JPS6121722B2 - - Google Patents

Info

Publication number
JPS6121722B2
JPS6121722B2 JP57036624A JP3662482A JPS6121722B2 JP S6121722 B2 JPS6121722 B2 JP S6121722B2 JP 57036624 A JP57036624 A JP 57036624A JP 3662482 A JP3662482 A JP 3662482A JP S6121722 B2 JPS6121722 B2 JP S6121722B2
Authority
JP
Japan
Prior art keywords
width
rolling
reduction amount
pass
width reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57036624A
Other languages
Japanese (ja)
Other versions
JPS58154402A (en
Inventor
Takayuki Naoi
Hideyuki Nikaido
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP57036624A priority Critical patent/JPS58154402A/en
Publication of JPS58154402A publication Critical patent/JPS58154402A/en
Publication of JPS6121722B2 publication Critical patent/JPS6121722B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/16Control of thickness, width, diameter or other transverse dimensions
    • B21B37/22Lateral spread control; Width control, e.g. by edge rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、板幅圧延方法に係り、特に、ホツト
ストリツプミルの粗ミル群における最前列に配置
される板幅圧延機で、複数回の可逆圧延を行う場
合等に好適な板幅圧延方法に関する。 一般に、ホツトストリツプミルの粗ミル群にお
いては、その最前列に配置されている板幅圧延機
によつて、圧延材としてのスラブを大きく幅圧下
圧延した後、後続する板厚圧延機によつて板厚圧
延し、所定の板幅,板厚を得ることを可能として
いる。 ここで、上記のような板幅圧延機で大きな幅圧
下圧延を行なわれたスラブ先端の板幅は、定常変
形域の板幅よりも幅落ち量だけ狭い状態となる。
なお、スラブ後端には幅落ちは生じない。上記ス
ラブ先端の幅落ちは、後に板幅不足を生じ、圧延
歩留り低下の主原因の一つとなつている。 本発明は、板幅圧延における幅圧下量の設定を
最適化し、圧延材の端部に生ずる幅落ち量を最小
化することにより、板幅圧延によつて最良の板幅
形状を得ることができる板幅圧延方法を提供する
ことを目的とする。 上記目的を達成するため、本発明は、圧延材に
対する板幅圧延を竪ロールによつて可逆的に複数
回行ない、目標の全幅圧下量を圧延する板幅圧延
方法において、先行する各パスの圧延よつて圧延
材の先端部に生ずる幅落ち量と、先行する各パス
に続く各次パスにおける竪ロールの設定幅圧下量
とが一致するように、全パスのそれぞれにおける
竪ロールの設定幅圧下量を定めるようにしたもの
である。 以下、本発明の実施例を図面を参照して説明す
る。 第1図は、圧延材としてのスラブ11を板幅圧
延機の圧延ロール(竪ロール)12により、幅圧
下量△Wで圧延している状態を示す説明図であ
る。スラブ11の先端には、幅落ち量δを生じて
いる。 本発明者による実験の結果によれば、上記幅圧
下量△Wと幅落ち量δとの間には、 δ=(△W) …(1) なる関係があり、初期板厚200mm、初期板幅1000
mmのスラブを、直径1000mmの圧延ロールによつて
板幅圧延する場合について例えば剛塑性有限要素
法を用いて理論解析すれば、第2図に示すような
δ≒a√△なる曲線関係が成立することが認め
られる。なお、上記幅圧下量△Wと幅落ち量δと
の関係は、通常のスラブ(初期板厚150mmないし
300mm,初期板幅800mmないし1.500mm)を通常の
圧延条件で板幅圧延する場合には、スラブの初期
形状による多少の変動はあるものの、大略第2図
の曲線関係を示す。 次に、圧延材に対する板幅圧延を可逆的に3回
行ない、目標の全幅圧下量△Wtを圧延する場合
に、先行するパスの圧延によつて圧延材の先端部
に生ずる幅落ち量と、後続のパスにおける圧延ロ
ール12の設定幅圧下量との関係により、後続の
パスの圧延によつて圧延材の先端部に生ずる幅落
ち量がどのように変化するかについて解析すれ
ば、以下の通りとなる。 すなわち、第1パスで圧延ロール12の設定幅
圧下量△W1の圧延を行なつた時、圧延材の先端
にδの幅落ち量を生じたものとする。なお、上
記圧延材の後端には幅落ちは生じない。次に、上
記第1パスによつて圧延された圧延材の後端を第
2パスにおける先端とし、第2パスで圧延ロール
12の設定幅圧下量△W2の圧延を行うものとす
る。上記第2パスによる圧延後の圧延材先後端形
状は、上記△W2と上記δとの大小関係によ
り、以下の(1)ないし(2)の結果となる。 (1) △W2<δの場合には、第3図Aのように
なる。すなわち、先端には幅落ち量δで幅落
ちを生ずる。一方、後端の板幅は、幅圧下量△
W2で圧延を行う圧延ロール間距離よりも小で
あることから、後端の一部は全く圧延されず、
後端には、第1パスにおける幅落ち量δから
第2パスにおける圧延ロール12の設定幅圧下
量△W2を差引いたδ−△W2の板幅不足が生
ずる。すなわち、W2<δの場合には、圧延
材の先端だけでなく、後端にも板幅不足となる
領域が生ずる。ここで、板幅不足を生じている
圧延方向長さ、すなわち板幅不足長さl2は、先
端側の板幅不足長さl21と後端側の板幅不足長
さl22の和、すなわち、 l2=l21+l22 …(2) で表わされる。ここで、通常採用される圧延ロ
ール12の設定幅圧下量△Wの範囲にあつて
は、幅圧下量△Wを大としても、幅落ち量δは
略一定値に飽和するものと考えることができ
る。したがつて、第2パスにおける圧延ロール
12の設定幅圧下量△W2が増加してもδ
近づくにつれて、上記(2)式中のl21は略一定と
なり、l22は減少することから、上記板幅不足
長さl2は、第2パスにおける圧延ロール12の
設定幅圧下量△W2が第1パスにおける幅落ち
量δに近づくにつれて小となる。 (2) △W2>δの場合には、第3図Bのように
なる。すなわち、先端には幅落ち量δで幅落
ちを生ずる。一方、後端は、すべての領域が圧
延されるため、最早板幅不足を生じることはな
い。すなわち、この場合における板幅不足長さ
l2は先端側の板幅不足長さl21によつてのみ定ま
る。第2パスによる幅落ち量δは、第2図に
おけるように、第2パスにおける圧延ロール1
2の設定幅圧下量△W2が大きくなるにしたが
つて大となる。したがつて、第2パスにおける
幅落ち量δは幅圧下量△W2が第1パスによ
る幅落ち量δに近づくにつれて小となる。 上記(1)および(2)によれば、第2パスの圧延後に
おける板幅不足長さl2および幅落ち量δを最小
とするためには、 △W2=δ …(3) なる関係が成立するように、第2パスにおける圧
延ロール12の設定幅圧下量△W2を設定する必
要がある。同様にして、第3パスの圧延後におけ
る板幅不足長さl3および幅落ち量δを最小とす
るためには、 △W3=δ …(4) なる関係が成立するように、第3パスにおける幅
圧下量δを設定する必要がある。すなわち、第
1パスにおいて第4図Aに示されるように圧延さ
れたスラブ11を、第2パスにおいて、△W2
δなる条件下で圧延すれば、第4図Bに示すよ
うな板幅形状を得ることが可能となる。また、第
