JPS6150044B2 - - Google Patents

Info

Publication number
JPS6150044B2
JPS6150044B2 JP467182A JP467182A JPS6150044B2 JP S6150044 B2 JPS6150044 B2 JP S6150044B2 JP 467182 A JP467182 A JP 467182A JP 467182 A JP467182 A JP 467182A JP S6150044 B2 JPS6150044 B2 JP S6150044B2
Authority
JP
Japan
Prior art keywords
rolling
amount
rolled material
width
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP467182A
Other languages
Japanese (ja)
Other versions
JPS58122106A (en
Inventor
Teruo Kono
Chihiro Hayashi
Tetsuo Kajiwara
Ryuichi Oosono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Nippon Steel Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Sumitomo Metal Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP467182A priority Critical patent/JPS58122106A/en
Publication of JPS58122106A publication Critical patent/JPS58122106A/en
Publication of JPS6150044B2 publication Critical patent/JPS6150044B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、厚板の圧延方法に関し、特に最終
成品の平面形状を可及的に矩形に近ずけサイドス
クラツプ量、トツプ及びボトムクロツプ量の少な
い高歩留り圧延を可能とする厚板圧延方法に係る
ものである。 通常の厚板圧延は、第1図に示す如く、加熱炉
より抽出したスラブ1を先ずDBTパスと称する
スラブ長手方向の水平圧延に通して長手方向の厚
みの変化の少ない圧延材2に形成し、次いでこの
圧延材2を圧延材の軸方向←→に対し水平面内で90
゜転回して幅出し水平圧延を行ない、さらに幅出
し後の圧延材3を再び90゜転回して仕上厚みとな
るまで水平圧延を行ない、最終成品4を完成す
る。 ところで、上記圧延工程を経た最終成品4の形
状が完全な矩形状であれば、その全長と全幅から
有効に製品取りすることができるのであるが、実
際にはスラブ1を前記DBTパスに通した後の圧
延材2は第2図に示す如く四隅に幅張出しΔWが
生じ、トツプボトムにクロツプΔLが生じ鼓形の
平面形状となる。 上記幅張出しΔWとクロツプΔLは次段の幅出
し圧延、水平圧延によつてさらに延伸され、拡幅
された状態で仕上圧延後の最終成品に残され、最
終成品の平面形状は矩形とならない。この場合、
幅出し比(成品幅/スラブ幅)が小さいと最終成
品の平面形状は第3図の4a,4cに示すように
舌状のクロツプ形状と鼓状の幅精度不良を生じ、
一方幅出し比が大きい場合は4b,4dに示すよ
うにフイツシユテール状のクロツプ形状と太鼓状
の幅精度不良を生じる結果となる。 このような最終成品の平面形状不良は製品取り
の際スクラツプ量を増加し、歩留りの著るしい低
下をきたすため、従来より成品の平面形状を可及
的に矩形形状に近ずける種々の対策が構じられて
きた。 その最も有効な対策の一つに、エツヂング圧延
すなわち厚板圧延工程途中でエツヂヤ(竪形ロー
ル)を用い、圧延材側面部に圧下をかけて圧延材
の平面形状を矯正する方法がある。 第4図は上記エツヂング圧延による圧延材平面
形状の制御例を示したもので、スラブ1をDBT
パスした後、前記幅張出しΔWとクロツプΔLを
生じて鼓状になつた圧延材2を水平面内で90゜転
回した後エツヂヤロール5,5′で幅方向両側面
をエツヂング圧延し、(C方向エツヂング圧延と
称する)、これによつて圧延材2の幅張出し量Δ
Wを大きくする。この圧延材2は次に水平幅出し
圧延を受けて圧延材3となるが、この状態では四
隅の幅張出しΔWが大きくなつているから、この
圧延材3をさらに水平面内で90゜転回させ、すな
わち圧延材3の長手方向をスラブ1の長手方向に
一致させてエツヂヤロール5,5′で再度エツヂ
ング圧延を行ない(L方向エツヂング圧延と称す
る)、前記の大きな幅張出しΔWを先・後端方向
にメタルフローさせて長手方向両側面のクロツプ
形状を矯正する。 次で圧延材3は仕上水平圧延に通されて仕上厚
の成品4となるのであるが、このようにして水平
圧延工程の途中でエツヂング圧延を行ない、圧延
トツプ、ボトムのクロツプΔL及び四隅の幅張出
しΔWを矯正しておけば、仕上圧延後の成品4の
幅張出し量ΔW、クロツプ長ΔL′を共に小さく矩
形度の高い平面形状とすることが可能である。 しかしながら、この場合問題は与えられた厚板
圧延条件(スラブ寸法、成品寸法、幅出し圧延前
圧下量等)に対してエツヂング条件、すなわちエ
ツヂング圧延のタイミングとエツヂング量(幅圧
下量)をどのように決めれば仕上圧延後の成品の
平面形状を最も矩形度の高い形状になし得るかと
いう点である。これを従来は作業員の経験的な勘
によつてエツヂング条件を決定していたため必ず
しも最適なエツヂング量とはならず、結果的にエ
ツヂング圧延効果の少ない幅精度不良の成品形状
となることが多かつた。 本発明は上記実状に鑑み行なわれたもので、所
定の厚板圧延条件に対する最適エツヂング条件を
数値的に求める方法を提供することによつて容易
に仕上最終成品の平面形状精度を高め厚板圧延の
歩留りを向上さすことを目的とするものである。 本発明者等は、上記最適エツヂング条件を求め
るためには、与えられた圧延条件と任意に定めた
エツヂング条件とで厚板圧延した場合の最終成品
がどのような形状になるかを数値的に予測するこ
とができれば、この予測最終成品形状を望む最終
成品形状と比較し、一致していなければ頭初の任
意エツヂング条件を修正して予測しなおし、予測
最終成品形状と狙つた最終成品形状とが一致した
時点を最適エツヂング条件として求め得ることが
できると判断し、前記所定の圧延条件と任意のエ
ツヂング条件とで厚板圧延した場合の最終成品形
状を如何にして予測するかを検討した。 そして、本発明者等は先ず、最終成品の平面形
状が最終成品に得られる四隅の幅張出しの量ΔW
とトツプ、ボトムのクロツプの長さΔLとによつ
て鼓状あるいは太鼓状等の一般的評価を下すこと
が可能な点に着目して圧延工程における圧延材の
平面形状の変化をその幅張出し量ΔWとクロツプ
長ΔLの変化としてとらえ、実機圧延材の測定と
ミニチユア鉛スラブを用いたモデル圧延テストを
行なつて圧延材の幅張出し量(以下単にΔWと記
す)とクロツプ長(以下単にΔLと記す)の変形
態様を詳細に調査した。その結果、この種のエツ
ヂング圧延を伴なう厚板圧延における最終成品の
平面形状ΔW及びΔLは第5図Aに示す如く、矩
形断面形状の圧延材1を水平圧延ロール6,6′
で圧延した時の圧延材2への平面形状の変化量Δ
A及びΔLAを予測するステツプと、第5図Bに
示す如く矩形断面形状の圧延材1をエツヂヤロー
ル5,5′でエツヂング圧延したときのドツグボ
ーン状に変形した圧延材1′を「ドツグボーン殺
しパス」と称する盛り上り部のみ圧下する水平圧
延(HDパス)に通して平面にならした後の圧延
材3のΔW1とΔL1を予測するステツプとに分け
て、上記ステツプAにおける圧延材のΔWA及び
ΔLAを予測する算式と、ステツプBにおける圧
延材3のΔW及びΔLを予測する算式をつくつて
該ステツプAの算式で出した数値とステツプBの
算式で出した数値とを圧延工程に従つて重ね合せ
てゆくことによつて最終平面形状を精度よく予測
できることを確かめた。 ここでステツプBにおける竪形ロールのロール
間隙は圧延巾一定に設定した状態でエツヂングが
実施される。またその後の水平圧延(ドツクボー
ン殺しパス)における圧下量は、前記エツヂング
圧延で生じた表・裏面の盛り上り部高さの合計値
に等しい圧下量で行なわれるものである。 なお、第5図のステツプAの場合、水平圧延前
の圧延材の平面形状が矩形である(ΔW=ΔL=
0)としたが、より一般的には圧延前の平面形状
は矩形ではない(ΔW≠0、ΔL≠0)ので、こ
の場合はΔW,ΔLの圧延前後の変化量ΔWA
ΔLAを予測する等式を用いて水平圧延後のΔ
W,ΔLを予測してもよい。 第6図は、上記の予測に関する鉛ミニチユアス
ラブを用いたモデル圧延実験での検討例を示した
もので、厚さ20mm、幅150mm、長さ150mmの鉛ミニ
チユアスラブをロール直径100mmのモデルエツヂ
ヤミルとワークロール直径105mmのモデル水平ミ
ルで圧延した場合である。図中、ケースAはスラ
ブをエツヂング圧延(Vパス)して、さらにドツ
グボーン殺しパス(HDパス)を行なつた後、水
平圧延(Hパス)に通したV・H両圧延後のスラ
ブ長手方向の平面形状変化を元のスラブを基準と
して示したものである。 一方ケースBは上記ケースAのうち、ドツグボ
ーン殺しパス(HDパス)を省略した場合のV・
H両圧延後の圧延材の形状を前記同様に示したも
ので、通常の圧延に相当する場合である。エツヂ
ング圧延(Vパス)は往復の2パスで、各パス2
mmの幅圧下を行ない、その後の水平圧延(Hパ
ス)の圧延下量は2mmとした。 ケースAとケースBのV・H両圧延後の幅変化
形状についてみると若干の相違がみられるが、こ
の程度の相違は側面でのまくれ込み(ダブルバル
ジング)形状の違いで生じたものであり、例えば
長手方向中央に対する先、後端の幅偏差(ΔWに
相当する)については、ケースAとケースBは
略々一致している。 また、V・H両圧延後の先・後端クロツプ長さ
についてもケースAとケースBは略々一致してい
る。この実験データにより通常のV・H後の圧延
材の形状はドツグボーン殺しパス(HDパス)後
の平面にならした圧延材の形状に、水平圧延(H
パス)での圧延材の形状の変化量が重なつている
と見ることができることを示しており、この事実
より水平圧延(Hパス)時の圧延材の平面形状変
化量ΔWA,ΔLAを予測する前記ステツプAの算
式とエツヂング圧延前の圧延材の平面形状(Δ
