JPS642444B2 - - Google Patents

Info

Publication number
JPS642444B2
JPS642444B2 JP54124532A JP12453279A JPS642444B2 JP S642444 B2 JPS642444 B2 JP S642444B2 JP 54124532 A JP54124532 A JP 54124532A JP 12453279 A JP12453279 A JP 12453279A JP S642444 B2 JPS642444 B2 JP S642444B2
Authority
JP
Japan
Prior art keywords
rolling
width
plate
rolled
tentering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54124532A
Other languages
Japanese (ja)
Other versions
JPS5647202A (en
Inventor
Kazuya Tsubota
Tadaaki Yanagisawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP12453279A priority Critical patent/JPS5647202A/en
Publication of JPS5647202A publication Critical patent/JPS5647202A/en
Publication of JPS642444B2 publication Critical patent/JPS642444B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、成形圧延工程と、幅出し圧延工程
と、仕上げ圧延工程とが順次行なわれる厚板圧延
方法に係り、特に、側端縁の切断による仕上げが
不要な圧延成品を得ることができる厚板圧延方法
に関する。 一般に、厚板、特に厚鋼板の圧延においては、
連続鋳造設備又は分塊圧延機で製造されたスラブ
に対して、まずスラブ厚さを整えるための所謂成
形圧延を1〜3パス行ない、次いでこれを90゜転
回して、所要の板幅を得るための幅出し圧延を所
要パス回数行なつた後、更にこれを90゜転回して
元の方向に戻し、目的とする板厚を得るための所
謂仕上げ圧延を所要パス回数行なつて、目的の板
幅、板厚の厚鋼板を得るようにしている。 しかるにこの圧延の過程において、スラブの先
後端と中央部の塑性変形挙動の違いから、厚鋼板
即ち圧延成品10の幅形状は、第1図に示す如
く、長手方向中央部の広い太鼓形状となつたり、
或いは、第2図に示す如く、長手方向中央部の狭
い鼓形状になつたりする。これは、特に成形圧延
および幅出し圧延に起因するもので、スラブ寸法
と仕上り寸法との関係によりその形状は異なり、
第3図に示す如く、幅出し比(圧延幅/スラブ
幅)が約1.5以下では、板幅差S(長手方向中央部
の板幅Mと長手方向先後端部の板幅T及びBの平
均の差、M−T+B/2)が負の値である鼓形状と なり、幅出し比が約1.5をこえては、板幅差Sが
正の値となる太鼓形状となることが判つており、
その量は、第3図に示す如く、定量的に予測する
ことができる。なお、この板幅差は、幅出し圧延
直後において既に生じており、この量は、仕上げ
圧延迄余り変化しない。 このような板幅差を有する太鼓形状又は鼓形状
の平面形状の圧延成品10は、従来は、第1図或
いは第2図に示す如く、剪断機又はガスにより所
要の幅寸法に切断して製品12としていた。又、
圧延のままの圧延成品10の側端縁部10aの形
状は、第4図或いは第5図に示す如く、凸状又は
凹状となり、且つこの部分はロールに触れないた
め表面が粗く、いずれにしても切断除去しなけれ
ばならなかつた。 一方、従来から、ホツトストリツプミルの粗ミ
ル等には、垂直ロールを設けて被圧延材の幅を制
御することが行なわれているが、これをそのまま
厚板圧延に適用することは困難であつた。即ち、
厚板圧延においては、前述の如く、幅出し圧延を
行なう必要があり、そのため前述のような太鼓形
状或いは鼓形状を生じる。従つて、板長手方向の
前後端と中央部に板幅差が生じ、たとえ垂直ロー
ルにより板幅を一定に制御しようとしても、長手
方向各部の圧下量が異なるため、垂直ロールによ
り幅方向に圧下した板の側端部が、次の水平ロー
ルによる圧延で再び幅方向に押し出される量(所
謂幅戻り量)に相異が生じ、幅方向の不均一を十
分に解消することができない。この幅戻りの状態
を第6図A及びBに示す。第6図Aにおいて、垂
直ロールの圧下量をSAとすれば、被圧延材14
の片縁ではSA/2だけ被圧延材14を押し込めるこ とになり、この押し込まれた分の一部はドツグボ
ーン14aとなつて盛上がりを生ずる。次いでこ
の部分を水平ロールで圧延すると、ドツグボーン
14aの一部が再び幅方向に拡がり、第6図Bに
示す幅戻りSB/2となるものである。この幅戻りの 量SBは、板厚や垂直ロールの圧下量によつて異な
るが、板厚一定の場合は垂直ロールの圧下量にの
み関係することは当然であり、従つて、前述の如
く板の前後端と中央部において板幅差Sがある場
合は、その板幅差Sを、仕上げ圧延において例え
垂直ロールを使用しても完全に消去することはで
きない。又、垂直ロールの圧下量を大きくする
と、板の幅方向の座屈を生じるため、あまり大き
な圧下は不可能である。 本発明は、前記従来の欠点を解消するべくなさ
れたもので、圧延成品の長手方向の板幅差を減少
すると共に側縁部形状を良好なものにすることが
でき、従つて、側端縁の切断による仕上げが不要
な圧延成品を得ることができる厚板圧延方法を提
供することを目的とする。 本発明は、成形圧延工程と、幅出し圧延工程
と、仕上げ圧延工程とが順次行なわれる厚板圧延
方法において、成形圧延の最終パスで、圧延中に
ロール間隙を変更し被圧延材に長手方向の厚み変
化を与える圧下修正圧延を行ない、幅出し圧延終
了時の被圧延材の長手方向の板幅差を所定値以下
とすると共に、仕上げ圧延工程にて被圧延材を板
厚方向に圧下する平圧延と、垂直ロールを用いて
目標板幅に対応する一定ロール開度により被圧延
材の側端縁を板幅方向に圧下するエツジング圧延
とを許容板幅差まで交互に行なうようにして、前
記目的を達成したものである。 以下本発明の原理を説明する。前述した通り、
厚板圧延においても、ホツトストリツプミルのよ
うに垂直ロールを設けて被圧延材を板幅方向に圧
下すれば、長手方向の板幅差が少なく、良好な側
端縁形状を有する圧延成品が得られることが予想
されるが、従来の厚板圧延方法において、そのま
まエツジング圧延を施したのでは、前述したよう
に幅戻りが発生するため被圧延材の長手方向の板
幅差を小さな値とすることができない。しかしな
がら発明者等は、実験により、前記幅出し圧延終
了時の被圧延材の長手方向の板幅差を所定値、例
えば20mm以下とした後、仕上げ圧延で被圧延材の
側端縁を板幅方向に圧下すれば、仕上げ圧延終了
時において、長手方向板幅差をほぼ許容できる
値、例えば10mm以下とすることができることを見
出した。 第7図は、仕上がり板厚30mm(実線A)、15mm
(実線B)、10mm(実線C)のものに対して、幅出
し圧延後の板幅差S1を測定し、その各種値につい
て、垂直ロールの圧下量を板幅差と等しく設定し
て仕上げ圧延を行ない、圧延終了後の板幅差S2
測定した結果を図示したものである。なおここ
で、仕上り板厚30mmのものに対しては、垂直ロー
ル及び水平ロールにより、エツジング圧延と平圧
延を5パス行なつた後、水平ロールによる平圧延
を1パス行ない、仕上り板厚15mmのものに対して
は、垂直ロール及び水平ロールにより、エツジン
グ圧延と平圧延を7パス行なつた後、水平ロール
による平圧延を1パス行ない、仕上り板厚10mmの
ものに対しては、垂直ロール及び水平ロールによ
り、エツジング圧延と平圧延を10パス行なつた
後、水平ロールによる平圧延を1パス行なつたも
のである。又、エツジング圧延においては垂直ロ
ールの開度はすべて一定としている。第7図よ
り、仕上り板厚にかかわらず、初めの板幅差S1
20mmを越えると、圧延終了後の板幅差S2が急に大
きくなる傾向があることが判る。従つて、圧延成
品に要求される板幅差S210mm以下を満足させるた
めには、少なくとも幅出し後の板幅差S1を20mm以
下にし、しかる後にエツジング圧延を施せば良い
ことが明らかである。 なお一般的に板厚が小なる程エツジング圧延の
効果は小である(即ち、エツジング圧延による圧
