JPS5926367B2 - Plate camber control method - Google Patents

Plate camber control method

Info

Publication number
JPS5926367B2
JPS5926367B2 JP54005432A JP543279A JPS5926367B2 JP S5926367 B2 JPS5926367 B2 JP S5926367B2 JP 54005432 A JP54005432 A JP 54005432A JP 543279 A JP543279 A JP 543279A JP S5926367 B2 JPS5926367 B2 JP S5926367B2
Authority
JP
Japan
Prior art keywords
rolling
pass
amount
rolled material
camber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54005432A
Other languages
Japanese (ja)
Other versions
JPS55112116A (en
Inventor
輝雄 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP54005432A priority Critical patent/JPS5926367B2/en
Publication of JPS55112116A publication Critical patent/JPS55112116A/en
Publication of JPS5926367B2 publication Critical patent/JPS5926367B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は鋼板の圧延、特に厚板圧延における板キヤンバ
制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for controlling plate camber in steel plate rolling, particularly in thick plate rolling.

厚板圧延にあっては圧延途中において厚板が圧延の幅方
向に湾曲する現象、すなわち板キャンバが発生するとい
う問題点がある。
In the rolling of thick plates, there is a problem in that a phenomenon in which the thick plate curves in the width direction of rolling during rolling, that is, plate camber occurs.

斯かる板キヤンバ発生の為に所要板幅の矩形厚板が得ら
れず、又は予め板幅が十分大となるように板幅に余裕を
みて圧延して、不要部切断により所要寸法の矩形厚板を
得る必要がある等、大幅な歩留の低下を招来することと
々つていた。
Due to the occurrence of such plate camber, it is not possible to obtain a rectangular thick plate with the required width, or by rolling the plate with an allowance in advance so that the plate width is sufficiently large, and cutting off unnecessary parts, it is possible to obtain a rectangular thick plate with the required width. This often results in a significant decrease in yield due to the need to obtain plates.

上記板キャンバの発生原因としては入側板厚が左右、す
なわち板幅方向の両側で夫々に異る等、圧延材に起因す
るもの、圧延機の上下のロールの平行度が悪い等、圧延
機に起因するもの、及び圧延機のロールの胴長の中心線
と圧延材の幅方向中心線とがずれた状態で圧延される等
、圧延機と圧延材の相互関係に起因するものが挙げられ
るが、いずれにしても左右非対称の圧延が行われた場合
、圧延材の左右の伸び率が不均一となり板キャンバが発
生することになる。
The causes of the plate camber mentioned above are due to the rolled material, such as the entrance side plate thickness being different on the left and right sides, that is, on both sides in the width direction, and due to poor parallelism between the upper and lower rolls of the rolling mill. There are also those caused by the mutual relationship between the rolling mill and the rolled material, such as rolling with the center line of the body length of the roll of the rolling mill and the center line of the rolled material in the width direction misaligned. In any case, if asymmetrical rolling is performed, the elongation rate on the left and right sides of the rolled material will be uneven, resulting in plate camber.

本発明は上述の如き板キャンバの発生を抑制する新規な
板キヤンバ制御方法を提案したものである。
The present invention proposes a novel board camber control method for suppressing the occurrence of board camber as described above.

本発明に係る板キヤンバ制御方法は、鋼板圧延に際し、
最終の圧延パスに先立って圧延材のキャンバ量を計測し
、この計測値から圧延材の圧延方向左右両端における圧
延方向の伸び率差を算出し、この算出値と、別に求めら
れたレベル修正寄与率とから圧延機の左右両側夫々にお
ける圧下修正量を求め、該圧下修正量に従って圧延機の
左右両側夫々の圧下位置を調整した後、最終圧延パスを
実施することを特徴とする。
The plate camber control method according to the present invention includes the following steps when rolling a steel plate:
Prior to the final rolling pass, the amount of camber of the rolled material is measured, and from this measurement value, the elongation rate difference in the rolling direction at both the left and right ends of the rolled material in the rolling direction is calculated, and this calculated value and the separately determined level correction contribution are calculated. The method is characterized in that the amount of rolling correction on each of the left and right sides of the rolling mill is determined from the ratio, and the rolling position on each of the left and right sides of the rolling mill is adjusted according to the amount of rolling correction, and then the final rolling pass is carried out.

以下本発明をその実施例を示す図面に基いて詳述する。The present invention will be described in detail below based on drawings showing embodiments thereof.