W0,ΔL0)を基準としてエツヂング圧延(Vパ
ス)及びドツグボーン殺しパス(HDパス)後の
圧延材の平面形状ΔW1,ΔL1を予測する前記ス
テツプBの算式とを重ね合せて最終成品の平面形
状ΔWF,ΔLFを予測することが可能であり、ま
た最終成品の平面形状ΔWF,ΔLFが予測できれ
ば、該最終成品の平面形状を希望通りの矩形平面
形状とするに必要な最適エツヂング条件(圧下量
及びタイミング)をステツプAを予測する算式と
ステツプBを予測する算式から求め得るといえ
る。 すなわち、本発明は、水平ロールによる圧延工
程途中で、竪形ロールにより圧延材幅方向側面及
び長手方向側面のエツヂング圧延を行なう厚板圧
延において、矩形断面圧延材を水平圧延したとき
の圧延材の幅張出し量の変化量ΔWAとクロツプ
長の変化量ΔLAの数値を算式により予測し、一
方エツヂング圧延したときの盛り上り部のみを平
面にならす水平圧延をしたときの圧延材の幅張出
し量ΔW1とクロツプ長ΔL1の数値を算式により
予測し、前記ΔWA,ΔLAを予測する前者の算式
と前記ΔW1,ΔL1を予測する後者の算式を重合
して最終成品の幅張出し量ΔWF及びクロツプ長
ΔLFを予測し、該ΔWF,ΔLFの予測値が狙い
最終成品の幅張出し量ΔWC及びクロツプ長ΔLC
となるような最適エツヂング条件を求め、該最適
エツヂング条件で圧延することを要旨とする厚板
圧延方法である。 ここで、上記水平圧延時の圧延材の幅張出し量
の変化量ΔWA及びクロツプ長の変化量ΔLAの数
値を予測する算式の一例を下記に示す。 圧延パスのトツプ側について ΔWA(T)=6.1・rT 0.953・(h0/R)0.428 〔1〕 ΔLA(T)=2.23h/h・rT 0.74(W0/R)0.352 〔2〕 圧延パスのボトム側について ΔWA(B)=8.22rT 0.689・(h0/R)0.471 〔3〕 ΔLA(B)=9.02・h/h・rT 0.74(h0/R)0.262・(W0/R)0.172 〔4〕 但、rTはスラブ厚h0から今求めようとしてい
る水平パス出側の厚板hまでの全圧下率、W0
スラブ幅、Rは水平ロール半径を示し、単位は全
てmmである。 なお、上記式〔1〕〜〔4〕はいずれも1/10縮
尺の鉛モデル圧延材に相当する式である。 次に、エツヂング圧延したときのドツグボーン
殺しパス後の圧延材の幅張出し量ΔW1及びクロ
ツプ長ΔL1を、上記〔1〕〜〔4〕式で求めた
エツヂング圧延前の圧延材の幅張出し量ΔW0
びクロツプ長ΔL0を基準として予測する算式の
一例とその導き方を以下に示す。 なお、以下で求めるΔW1及びΔL1はいずれも
トツプ、ボトムの平均値で表わすこととする。 最初に鉛ミニチユアスラブを用いたモデル圧延
テストを行ないΔW1の予測式を導いた。 モデル圧延テストの条件は、実機1/10縮尺を想
定し、鉛ミニチユアスラブの寸法は厚さ10〜20
mm、幅150〜320mm、長さ150〜190mmであり、エツ
ヂヤはロール直径100mmのモデルエツヂヤ、ドツ
グボーン殺しパスに使用する水平圧延機はワーク
ロール直径105mmのモデル水平ミルである。 手順は先ずスラブを1パスあたり1〜3mmの幅
圧下量で往復2パスのエツヂング圧延(Vパス)
後、ドツグボーン殺しパス(HDパス)を行なつ
て、その平面形状を測定した。 また、スラブを水平面内で90゜転回した時の
V・HDパス後の平面形状も上記同様にして測定
した。この両者の場合の幅張出し量ΔW1(M)
(トツプ、ボトムΔWの平均値)とV圧延往復パ
スでの合計圧下量(ΣΔV)との関係を示したの
が第7図である。同図にみる如く、V・HDパス
後の圧延材の幅張出し量ΔW1(M)は、エツヂ
ング圧延(Vパス)前の幅張出し量ΔW0(M)
(トツプ、ボトム平均値)によらず下式で求める
ことが可能である。 ΔW1(M)=−1.2(ΣΔV)0.7 〔5〕 ここで、V・HDパス前の幅張出し量ΔW0と上
記式〔5〕で求まるV・HDパス後の幅張出し量
ΔW1からV・HDパスにおけるΔWの変化量δΔ
Wを下式で定義する。 δΔW=ΔW1−ΔW0 〔6〕 同様にV・HDパスにおけるΔLの変化量δΔ
Lを次式で定義する。 δΔL=ΔL1−ΔL0 〔7〕 このδΔWとδΔLの関係を前記モデル圧延の
データにつきプロツトしたのが第8図である。 同図において、例えばV・HDパス前の圧延材
の形状が●印で示す矩形形状の場合はδΔWとδ
ΔLの関係は略々一つの直線上にのる。 V・HDパス前の形状によりこの直線の傾きは
変るが、V・HDパス前の形状が矩形以外の場
合、例えば〓、□、△印で示す太鼓形状や○印で
示す鼓形状の場合であつても、いずれも略々一つ
の直線上にのるようである。この事実からδΔW
とδΔLの比率をαとして下式で定義する。 α=δΔW/δΔL 〔8〕 このαとV・HDパス前の幅張出し量ΔW0の関
係を、第8図のデータに基づいてプロツトしたも
のが第9図である。同図に見る如く、αは下式で
与えられる。 α=0.3(ΔW0+5.35)0.482
The present invention relates to a thick plate rolling method, and more particularly to a thick plate rolling method that makes the planar shape of the final product as close to a rectangle as possible and enables high-yield rolling with a small amount of side scrap, top and bottom crops. It is. In normal thick plate rolling, as shown in Fig. 1, a slab 1 extracted from a heating furnace is first passed through horizontal rolling in the longitudinal direction of the slab called a DBT pass to form a rolled material 2 with little change in thickness in the longitudinal direction. Then, this rolled material 2 is rotated 90 degrees in the horizontal plane with respect to the axial direction ←→ of the rolled material.
The rolled material 3 is rotated by 90 degrees and subjected to horizontal rolling for tentering, and then the rolled material 3 after tentering is turned again by 90 degrees and horizontally rolled until it reaches the final thickness, thereby completing the final product 4. By the way, if the shape of the final product 4 after the above-mentioned rolling process is a perfect rectangle, it is possible to effectively take the product from its entire length and width, but in reality, the slab 1 is passed through the DBT pass. As shown in FIG. 2, the subsequent rolled material 2 has a width overhang ΔW at the four corners, a crop ΔL at the top and bottom, and has an hourglass-shaped planar shape. The above-mentioned width extension ΔW and crop ΔL are further stretched by the next stage of tenter rolling and horizontal rolling, and the expanded state remains in the final product after finish rolling, so that the planar shape of the final product is not rectangular. in this case,
If the tenting ratio (product width/slab width) is small, the planar shape of the final product will have a tongue-like crop shape and a drum-like width precision defect, as shown in 4a and 4c in Figure 3.
On the other hand, if the tenting ratio is large, a fishtail-like crop shape and a drum-like width precision defect will occur as shown in 4b and 4d. Such defects in the planar shape of the final product increase the amount of scrap when taking the product and cause a significant drop in yield, so various measures have been taken to make the planar shape of the finished product as close to a rectangular shape as possible. has been considered. One of the most effective countermeasures is to correct the planar shape of the rolled material by applying pressure to the side surface of the rolled material using an edger (vertical roll) during the process of edge rolling, ie, thick plate rolling. Figure 4 shows an example of controlling the planar shape of the rolled material by the above-mentioned etching rolling.