下量とその直後の平圧延による幅戻り量との差が
大である)が、仕上り板厚が小である程、仕上げ
圧延のパス回数が多くなり、エツジング圧延の効
果が累積されるため、仕上げ圧延終了後の板幅差
は小となる。 又、板厚が大なる程、エツジング圧延の効果は
大である(即ち、幅戻り量は小である)が、仕上
り板厚が大であれば、仕上げ圧延のパス回数が少
なくなるため、結果的にはエツジング圧延の効果
は仕上り板厚が小なる場合と同じになり、エツジ
ング圧延による効果は仕上り板厚に関係なくほぼ
似た値となるものである。このことは、第7図で
見ると、S1とS2の関係が、仕上り板厚の差によつ
て大きな変動がなく、ほぼ似た値になつているこ
とからも明らかである。 一方、従来の厚板圧延方法においては、幅出し
圧延終了時の被圧延材の長手方向の板幅差が、例
えば20mm以下の範囲にはいるのは、第3図に示す
如く、幅出し比1.5近辺のごく限られた範囲とな
つているが、発明者等が既に特開昭53−123358号
で提案している所謂圧下修正圧延を行なえば、幅
出し比にかかわらず幅出し圧延終了時の被圧延材
の長手方向の板幅差を所定値、例えば20mm以下に
制御することが可能である。即ち、前述の如く、
幅出し比が約1.5以下では仕上り平面形状は鼓形
状となり、約1.5以上では太鼓形状となる。従つ
て、幅出し圧延に先立つて成形圧延の最終パスに
おいて、スラブ長手方向に板厚差を与えておき、
これを90゜転回して幅出し圧延を行なえば、板厚
の厚い部分は幅方向(幅出し圧延の圧延方向)に
余分にのびる。これは、厚板圧延においては圧延
時のメタルフローが幅方向には生ぜず、そのほと
んどが長手方向に生じることにある。従つて、仕
上り形状が太鼓形状となる幅出し比1.5以上の場
合は、成形圧延時にスラブ長手方向の中央部を薄
くしておけば、幅出し圧延後、長手方向の前後端
が中央部より多く伸びるため、太鼓形状による中
央部の広がりと相殺されて丁度良好な形状が得ら
れる。この場合の圧延状態を第8図に示す。図に
おいて、Aはスラブ形状、B及びCは成形パス終
了形状、Dは幅出しパス終了形状、Eは成品形
状、をそれぞれ示す。なお、仕上り形状が鼓形状
となる幅出し比1.5以下の場合は、上記と逆に、
成形圧延時にスラブ長手方向の中央部を厚くすれ
ば良い。 以上の如く、幅出し圧延を行なつた後に、被圧
延材を再度90゜転回して、垂直ロールを使用しな
がら仕上げ圧延を行なう。この場合、垂直ロール
の開度は、注文板幅に対して0〜10mm大きく設定
する。この余分の開度は、要求される板幅精度に
より決まるものである。 次に、本発明における成形圧延時の水平ロール
圧下変更制御方法を、第9図を参照しながら説明
する。スラブ寸法、圧延寸法により、圧延圧下ス
ケジユールを計算機20により計算し、同時に、
第3図を基礎とした鋼板平面形状予測モデルによ
り、最終仕上げ圧延後の板幅差を予測する。この
予測値に基づき、第8図に示される成形圧延最終
パスの板厚変化量(△h、li)を体積一定則によ
り計算機22を用いて計算する。次に、この値を
実際の圧延に適用できるように、圧下位置変換装
置24により、水平ロール圧下位置変化量(△
S、li)に換算する。この値が、圧下位置及び圧
延速度制御装置28に指示される。この状態にお
いて、成形圧延の最終パスでロードセル30によ
り被圧延材14の先端の噛込みを検出し、同時に
目標の水平ロール圧下位置変化量(△S、li)に
従い、自動板厚制御装置32、油圧圧下制御装置
34を介して、圧下位置を制御しながら圧延す
る。この時水平ロール36の回転数を回転数検出
器38で検出し、計算機40により先進率の補正
を加え、被圧延材14の先端から現在の圧下位置
までの長さを計算し、自動速度調整器42を介し
てミルモータ44を制御することによりロール回
転数を制御し、又、自動板厚制御装置32、油圧
圧下制御装置34を介して圧下装置46を制御し
て、被圧延材14の圧延方向の所定の位置での目
標の板厚形状を与えて圧延するものである。 次に、仕上げ圧延におけるエツジング圧延機の
制御方法を第10図を参照して説明する。まず、
幅出し圧延の終了後、仕上げ圧延に入る前に、垂
直ロール50を所定の開度、例えば、注文板幅に
対して0〜10mm大きな開度Wに設定すると共に、
垂直ロール50のロール速度を、仕上げ圧延機の
水平ロールの圧延速度と同調しておく。このエツ
ジング圧延機の制御は、平圧延機の制御と一体と
する必要は特になく、単独の制御でも良いが、少
なくとも速度制御は水平ロールの速度と同調させ
る必要があり、水平ロールの速度が、図示しない
水平ミル速度指示装置から垂直ロール50の速度
制御装置へ入力される。この制御装置の指令に基
づき、垂直ロール電動機52が駆動され、その速
度は、ロール回転検出器54により検出され、制
御装置56にフイードバツクされて、正確な速度
が保持される。同時に、ロール開度は、目標仕上
り板幅によりロール開度設定装置58に入力さ
れ、圧下駆動装置60に伝達されて、所定の開度
に設定される。更に圧下位置検出器62により、
圧下位置は、ロール開度設定装置58にフイード
バツクされて、正確なロール開度が維持される。
図において、64は、垂直ロール50のチヨツク
を収容するチヨツクハウジング、66は、垂直ロ
ール50の圧延荷重を検出するロードセル、67
は、圧下装置、68は主ハウジングである。 以下本発明の実施例を説明する。本実施例にお
けるパススケジユールを下記第1表に示す。
The present invention relates to a thick plate rolling method in which a forming rolling process, a tentering rolling process, and a finishing rolling process are sequentially performed, and in particular, the present invention relates to a thick plate rolling method that can obtain a rolled product that does not require finishing by cutting the side edges. This invention relates to a plate rolling method. Generally, when rolling thick plates, especially thick steel plates,
Slabs manufactured using continuous casting equipment or a blooming mill are first subjected to 1 to 3 passes of so-called forming rolling to adjust the thickness of the slab, and then turned 90 degrees to obtain the required width. After performing the required number of passes of tentering rolling to obtain the desired plate thickness, the sheet is further turned 90° to return to its original direction, and the so-called finish rolling is performed the required number of passes to obtain the desired thickness. We are trying to obtain thick steel plates with the same width and thickness. However, in this rolling process, due to the difference in the plastic deformation behavior between the front and rear ends and the center of the slab, the width of the thick steel plate, that is, the rolled product 10, becomes a drum shape with a wider center in the longitudinal direction, as shown in FIG. Or,