第1図は本発明方法の実施に使用する装置を模式的に示
しており、圧延材1は圧下位置を左右独立的に調整し得
るようにした、可逆式の圧延機2により複数パス圧延さ
れて所定寸法の厚板に圧延されていく。
FIG. 1 schematically shows an apparatus used to carry out the method of the present invention, in which a rolled material 1 is rolled in multiple passes by a reversible rolling mill 2 whose rolling position can be adjusted independently on the left and right sides. It is then rolled into a thick plate of a predetermined size.

而して最終パスの直前のパスを経た圧延材1のキャンバ
量を適宜のキャンバ計測装置(例えば板幅測定器と演算
装置とを組合せてなるもの)3によりまず計測する。
The amount of camber of the rolled material 1 that has passed through the pass immediately before the final pass is first measured by an appropriate camber measuring device 3 (for example, one that is a combination of a sheet width measuring device and an arithmetic device).

第2図は前記直前のパスを経た圧延材1の略示平面図で
あり、板キャンバが発生している。
FIG. 2 is a schematic plan view of the rolled material 1 that has passed through the previous pass, and plate camber has occurred.

この圧延材1から先後両端のクロップ部1a、laを除
いたものの板幅方向中心線の長さをL、板幅をB、板幅
方向中心線における左、右側板端部夫々から、クロップ
部1a、1aを除く圧延材1の左側先後端同士及び右側
先後端同士夫々を結ぶ線分(弦)夫々に至る寸法、すな
わち板曲り量をΔC1,ΔC2とすると、キャンバ量Δ
CはΔC1とΔC2との相加平均として下記(1)式で
求められる。
The length of the center line in the plate width direction of this rolled material 1 excluding the cropped parts 1a and la at both front and rear ends is L, the plate width is B, and the cropped parts are If the dimensions leading to the line segments (chords) connecting the left front and rear ends and the right front and rear ends of the rolled material 1 excluding 1a and 1a, that is, the plate bending amounts, are ΔC1 and ΔC2, then the camber amount Δ
C is determined by the following equation (1) as the arithmetic average of ΔC1 and ΔC2.

ΔC−(ΔC1+ΔC2)/2 ・・・・・・(
1)なおキャンバ量としては上記(1)式により得られ
る単一の値に限らず、圧延材1の板長手方向に複数に分
割されてなるブロック毎に(1)式同様の式で表わされ
る複数のキャンバ量を求めて制御の精細化を図ることと
してもよい。
ΔC-(ΔC1+ΔC2)/2 ・・・・・・(
1) The amount of camber is not limited to the single value obtained by the above formula (1), but can be expressed by a formula similar to formula (1) for each block formed by dividing the rolled material 1 into a plurality of parts in the longitudinal direction of the plate. The control may be refined by obtaining a plurality of camber amounts.

上記キャンバ量ΔCはり、Bと共に圧延材左右の伸び率
差Δξを求めるために伸び率差算出装置4へ入力される
The camber amounts ΔC and B are input to the elongation rate difference calculation device 4 in order to determine the elongation rate difference Δξ between the left and right sides of the rolled material.

第3図はクロップ部1a、1aを除いて圧延材1を幾何
学的に表わした表面図である。
FIG. 3 is a geometrical surface view of the rolled material 1 excluding the cropped portions 1a, 1a.

板キヤンバ発生に依り左側が長辺、右側が短辺になった
ものとして左側辺の長さをLL、右側辺の長さをLRと
する。
Assuming that the left side is the long side and the right side is the short side due to the occurrence of board camber, the length of the left side is LL, and the length of the right side is LR.

この左右の側辺及び前記りを定義する中心線は近似的に
円弧と見做せ、便宜的にその円の中心は一致するものと
する。
The left and right sides and the center line that defines them can be approximately regarded as circular arcs, and for convenience it is assumed that the centers of the circles coincide.

そして円弧と見做した中心線半径をρとし、またクロッ
プ部ia、laを除く圧延材1の前後の端辺を夫々含む
各半径間の開き角度なθとする。
Let ρ be the centerline radius regarded as a circular arc, and θ be the opening angle between the radii including the front and rear edges of the rolled material 1, excluding the cropped portions ia and la.

そうすると左右の伸び率差Δξは下記(2)式で求めら
れる。
Then, the difference in elongation rate Δξ between the left and right sides can be obtained by the following equation (2).