2パスにおいて第4図Bに示されるように圧延さ
れたスラブ11を、第3パスにおいて、△W3
δなる関係が成立する条件下で圧延すれば、第
4図Cに示すような板幅形状を得ることが可能と
なる。 第5図は、上記第4図AないしCの3パスにお
ける圧延ロール12の各設定幅圧下量△W1,△
W2,△W3と、各幅落ち量δ,δ,δの関
係を示す線図である。この第5図において、曲線
C1は前記第2図に示した曲線と同一であり、曲
線C2、曲線C3は曲線C1を横軸方向にそれぞれ△
W1,△W2だけ平行移動したものである。この第
5図によれば、上記第4図AないしCの圧延によ
り、各パスにおける幅落ち量δ,δ,δ
は、圧延の進行とともに次第に小となることが認
められる。 次に、本発明の実施において、幅圧下量△Wに
対する幅落ち量δの関係が前記(1)式に示されるよ
うに既知とされるとともに、第1パスないし第3
パスの全パスによる全幅圧下量△Wtがあらかじ
め定まつている場合に、各パスにおける圧延ロー
ル12の設定幅圧下量△W1,△W2,△W3を最適
化する設定手順について説明する。先ず、前記(1)
式および(3)式より、 δ=(△W1)=△W2 …(5) が成立する。また、前記(1)式,(4)式および(5)式に
より、 δ=(△W2)= ((△W1))=△W3 …(6) が成立する。一方、全幅圧下量△Wtと各幅圧下
量△W1,△W2および△W3との間には、 △Wt=△W1+△W2+△W3 …(7) が成立する。したがつて、上記(5)式,(6)式および
(7)式によれば、 △Wt=△W1+(△W1) +((△W1)) …(8) が成立する。したがつて、上記(8)式より△W1
算出され、上記(5)式および(6)式によつてそれぞれ
△W2,△W3が算出される。 次に、本発明の具体的実施例について説明す
る。第6図は本発明の実施において用いられる制
御系統図であり、第7図および第8図は本発明の
実施に用いられる板幅圧延機の駆動系統図であ
る。 制御装置22は、外部から圧延材の成分、温
度、スラブ幅、成品幅等の圧延に関する情報が入
力されている。演算器21は、上記成分と温度の
情報に基づいて圧延材の塑性常数Mを演算する。
演算器22は上記スラブ幅、成品幅の情報に基づ
いて板幅圧延機における全幅圧下量△Wtを演算
する。演算器23にはあらかじめ前記(5)式,(6)式
および(8)式が設定されており、したがつて演算器
23は、演算器22で演算された全幅圧下量△
Wtに基づき、各パスにおける圧延ロール12の
設定幅圧下量△W1,△W2,△W3を演算する。演
算器24は演算器21で演算された塑性常数Mと
演算器23で演算された各幅圧下量△W1,△
W2,△W3に基づいて、各パスにおける圧延荷重
P1,P2,P3を演算する。演算器25は、ミル常数
K、初期スラブ幅W0、第1パス後の定常部スラ
ブ幅W01、第2パス後の定常部スラブ幅W02、演
算器23で演算された各パスにおける幅圧下量△
W、演算器24で演算された各パスにおける圧延
荷重Pに基づいて、下記(9)式ないし(11)式により各
パスにおけるロール開度S1,S2,S3を演算する。 S1=W0−△W1−P1/K …(9) S2=W01−△W2−P2/K …(10) S3=W02−△W3−P3/K …(11) 演算器25で演算された各パスにおける上記ロ
ール開度S1,S2,S3は設定器26に伝達される。
設定器26は、上記ロール開度S1,S2,S3に基づ
いて電動機27に回転指令を与えるとともに、電
動機27に接続されているパルス発信器28から
のフイードバツク信号によつて実ロール開度を認
識しつつ、板幅圧延機のロール開度がS1,S2もし
くはS3となるまで回転指令を発する。電動機27
の回転は、ウオーム軸29、ウオームホイール3
0を介してハウジング31を直線移動し、ハウジ
ング31に支持されている圧延ロール12の開度
を上記所定開度に設定する。 次に、本発明者による具体的実施結果について
説明する。表1は、板幅圧延機において、可逆的
に3パス圧延した従来の圧延結果と、本発明との
圧延結果を示している。なお、これらの圧延にお
いては、スラブの初期板厚200mm、初期板幅1000
mm、圧延ロール直径1100mmであつた。
The present invention relates to a strip width rolling method, and in particular, a strip width rolling method suitable for performing multiple reversible rollings in a strip width rolling mill disposed in the front row of a coarse mill group of a hot strip mill. Regarding the method. Generally, in a rough mill group of hot strip mills, after the slab as a rolled material is rolled to a large width reduction by the width rolling mill located in the front row, it is rolled to the subsequent thickness rolling mill. Therefore, it is possible to perform plate thickness rolling to obtain a predetermined plate width and thickness. Here, the plate width at the leading end of the slab, which has been subjected to large width reduction rolling in the above-mentioned plate width rolling mill, is narrower than the plate width in the steady deformation region by the amount of width drop.
Note that no width drop occurs at the rear end of the slab. The above-mentioned width drop at the tip of the slab later causes insufficient width of the slab, and is one of the main causes of reduction in rolling yield. The present invention makes it possible to obtain the best strip width shape through strip width rolling by optimizing the setting of the width reduction amount in strip width rolling and minimizing the amount of width reduction that occurs at the ends of the rolled material. The purpose of the present invention is to provide a width rolling method. In order to achieve the above object, the present invention provides a sheet width rolling method in which a rolled material is reversibly rolled multiple times using vertical rolls to achieve a target full width reduction amount. Therefore, the set width reduction amount of the vertical rolls in each of all passes is adjusted so that the amount of width reduction that occurs at the tip of the rolled material matches the set width reduction amount of the vertical rolls in each subsequent pass following each preceding pass. It is designed to define. Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an explanatory view showing a state in which a slab 11 as a rolled material is rolled by a width reduction amount ΔW by a rolling roll (vertical roll) 12 of a width rolling mill. At the tip of the slab 11, a width drop δ occurs. According to the results of experiments conducted by the present inventor, there is a relationship between the width reduction amount △W and the width reduction amount δ as follows: δ=(△W)...(1) When the initial plate thickness is 200 mm and the initial plate width 1000
For example, if we perform a theoretical analysis using the rigid-plastic finite element method when a mm slab is width-rolled using rolling rolls with a diameter of 1000 mm, a curved relationship of δ≒a√△ will be established as shown in Figure 2. It is permitted to do so. Note that the relationship between the width reduction amount △W and the width reduction amount δ is the same for normal slabs (initial thickness 150 mm or less).
300 mm, initial plate width 800 mm to 1.500 mm) is rolled under normal rolling conditions, the curve relationship roughly shows the curve shown in Figure 2, although there are some variations depending on the initial shape of the slab. Next, when the rolled material is reversibly rolled three times to achieve the target full width reduction amount △Wt, the amount of width reduction that occurs at the tip of the rolled material due to the rolling of the preceding pass, If we analyze how the amount of width reduction that occurs at the tip of the rolled material due to rolling in subsequent passes changes in relation to the set width reduction amount of the rolling rolls 12 in subsequent passes, we will find the following: becomes. That is, when rolling is performed by the set width reduction amount ΔW 1 of the rolling roll 12 in the first pass, it is assumed that a width reduction amount δ 1 occurs at the tip of the rolled material. Note that no width drop occurs at the rear end of the rolled material. Next, the rear end of the rolled material rolled in the first pass is used as the tip in the second pass, and in the second pass rolling is performed by the set width reduction amount ΔW 2 of the rolling rolls 12. The shape of the leading and trailing ends of the rolled material after rolling by the second pass results in the following (1) and (2) depending on the magnitude relationship between ΔW 2 and δ 1 . (1) When △W 21 , the result is as shown in Figure 3A. That is, a width drop occurs at the tip by a width drop amount δ2 . On the other hand, the plate width at the rear end is the width reduction amount △
Since it is smaller than the distance between the rolling rolls that perform rolling at W 2 , a part of the rear end is not rolled at all,