After passing, the rolled material 2, which has become drum-shaped due to the width overhang ΔW and crop ΔL, is turned by 90 degrees in a horizontal plane, and is then etched on both sides in the width direction with edge rolls 5 and 5'. (referred to as rolling), thereby increasing the width overhang amount Δ of the rolled material 2
Increase W. This rolled material 2 is then subjected to horizontal tentering rolling to become a rolled material 3, but in this state, the width overhang ΔW at the four corners is large, so this rolled material 3 is further turned 90 degrees in the horizontal plane, That is, the longitudinal direction of the rolled material 3 is aligned with the longitudinal direction of the slab 1, and etching rolling is performed again with the edger rolls 5, 5' (referred to as L-direction etching rolling), and the above-mentioned large width overhang ΔW is applied in the leading and trailing directions. Correct the crop shape on both longitudinal sides by metal flow. Next, the rolled material 3 is passed through finishing horizontal rolling to become a finished product 4 with a finished thickness. In this way, etching rolling is performed in the middle of the horizontal rolling process, and the crop ΔL of the rolling top and bottom and the width of the four corners are By correcting the overhang ΔW, it is possible to make both the width overhang ΔW and the crop length ΔL' of the product 4 after finish rolling small, and to form a planar shape with high rectangularity. However, in this case, the problem is how to determine the etching conditions, that is, the timing of etching rolling and the amount of etching (width reduction amount), given the plate rolling conditions (slab dimensions, finished product dimensions, amount of reduction before tenter rolling, etc.). If this is decided, the point is whether the planar shape of the finished product after finish rolling can be made into the shape with the highest degree of rectangularity. In the past, etching conditions were determined based on the empirical intuition of workers, which did not necessarily result in the optimum amount of etching, which often resulted in a product shape with poor width accuracy and little etching rolling effect. It was. The present invention was developed in view of the above-mentioned circumstances, and provides a method for numerically determining the optimum etching conditions for predetermined thick plate rolling conditions. The purpose is to improve the yield of In order to find the above-mentioned optimal etching conditions, the present inventors numerically determined the shape of the final product when rolling a thick plate under given rolling conditions and arbitrarily determined etching conditions. If it can be predicted, compare this predicted final product shape with the desired final product shape, and if they do not match, modify the initial arbitrary etching conditions and re-predict to match the predicted final product shape with the desired final product shape. It was determined that the optimal etching conditions could be determined at the time when the above-mentioned predetermined rolling conditions and arbitrary etching conditions coincided with each other. The inventors first determined that the planar shape of the final product is the amount of width ΔW at the four corners that will be obtained in the final product.
Focusing on the fact that it is possible to make general evaluations such as drum-like shape or drum-like shape based on the top and bottom crop lengths ΔL, changes in the planar shape of the rolled material during the rolling process are calculated by the amount of width overhang. Considering the change in ΔW and crop length ΔL, we measured the actual rolled material and conducted a model rolling test using a miniature lead slab to determine the width overhang of the rolled material (hereinafter simply referred to as ΔW) and the crop length (hereinafter simply referred to as ΔL). We investigated in detail the deformation mode of (described below). As a result, the planar shapes ΔW and ΔL of the final product in thick plate rolling accompanied by this type of edge rolling are as shown in FIG. 5A.
Amount of change Δ in the planar shape of rolled material 2 when rolled at