Alternatively, as shown in FIG. 2, it becomes a drum shape with a narrow central portion in the longitudinal direction. This is especially caused by forming rolling and tentering rolling, and the shape differs depending on the relationship between slab dimensions and finished dimensions.
As shown in Fig. 3, when the tentering ratio (rolling width/slab width) is about 1.5 or less, the plate width difference S (the average of the plate width M at the center in the longitudinal direction and the plate widths T and B at the front and rear ends in the longitudinal direction) is It is known that the plate width difference S (M-T+B/2) becomes a drum shape with a negative value, and when the width ratio exceeds about 1.5, the plate width difference S becomes a positive value.
The amount can be predicted quantitatively as shown in FIG. Note that this plate width difference has already occurred immediately after tentering rolling, and this amount does not change much until finishing rolling. Conventionally, a drum-shaped or drum-shaped planar rolled product 10 having such a plate width difference is cut into a desired width using a shearing machine or gas, as shown in FIG. 1 or 2. It was set at 12. or,
The side edge portion 10a of the rolled product 10 as rolled has a convex or concave shape as shown in FIG. 4 or 5, and since this portion does not touch the rolls, the surface is rough. It also had to be cut and removed. On the other hand, although hot strip mills and other coarse mills have traditionally been equipped with vertical rolls to control the width of the rolled material, it is difficult to apply this method directly to thick plate rolling. It was hot. That is,
In rolling a thick plate, as described above, it is necessary to perform tentering rolling, which results in the drum shape or drum shape as described above. Therefore, there is a difference in the width of the board between the front and rear ends and the center in the longitudinal direction of the board, and even if you try to control the width of the board to be constant using vertical rolls, the rolling reduction amount at each part in the longitudinal direction will be different, so the rolling reduction in the width direction with the vertical rolls will be different. There is a difference in the amount by which the side edges of the rolled plate are pushed out in the width direction again in the next rolling by the horizontal rolls (so-called width return amount), and it is not possible to sufficiently eliminate the non-uniformity in the width direction. This state of width return is shown in FIGS. 6A and 6B. In Fig. 6A, if the reduction amount of the vertical roll is S A , the material to be rolled 14
The material to be rolled 14 can be pushed in by S A /2 at one edge, and a part of this pushed in becomes a dog bone 14a and creates a bulge. When this portion is then rolled with horizontal rolls, a portion of the dogbone 14a expands again in the width direction, resulting in a width return S B /2 as shown in FIG. 6B. The amount of width return S B varies depending on the plate thickness and the amount of reduction of the vertical rolls, but if the thickness of the plate is constant, it is natural that it is related only to the amount of reduction of the vertical rolls, and therefore, as mentioned above, If there is a plate width difference S between the front and rear ends and the central part of the plate, the plate width difference S cannot be completely eliminated even if vertical rolls are used in finish rolling. Furthermore, if the amount of reduction of the vertical rolls is increased, buckling of the plate in the width direction will occur, so a very large reduction is not possible. The present invention was made in order to eliminate the above-mentioned conventional