At the rear end, an insufficient board width of δ 1 −ΔW 2 occurs, which is obtained by subtracting the set width reduction amount ΔW 2 of the rolling rolls 12 in the second pass from the width reduction amount δ 1 in the first pass. That is, when W 21 , a region with insufficient board width occurs not only at the leading end of the rolled material but also at the trailing end. Here, the length in the rolling direction that causes the strip width shortage, that is, the strip width shortage length l 2 is the sum of the strip width shortage length l 21 on the leading edge side and the strip width shortage length l 22 on the rear end side, That is, it is expressed as l 2 = l 21 + l 22 (2). Here, in the range of the set width reduction amount ΔW of the rolling roll 12 that is normally adopted, it can be considered that even if the width reduction amount ΔW is large, the width reduction amount δ is saturated to a substantially constant value. can. Therefore, even if the set width reduction amount ΔW 2 of the rolling roll 12 in the second pass increases, as δ approaches 1 , l 21 in the above formula (2) becomes approximately constant and l 22 decreases. Therefore, the plate width shortage length l 2 becomes smaller as the set width reduction amount ΔW 2 of the rolling roll 12 in the second pass approaches the width drop amount δ 1 in the first pass. (2) When △W 2 > δ 1 , the result is as shown in Figure 3B. That is, a width drop occurs at the tip by a width drop amount δ2 . On the other hand, since the entire region of the rear end is rolled, there is no longer a shortage of board width. In other words, the insufficient length of the plate width in this case
l 2 is determined only by the short plate width length l 21 on the tip side. As shown in FIG. 2, the width reduction amount δ 2 due to the second pass is
2 becomes larger as the set width reduction amount △W 2 becomes larger. Therefore, the width reduction amount δ 2 in the second pass becomes smaller as the width reduction amount ΔW 2 approaches the width reduction amount δ 1 due to the first pass. According to (1) and (2) above, in order to minimize the short plate width length l 2 and width drop amount δ 2 after the second pass rolling, △W 2 = δ 1 …(3) It is necessary to set the set width reduction amount ΔW 2 of the rolling roll 12 in the second pass so that the following relationship holds true. Similarly, in order to minimize the short plate width length l 3 and width drop amount δ 3 after the third pass rolling, the following relationship should be established: △W 3 = δ 2 (4) It is necessary to set the width reduction amount δ3 in the third pass. That is, the slab 11 rolled in the first pass as shown in FIG. 4A is rolled in the second pass by ΔW 2 =
By rolling under the condition of δ 1 , it is possible to obtain a sheet width shape as shown in FIG. 4B. Further, the slab 11 rolled in the second pass as shown in FIG .
If rolling is carried out under conditions that satisfy the relationship δ2 , it is possible to obtain a sheet width shape as shown in FIG. 4C. FIG. 5 shows the respective set width reduction amounts △W 1 , △ of the rolling roll 12 in the three passes shown in FIG. 4 A to C above.
FIG. 2 is a diagram showing the relationship between W 2 and ΔW 3 and width drop amounts δ 1 , δ 2 , and δ 3. FIG. In this Figure 5, the curve
C 1 is the same as the curve shown in FIG.
It is translated by W 1 and △W 2 . According to this FIG. 5, the width reduction amounts δ 1 , δ 2 , δ 3 in each pass are obtained by the rolling shown in FIGS.
It is recognized that as the rolling progresses, the value gradually decreases. Next, in implementing the present invention, it is assumed that the relationship between the width reduction amount δ and the width reduction amount ΔW is known as shown in equation (1) above, and
A setting procedure for optimizing the set width reduction amount △W 1 , △W 2 , △W 3 of the rolling roll 12 in each pass when the full width reduction amount △Wt by all passes is determined in advance will be explained. . First, above (1)