The step of predicting W A and ΔL A and the step of estimating the rolled material 1' which is deformed into a dog bone shape when the rolled material 1 having a rectangular cross-sectional shape is etched and rolled with the edger rolls 5 and 5' as shown in FIG. The rolled material in step A is divided into two steps: a step of predicting ΔW 1 and ΔL 1 of the rolled material 3 after it has been flattened through horizontal rolling ( HD pass) in which only the raised portion is rolled down (called "H D pass"). A formula for predicting ΔW A and ΔL A of the rolled material 3 and a formula for predicting ΔW and ΔL of the rolled material 3 in Step B are created, and the values obtained by the formula of Step A and the values obtained by the formula of Step B are rolled. It was confirmed that the final planar shape could be predicted with high accuracy by overlapping them according to the process. Here, etching is carried out with the roll gap of the vertical rolls set at a constant rolling width in step B. Further, the amount of reduction in the subsequent horizontal rolling (dock bone killing pass) is equal to the total value of the heights of the raised portions on the front and back surfaces generated in the etching rolling. In the case of step A in FIG. 5, the planar shape of the rolled material before horizontal rolling is rectangular (ΔW=ΔL=
0), but more generally the planar shape before rolling is not rectangular (ΔW≠0, ΔL≠0), so in this case, the changes in ΔW and ΔL before and after rolling ΔW A ,
ΔL after horizontal rolling using the equation to predict ΔL A
W and ΔL may be predicted. Figure 6 shows an example of a model rolling experiment using miniature lead slabs regarding the above predictions. and when rolled with a model horizontal mill with a work roll diameter of 105 mm. In case A, the slab is subjected to edge rolling (V pass), dog bone killing pass ( HD pass), and then horizontal rolling (H pass). This figure shows the planar shape change in the direction with the original slab as a reference. On the other hand, case B is the case where the dogbone killing pass ( HD pass) is omitted in the above case A.
The shape of the rolled material after H-double rolling is shown in the same way as above, and corresponds to normal rolling. Etching rolling (V-pass) is a two-pass round trip, with each pass 2
A width reduction of mm was performed, and the rolling reduction amount of the subsequent horizontal rolling (H pass) was 2 mm. There is a slight difference in the shape of the width change after both V and H rolling between Case A and Case B, but this degree of difference is due to the difference in the shape of double bulging on the sides. For example, case A and case B are approximately the same in terms of width deviations (corresponding to ΔW) at the leading and trailing ends with respect to the center in the longitudinal direction. In addition, the leading and trailing end crop lengths after both V and H rolling are approximately the same in case A and case B. Based on this experimental data, the shape of the rolled material after normal V・H is the same as the shape of the rolled material made flat after the dog bone killing pass (H D pass), and the shape of the rolled material after the normal V・H
This shows that the amount of change in the shape of the rolled material during horizontal rolling (H pass) can be seen as overlapping, and from this fact, the amount of change in the planar shape of the rolled material during horizontal rolling (H pass) ΔW A , ΔL A The calculation formula of step A to predict and the planar shape of the rolled material before etching rolling (Δ
W 0 , ΔL 0 ) is used as a reference to predict the planar shape ΔW 1 , ΔL 1 of the rolled material after edge rolling (V pass) and dog bone killing pass ( HD pass). It is possible to predict the planar shapes ΔW F , ΔL F of the finished product, and if the planar shapes ΔW F , ΔL F of the final product can be predicted, it is possible to predict the planar shape ΔW F , ΔL F of the final product. It can be said that the optimum etching conditions (reduction amount and timing) can be found from the formula for predicting step A and the formula for predicting step B. That is, the present invention provides a method for rolling a rectangular cross-section of a rolled material when horizontally rolling a rolled material in a thick plate rolling process in which vertical rolls perform etching rolling on the widthwise side surface and longitudinal side surface of the rolled material during the rolling process using horizontal rolls. The amount of change in width overhang ΔW A and the amount of change in crop length ΔL A are predicted by formulas, and on the other hand, the amount of width overhang of the rolled material when horizontal rolling is performed to flatten only the raised part during etching rolling. The numerical values of ΔW 1 and crop length ΔL 1 are predicted using formulas, and the former formula for predicting ΔW A and ΔL A and the latter formula for predicting ΔW 1 and ΔL 1 are combined to calculate the width overhang of the final product. Predict ΔW F and crop length ΔL F , and aim for the predicted values of ΔW F and ΔL F to determine the width overhang amount ΔW C and crop length ΔL C of the final product.
