JPS643367B2
JPS643367B2 JP5809681A JP5809681A JPS643367B2 JP S643367 B2 JPS643367 B2 JP S643367B2 JP 5809681 A JP5809681 A JP 5809681A JP 5809681 A JP5809681 A JP 5809681A JP S643367 B2 JPS643367 B2 JP S643367B2
Authority
JP
Japan
Prior art keywords
tuning fork
diaphragm
crystal
shaped
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5809681A
Other languages
Japanese (ja)
Other versions
JPS57173217A (en
Inventor
Arata Doi
Motoyasu Hanji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Crystal Device Corp
Original Assignee
Kyocera Crystal Device Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Crystal Device Corp filed Critical Kyocera Crystal Device Corp
Priority to JP5809681A priority Critical patent/JPS57173217A/en
Publication of JPS57173217A publication Critical patent/JPS57173217A/en
Publication of JPS643367B2 publication Critical patent/JPS643367B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/21Crystal tuning forks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【発明の詳細な説明】 本発明は、音叉形圧電振動子の励振電極及び接
続電極、並びにその振動子特性、特に直列共振抵
抗(以下「CI」という。)の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an excitation electrode and a connection electrode of a tuning fork-shaped piezoelectric vibrator, and to improvements in the vibrator characteristics, particularly series resonant resistance (hereinafter referred to as "CI").

この種の振動子の圧電体としては、周波数温度
特性が比較的良好である水晶が一般的に使用さ
れ、特に腕時計などの小形機器の発振源として音
叉形水晶振動子が使用されて以来、ますます同振
動子の小形化が強く要求されている。この要求に
応える加工手段として登場したのが、半導体素子
において利用されていたフオトリソグラフイーで
あり、このフオトリソ技術により水晶振動板を音
叉形状に加工している。
Quartz crystal, which has relatively good frequency-temperature characteristics, is generally used as the piezoelectric material for this type of vibrator, and has been used in particular since tuning fork crystal oscillators have been used as oscillation sources in small devices such as wristwatches. There is a strong demand for smaller resonators. Photolithography, which has been used in semiconductor devices, has emerged as a processing method to meet this demand, and this photolithography technology is used to process crystal diaphragms into tuning fork shapes.

しかして、水晶は、晶属32に属する圧電性単
結晶であつて、その結晶座標軸(X,Y,Z)に
おいて異方性を有しているために、エツチング加
工をする場合には、その異方性について充分考慮
してエツチング液の選定を行つている。例えば、
主表面がZ軸に垂直であるZ板水晶から音叉形状
の振動板に外形加工をする場合、酸性フツ化アン
モン(NH4HF2)溶液を使用している。なお、
このエツチング加工の前工程との関係について
は、(1)Z板水晶を洗浄する工程、(2)Z板水晶の両
主面に、水晶との密着性を向上させるCr膜(下
層)と、電極としての導電性を得、かつ後記する
酸性フツ化アンモン溶液による蝕刻時の金属レジ
ストとしての役割のためのAu膜(上層)とを蒸
着形成する工程、(3)蒸着膜の水晶への密着強度を
上げるための熱処理する工程、(4)水晶両主面にフ
オトレジストを塗布し、所定の音叉形状の露光、
現像をする工程、(5)Au膜及びCr膜の蝕刻を王水
及びCr溶解液で行い、音叉形状周辺の水晶面を
露呈させる工程、(6)前記フオトレジストを除去し
た後、再び前記と同様フオトレジストを塗布し、
所定の電極形状の露光、現像をする工程、(7)水晶
の両主面から垂直方向に酸性フツ化アンモン溶液
で蝕刻を行い、所定の音叉形状周辺の水晶を溶解
除去する工程、から成る。
However, since quartz is a piezoelectric single crystal belonging to crystal group 32 and has anisotropy in its crystal coordinate axes (X, Y, Z), when etching it, Etching solutions are selected with due consideration to anisotropy. for example,
When shaping a Z-plate crystal whose main surface is perpendicular to the Z-axis into a tuning fork-shaped diaphragm, an acidic ammonium fluoride (NH 4 HF 2 ) solution is used. In addition,
Regarding the relationship with the previous process of this etching process, (1) the process of cleaning the Z plate crystal, (2) the Cr film (lower layer) on both main surfaces of the Z plate crystal to improve the adhesion with the crystal, Step of vapor depositing an Au film (upper layer) to obtain conductivity as an electrode and to serve as a metal resist during etching with an acidic ammonium fluoride solution described later; (3) adhesion of the vapor deposited film to the crystal; (4) Applying photoresist to both main surfaces of the crystal and exposing it to a predetermined tuning fork shape;
(5) Etching the Au film and Cr film with aqua regia and Cr solution to expose the crystal surface around the tuning fork shape; (6) After removing the photoresist, repeat the above process. Apply the same photoresist,
It consists of the steps of exposing and developing a predetermined electrode shape, and (7) etching the crystal with an acidic ammonium fluoride solution in the vertical direction from both principal surfaces to dissolve and remove the crystal around the predetermined tuning fork shape.