Δξ= (LL LH) / L ・・・・
・・(2)一方、第3図から明らかな如く幾何学的に下
記(3) 、 (4) 、 (5)式が成立する。
Δξ= (LL LH) / L...
(2) On the other hand, as is clear from FIG. 3, the following equations (3), (4), and (5) hold geometrically.

LL−LR=θ・B ・・・・・・(3)
θ p(1−cos−)−ΔC−−−−−・(4)θ−L/
ρ ・・・・・・(5)ρはLに
比して十分大であるのでθ/2〈1であり、従って θ2 1− cos −÷(θ/2)2/2 ・・・・・
・(6)との近似が成立する。
LL-LR=θ・B (3)
θ p(1-cos-)-ΔC--(4) θ-L/
ρ...(5) Since ρ is sufficiently large compared to L, θ/2<1, so θ2 1- cos -÷(θ/2)2/2...
・The approximation to (6) holds true.

そうすると(4)〜(6)式よりΔC−ρ・θ2/8=
L・θ/8 ・・・・・・(7)従って左右の伸び
率Δξは(2) 、 (3) 、 (7)式よりΔξ=
θ・B/L = 8 B・ΔC/L2 ・・・・・・(
8)と表わされることとなり、伸び率差演算装置4は要
するに(8)式に従って伸び率差Δξを算出し、これを
圧下修正量演算装置5へ入力する。
Then, from equations (4) to (6), ΔC-ρ・θ2/8=
L・θ/8 (7) Therefore, the left and right elongation rate Δξ is from formulas (2), (3), and (7), Δξ=
θ・B/L = 8 B・ΔC/L2 ・・・・・・(
8), the elongation rate difference calculation device 4 calculates the elongation rate difference Δξ according to equation (8), and inputs this to the reduction correction amount calculation device 5.

さて圧延材左右の伸び率差が発生する原因は圧延におけ
る左右非対称性のために圧延機のロールの変形が左右不
均衡とがり、出側板厚に偏差を生ずるためである。
Now, the cause of the difference in elongation between the left and right sides of the rolled material is that due to the left-right asymmetry in rolling, the deformation of the rolls of the rolling mill becomes unevenly sharp on the left and right sides, causing a deviation in the thickness of the sheet at the exit side.

以下この偏差値、すなわちいわゆるウェツジ量の変化と
伸び率差Δξとの関係を求める手段について説明する。
The means for determining the relationship between this deviation value, that is, the so-called wedge amount change and the elongation rate difference Δξ will be explained below.

今、入側にて単位長さの圧延材が出側にて左、右及び中
央部夫々の長さがLL、LR9Lに延びたものとし、圧
延中の幅方向へのメタルフローの影響は小さいものとす
る。
Now, it is assumed that a rolled material of unit length on the input side extends to lengths LL and LR9L at the left, right, and center portions, respectively, on the output side, and the influence of metal flow in the width direction during rolling is small. shall be taken as a thing.

このことは板厚/作業ロール径比が十分小さいときに成
立することが知られており、通常の厚板仕上パス近傍で
はこの条件を満たすものである。
It is known that this holds true when the plate thickness/work roll diameter ratio is sufficiently small, and this condition is satisfied near the normal thick plate finishing pass.

そして圧延材の入側及び出側夫々の断面プロフィールを
第4図A、Bに示す如く、入側においてに左右夫々の板
厚なHL。
As shown in FIGS. 4A and 4B, which show the cross-sectional profiles of the inlet and outlet sides of the rolled material, the left and right plate thicknesses are HL on the inlet side, respectively.

HRlまた幅方向中央部の板厚をH6とじ、出側におい
ては左右夫々の板厚をhL、hHtた幅方向中央部の板
厚をhcとする。
In addition, the plate thickness at the center in the width direction is expressed as H6, and on the exit side, the plate thickness at the center in the width direction is hc, which is hL and hHt, respectively, on the left and right sides.

そうすると人、出側のマスフロー一定の条件から下記(
9) 、 (10) 、 (n )式が夫々圧延材の右
側、中央部、左側について成立する。
Then, from the constant condition of mass flow of people and output, the following (
Equations 9), (10), and (n) hold true for the right side, center, and left side of the rolled material, respectively.