This is a thick plate rolling method that aims to find the optimum etching conditions such that Here, an example of a formula for predicting the numerical values of the amount of change ΔW A in the amount of width overhang and the amount of change ΔL A in crop length of the rolled material during horizontal rolling is shown below. Regarding the top side of the rolling pass ΔW A (T)= 6.1・r T 0.953・(h 0 /R) 0.428 [ 1] ΔL A (T)= 2.23h 0 /h・r T 0.74 ( W 0 /R) 0.352 [2] Regarding the bottom side of the rolling pass ΔW A (B) = 8.22r T 0 . 689・(h 0 /R) 0. 471 [ 3] ΔL A (B) = 9.02・h 0 /h・r T 0.74 (h 0 / R) 0.262・(W 0 /R) 0.172 [ 4 ] However, r T is the horizontal path output that is currently being calculated from the slab thickness h 0 . The total reduction rate up to the side plank h, W 0 is the slab width, R is the horizontal roll radius, all units are mm. Note that the above formulas [1] to [4] are all formulas corresponding to a 1/10 scale lead model rolled material. Next, the width overhang amount ΔW 1 and crop length ΔL 1 of the rolled material after the dog bone killing pass during etching rolling are calculated from the width overhang amount of the rolled material before etching rolling, which was calculated using formulas [1] to [4] above. An example of a formula for prediction based on ΔW 0 and crop length ΔL 0 and how to derive it is shown below. Note that ΔW 1 and ΔL 1 calculated below are both expressed as the average value of the top and bottom. First, a model rolling test using miniature lead slabs was conducted and a prediction formula for ΔW 1 was derived. The conditions for the model rolling test are based on the assumption that the actual machine is 1/10 scale, and the dimensions of the lead miniature slab are 10 to 20 mm thick.
mm, width 150 to 320 mm, and length 150 to 190 mm. The mill is a model mill with a roll diameter of 100 mm, and the horizontal rolling mill used for the dog bone killing pass is a model horizontal mill with a work roll diameter of 105 mm. The procedure is first to edging the slab in two reciprocating passes with a width reduction of 1 to 3 mm per pass (V pass).
Thereafter, a dog bone killing pass ( HD pass) was performed to measure the planar shape. In addition, the planar shape after the VHD pass when the slab was turned 90 degrees in the horizontal plane was also measured in the same manner as above. Width overhang amount ΔW 1 (M) in both cases
FIG. 7 shows the relationship between (average value of top and bottom ΔW) and the total rolling reduction amount (ΣΔV) in the V-rolling reciprocating pass. As shown in the figure, the width overhang amount ΔW 1 (M) of the rolled material after the VHD pass is the same as the width overhang amount ΔW 0 (M) before the etching rolling (V pass).
It can be calculated using the formula below regardless of the top and bottom average values. ∆W 1 (M) = -1.2 (Σ∆V) 0.7 [5] Here, the width extension amount after the V-HD pass, which is calculated from the width extension amount ΔW 0 before the V- HD pass and the above formula [5] Amount of change in ΔW from ΔW 1 to VHD pass δΔ
W is defined by the following formula. δΔW=ΔW 1 −ΔW 0 [6] Similarly, the amount of change in ΔL in the VHD pass δΔ
L is defined by the following equation. δΔL=ΔL 1 −ΔL 0 [7] FIG. 8 shows a plot of the relationship between δΔW and δΔL based on the data of the model rolling. In the same figure, for example, if the shape of the rolled material before the V/ HD pass is a rectangular shape indicated by ●, then δΔW and δ
The relationship between ΔL is approximately on a straight line. The slope of this straight line changes depending on the shape before the V/ HD pass, but if the shape before the V/ HD pass is other than a rectangle, for example, the shape of a drum as shown by 〓, □, △ or the shape of a drum as shown by ○. Regardless of the case, they all seem to lie approximately on a single straight line. From this fact, δΔW
The ratio of and δΔL is defined by the following formula as α. α=δΔW/δΔL [8] FIG. 9 is a plot of the relationship between α and the width extension amount ΔW 0 before the VHD pass, based on the data in FIG. 8. As shown in the figure, α is given by the following formula. α=0.3 ( ΔW 0 +5.35) 0.482