しかるに、このようなエツチング加工によつて
得られた水晶は、第1図のイのA−A断面図及び
ロの表面図に示すように、2本の板状の脚部1,
1′と、その脚部を連結する板状の基部2とで音
叉形水晶振動板3を形成しているが、各側面を境
にしている稜部4〜13に注目すると、鋭く切り
立つた状態で形成されていることが発見できる。
なお、同図の結晶座標(X,Y′,Z′)は、周波数
温度特性との関係でX軸のまわりに0゜〜6゜回転し
たものある。
However, the crystal obtained by such etching process has two plate-shaped legs 1, as shown in the A-A sectional view in FIG. 1 and the surface view in B.
1' and the plate-shaped base 2 that connects its legs form a tuning fork-shaped crystal diaphragm 3. If you pay attention to the ridges 4 to 13 that border each side, you will notice that they have sharp edges. It can be found that it is formed by
Note that the crystal coordinates (X, Y', Z') in the figure are rotated by 0° to 6° around the X axis due to the relationship with the frequency-temperature characteristics.

従来のエツチング加工による音叉形水晶振動板
は、上記した各稜部の切り立ち部分を無視してそ
のまま励振電極及び接続電極を稜部をまたがつて
配置していたために、先ず接続電極の導通不良が
起りがちであり、またCI値を小さくするための
手段として励振電極の面積を大きくし、特に厚さ
面(側面)の励振電極については稜部まで幅いつ
ぱいに配置することがあるが、それ程所望通り
CI値を小さくすることができなかつた。
In conventional etching-processed tuning fork-shaped crystal diaphragms, the excitation electrodes and connection electrodes were placed directly across the ridges, ignoring the steep portions of each ridge. This tends to occur, and as a means to reduce the CI value, the area of the excitation electrode is increased, and in particular, the excitation electrode on the thickness side (side surface) may be placed as wide as possible up to the ridge, but this is not the case. as desired
It was not possible to reduce the CI value.

本発明の第1の目的は、接続電極の導通不良を
除去することであり、第2の目的は、従来のCI
値の限界を打破して、CI値をより小さくするこ
とであり、第3の目的は、音叉形振動板の小形化
をしても振動子特性を良好に維持することであ
る。
The first purpose of the present invention is to eliminate conduction defects in connection electrodes, and the second purpose is to eliminate conduction defects in conventional CI
The purpose is to break through the limits of the CI value and make the CI value even smaller.The third purpose is to maintain good oscillator characteristics even when the tuning fork-shaped diaphragm is downsized.

第2図は、第1図に示した音叉形水晶振動板3
の稜部4〜13の切り立ち部分を除去して、丸み
を施した振動板3の断面を示す。
Figure 2 shows the tuning fork-shaped crystal diaphragm 3 shown in Figure 1.
A cross section of the diaphragm 3 which has been rounded by removing the steep portions of the ridges 4 to 13 is shown.