drawbacks, and it is possible to reduce the width difference in the longitudinal direction of a rolled product and to improve the shape of the side edge. An object of the present invention is to provide a thick plate rolling method that can obtain a rolled product that does not require finishing by cutting. The present invention provides a method for rolling a thick plate in which a forming rolling process, a tentering rolling process, and a finishing rolling process are sequentially performed. Reduction correction rolling is performed to give a thickness change of , and the longitudinal plate width difference of the rolled material at the end of tentering rolling is set to a predetermined value or less, and the rolled material is rolled in the thickness direction in the finish rolling process. Flat rolling and edging rolling, in which the side edges of the material to be rolled are rolled down in the width direction using vertical rolls at a constant roll opening corresponding to the target width, are performed alternately up to the allowable width difference. The above objective has been achieved. The principle of the present invention will be explained below. As mentioned above,
Even in thick plate rolling, if vertical rolls are installed like in a hot strip mill to roll the material to be rolled in the width direction of the plate, the rolled product can be rolled with a small difference in width in the longitudinal direction and a good side edge shape. However, in the conventional thick plate rolling method, if the edge rolling is performed as is, width reversion will occur as described above, so the width difference in the longitudinal direction of the rolled material must be set to a small value. It is not possible to do so. However, through experiments, the inventors determined that after the width difference in the longitudinal direction of the rolled material at the end of the tentering rolling was set to a predetermined value, for example, 20 mm or less, the side edges of the rolled material were adjusted to the width of the material in the finish rolling. It has been found that by rolling in the longitudinal direction, the longitudinal plate width difference can be reduced to an almost allowable value, for example, 10 mm or less, at the end of finish rolling. Figure 7 shows the finished board thickness of 30mm (solid line A) and 15mm.
(solid line B) and 10 mm (solid line C), measure the strip width difference S 1 after tentering rolling, and finish by setting the vertical roll reduction amount equal to the strip width difference for each value. The figure shows the results of rolling and measuring the plate width difference S 2 after rolling. Here, for a plate with a finished plate thickness of 30 mm, five passes of edging rolling and flat rolling are performed using vertical rolls and horizontal rolls, and then one pass of flat rolling is performed using horizontal rolls to obtain a plate with a finished plate thickness of 15 mm. After 7 passes of edging rolling and flat rolling with vertical rolls and horizontal rolls, 1 pass of flat rolling with horizontal rolls is applied to the plate.For finished plate thickness of 10 mm, vertical roll and After 10 passes of edging rolling and flat rolling using horizontal rolls, one pass of flat rolling using horizontal rolls was performed. In addition, in the edge rolling, the opening degrees of the vertical rolls are all kept constant. From Figure 7, regardless of the finished plate thickness, the initial plate width difference S 1 is