〔9〕 この点に関し、若干考察を行なつた。 すなわち、第10図において、△bdcをエツヂ
ング圧延(Vパス)での非定常変形域と定義し、
該△bdcがV・HDパス後に△becに変形すると考
えると、V・HDパスによつて生じるコーナの軌
跡deは先に定義した非定常変形域△bdcの一辺bc
と平行になる。 また、この非定常変形域の長さと幅の比
率がエツヂング圧延前の幅張出し量ΔW0によつ
て変化することからdeの軌跡の角度はΔW0によ
つて変わるということがいえる。 いずれにしろαが式
[9] We have made some considerations regarding this point. That is, in Fig. 10, △bdc is defined as the unsteady deformation region during etching rolling (V pass),
Considering that △bdc is deformed to △bec after the V・H D pass, the corner locus de caused by the V・H D pass is one side bc of the unsteady deformation area △bdc defined earlier.
becomes parallel to Furthermore, since the ratio of the length and width of this unsteady deformation region changes depending on the amount of width extension ΔW 0 before etching rolling, it can be said that the angle of the locus of de changes depending on ΔW 0 . In any case, α is the formula

〔9〕で求まれば、V・H
DパスにおけるΔLの変化量δΔLは式〔8〕よ
りΔWの変化量δΔWを用いて下記の如く求ま
る。 δΔL=δΔW/α 〔8′〕 一方、V・HDパス前のクロツプ長ΔL0はすで
に求められている訳であるから、V・HDパス後
のクロツプ長ΔL1は下記の如く求めることがで
きる。 ΔL1=ΔL0+δΔL 〔7′〕 このように、前記式〔1〕〔3〕で求まるΔWA
と前記式〔5〕で求まるΔW1とを圧延工程に従
つて重合してゆくことによつて最終成品の幅張出
し量ΔWFを予測することができ、また前記式
〔2〕〔4〕で求まるΔLAと最終的に前記式
〔7′〕で求まるΔL1とを圧延工程に従つて交互に
重合してゆくことによつて最終成品のクロツプ長
ΔLFを予測することができる。 なお、ΔWの変化量、ΔLの変化量を夫々重合
してゆく際に、途中で水平面内での圧延材の90゜
転回が入る場合、すなわち幅出し圧延時及びC方
向L方向エツヂング圧延時は、この点を考慮して
転回前のΔWに転回後ΔLの変化を加えること等
が必要である。 次に最適エツヂング条件を求めるまでのプロセ
スを第11図のフローチヤートに従つて説明す
る。 先ず、演算器に圧延条件(スラブ寸法、成品寸
法と幅出し圧延開始までの圧下量、水平ロール半
径等)を読込み、エツヂング条件(エツヂングの
タイミングと圧下量)を任意に仮定し、Hパス後
の前記ΔWAとΔLA、V・HDパス後のΔW1とΔ
L1を求める。次にこれらの数値を前記した如く
圧延工程に従つて重ね合わせてゆき、最終成品形
状での幅張出し量とクロツプ長ΔWF,ΔLFを予
測する。求めたΔWF,ΔLFを狙い最終成品形状
ΔWC,ΔLCと比較して両者が一致するか否かを
判定し、もし一致していなければ頭初のエツヂン
グ条件を修正して一致するまで最終成品形状の予
測計算を繰り返す。ΔWF,ΔLFとΔWC,ΔLC
とが一致した時のエツヂング条件がすなわち所定
の圧延条件に対する最適エツヂング条件となる。 なお、エツヂング条件を決定する際、そのエツ
ヂング条件がエツヂヤに許容される最大荷重、最
大トルクを越さないようにする点、また圧延材の
座屈を生じない範囲の幅圧下量とする点等に注意
する必要があり、必ずしも全ての圧延条件につい
て担い通りの成品形状を実現することは不可能で
あるが、担い形状に最も近い成品形状とすること
は可能である。 次に実施例について記載する。 実機寸法の1/10縮尺を想定した前記鉛モデル圧
延の例について、前記Hパス後のΔWA,ΔLA
予測する式〔1〕〔2〕〔3〕〔4〕とV・HDパス
後のΔW1,ΔL1を予測する式〔5〕〔6〕〔7〕
〔8〕
If found in [9], V.H.
The amount of change δΔL in ΔL in the D pass is determined as follows using the amount of change δΔW in ΔW from equation [8]. δΔL=δΔW/α [8'] On the other hand, since the crop length ΔL 0 before the VHD pass has already been determined, the crop length ΔL 1 after the VHD pass can be determined as follows. I can do it. ΔL 1 = ΔL 0 + δΔL [7'] In this way, ΔW A determined by the above formulas [1] [3]
The width overhang amount ΔW F of the final product can be predicted by polymerizing ΔW 1 determined by the above formula [5] according to the rolling process, and the width overhang amount ΔW F of the final product can be predicted. The crop length ΔL F of the final product can be predicted by alternately polymerizing the obtained ΔL A and the ΔL 1 finally obtained by the above formula [7'] in accordance with the rolling process. In addition, when the amount of change in ΔW and the amount of change in ΔL are polymerized, if the rolled material is rotated by 90 degrees in the horizontal plane, that is, during tentering rolling and C-direction L-direction etching rolling, In consideration of this point, it is necessary to add the change in ΔL after the turn to ΔW before the turn. Next, the process up to finding the optimum etching conditions will be explained according to the flowchart of FIG. First, the rolling conditions (slab dimensions, finished product dimensions, reduction amount until the start of tentering rolling, horizontal roll radius, etc.) are read into the calculator, the etching conditions (timing of etching and reduction amount) are arbitrarily assumed, and the rolling conditions are calculated after the H pass. ΔW A and ΔL A , ΔW 1 and Δ after V・HD pass
Find L 1 . Next, these values are superimposed according to the rolling process as described above, and the width overhang and crop lengths ΔW F and ΔL F in the final product shape are predicted. The obtained ΔW F and ΔL F are compared with the final product shapes ΔW C and ΔL C to determine whether they match or not. If they do not match, the initial etching conditions are corrected until they match. Repeat the prediction calculation of the final product shape. ΔW F , ΔL F and ΔW C , ΔL C
The etching conditions when the conditions match are the optimum etching conditions for the predetermined rolling conditions. When determining the etching conditions, make sure that the etching conditions do not exceed the maximum load and maximum torque allowed by the etching tool, and ensure that the width reduction is within a range that does not cause buckling of the rolled material. It is necessary to pay attention to this, and it is not necessarily possible to achieve the shape of the finished product as the shape of the carrier under all rolling conditions, but it is possible to obtain a product shape that is closest to the shape of the carrier. Next, examples will be described. For the example of lead model rolling assuming a scale of 1/10 of the actual machine dimensions, formulas [1] [2] [3] [4] for predicting ΔW A and ΔL A after the H pass and the V/H D pass are used. Formulas for predicting the subsequent ΔW 1 and ΔL 1 [5] [6] [7]
[8]