この切り立ち部分の除去手段としては、音叉形
水晶振動板3の先のエツチング加工が振動板3の
平面に垂直方向に蝕刻するエツチング液(例:酸
性フツ化アンモン(NH4HF2)溶液)であつた
のに対して、稜部4〜13を境にした二側面にほ
ぼ等しく蝕刻するエツチング液(例:酢酸
(CH3COOH)、硫酸(H2SO4)、塩酸(HCl)、リ
ン酸(H3PO4)、硝酸(HNO3)、塩化銀(AgCl)
及びヨウ素(I)等のいずれかを含むフツ酸
(HF)混液)を使用する。これにより、稜部4
〜13は、第2図に示すように切り立ち部分が除
去され、本例では丸みをおびた形状になる。この
切り立ち部分の除去叉は丸み形状は肉眼視するこ
とができない程少なく叉は小さいが、顕微鏡で観
察したところ、本例の第2図に示す振動板3の厚
さ(200μ)の約1/100の大きさ(半径約2μ)であ
る。なお、この切り立ち部分の除去の上限は振動
板3の所定形状を実質的に維持することができる
までであつて、丸み形状の半径としては振動板3
の厚さの約1/50までであり、下限は後述する本発
明の作用効果が得られる範囲であつて、丸み形状
の半径としては振動板3の厚さの約1/500までで
ある。
As a means for removing this steep portion, an etching solution (e.g., acidic ammonium fluoride (NH 4 HF 2 ) solution) that etches the tip of the tuning fork-shaped crystal diaphragm 3 in a direction perpendicular to the plane of the diaphragm 3 is used. In contrast, an etching solution (e.g., acetic acid (CH 3 COOH), sulfuric acid (H 2 SO 4 ), hydrochloric acid (HCl), phosphorus Acid (H 3 PO 4 ), Nitric acid (HNO 3 ), Silver chloride (AgCl)
or a hydrofluoric acid (HF) mixture containing either iodine (I) or the like. As a result, the ridge 4
As shown in FIG. 2, 13 to 13 have steep portions removed, resulting in a rounded shape in this example. The removed or rounded shape of this steep part is so small that it cannot be seen with the naked eye, but when observed with a microscope, it was found to be approximately 1/2 the thickness (200μ) of the diaphragm 3 shown in FIG. 2 of this example. /100 (radius approximately 2μ). Note that the upper limit for removing this steep part is until the predetermined shape of the diaphragm 3 can be substantially maintained, and the radius of the rounded shape is the diaphragm 3.
The lower limit is the range in which the effects of the present invention described later can be obtained, and the radius of the rounded shape is up to about 1/500 of the thickness of the diaphragm 3.

第3図のイ及びロは、それぞれ表裏の関係にあ
る電極配置を示す斜視図である。ここでは、前述
した稜部の切り立ち部分を除去した振動板3に2
端子の電極配置をした実施例を示している。
A and B in FIG. 3 are perspective views showing the electrode arrangement on the front and back sides, respectively. Here, 2
An example of the arrangement of terminal electrodes is shown.

所定の共振周波数の入力信号(32.768KHz)を
受けて音叉振動すべき励振電極は、脚部1の両主
面上に励振電極14,15及び両側面上に幅いつ
ぱいに励振電極16,17、並びに脚部1′の両
主面上に励振電極18,19及び両側面上に幅い
つぱいに励振電極20,21がそれぞれ下層に
Cr膜(膜厚300A)及び上層にAu膜(膜厚700A)
を蒸着技術により付着されている。そして、脚部
1の接続電極も同様に、励振電極14と15を接
続する接続電極22、励振電極15と21を接続
する接続電極23及び励振電極16と17を接続
する接続電極24、並びに脚部1′の接続電極も
同様に、励振電極18と19を接続する接続電極
25、励振電極19と17を接続する接続電極2
6及び励振電極20と21を接続する接続電極2
7をそれぞれ付着している。これらの接続電極2
2〜27は、振動板3の脚部1,1′叉は基部2
の稜部(切り立ち部分が除去されている)を図示
の通りまたがつて配置されている。なお、基部2
の両主面上に比較的大きな面積の金属膜28,2
9は、前述した励振電極及び接続電極と同様に付
着され、ここで入力振号を印加し、かつ振動板3
を保持する端部電極である。
The excitation electrodes that are to vibrate the tuning fork in response to an input signal of a predetermined resonance frequency (32.768 KHz) are excitation electrodes 14 and 15 on both main surfaces of the leg part 1, and excitation electrodes 16 and 17 with full width on both side surfaces. Furthermore, excitation electrodes 18 and 19 are provided on both main surfaces of the leg portion 1', and excitation electrodes 20 and 21 are provided on both side surfaces of the leg portion 1' to the full width thereof, respectively.
Cr film (film thickness 300A) and upper layer Au film (film thickness 700A)
It is attached by vapor deposition technology. Similarly, the connection electrodes of the leg portion 1 include a connection electrode 22 that connects the excitation electrodes 14 and 15, a connection electrode 23 that connects the excitation electrodes 15 and 21, a connection electrode 24 that connects the excitation electrodes 16 and 17, and the connection electrode 24 that connects the excitation electrodes 14 and 15. Similarly, the connection electrodes in section 1' are connection electrode 25, which connects excitation electrodes 18 and 19, and connection electrode 2, which connects excitation electrodes 19 and 17.
6 and a connecting electrode 2 that connects the excitation electrodes 20 and 21.
7 are attached to each. These connecting electrodes 2
2 to 27 are the legs 1, 1' or the base 2 of the diaphragm 3.
As shown in the figure, it is placed astride the ridge (the steep part has been removed). In addition, base 2
A relatively large area metal film 28, 2 is formed on both main surfaces of the
9 is attached in the same manner as the excitation electrode and connection electrode described above, applies an input vibration here, and connects the diaphragm 3
This is the end electrode that holds the .