It can be seen that when the width exceeds 20 mm, the plate width difference S 2 after rolling tends to suddenly increase. Therefore, in order to satisfy the plate width difference S 2 of 10 mm or less required for rolled products, it is clear that at least the plate width difference S 1 after tentering should be set to 20 mm or less, and then edge rolling should be performed. be. In general, the smaller the plate thickness, the smaller the effect of edge rolling (that is, the difference between the amount of reduction due to edge rolling and the amount of width return due to flat rolling immediately after that is large), but when the finished plate thickness is The smaller the number of passes of finish rolling, the more the effect of the edging rolling is accumulated, so the difference in strip width after finish rolling becomes smaller. Also, the larger the plate thickness, the greater the effect of edge rolling (that is, the smaller the amount of width return), but if the finished plate thickness is large, the number of passes of finish rolling will be reduced, so the result will be Generally speaking, the effect of edge rolling is the same as when the finished plate thickness is small, and the effect of edge rolling has almost the same value regardless of the finished plate thickness. This is clear from the fact that, as shown in FIG. 7, the relationship between S 1 and S 2 does not vary greatly due to the difference in finished plate thickness, and the values are almost similar. On the other hand, in the conventional thick plate rolling method, the width difference in the longitudinal direction of the rolled material at the end of tentering rolling is within a range of, for example, 20 mm or less, as shown in Fig. 3. Although it is in a very limited range around 1.5, if the inventors carry out the so-called correction rolling that has already been proposed in JP-A No. 53-123358, it will be It is possible to control the plate width difference in the longitudinal direction of the rolled material to a predetermined value, for example, 20 mm or less. That is, as mentioned above,
If the width ratio is less than about 1.5, the finished planar shape will be drum-shaped, and if it is about 1.5 or more, it will be drum-shaped. Therefore, in the final pass of forming rolling prior to tentering rolling, a thickness difference is given in the longitudinal direction of the slab,
If this is turned 90 degrees and tenter rolling is performed, the thicker part of the plate will extend extra in the width direction (the rolling direction of tenter rolling). This is because, in rolling thick plates, metal flow during rolling does not occur in the width direction, but mostly occurs in the longitudinal direction. Therefore, if the finished shape is drum-shaped and the tentering ratio is 1.5 or more, if the central part in the longitudinal direction of the slab is made thinner during forming rolling, the front and rear ends of the longitudinal direction will be thinner than the central part after tentering rolling. Since it stretches, it offsets the widening of the center due to the drum shape, resulting in just the right shape. The rolling state in this case is shown in FIG. In the figure, A shows the slab shape, B and C show the end shape of the forming pass, D shows the end shape of the tentering pass, and E shows the finished product shape. In addition, if the finished shape is a drum-shaped width ratio of 1.5 or less, contrary to the above,
It is only necessary to thicken the central portion in the longitudinal direction of the slab during forming and rolling. After performing tentering rolling as described above, the material to be rolled is again turned 90 degrees and finish rolling is performed using vertical rolls. In this case, the opening degree of the vertical roll is set 0 to 10 mm larger than the ordered board width. This extra opening is determined by the required plate width accuracy. Next, a method of controlling horizontal roll reduction during forming and rolling according to the present invention will be explained with reference to FIG. 9. The rolling reduction schedule is calculated by the calculator 20 based on the slab dimensions and rolling dimensions, and at the same time,