IXHR=hR−LR・・・・・・(9)I X Ho
= h o−L ・−−(10)I X
HL = J、−LL・−・−(11)(9)〜(用式
を(2)式に代入すると 一方、入側及び出側夫々のウェツジ量ΔW及びΔWは ΔW−HR−HL ・・・・・・(13
)Δw=hRhL ・・・・・・(14
)でるり、また HL÷Ho−ΔW/ 2 −−−−−−(15
)HR:HC+ΔW/ 2 ・−・−・(
16)hL−:hc−Δw/ 2 ==(17
)hR4hC+Δw/2・・曲(18) となる。
IXHR=hR-LR...(9) IXHo
= h o-L ・--(10) I X
HL = J, -LL. ...(13)
) Δw=hRhL (14
), and HL÷Ho−ΔW/2 −−−−−−(15
)HR:HC+ΔW/2 ・−・−・(
16) hL-:hc-Δw/2 ==(17
)hR4hC+Δw/2...Song (18).

従ってhc2)3w”/4であるのでとなる。Therefore, hc2)3w''/4.

こ(19)式を(12)式に代入するとΔξ−Δw/h
o−ΔW/Ho ・・・・・・(2D)と斤る。
Substituting equation (19) into equation (12) yields Δξ−Δw/h
o-ΔW/Ho...(2D).

而して多パス圧延の場合は各パスで生じた左右の伸び率
差か重畳されるのでf番目の圧延パス後の左右の伸び率
差Δξfは下記(21)式で表わされる。
In the case of multi-pass rolling, the left and right elongation rate differences generated in each pass are superimposed, so the left and right elongation rate difference Δξf after the f-th rolling pass is expressed by the following equation (21).

但しhiはi番目のパスの出側の中央部の板厚、Δwi
はi番目のパスの出側のウェツジ量である。
However, hi is the plate thickness at the central part on the exit side of the i-th pass, Δwi
is the wedge amount on the output side of the i-th pass.

従ってi−1番目のパスの出側の中央部の板厚hh−,
及びそのウェツジ量ΔWi−1は夫々次順のパス、す々
わちi番目のパスの入側の中央部の板厚及びそのウェツ
ジ量を意味する。
Therefore, the thickness of the central part on the exit side of the i-1st pass is hh-,
and its wedge amount .DELTA.Wi-1 respectively mean the plate thickness at the central part on the entrance side of the next pass, that is, the i-th pass, and its wedge amount.

またΔξi −1はi−1番目の圧延パスの経過後に存
在する左右の伸び率差である。
Further, Δξi −1 is the difference in elongation between the left and right sides that exists after the i-1th rolling pass.

さて今f−1番目のパス後のキャンバ量ΔCf。Now, the camber amount ΔCf after the f-1st pass.

を実施した場合について考えるとその伸び率差Δξf−
1は(8)式より Δξf−1= 8 B ΔCfl /LF 11
・・・・・・(22)但シ、Lf、はi−1番目のパス
後の中央部の板長さであり、実測又は圧延前の圧延材の
長さと圧延比とから容易に求められる。
Considering the case where
1 is from equation (8), Δξf−1= 8 B ΔCfl /LF 11
......(22) However, Lf is the plate length at the center after the i-1th pass, and can be easily determined from actual measurement or the length of the rolled material before rolling and the rolling ratio. .

さて(21)式にてi=fとおくと と々るがこのf番目のパスを仕上最終パスと見做すこと
とすると、Δξf=Ohすることにより該仕上最終パス
を終えた圧延材のキャンバ量が零になることに力る。
Now, if we set i=f in the equation (21), then if this f-th pass is regarded as the final finishing pass, then by setting Δξf=Oh, the rolled material after the final finishing pass is Focus on reducing the amount of camber to zero.

この場合の出側のウェツジ量をΔwf*とおくと(23
)式から となるが、このΔwf*を実現するための圧延機2左右
の圧下修正量(レベル修正量)ΔSf*は圧下修正量演
算装置5にて以下のようにして演算される。
Letting the wedge amount on the exit side in this case be Δwf*, (23
) Formula, the rolling correction amount (level correction amount) ΔSf* on the left and right sides of the rolling mill 2 to realize this Δwf* is calculated by the rolling correction amount calculating device 5 as follows.

hお圧下修正量は左右の圧下位置の差についての変更量
として定義する。
h The rolling correction amount is defined as the amount of change in the difference between the left and right rolling positions.

さて第5図は横軸に圧下修正量ΔSを、また縦軸に出側
のウェツジ量ΔWをとって示した両者の相関関係を示す
グラフである。
Now, FIG. 5 is a graph showing the correlation between the two, with the horizontal axis representing the reduction correction amount ΔS and the vertical axis representing the wedge amount ΔW on the exit side.