このようにしてなる本例の音叉形水晶振動子
は、接続電極の導通不良を完全に解消することが
でき、更に、励振電極特に両側面上の励振電極を
その側面の幅(厚さ)いつぱいに配置して、励振
として稜部においても有効に作用することから、
CI値をより小さくする(従来のCI値:10kΩを本
発明で7kΩに小さくする)とともに、そのバラツ
キを少なくして(従来のCI値のバラツキ:4kΩを
本発明で2kΩに少なくして)、品質の向上を図る
ことができる。
The tuning fork-shaped crystal resonator of the present example constructed in this manner can completely eliminate conduction defects in the connection electrodes, and furthermore, the excitation electrodes, especially the excitation electrodes on both sides, can be Because it is placed in the ridge and acts effectively on the ridge as an excitation,
In addition to making the CI value smaller (conventional CI value: 10 kΩ reduced to 7 kΩ with the present invention), and reducing its dispersion (conventional CI value dispersion: 4 kΩ reduced to 2 kΩ with the present invention), Quality can be improved.

以上の利点は、音叉形状の寸法を更に小形化す
ることを可能にし、振動子特性、例えば周波数温
度特性を忠実に出現させることができる利点まで
波及する。
The above advantages extend to the advantage that it is possible to further reduce the dimensions of the tuning fork shape, and that the vibrator characteristics, for example, frequency-temperature characteristics, can appear faithfully.

以上、本発明を実施例に基づいて説明したが、
圧電体としては水晶の他に、タンタル酸リチウム
単結晶でもよく、電極配置も第3図に示したもの
に限らず、各種のパターンが考えられる。
The present invention has been described above based on examples, but
In addition to quartz, the piezoelectric material may be lithium tantalate single crystal, and the electrode arrangement is not limited to that shown in FIG. 3, but various patterns can be considered.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はエツチン加工後の音叉形水晶振動板を
示し、同図イがA−A断面図、同図ロが表面図で
ある。第2図は稜部の切り立ち部分を除去した音
叉形水晶振動板の断面図である。第3図は第2図
に示した音叉形水晶振動板に電極を配置した実施
例であつて、同図イ及びロは表裏の関係がある斜
視図である。 1,1′……脚部、2……基部、3……音叉形
水晶振動板、4,5,6,7,8,9,10,1
1,12,13……稜部、14,15,16,1
7,18,19,20,21……励振電極、2
2,23,24,25,26,27……接続電
極。
FIG. 1 shows a tuning fork-shaped crystal diaphragm after etching, with A being a sectional view taken along line A-A and B being a surface view. FIG. 2 is a cross-sectional view of a tuning fork-shaped crystal diaphragm with the steep edge portion removed. FIG. 3 shows an embodiment in which electrodes are arranged on the tuning fork-shaped crystal diaphragm shown in FIG. 2, and FIG. 3 is a perspective view in which the front and back sides are connected. 1, 1'... Leg, 2... Base, 3... Tuning fork-shaped crystal diaphragm, 4, 5, 6, 7, 8, 9, 10, 1
1, 12, 13...ridge, 14, 15, 16, 1
7, 18, 19, 20, 21...excitation electrode, 2
2, 23, 24, 25, 26, 27... connection electrodes.