A steel plate planar shape prediction model based on Fig. 3 predicts the plate width difference after final finish rolling. Based on this predicted value, the amount of plate thickness change (Δh, li) in the final pass of forming and rolling shown in FIG. 8 is calculated using the calculator 22 according to the constant volume law. Next, in order to apply this value to actual rolling, the horizontal roll rolling position change amount (△
S, li). This value is instructed to the rolling position and rolling speed control device 28. In this state, the load cell 30 detects the biting of the tip of the rolled material 14 in the final pass of forming rolling, and at the same time, according to the target horizontal roll rolling position change amount (ΔS, li), the automatic plate thickness control device 32, Rolling is carried out while controlling the reduction position via the hydraulic reduction control device 34. At this time, the rotation speed of the horizontal roll 36 is detected by the rotation speed detector 38, the advance rate is corrected by the calculator 40, the length from the tip of the material to be rolled 14 to the current rolling position is calculated, and the speed is automatically adjusted. The rolling speed of the material 14 to be rolled is controlled by controlling the mill motor 44 via the machine 42, and by controlling the rolling device 46 via the automatic plate thickness control device 32 and the hydraulic pressure reduction control device 34. Rolling is performed by giving a target thickness shape at a predetermined position in the direction. Next, a method of controlling the edging mill in finish rolling will be explained with reference to FIG. first,
After completion of tentering rolling and before starting finishing rolling, the vertical rolls 50 are set to a predetermined opening degree, for example, an opening degree W that is 0 to 10 mm larger than the ordered sheet width, and
The roll speed of the vertical rolls 50 is synchronized with the rolling speed of the horizontal rolls of the finishing mill. The control of this edging rolling mill does not particularly need to be integrated with the control of the flat rolling mill, and may be controlled independently, but at least the speed control needs to be synchronized with the speed of the horizontal rolls, so that the speed of the horizontal rolls is An input signal is input from a horizontal mill speed indicating device (not shown) to a speed control device for the vertical rolls 50. Based on commands from the controller, the vertical roll motor 52 is driven, and its speed is detected by a roll rotation detector 54 and fed back to the controller 56 to maintain accurate speed. At the same time, the roll opening degree is input to the roll opening degree setting device 58 according to the target finished board width, and is transmitted to the rolling down drive device 60, and is set to a predetermined opening degree. Furthermore, by the pressure down position detector 62,
The rolling position is fed back to the roll opening degree setting device 58 to maintain an accurate roll opening degree.
In the figure, 64 is a choke housing that accommodates the chock of the vertical roll 50, 66 is a load cell that detects the rolling load of the vertical roll 50, and 67 is a chock housing that accommodates the chock of the vertical roll 50.
is a lowering device, and 68 is a main housing. Examples of the present invention will be described below. The pass schedule in this embodiment is shown in Table 1 below.