このグラフから理解されるようにΔSの変化によるΔW
の変化はΔSの一定範囲内においては直線近似される。
As understood from this graph, ΔW due to changes in ΔS
The change in ΔS is approximated by a straight line within a certain range of ΔS.

すなわちこの直線は Δw−A・ΔS+ΔW□ ++++−(zs
)と表わされる。
In other words, this straight line is Δw-A・ΔS+ΔW□ +++++-(zs
).

但しこの直線の傾き、すなわちレベル修正寄与率Aは圧
延材塑性曲線の硬き(圧延材の硬さを示す公知のパラメ
ータ)、ミル寸法、ミルの左右の剛性、圧延材の幅寸法
等によって定まる値でるり、ロール変形計算又は実験に
より予め求められるものである。
However, the slope of this straight line, that is, the level correction contribution rate A, is determined by the hardness of the rolled material plasticity curve (a known parameter that indicates the hardness of the rolled material), the mill dimensions, the left and right rigidity of the mill, the width dimension of the rolled material, etc. This value can be determined in advance by a rolling guide, roll deformation calculation, or experiment.

捷たΔW(、は圧下修正量が零の場合に生じる出側のウ
ェツジ量であり、ミルの左右圧下位置レベルの不均衡、
圧延材の幅方向中心とロール胴長中心とのずれ又は圧延
材の板幅内での焼けの不均一性に依る変形抵抗分布等に
よって生ずる板厚偏差を表わすものである。
The cut ΔW (, is the amount of wedging on the exit side that occurs when the reduction correction amount is zero, and is due to the imbalance in the level of the left and right reduction positions of the mill,
It represents the plate thickness deviation caused by the deviation between the widthwise center of the rolled material and the center of the roll body length, or the deformation resistance distribution due to non-uniformity of burning within the width of the rolled material.

f番目のパスにおけるレベル修正寄与率AをAf。The level correction contribution rate A in the f-th pass is Af.

圧下修正量が零の場合のウェツジ量ΔwoをΔwf。The wedge amount Δwo when the reduction correction amount is zero is Δwf.

とすると(25)式は第5図に示した如く下記(25’
)式のよ5に斤る。
Then, equation (25) becomes the following (25') as shown in Figure 5.
) is shown in equation 5.

3w4 ”= A4 ’ΔS+Δwfo ”・”
(255従って前記Δwf*を得るためのΔSf*は(
25)式%式%(26) となる。
3w4 ”= A4 'ΔS+Δwfo "・"
(255 Therefore, ΔSf* to obtain the above Δwf* is (
25) Formula % Formula % (26)

この(26)式K(24)式を代入するとと々る。Substituting this equation (26) K into equation (24) yields the result.

hお(20)式を参照すると上記(2′7)式における
(シー5) hf hl、。
Referring to equation (20), (C5) hf hl in equation (2'7) above.

はf番目のパスにて圧下修正量を零とした場合のfパス
で生ずる左右の伸び率差であることが明らかである。
It is clear that is the difference in the elongation rate between the left and right sides that occurs in the f-th pass when the rolling correction amount is zero in the f-th pass.

而して本発明の主対象とする厚板の圧延においては可逆
圧延により多パスを経てスラブから成品を得るのである
が、この場合において圧延途中で圧下量の修正を行わな
いときにおける各パスでの左右の伸び率の変化は極めて
小さいと考えられるので、(27)式における0内の項
は実用上無視し得、要するに(27)式は下記(28)
式の近似式で代替される。
In the rolling of thick plates, which is the main object of the present invention, products are obtained from slabs through multiple passes by reversible rolling.In this case, when the reduction amount is not corrected during rolling, the Since the change in the left and right elongation rate of is considered to be extremely small, the term within 0 in equation (27) can be practically ignored, and in short, equation (27) can be transformed into the following equation (28).
Replaced with an approximation of the expression.

上記(28)式においてf−1番目のパス、す々わち最
終パス(f番目のパス)の直前のパスにおける伸び率差
Δξf−7は(22) (又は(8)〕式で表わされる
値であり、前述の如く伸び率差演算装置4から圧下修正
量演算装置5へ入力される。
In the above equation (28), the elongation rate difference Δξf-7 in the f-1st pass, that is, the pass immediately before the final pass (fth pass), is expressed by the equation (22) (or (8)). This value is inputted from the elongation rate difference calculation device 4 to the reduction correction amount calculation device 5 as described above.