〔9〕〔8′〕〔7′〕を用い、第11図のフロー
チヤートに従つてエツヂング条件の最適値を求め
た。 鉛ミニチユアスラブの寸法は、24.5mm厚、210
mm幅、230mm長さで、成品寸法は1.6mm厚、252mm
幅、2935mm長さであり、幅出し圧延開始までの圧
下量は0すなわちスラブを直ちに幅出し圧延する
こととした。 最終成品の狙い形状としては、クロツプ形状を
若干のフイツシユテール形状、幅張出し量を若干
の幅張出しとした。 この場合、前述の最終成品形状を予測するため
の式〔1〕〜
Using [9] [8'] [7'], the optimum values of etching conditions were determined according to the flowchart of FIG. The dimensions of the lead miniature slab are 24.5mm thick, 210
mm width, 230mm length, finished product dimensions are 1.6mm thick, 252mm
The slab had a width of 2935 mm and a length of 2935 mm, and the reduction amount until the start of tentering rolling was 0, that is, the slab was immediately tentered rolled. The desired shape of the final product was a cropped shape with a slight fishtail shape, and a slight width overhang. In this case, the above-mentioned formula [1] to predict the shape of the final product is

〔9〕〔8′〕〔7′〕を用いて求めた最
適エツヂング条件は、幅出し圧延前のC方向エツ
ヂングとして全幅圧下量(各パスの幅圧下量の合
計)が7.7mm、幅出し圧延後のL方向エツヂング
として全幅圧下量が2.2mmであつた。 この数値に基づきモデル圧延テストを実施した
結果を第12図に示す。 同図は、スラブから最終成品に致る過程のクロ
ツプ量ΔLと幅張出し量ΔWの変化をいずれも
L、C方向の圧下比で除した値,で示し
たもので、図中7はモデル圧延テストによつて求
めた最終成品の実測平面形状であり、狙い通りの
若干幅張出し及び若干フイツシユテール状のクロ
ツプ形状となつている。 一方、図中8は前記予測式〔1〕〜
[9] The optimal etching conditions found using [8'] [7'] are that the full width reduction amount (total width reduction amount of each pass) is 7.7 mm for C direction etching before tenter rolling, and the width reduction amount of each pass is 7.7 mm. In the later L direction edging, the full width reduction was 2.2 mm. Figure 12 shows the results of a model rolling test based on these values. The figure shows the changes in cropping amount ΔL and width overhang amount ΔW during the process from slab to final product, both divided by the rolling reduction ratio in the L and C directions. 7 in the figure shows the model rolling. This is the actual measured planar shape of the final product obtained through testing, and it has a slightly overhanging width and a slightly fishtail-like cropped shape as intended. On the other hand, 8 in the figure is the prediction formula [1] ~

〔9〕
〔8′〕〔7′〕を用いて算出した最終成品の予測平面
形状であるが、該予測平面形状8と上記実測平面
形状7とは圧延途中の形状変形過程も含めてよく
一致している。 このことから、本発明者等の考えた前述の最終
成品形状を予測する方法と最適エツジング量とタ
イミングを決定する方法は当を得たものであると
いうことができる。 以上説明した通り、本発明は水平圧延後の圧延
材の平面形状変化を予測する場合の算式とエツヂ
ング圧延したときのドツグボーン殺しパス後の圧
延材の平面形状を予測する場合の算式とによつて
与えられた圧延条件と任意のエツヂング条件とで
圧延されるスラブの最終成品形状を精度よく予測
できるようにしたから、所望の最終成品形状を得
るに必要な最適エツヂング条件を知ることが可能
となり、厚板圧延の歩留りを飛躍的に向上さす優
れた効果を有するものである。
[9]
[8′] This is the predicted planar shape of the final product calculated using [7′], and the predicted planar shape 8 and the above-mentioned measured planar shape 7 match well, including the shape deformation process during rolling. . From this, it can be said that the method of predicting the shape of the final product and the method of determining the optimum amount and timing of etching devised by the present inventors are appropriate. As explained above, the present invention uses a formula for predicting changes in the planar shape of a rolled material after horizontal rolling and a formula for predicting the planar shape of a rolled material after a dogbone killing pass during edging rolling. By making it possible to accurately predict the final product shape of a slab rolled under given rolling conditions and arbitrary etching conditions, it is now possible to know the optimal etching conditions necessary to obtain the desired final product shape. This has an excellent effect of dramatically improving the yield of thick plate rolling.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は厚板圧延の概略を示す図、第2図は幅
出し圧延前のスラブ長手方向圧延の際に生じるク
ロツプと幅張出しを説明する図、第3図は幅出し
比の相違による最終成品のクロツプ形状と幅形状
の異なりを説明する図、第4図はエツヂング圧延
による平面形状の制御例を示す図、第5図はエツ
ヂング圧延を伴なう厚板圧延で、平面形状変化を
予測する方法を説明する図、第6図は、第5図の
予測方法の妥当性を鉛モデル圧延で検討した例を
示す図、第7図はV・HDパスにおいて生ずる
先・後端幅挾量平均値とVパス往復での合計幅圧
下量の関係を示す図、第8図はδΔWとδΔLの
関係を示す図、第9図はαとΔWの関係を示す
図、第10図は非定常変形領域とコーナの軌跡の
関係を説明する図、第11図は最適エツデング条
件を求めるためのフローチヤート図、第12図は
本発明方法の鉛モデル圧延による実施例を説明す
る図である。 1:スラブ、2,3:圧延材、4:最終成品、
5,5′:エツヂヤロール、6,6′:水平圧延ロ
ール、ΔWA,ΔLA:水平圧延(Hパス)した時
の圧延材の幅張出し量の変化量、同クロツプ長の
変化量、ΔW0,ΔL0:エツヂング圧延(Vパ
ス)・ドツグボーン殺しパス(HDパス)前の圧延
材の幅張出し量、同クロツプ長、ΔW1,ΔL1
V・HDパス後の圧延材の幅張出し量、同クロツ
プ長。
Figure 1 is a diagram showing the outline of thick plate rolling, Figure 2 is a diagram explaining the cropping and width expansion that occur during slab longitudinal rolling before tentering rolling, and Figure 3 is a diagram showing the final result due to the difference in the tentering ratio. A diagram explaining the difference between the crop shape and width shape of a product, Figure 4 is a diagram showing an example of controlling the planar shape by etching rolling, and Figure 5 is a diagram showing the prediction of changes in the planar shape by thick plate rolling accompanied by etching rolling. Figure 6 is a diagram explaining the validity of the prediction method shown in Figure 5 using a lead model rolling, and Figure 7 is a diagram explaining the leading and trailing edge widths that occur in the V/ HD pass. Figure 8 shows the relationship between δΔW and δΔL. Figure 9 shows the relationship between α and ΔW. FIG. 11 is a flowchart for determining the optimum edging conditions; FIG. 12 is a diagram illustrating an example of the method of the present invention using lead model rolling. 1: Slab, 2, 3: Rolled material, 4: Final product,
5, 5': Edge roller, 6, 6': Horizontal rolling roll, ΔW A , ΔL A : Amount of change in width overhang of rolled material during horizontal rolling (H pass), amount of change in crop length, ΔW 0 , ΔL 0 : Width overhang amount of rolled material before edge rolling (V pass)/dog bone killing pass ( HD pass), same crop length, ΔW 1 , ΔL 1 :
Width overhang amount and crop length of rolled material after V/ HD pass.