From equations and equations (3), δ 1 =(△W 1 )=△W 2 (5) holds true. Further, from the above equations (1), (4), and (5), the following holds true: δ 2 =(ΔW 2 )=((ΔW 1 ))=ΔW 3 (6). On the other hand, between the full width reduction amount △Wt and each width reduction amount △W 1 , △W 2 and △W 3 , △Wt=△W 1 +△W 2 +△W 3 …(7) holds true. . Therefore, the above equations (5), (6) and
According to equation (7), △Wt=△W 1 +(△W 1 ) +((△W 1 ))...(8) holds true. Therefore, △W 1 is calculated from the above equation (8), and △W 2 and △W 3 are calculated using the above equations (5) and (6), respectively. Next, specific examples of the present invention will be described. FIG. 6 is a control system diagram used in implementing the present invention, and FIGS. 7 and 8 are drive system diagrams of a strip width rolling mill used in implementing the present invention. Information regarding rolling, such as the composition of the rolled material, temperature, slab width, and finished product width, is input to the control device 22 from the outside. The calculator 21 calculates the plastic constant M of the rolled material based on the information on the components and temperature.
The calculator 22 calculates the full width reduction amount ΔWt in the strip width rolling mill based on the information on the slab width and finished product width. Equations (5), (6), and (8) are set in advance in the arithmetic unit 23, and therefore the arithmetic unit 23 calculates the full width reduction amount △ calculated by the arithmetic unit 22.
Based on Wt, the set width reduction amounts ΔW 1 , ΔW 2 , and ΔW 3 of the rolling roll 12 in each pass are calculated. The calculator 24 calculates the plasticity constant M calculated by the calculator 21 and the respective width reduction amounts △W 1 , △ calculated by the calculator 23.
Rolling load in each pass based on W 2 and △W 3
Calculate P 1 , P 2 , and P 3 . The calculator 25 calculates the mill constant K, the initial slab width W 0 , the steady-state slab width W 01 after the first pass, the steady-state slab width W 02 after the second pass, and the width in each pass calculated by the calculator 23 . Reduction amount △
Based on W and the rolling load P in each pass calculated by the calculator 24, the roll opening degrees S 1 , S 2 , and S 3 in each pass are calculated by the following equations (9) to (11). S 1 =W 0 −△W 1 −P 1 /K …(9) S 2 =W 01 −△W 2 −P 2 /K …(10) S 3 =W 02 −△W 3 −P 3 /K ...(11) The roll opening degrees S 1 , S 2 , S 3 in each pass calculated by the calculator 25 are transmitted to the setting device 26 .
The setting device 26 gives a rotation command to the electric motor 27 based on the roll opening degrees S 1 , S 2 , S 3 and also controls the actual roll opening based on a feedback signal from a pulse transmitter 28 connected to the electric motor 27. While recognizing the rotation angle, a rotation command is issued until the roll opening angle of the strip width rolling mill reaches S 1 , S 2 or S 3 . electric motor 27
The rotation of the worm shaft 29 and the worm wheel 3
0, and the opening degree of the rolling roll 12 supported by the housing 31 is set to the predetermined opening degree. Next, concrete implementation results by the present inventor will be explained. Table 1 shows the results of conventional rolling in which reversible three-pass rolling was performed in a strip width rolling mill, and the rolling results of the present invention. In addition, in these rolling processes, the initial thickness of the slab is 200mm, and the initial width is 1000mm.
mm, and the rolling roll diameter was 1100 mm.