またf番目のパス、すなわち最終パスにおけるAの値、
すなわちレベル修正寄与率Afは、例えばレベル修正寄
与率演算装置6によりロール変形計算を行わせて予め求
めておき、同じく圧下修正量演算装置5へ入力される。
Also, the value of A in the f-th pass, that is, the final pass,
That is, the level correction contribution rate Af is determined in advance by, for example, performing roll deformation calculation by the level correction contribution rate calculation device 6, and is similarly input to the rolling correction amount calculation device 5.

更にhfはf番目のパス、すなわち最終パスの出側の中
央部の板厚、換言すれば一連の圧延における目標板厚で
あり、目標板厚、圧下スケジュール、その他レベル修正
寄与率の演算に要するデータ等と共に設定器7に格納さ
れており、圧下修正量演算装置5へ入力される。
Furthermore, hf is the plate thickness at the central part of the exit side of the f-th pass, that is, the final pass, in other words, the target plate thickness in a series of rolling, which is required for calculating the target plate thickness, rolling schedule, and other level correction contribution factors. It is stored in the setting device 7 along with data and the like, and is input to the reduction correction amount calculation device 5.

そして圧下修正量演算装置5はこれらの入力データに基
’!!(28)式による演算を行ってΔSf*を求め、
これを圧下位置制御装置8へ出力する。
The reduction correction amount calculating device 5 is based on these input data! ! Calculate ΔSf* by calculating according to formula (28),
This is output to the reduction position control device 8.

圧下位置制御装置は入力されたΔSf*を実現すべく圧
延機2を制御して圧延材1に対する仕上最終パスの圧延
を行うことに々す、これによって仕上最終パスヲ経た圧
延材の板キャンバは解消されることに々る。
The rolling position control device controls the rolling mill 2 to realize the input ΔSf* and performs rolling of the final finishing pass on the rolled material 1, thereby eliminating the plate camber of the rolled material that has passed through the final finishing pass. There are many things to be done.

々お左右の圧下量の修正方法としては出側の中央部の板
厚に影響を及ぼさ々いようにするために±ΔS f*7
2ずつ左右の圧下位置を夫々上下逆向きに修正するが如
くに行うのが望ましい。
The method for correcting the amount of reduction on the left and right sides is ±ΔS f*7 in order to avoid affecting the thickness of the central part of the plate on the exit side.
It is preferable to correct the left and right rolled positions by 2 in reverse directions, respectively.

また本発明方法では圧延パス間で短時間内に圧下量修正
を行うので、制御の応答性に優れた油圧圧下制御装置を
用いるのが適当である。
Further, in the method of the present invention, since the reduction amount is corrected within a short time between rolling passes, it is appropriate to use a hydraulic reduction control device with excellent control responsiveness.

更に上述の説明では伸び率差演算装置4、圧下修正量演
算装置5、レベル修正寄与率演算装置6、設定器7を個
別のものとしたが、実質的にはこれらはマイクロコンピ
ュータ等のデータ処理装置単機で構成し得ることは言5
4でもない。
Furthermore, in the above explanation, the elongation rate difference calculation device 4, the reduction correction amount calculation device 5, the level correction contribution rate calculation device 6, and the setting device 7 are described as separate units, but in reality, these are data processing devices such as a microcomputer. What can be configured with a single device is 5.
Not even 4.

次に本発明方法の実施結果について述べる。Next, the results of implementing the method of the present invention will be described.

厚さ215 mal、幅1500mm、長さ1.56m
のスラブを厚さ13.3顧、幅2000 mm、長さ1
8.9mの成品に仕上げる場合において仕上最終パスの
直前のパスを経た圧延材のキャンバ量ΔCf−、ハ+2
5朋であった。
Thickness 215 mal, width 1500 mm, length 1.56 m
The slab is 13.3 mm thick, 2000 mm wide, and 1 mm long.
When finishing a product with a length of 8.9 m, the amount of camber of the rolled material after the pass immediately before the final finishing pass ΔCf-, C+2
There were 5 friends.

このときの圧延材の長さLf−7は14.4mであった
ので左右の伸び率差Δξf−1は(22)式に従い 8 X2000 X25 2ξf−、−,44oo、 =O,0O193と得ら
れた。
At this time, the length Lf-7 of the rolled material was 14.4 m, so the difference in elongation rate Δξf-1 between the left and right sides was obtained as 8 X2000 Ta.