Claims (1)

【特許請求の範囲】[Claims] 1 2本の板状の脚部と該脚部を連結する板状の
基部とで音叉形状をなす音叉形圧電振動板の外形
を、該振動板の平面に垂直方向に蝕刻するエツチ
ング液によりエツチング加工した後、該振動板の
稜部を境にした二側面にほぼ等しく蝕刻するエツ
チング液により該稜部をエツチング加工して該稜
部の切り立ち部分を除去し、該脚部各面に音叉振
動すべき励振電極を配置するとともに、該脚部又
は該基部の該稜部をまたがつて、該励振電極を互
いに接続する接続電極を配置していることを特徴
とする音叉形圧電振動子の製造方法。
1 Etching the outer shape of a tuning fork-shaped piezoelectric diaphragm, which has a tuning fork shape with two plate-shaped legs and a plate-shaped base that connects the legs, using an etching liquid that etches in a direction perpendicular to the plane of the diaphragm. After processing, the ridges are etched using an etching solution that etches almost equally on two sides of the diaphragm bordering the ridges to remove the steep portions of the ridges, and a tuning fork is placed on each side of the legs. A tuning fork-shaped piezoelectric vibrator, characterized in that an excitation electrode to be vibrated is arranged, and a connecting electrode is arranged to connect the excitation electrodes to each other, straddling the ridge of the leg or the base. Production method.
JP5809681A 1981-04-17 1981-04-17 Tuning fork type piezoelectric oscillator and its manufacture Granted JPS57173217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5809681A JPS57173217A (en) 1981-04-17 1981-04-17 Tuning fork type piezoelectric oscillator and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5809681A JPS57173217A (en) 1981-04-17 1981-04-17 Tuning fork type piezoelectric oscillator and its manufacture

Publications (2)

Publication Number Publication Date
JPS57173217A JPS57173217A (en) 1982-10-25
JPS643367B2 true JPS643367B2 (en) 1989-01-20

Family

ID=13074416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5809681A Granted JPS57173217A (en) 1981-04-17 1981-04-17 Tuning fork type piezoelectric oscillator and its manufacture

Country Status (1)

Country Link
JP (1) JPS57173217A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60214114A (en) * 1984-04-09 1985-10-26 Toyo Commun Equip Co Ltd Sound leakage eliminating method of tuning fork type piezoelectric vibrator
JP2007078420A (en) * 2005-09-12 2007-03-29 Okazaki Mfg Co Ltd Thin-diametric thermocouple coated with pfa resin, and manufacturing method therefor
JP5002304B2 (en) * 2006-03-31 2012-08-15 日本電波工業株式会社 Manufacturing method of crystal unit
JP5374102B2 (en) * 2008-08-21 2013-12-25 京セラクリスタルデバイス株式会社 Tuning fork-type bending crystal resonator element and manufacturing method thereof

Also Published As

Publication number Publication date
JPS57173217A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
JP5239748B2 (en) Quartz crystal
JP5296113B2 (en) Method for manufacturing piezoelectric vibrating piece, piezoelectric vibrating piece and piezoelectric device
JP5216288B2 (en) Method for manufacturing piezoelectric vibrating piece, method for manufacturing piezoelectric device
US20100084949A1 (en) Tuning-fork-type piezoelectric vibrating piece and method of manufacturing same
JP2002033640A (en) Piezoelectric device
JP2009060478A (en) Manufacturing method of piezoelectric vibration chip, and tuning fork type piezoelectric vibration chip
JP3844213B2 (en) Method for manufacturing piezoelectric vibrating piece, photomask, piezoelectric vibrating piece, and piezoelectric device
US4253036A (en) Subminiature tuning fork quartz crystal vibrator with nicrome and palladium electrode layers
JPS58157211A (en) Manufacture of piezoelectric diaphragm
JP3952811B2 (en) Piezoelectric vibrating piece, method for manufacturing piezoelectric vibrating piece, and piezoelectric device
JPS643367B2 (en)
US3944862A (en) X-cut quartz resonator using non overlaping electrodes
JP2009152988A (en) Piezoelectric vibration chip, piezoelectric device and manufacturing methods for them
JP2004120351A (en) Manufacturing method of piezoelectric vibration piece
JP5936438B2 (en) Method for manufacturing piezoelectric vibration device
JPH05315881A (en) Manufacture of crystal vibrator
JP2001007677A (en) Crystal vibrator
JP2004301552A (en) Vibrator and physical quantity measuring apparatus
US4232109A (en) Method for manufacturing subminiature quartz crystal vibrator
JPS58146117A (en) Manufacture of piezoelectric oscillator
JPH04130810A (en) Manufacture of at cut crystal oscillating piece
JP2545779B2 (en) Method for manufacturing piezoelectric crystal device
JP3159982B2 (en) Rectangular AT-cut crystal unit
JPH04294622A (en) Production of piezoelectric element
JPS6173409A (en) Elastic surface wave device