【表】 上記表1によれば、本発明の実施により、圧延
材の端部に生ずる幅落ち量が最小化されることが
認められる。 以上のように、本発明は、圧延材に対する板幅
圧延を竪ロールによつて可逆的に複数回行ない、
目標の全幅圧下量を圧延する板幅圧延方法におい
て、先行する各パスの圧延によつて圧延材の先端
部に生ずる幅落ち量と、先行する各パスに続く各
次パスにおける竪ロールの設定幅圧下量とが一致
するように、全パスのそれぞれにおける竪ロール
の設定幅圧下量を定めるようにしたので、板幅圧
延における幅圧下量の設定を最適化し、圧延材の
端部に生ずる幅落ち量を最小化することが可能と
なり、板幅圧延によつて最良の板幅形状を得るこ
とができるという効果を有する。
[Table] According to Table 1 above, it is recognized that by implementing the present invention, the amount of width drop that occurs at the end of the rolled material is minimized. As described above, the present invention reversibly performs plate width rolling on a rolled material multiple times using vertical rolls,
In a strip width rolling method that rolls a target full width reduction amount, the amount of width reduction that occurs at the tip of the rolled material due to rolling in each preceding pass, and the set width of the vertical roll in each subsequent pass following each preceding pass. Since the set width reduction amount of the vertical rolls in each of all passes is determined so that the width reduction amount matches the width reduction amount, the setting of the width reduction amount in plate width rolling can be optimized and the width drop that occurs at the edge of the rolled material can be reduced. This has the effect that the amount can be minimized, and the best width shape of the sheet can be obtained through sheet width rolling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は板幅圧延状態を示す平面図、第2図は
幅圧下量と幅落ち量の関係を示す線図、第3図A
および第3図Bは第2パスにおける異なる圧延条
件下での圧延状態を示す平面図、第4図A、第4
図Bおよび第4図Cは本発明による圧延状態を示
す平面図、第5図は本発明による圧延時の幅圧下
量と幅落ち量との関係を示す線図、第6図は本発
明の実施に用いられる制御系統図、第7図および
第8図は本発明の実施に用いられる駆動系統図で
ある。 11……スラブ、12……圧延ロール、△W,
△W1,△W2,△W3……幅圧下量、△Wt……全
幅圧下量、δ,δ,δ,δ……幅落ち量。
Fig. 1 is a plan view showing the state of strip width rolling, Fig. 2 is a diagram showing the relationship between width reduction amount and width reduction amount, Fig. 3 A
FIG. 3B is a plan view showing the rolling state under different rolling conditions in the second pass, FIG.
Figures B and 4C are plan views showing the rolling state according to the present invention, Figure 5 is a diagram showing the relationship between the width reduction amount and the width drop amount during rolling according to the present invention, and Figure 6 is a diagram showing the relationship between the width reduction amount and the width drop amount during rolling according to the present invention. 7 and 8 are drive system diagrams used to implement the present invention. 11... Slab, 12... Roll, △W,
△W 1 , △W 2 , △W 3 ... Width reduction amount, △Wt ... Full width reduction amount, δ, δ 1 , δ 2 , δ 3 ... Width reduction amount.