一方最終パスでのレベル修正寄与率Afは予め実験的に
0.208と求められた。
On the other hand, the level correction contribution rate Af in the final pass was experimentally determined in advance to be 0.208.

またhfは上述の如<13.3mmであるので、仕上最
終パスでの圧下修正量ΔSf*は(28)式より13.
3 Δsf*−X 0.00193= 0.122mm0.
208 となり、左右に振り分ける圧下修正量±ΔSf*/2は ±ΔSf*/2=10.061mm となった。
Also, since hf is <13.3 mm as mentioned above, the reduction correction amount ΔSf* in the final finishing pass is 13.3 mm from equation (28).
3 Δsf*-X 0.00193=0.122mm0.
208, and the reduction correction amount ±ΔSf*/2 distributed to the left and right was ±ΔSf*/2=10.061 mm.

これに基いて仕上最終パスにおける圧下位置を調整した
結果キャンバ量ΔCfは+5mmとなり、殆んど問題上
なら々い値に低減されたのに対し、本発明方法によらず
に最終パス圧延を行った比較材のキャンバ量は+45m
7nであった。
As a result of adjusting the rolling position in the final finishing pass based on this, the camber amount ΔCf was +5 mm, which was reduced to a reasonable value for most problems, whereas when the final pass rolling was performed without using the method of the present invention, The camber amount of the comparison material is +45m
It was 7n.

以上の如く本発明方法にあっては圧延材塑性曲線の傾き
、ミル寸法、ミルの左右剛性、圧延材の幅寸法等の板キ
ヤンバ影響要素にて定まる値であるレベル修正寄与率を
考慮して、圧下修正量を求めることとしているから、上
記した如き板キヤンバ影響要素を解消し得て制御精度、
ひいては製品品質の向上を図り得、歩留りの大幅な向上
を期待出来るなど、本発明は優れた効果を奏するもので
ある。
As described above, in the method of the present invention, the level correction contribution rate, which is a value determined by plate camber influencing factors such as the slope of the plasticity curve of the rolled material, the mill dimensions, the lateral rigidity of the mill, and the width dimension of the rolled material, is taken into consideration. Since the reduction correction amount is determined, the above-mentioned plate camber influence factors can be eliminated, and control accuracy and control accuracy can be improved.
The present invention has excellent effects, such as improving product quality and expecting a significant improvement in yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を実施するための装置の模式図、第
2図は板キャンバが発生した圧延材の略示平面図、第3
図は演算式導出のために幾何学的に表わした圧延材の平
面図、第4図A、Bは圧延機の入側、出側夫々における
圧延材の断面寸法図第5図は圧下修正量と出側ウェツジ
量との相関関係を示すグラフである。 1・・・圧延材、2・・・圧延機、3・・・キャンバ計
測装置、4・・・伸び率差演算装置、5・・・圧下修正
量演算装置、6・・・レベル修正寄与率演算装置、7・
・・設定器、8・・・圧下位置制御装置。
Fig. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention, Fig. 2 is a schematic plan view of a rolled material in which plate camber has occurred, and Fig. 3
The figure is a plan view of the rolled material expressed geometrically for deriving the calculation formula, Figure 4 A and B are cross-sectional dimensions of the rolled material at the entrance and exit sides of the rolling mill, and Figure 5 is the amount of rolling correction. FIG. DESCRIPTION OF SYMBOLS 1... Rolled material, 2... Rolling machine, 3... Camber measuring device, 4... Elongation rate difference calculation device, 5... Rolling correction amount calculation device, 6... Level correction contribution rate Arithmetic device, 7.
... Setting device, 8... Press down position control device.