【表】【table】

【表】 対応している。
なお、スラブサイズは220×1580×3000mm、圧
延成品サイズは15×3300×21000mmである。この
場合、幅出し比は3300/1580=2.1となり、第3図から 及び巾形状予測モデルから予想される太鼓代は90
mmである。これは仕上り板幅3300mmに対し、約
2.7%である。従つて、成形最終圧延の板厚に対
しては、板厚差△hとして、その2.7%、即ち、
△h=180×0.027=4.8mmを中央部で与えればよ
い。この板厚差△hが、体積一定則に従い幅出し
圧延において幅方向に伸びるものである。この値
を用いて、板厚変更部の長さliを600mm(このli
は、いずれの場合でも500〜600mm程度で良い)に
設定し、第8図Bのような形状になるように成形
の最終パスにおいて圧延し、次いで第1表に示す
パススケジユールに従つて圧延した。又、この場
合、幅出し後の板幅は3310mmであるが、垂直ロー
ル開度は3305mmに設定した。ここにおける開度5
mmは余裕代である。以上の圧延の結果、仕上り板
幅は3305mmにほぼ均一に圧延され、最大板幅差は
+2mmであつた。又、板の側端縁部は、剪断機又
はガス切断に匹適するような状態であつた。 以上説明した通り、本発明によれば、板幅方向
の太鼓、鼓がなくなり、同時に側端縁部の形状並
びに表面状態が良好になるため、圧延成品の剪断
機又はガスによる切断が不要となり、歩止まりが
向上する、工程が省略できる等の優れた効果を有
する。
[Table] Compatible.
The slab size is 220 x 1580 x 3000 mm, and the rolled product size is 15 x 3300 x 21000 mm. In this case, the width ratio is 3300/1580 = 2.1, and the drum width predicted from Figure 3 and the width shape prediction model is 90.
mm. This is approximately
It is 2.7%. Therefore, the plate thickness difference △h is 2.7% of the plate thickness at the final rolling of forming, that is,
It is sufficient to give Δh=180×0.027=4.8mm at the center. This plate thickness difference Δh extends in the width direction during tentering rolling according to the law of constant volume. Using this value, set the length li of the plate thickness change part to 600 mm (this li
(may be approximately 500 to 600 mm in any case), and rolled in the final pass of forming to obtain the shape shown in Figure 8B, and then rolled according to the pass schedule shown in Table 1. . Further, in this case, the plate width after tentering was 3310 mm, but the vertical roll opening was set to 3305 mm. Opening degree here 5
mm is the allowance. As a result of the above rolling, the finished plate width was almost uniformly rolled to 3305 mm, and the maximum plate width difference was +2 mm. The side edges of the plate were also in a condition suitable for shearing or gas cutting. As explained above, according to the present invention, drums and drums in the width direction of the plate are eliminated, and at the same time, the shape and surface condition of the side edge portions are improved, so cutting the rolled product with a shearing machine or gas is no longer necessary. It has excellent effects such as improving yield and eliminating steps.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、従来の厚板圧延における
圧延成品の平面形状の例を示す平面図、第3図
は、厚板圧延における幅出し比と板幅差の関係を
示す線図、第4図及び第5図は、従来の厚板圧延
における圧延終了時の圧延成品の側端縁部形状を
示す断面図、第6図A及びBは、厚板圧延におけ
るエツジング圧延時の被圧延材端部形状の変化状
態を示す断面図、第7図は、幅出し圧延後の板幅
差とエツジング圧延を行なつた仕上げ圧延後の板
幅差の関係を示す線図、第8図は、幅出し圧延終
了時の被圧延材の長手方向の板幅差を所定値以下
とするための圧下修正圧延の工程を示す斜視図、
第9図は、前記圧下修正圧延を行なうための圧下
制御装置を示すブロツク線図、第10図は、仕上
げ圧延に用いられるエツジング圧延装置の制御装
置を示すブロツク線図である。 10…圧延成品、10a…側端縁部、12…成
品、14…被圧延材、36…水平ロール、50…
垂直ロール。
1 and 2 are plan views showing examples of planar shapes of rolled products in conventional thick plate rolling, and FIG. 3 is a diagram showing the relationship between tenter ratio and plate width difference in thick plate rolling, 4 and 5 are cross-sectional views showing the shape of the side edge of the rolled product at the end of rolling in conventional thick plate rolling. FIG. 7 is a cross-sectional view showing the state of change in the shape of the end portion of the material. FIG. , a perspective view showing the process of reduction correction rolling to reduce the longitudinal plate width difference of the rolled material to a predetermined value or less at the end of tentering rolling;
FIG. 9 is a block diagram showing a reduction control device for performing the reduction correction rolling, and FIG. 10 is a block diagram showing a control device for an edging rolling device used for finish rolling. DESCRIPTION OF SYMBOLS 10... Rolled product, 10a... Side edge part, 12... Finished product, 14... Rolled material, 36... Horizontal roll, 50...
Vertical roll.