Claims (1)

【特許請求の範囲】[Claims] 1 圧延材に対する板幅圧延を竪ロールによつて
可逆的に複数回行ない、目標の全幅圧下量を圧延
する板幅圧延方法において、先行する各パスの圧
延によつて圧延材の先端部に生ずる幅落ち量と、
先行する各パスに続く各次パスにおける竪ロール
の設定幅圧下量とが一致するように、全パスのそ
れぞれにおける竪ロールの設定幅圧下量を定める
ことを特徴とする板幅圧延方法。
1. In a sheet width rolling method in which a rolled material is reversibly rolled multiple times using vertical rolls to achieve a target full width reduction amount, a Width drop amount and
A sheet width rolling method characterized in that the set width reduction amount of the vertical rolls in each of all passes is determined so that the set width reduction amount of the vertical rolls in each subsequent pass following each preceding pass is the same.
JP57036624A 1982-03-10 1982-03-10 Widthwise rolling method Granted JPS58154402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57036624A JPS58154402A (en) 1982-03-10 1982-03-10 Widthwise rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57036624A JPS58154402A (en) 1982-03-10 1982-03-10 Widthwise rolling method

Publications (2)

Publication Number Publication Date
JPS58154402A JPS58154402A (en) 1983-09-13
JPS6121722B2 true JPS6121722B2 (en) 1986-05-28

Family

ID=12474967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57036624A Granted JPS58154402A (en) 1982-03-10 1982-03-10 Widthwise rolling method

Country Status (1)

Country Link
JP (1) JPS58154402A (en)

Also Published As

Publication number Publication date
JPS58154402A (en) 1983-09-13

Similar Documents

Publication Publication Date Title
US4238946A (en) Method for rolling metal plate
JPS58141807A (en) Equipment for automatically controlling sheet thickness
GB1291049A (en) Improvements in workpiece shape control
JPS6121722B2 (en)
JPS6061106A (en) Rolling method of steel sheet with different thickness
JPS6121721B2 (en)
JPS642444B2 (en)
JPS61154709A (en) Device for controlling thickness profile of sheet stock
JP3506098B2 (en) Shape control method and apparatus in sheet rolling
JPH035242B2 (en)
JPS6120610A (en) Method for controlling sheet width in hot reversible rolling
JPS595362B2 (en) Plate thickness control method in plate rolling
JPH0246284B2 (en)
JP3431807B2 (en) Rolling speed control method for hot rolling mill
JPS6284813A (en) Control method for plate width
JPS6361082B2 (en)
JPS6146527B2 (en)
JPS6032522B2 (en) Plate crown reduction method
JPS558322A (en) Width control method of plates and width control unit used for execution thereof
JPS6340603B2 (en)
JPS6120362B2 (en)
JPS6363512A (en) Width control method for cold rolling
JPS62158517A (en) Shape control method for cluster rolling mill
JPS5739019A (en) Controlling method for sheet breadth in hot rolling process
JPH05208209A (en) Method for controlling fluctuation in thickness in coil grinding line