Claims (1)

【特許請求の範囲】[Claims] 1 水平ロールによる圧延工程途中で、竪形ロー
ルにより圧延材幅方向側面及び長手方向側面のエ
ツヂング圧延を行なう厚板圧延において、矩形断
面圧延材を水平圧延したときの圧延材の幅張出し
量の変化量ΔWAとクロツプ長の変化量ΔLAの数
値を算式により予測し、一方圧延材をエツヂング
圧延した後、エツヂング圧延により生じた盛り上
り部のみを平面にならす水平圧延をしたときの圧
延材の幅張出し量ΔW1とクロツプ長ΔL1の数値
を算式により予測し、前記ΔWA,ΔLAを予測す
る前者の算式と前記ΔW1,ΔL1を予測する後者
の算式を重合して最終成品の幅張出し量ΔWF
びクロツプ長ΔLFを予測し、該ΔWF,ΔLF
予測値が狙い最終成品の幅張出し量ΔWC及びク
ロツプ長ΔLCとなるような最適エツヂング条件
を求め、該最適エツヂング条件で圧延することを
特徴とする厚板圧延方法。
1. Changes in the amount of width overhang of a rolled material when a rectangular cross-section rolled material is horizontally rolled in thick plate rolling in which vertical rolls perform edge rolling on the widthwise and longitudinal sides of the rolled material during the rolling process using horizontal rolls. The numerical values of the amount of change ΔW A and the amount of change in crop length ΔL A are predicted using formulas, and on the other hand, after the rolled material is etched and rolled, horizontal rolling is performed to flatten only the bulges caused by the etching rolling. The values of width overhang ΔW 1 and crop length ΔL 1 are predicted using formulas, and the former formula for predicting ΔW A and ΔL A and the latter formula for predicting ΔW 1 and ΔL 1 are combined to obtain the final product. The width overhang amount ΔW F and crop length ΔL F are predicted, and the optimum etching conditions are determined so that the predicted values of ΔW F and ΔL F become the width overhang amount ΔW C and crop length ΔL C of the final product. A thick plate rolling method characterized by rolling under etching conditions.
JP467182A 1982-01-14 1982-01-14 Method for rolling thick plate Granted JPS58122106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP467182A JPS58122106A (en) 1982-01-14 1982-01-14 Method for rolling thick plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP467182A JPS58122106A (en) 1982-01-14 1982-01-14 Method for rolling thick plate

Publications (2)

Publication Number Publication Date
JPS58122106A JPS58122106A (en) 1983-07-20
JPS6150044B2 true JPS6150044B2 (en) 1986-11-01

Family

ID=11590363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP467182A Granted JPS58122106A (en) 1982-01-14 1982-01-14 Method for rolling thick plate

Country Status (1)

Country Link
JP (1) JPS58122106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138838U (en) * 1988-03-18 1989-09-21

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61235008A (en) * 1985-04-12 1986-10-20 Nippon Steel Corp Production of hot rolled steel sheet
JPS61273202A (en) * 1985-05-27 1986-12-03 Nippon Steel Corp Production of steel plate having excellent quality at end
JPS6216806A (en) * 1985-07-16 1987-01-26 Nippon Steel Corp Production of thick plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138838U (en) * 1988-03-18 1989-09-21

Also Published As

Publication number Publication date
JPS58122106A (en) 1983-07-20

Similar Documents

Publication Publication Date Title
JPS6347775B2 (en)
JP6809488B2 (en) Hot-rolled rough rolling method, hot-rolled rough rolling equipment, hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing equipment
JPS6150044B2 (en)
JP3300208B2 (en) Learning control method in process line
KR100362662B1 (en) Shape control method in width direction of hot rolled steel sheet
JP2001252709A (en) Method for temperature on outlet side of finishing mill for hot rolling
JPS6134886B2 (en)
KR100293196B1 (en) Method for controlling overlap of edge part of the plate when hot rolling steel plate
JP3506098B2 (en) Shape control method and apparatus in sheet rolling
JP2628916B2 (en) Flatness control method during reverse rolling
KR100513821B1 (en) Method for controlling plan view shape in hot plate mill
JPH0615321A (en) Shape control method in thick plate rolling
JPH09262612A (en) Plane shape controlling method and device therefor
JPS6345882B2 (en)
JP2550267B2 (en) Camber control method in plate rolling
JP3067913B2 (en) Warpage control method in rolling
JPS62137114A (en) Plate width control method for thick plate
JP2907032B2 (en) Rolling method of thick steel plate
JP3646622B2 (en) Sheet width control method
JPS63188402A (en) Width sizing method for hot slab
JPS642444B2 (en)
JP2023147370A (en) Leveling control method in hot rolling, leveling controller, hot rolling equipment, and method for manufacturing hot rolled steel strip
JPH0679315A (en) Method for leveling roll of cross roll mill
JPH03138013A (en) Control method for work roll bending in rolling of metal plate
JPS6150043B2 (en)