Claims (1)

【特許請求の範囲】 1 鋼板圧延に際し、最終の圧延パスに先立って圧延材
のキャンバ量を計測し、この計測値から圧延材の圧延方
向左右両端における圧延方向の伸び率差を算出し、この
算出値と、下式で定義されるレベル修正寄与率Aと、 3w = A・ΔS十Δw。 但し、ΔW:圧延機出側のウェッジ量 ΔS:圧下修正量 Δwo:圧下修正量が零の場合に生じる出側のウェツジ
量 に基づき下式に従って圧延機の左右両側夫々における最
終圧延パスの圧下修正量ΔSfを求め、但し、ΔSf:
最終圧延パスの圧下修正量hf:最終圧延パスの出側板
厚 Af:最終圧延パスのレベル修正寄与 率 Δξf−、:最終圧延パスの直前のパスにおける延び率
差 該圧下修正量に従って圧延機両側夫々の圧下位置を調整
した後、最終圧延パスを実施することを特徴とする板キ
ヤンバ制御方法。
[Scope of Claims] 1. When rolling a steel plate, the amount of camber of the rolled material is measured prior to the final rolling pass, and from this measured value, the elongation rate difference in the rolling direction at both the left and right ends of the rolled material in the rolling direction is calculated. The calculated value and the level correction contribution rate A defined by the following formula: 3w = A・ΔS+Δw. However, ΔW: Amount of wedge on the exit side of the rolling mill ΔS: Amount of rolling reduction correction Δwo: A reduction correction of the final rolling pass on each of the left and right sides of the rolling mill according to the following formula based on the amount of wedge on the exit side that occurs when the reduction correction amount is zero. Find the amount ΔSf, where ΔSf:
Reduction correction amount hf of the final rolling pass: Output plate thickness Af of the final rolling pass: Level correction contribution rate Δξf- of the final rolling pass: Difference in elongation rate in the pass immediately before the final rolling pass, on both sides of the rolling mill according to the reduction correction amount A board camber control method characterized in that a final rolling pass is performed after adjusting the rolling position of the board.
JP54005432A 1979-01-18 1979-01-18 Plate camber control method Expired JPS5926367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54005432A JPS5926367B2 (en) 1979-01-18 1979-01-18 Plate camber control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54005432A JPS5926367B2 (en) 1979-01-18 1979-01-18 Plate camber control method

Publications (2)

Publication Number Publication Date
JPS55112116A JPS55112116A (en) 1980-08-29
JPS5926367B2 true JPS5926367B2 (en) 1984-06-27

Family

ID=11611022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54005432A Expired JPS5926367B2 (en) 1979-01-18 1979-01-18 Plate camber control method

Country Status (1)

Country Link
JP (1) JPS5926367B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58218312A (en) * 1982-06-11 1983-12-19 Kawasaki Steel Corp Setting method of draft position in rolling mill
JPS60106610A (en) * 1983-07-06 1985-06-12 Kobe Steel Ltd Control method of camber of rolling material
CN106391721B (en) * 2016-11-18 2018-06-22 首钢京唐钢铁联合有限责任公司 A kind of method and device of quick obtaining strip camber size

Also Published As

Publication number Publication date
JPS55112116A (en) 1980-08-29

Similar Documents

Publication Publication Date Title
KR950001805B1 (en) Process for edge drop control in cold rolling
JP6809488B2 (en) Hot-rolled rough rolling method, hot-rolled rough rolling equipment, hot-rolled steel sheet manufacturing method, and hot-rolled steel sheet manufacturing equipment
JPS6012123B2 (en) Thick plate rolling method
JPS5926367B2 (en) Plate camber control method
JP3332712B2 (en) Planar shape control method and planar shape control device
JP5949691B2 (en) Plate width control method and plate width control device
JPH04313415A (en) Head part plate thickness control method for finish rolling mill
JPS6111124B2 (en)
JPS62168607A (en) Shape controlling method for sheet rolling
JPS649086B2 (en)
JP4470667B2 (en) Shape control method in temper rolling mill
JP2550267B2 (en) Camber control method in plate rolling
JPS59127915A (en) Controlling method of plate camber
JP3664067B2 (en) Manufacturing method of hot rolled steel sheet
JP2719216B2 (en) Edge drop control method for sheet rolling
JP2907032B2 (en) Rolling method of thick steel plate
JP2002282915A (en) Reverse rolling mill and rolling method
JPH04111911A (en) Method for controlling camber when rolling sheet
JPH0515911A (en) Method for controlling edge drop in cold rolling
JP2661495B2 (en) Method for controlling center-centered web rolling of H-section steel and H-section guiding apparatus therefor
JP2006051512A (en) Method for controlling width of material to be rolled in hot rolling and method for manufacturing hot-rolled metallic sheet
JPS6032522B2 (en) Plate crown reduction method
JPH0618651B2 (en) Width direction plate thickness difference control method and control device in the longitudinal direction of a thin steel plate
JPH02307613A (en) End drop control method for plate rolling
JPS6284813A (en) Control method for plate width