Claims (1)

【特許請求の範囲】[Claims] 1 成形圧延工程と、幅出し圧延工程と、仕上げ
圧延工程とが順次行なわれる厚板圧延方法におい
て、成形圧延の最終パスで、圧延中にロール間隙
を変更し被圧延材に長手方向の厚み変化を与える
圧下修正圧延を行ない、幅出し圧延終了時の被圧
延材の長手方向の板幅差を所定値以下とすると共
に、仕上げ圧延工程にて被圧延材を板厚方向に圧
下する平圧延と、垂直ロールを用いて目標板幅に
対応する一定ロール開度により被圧延材の側端縁
を板幅方向に圧下するエツジング圧延とを許容板
幅差まで交互に行なうことを特徴とする厚板圧延
方法。
1 In a thick plate rolling method in which a forming rolling process, a tentering rolling process, and a finishing rolling process are performed sequentially, in the final pass of forming rolling, the roll gap is changed during rolling to cause a longitudinal thickness change in the rolled material. In addition, flat rolling is carried out to reduce the width difference in the longitudinal direction of the rolled material at the end of tentering rolling to a predetermined value or less, and to reduce the rolled material in the thickness direction in the finish rolling process. A thick plate characterized in that edging rolling, in which the side edges of the material to be rolled are rolled down in the width direction using vertical rolls at a constant roll opening corresponding to the target plate width, is performed alternately up to an allowable plate width difference. Rolling method.
JP12453279A 1979-09-26 1979-09-26 Rolling method for thick plate Granted JPS5647202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12453279A JPS5647202A (en) 1979-09-26 1979-09-26 Rolling method for thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12453279A JPS5647202A (en) 1979-09-26 1979-09-26 Rolling method for thick plate

Publications (2)

Publication Number Publication Date
JPS5647202A JPS5647202A (en) 1981-04-28
JPS642444B2 true JPS642444B2 (en) 1989-01-17

Family

ID=14887798

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12453279A Granted JPS5647202A (en) 1979-09-26 1979-09-26 Rolling method for thick plate

Country Status (1)

Country Link
JP (1) JPS5647202A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61140305A (en) * 1984-12-14 1986-06-27 Sumitomo Metal Ind Ltd Rolling method of thick plate

Also Published As

Publication number Publication date
JPS5647202A (en) 1981-04-28

Similar Documents

Publication Publication Date Title
US4238946A (en) Method for rolling metal plate
EP0391658B1 (en) Wet skin-pass rolling method
JPS642444B2 (en)
JPS6061106A (en) Rolling method of steel sheet with different thickness
JPH0671602B2 (en) Method of rolling thick plate material
JPH08309401A (en) Working method for slab and front and rear ends of slab
JP3506098B2 (en) Shape control method and apparatus in sheet rolling
KR100293196B1 (en) Method for controlling overlap of edge part of the plate when hot rolling steel plate
JPS6141643B2 (en)
JPS6150044B2 (en)
JPS6268608A (en) Rolling method for thick plate
JPS61154709A (en) Device for controlling thickness profile of sheet stock
JPS6032522B2 (en) Plate crown reduction method
JPS6117561B2 (en)
KR20020013269A (en) Method for controlling plan view shape in hot plate mill
JPS5825808A (en) Controlling method of sheet thickness at pass-through and run-out in rolling mill
JPH067816A (en) Method for controlling plane shape in thick plate rolling
JPS6121722B2 (en)
JPS5926367B2 (en) Plate camber control method
JPH0246284B2 (en)
JPS61129210A (en) Prevention of nip bending in thick plate rolling
JPS6345882B2 (en)
JPS6146527B2 (en)
JPS5739019A (en) Controlling method for sheet breadth in hot rolling process
JP4310877B2 (en) Thick steel plate rolling method